Mathematical Logic

Quarterly
(c) WILEY-VCH Verlag Berlin GmbH 2001

A constructive proof of the Peter-Weyl theorem

Thierry Coquand and Bas Spitters
Thierry Coquand, Computing Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
E-mail address: coquand@cs.chalmers.se

Bas Spitters, Department of Computer Science, University of Nijmegen, P.O.box 9010, NL-6500 GL Nijmegen, The Netherlands.
E-mail address: spitters@cs.kun.nl

Abstract

We present a new and constructive proof of the Peter-Weyl theorem on the representations of compact groups. We use the Gelfand representation theorem for commutative C^{*}-algebras to give a proof which may be seen as a direct generalization of Burnside's algorithm [3]. This algorithm computes the characters of a finite group. We use this proof as a basis for a constructive proof in the style of Bishop. In fact, the present theory of compact groups may be seen as a natural continuation in the line of Bishop's work on locally compact, but Abelian, groups [2].

2000 Mathematics Subject Classification: 03F60 Constructive and recursive analysis, 22 C 05 Compact groups, 43A77 Analysis on general compact groups, 22D25 C*-algebras and W^{*}-algebras in relation to group representations.

Keywords: Constructive mathematics, Compact groups, Peter-Weyl theorem, C*-algebras, Burnside's algorithm.

1 Introduction

We present a constructive proof of the Peter-Weyl theorem on the representations of compact groups. Unlike the original proof [7], or the one by Segal [8], we do not use the spectral theory of compact operators. The proof is also different from the one presented in [5], which uses a representation theorem for H^{*}-algebras due to Ambrose [1]. We use instead the Gelfand representation theorem for commutative C^{*}-algebras to give a new proof, which may be seen as a direct generalization of Burnside's algorithm [3] to compute the characters of a finite group. Our first proof is not constructive. It uses a non-constructive variant of the least upper bound principle (Theorem 3.10). However we show in section 4 how this can be avoided. We thus obtain a constructive proof in the style of Bishop. In fact, the present theory of
compact groups may be seen as a natural continuation in the line of Bishop's work on locally compact, but Abelian, groups [2].

The paper is organized as follows. We first outline the theory of finite groups to motivate the way we organize our proof. Then we give a classical proof of the Peter-Weyl theorem. Finally, we proceed to give a constructive proof.

2 Finite groups

In this section we outline how to compute the irreducible characters of finite groups; see [3].

Let G be a finite group and let C_{1}, \ldots, C_{n} be its conjugacy classes. We define as usual the group algebra $\mathbf{C}[G]$ as the algebra of formal sums $\Sigma a_{g} g$ with product

$$
\sum a_{g} g * \sum b_{h} h=\sum a_{g} b_{h} g h
$$

This algebra is isomorphic to the space $C(G, \mathbf{C})$ of complex functions on G equipped with the convolution product. Let $Z(\mathbf{C}[G])$ be the center of this algebra. The center consists of the formal sums $\sum a_{g} g$ such that $a_{g}=a_{h}$, whenever g and h are in the same conjugacy class. The set G is a basis for the complex vector space $\mathbf{C}[G]$. A basis for $Z(\mathbf{C}[G])$ is obtained by considering, for each conjugacy class C_{i}, the sum $S_{i}=\sum_{g \in C_{i}} g$. So, the complex vector space $Z(\mathbf{C}[G])$ has dimension n, the number of conjugacy classes.

Since the family S_{i} forms a basis for $Z(\mathbf{C}[G])$, there exist natural numbers $c_{i j k}$ such that

$$
\begin{equation*}
S_{i} S_{j}=\sum_{k} c_{i j k} S_{k} \tag{2.1}
\end{equation*}
$$

We write M_{i} for the matrix $\left(c_{i j k}\right)_{j k}$.
Irreducible characters are best seen as representations $\chi: Z(\mathbf{C}[G]) \rightarrow \mathbf{C}$. This definition coincides with a more traditional definition of 'character' which can be found in section 3.6. A character χ induces a function $\mathbf{C}[G] \rightarrow \mathbf{C}$ which is constant on conjugacy classes. So χ is completely determined by a list of numbers $\chi\left(S_{1}\right), \ldots, \chi\left(S_{n}\right)$. We write $\chi(i):=\chi\left(S_{i}\right)$. We then obtain from equation 2.1 that

$$
\begin{equation*}
\chi(i) \chi(j)=\sum_{k} \chi(k) c_{i j k} \tag{2.2}
\end{equation*}
$$

Consequently, the characters are eigenvectors for each of the matrices $M_{i}:=\left(c_{i j k}\right)_{j k}$, which represents multiplication by S_{i}. Conversely, each vector which is an eigenvector for all multiplication matrices M_{i} is a character, except for a scalar multiplication.

Given the multiplication table (2.1) for Z, we obtain Burnside's algorithm: if we simultaneously diagonalize all matrices M_{i}, we obtain for M_{i} a matrix with n numbers on the diagonal and these numbers are $\chi_{1}(i), \ldots, \chi_{n}(i)$.

Now, how do we know that we can simultaneously diagonalize all these matrices M_{i} ? We note that $\mathbf{C}[G]$ and hence $Z(\mathbf{C}[G])$ is a Hilbert space with inner product

$$
\begin{equation*}
\left(\sum a_{g} g, \sum b_{h} h\right)=\frac{1}{n} \sum a_{g} \overline{\bar{b}_{g}} \tag{2.3}
\end{equation*}
$$

With respect to this inner product, each matrix M_{i} is a normal matrix - that is, it commutes with its adjoint. In fact, $Z(\mathbf{C}[G])$ is a commutative C^{*}-algebra of operators
on $\mathbf{C}[G]$. The adjoint of S_{i} is defined by $S_{i}^{*}:=\sum_{x \in S_{i}} x^{-1}$. Finally, a commutative algebra of normal matrices can be simultaneously diagonalized. Since the matrices have integral coefficients, the diagonalization process can be carried out constructively within the algebraic numbers, since these have a decidable equality.

3 Compact case

We present a proof of the Peter-Weyl theorem. Only in one place, Theorem 3.10, do we use non-constructive reasoning. In section 4 we will show how this can be avoided.

When X is a locally compact space, then $C(X)$ denotes the space of test-functions, that is, the space of functions with a compact support.

The present proof is similar to the finite case we have treated above. We apply the Gelfand representation theorem for commutative C^{*}-algebras to the center Z of the group algebra and show that this is isomorphic to a sub-algebra of a space of test-functions $C(X, \mathbf{C})$. Here X can be seen as the set of all morphisms from Z to \mathbf{C}. The compact variant of the group algebra is the convolution algebra, which is also called the group algebra.

We recall the Gelfand representation theorem. A constructive version of this result can be found in section 4 .

Theorem 3.1. [Gelfand] Let \mathcal{A} be a unital commutative C^{*}-algebra. The spectrum X of \mathcal{A} - that is, set of C^{*}-algebra morphisms from \mathcal{A} to \mathbf{C} - can be equipped with a topology such that X is compact and the Gelfand transform ${ }^{\wedge}: \mathcal{A} \rightarrow C(X)$, defined by $\hat{a}(x):=x(a)$, is a C^{*}-isomorphism.

We will first develop a few facts about the group algebra and prove a Plancherel theorem (3.5) from which a Peter-Weyl theorem follows.

3.1 Integrals with values in a Banach space

Recall that on any compact group G one can construct a translation-invariant integral M, called the Haar integral, such that $M(1)=1$. We will give a simple construction of this integral in section A.1. We extend the Haar integral to the space of all continuous functions on G with values in a Banach space E. This integral also has its values in E.

Let $f: G \rightarrow E$ be a continuous function. We recall that a partition of unity g consists of a finite collection of nonnegative functions g_{i} in $C(G)$ and x_{i} in G such that $g_{i}\left(x_{i}\right)=1$ and $\sum g_{i}=1$. We define for each partition g the Riemann sum $M_{g}(f):=\sum M\left(g_{i}\right) f\left(x_{i}\right)$. We observe that for each $\epsilon>0$, there exists a partition g such that $\left\|f-\sum f\left(x_{i}\right) g_{i}\right\| \leq \epsilon$. So we can then define the Riemann integral $M(f)$ as the limit of these Riemann sums. This integral is a continuous linear map from $C(G, E)$ to E.

Lemma 3.2. Let E_{1} be a Banach space, $F: E \rightarrow E_{1}$ a bounded linear map and f in $C(G, E)$. Then $\int F f=F \int f$.

Proof. Note that for all partitions of unity g,

$$
\begin{aligned}
M_{g}(F f) & =\sum M\left(g_{i}\right)(F f)\left(x_{i}\right) \\
& =F\left(\sum M\left(g_{i}\right) f\left(x_{i}\right)\right) \\
& =F\left(M_{g}(f)\right) .
\end{aligned}
$$

The lemma now follows from the fact that F is bounded and M is continuous.

3.2 Convolution product

Let G be a compact group. Define for $x \in G$, the left-translation over x by $\left(T_{x} f\right)(y):=$ $f\left(x^{-1} y\right)$ for all $f \in C(G)$. Define the convolution product on $C(G)$ as the $C(G)$-valued integral

$$
\begin{equation*}
f * g=\int f(y) T_{y} g d y \tag{3.1}
\end{equation*}
$$

for all $f, g \in C(G)$. As usual, the identity

$$
(f * g)(x)=\int f(y) g\left(y^{-1} x\right) d y
$$

is proved by applying the evaluation $h \mapsto h(x)$ from $C(G) \rightarrow \mathbf{C}$.
The space $C(G, \mathbf{C})$ of complex continuous functions equipped with the convolution product forms a complex algebra, called the group algebra. The map \mathfrak{r} defined by $\tilde{f}(x):=\overline{f\left(x^{-1}\right)}$ for all $f \in C(G, \mathbf{C})$ is an involution. With this involution the group algebra $C(G, \mathbf{C})$ is a ${ }^{*}$-algebra. The space $C(G, \mathbf{C})$ is also equipped with an inner product defined by $(f, g):=\int f \bar{g}$.

Since $f * g=\int f(t)\left(T_{t} g\right) d t$, it follows that

$$
\begin{align*}
\|f * g\|_{2} & =\left\|\int f(t)\left(T_{t} g\right) d t\right\|_{2} \tag{3.2}\\
& \leq \int|f(t)|\left\|\left(T_{t} g\right)\right\|_{2} d t \\
& =\int|f(t)|\|g\|_{2} d t=\|f\|_{1}\|g\|_{2} .
\end{align*}
$$

By the Cauchy-Schwarz inequality and since the Haar measure of G equals 1, we have that $\|f\|_{1} \leq\|f\|_{2}$. Combining this with equation 3.2 we see that $\|f * g\|_{2} \leq\|f\|_{2}\|g\|_{2}$. Consequently, the map $g \mapsto f * g$ defines a bounded operator on the pre-Hilbert space $C(G, \mathbf{C})$.

It is straightforward to show that the operator defined by $(P f)(x):=\int f\left(a x a^{-1}\right) d a$ for all $f \in C(G, \mathbf{C})$ is the orthogonal projection on the center of the group algebra. Let f, g be central continuous functions. Then the equality

$$
\begin{equation*}
f * g=\int f(t)\left(P T_{t} g\right) d t \tag{3.3}
\end{equation*}
$$

follows from Lemma 3.2 by taking $F(u)=P u$.

3.3 Group algebra

The group algebra is the algebra $C(G)$ with $*$ as multiplication. We define the linear functional $I(f):=f(e)$ on the group algebra and remark that $f * g(e)=(f, \tilde{g})$, where \int denotes the Haar integral. Let $Z:=Z(C(G), \mathbf{C})$ denote the center of the group algebra. We define an order on the ring Z by $f \succeq 0$ if and only if $(f * g, g) \geq 0$, whenever g is in $C(G)$. If to each f in $C(G)$ we associate an operator $g \mapsto f * g$ on the Hilbert space $L_{2}(G)$, then \succeq is the usual order on $C(G)$ when considered as an algebra of operators.

We now collect some facts that are useful later.
Lemma 3.3. [11, p.85-86] If V is a neighborhood of e, then there is a nonnegative central function u concentrated on V such that $\int u=1$.

Lemma 3.4. For all u in $L_{1}(G)^{+},\|u * \tilde{u}\|_{1}=\|u\|_{1}^{2}$.
Proof.

$$
\begin{aligned}
\int|u * \tilde{u}| & =\iint u\left(x y^{-1}\right) \tilde{u}(y) d y d x \\
& =\iint u\left(x y^{-1}\right) d x u\left(y^{-1}\right) d y=\int\|u\|_{1} u(y) d y=\|u\|_{1}^{2}
\end{aligned}
$$

Lemma 3.5. Let $f \in C(G)$ and $\epsilon>0$. Then there exists a central w such that if $u:=w * \tilde{w}$, then $0 \leq \hat{u} \leq 1,\|f-f * u\|_{2} \leq \epsilon$ and $|I(f)-I(f * u)| \leq \epsilon$. Finally, $I(u) \geq 1$.

Proof. Let $f \in C(G)$. Let V be a neighborhood of e such that for all $y \in V, x \in$ G,

$$
\left|f\left(y^{-1} x\right)-f(x)\right|<\epsilon
$$

Lemma 3.3 supplies a nonnegative central test function w concentrated on W such that $W^{2} \subset V$ and $\|w\|_{1}=1$. Define $u:=w * \tilde{w}$. Then $\|u\|_{1}=1$, so $0 \leq \hat{u} \leq 1$. Since u is concentrated on V, for each $x \in G$,

$$
\begin{aligned}
|u * f(x)-f(x)| & \leq \int_{V}|u(y)|\left|f\left(y^{-1} x\right)-f(x)\right| d y \\
& \leq 1 \cdot \epsilon
\end{aligned}
$$

It follows that $\|u * f-f\|_{\infty} \leq \epsilon$, and thus $\|u * f-f\|_{2}^{2}=\int|u * f-f|^{2} \leq \epsilon^{2} \cdot 1$.
To prove that $|I(f)-I(f * u)| \leq \epsilon$, we observe that $|f(e)-g(e)| \leq\|f-g\|_{\infty}$ for all $f, g \in C(G)$. Consequently, $|f(e)-f * u(e)| \leq \epsilon$.

For the inequality $I(u) \geq 1$ one observes that $I(u)=\|w\|_{2}^{2} \geq\|w\|_{1}^{2}=1$.
Corollary 3.6. The linear functional I is positive on Z. That is, if $f \succeq 0$, then $I(f) \geq 0$.

Proof. If $f \succeq 0$, then $I(f * w * \tilde{w})=(f * w, w) \geq 0$ for all w in Z. The result follows from the previous lemma.

Lemma 3.7. For all $h \succeq 0,\|h\|_{\infty}=I(h)=h(e)$.

Proof. We remind the reader of the usual argument (cf. for instance [11]). We will use Dirac delta functions, the reader will have no problem finding a proof using only continuous functions. We have $I(h * u * \tilde{u}) \geq 0$ for all $u \in C(G)$, and, since h is positive, $I\left(h * \delta_{y}\right)=h\left(y^{-1}\right)=\overline{h(y)}$ for all y. Taking $u=a \delta_{e}+b \delta_{x}$ and observing that $\delta_{x} * \delta_{y}=\delta_{x y}$, we have $h(e) a \bar{a}+h(x) a \bar{b}+\overline{h(x)} \bar{a} b+h(e) b \bar{b} \geq 0$. We see that the matrix

$$
\left(\begin{array}{ll}
\frac{h(e)}{h(x)} & h(x) \\
h(e)
\end{array}\right)
$$

is positive definite. Consequently, its determinant $h(e)^{2}-|h(x)|^{2}$ is positive, which was to be proved.

3.4 Characters

Let R be the C^{*}-algebra of operators on $L_{2}(G)$ generated by Z and the identity. Let X be the spectrum of R and let $\hat{\imath}$ denote the Gelfand transform. Define $D(g):=$ $\{x \in X: \hat{g}(x)>0\}$ and $\Sigma:=\bigcup_{g \in Z} D(g)$. We now prove that this set is actually discrete and coincides with the space of characters. That is, we show that the *homomorphisms from Z to \mathbf{C} correspond one-to-one with the characters. We need some preparations first.

For all $f, g \in C(G)$ we have

$$
\begin{aligned}
\left(T_{x}(f * g)\right)(z) & =\int f(y) g\left(y^{-1} x^{-1} z\right) d y \\
w:=x y & \int f\left(x^{-1} w\right) g\left(w^{-1} z\right) d w \\
& =\left(T_{x} f * g\right)(z)
\end{aligned}
$$

So, for all $f, g \in Z$,

$$
\begin{equation*}
\left(T_{x} f\right) * g=T_{x}(f * g)=T_{x}(g * f)=\left(T_{x} g\right) * f=f * T_{x} g \tag{3.4}
\end{equation*}
$$

Lemma 3.8. For $g \in Z$ and $f \in C(G), P(f * g)=g * P(f)$.
Proof. For all $\phi \in C(G, C(G))$ we have $\int \phi(x) * g d x=\left(\int \phi\right) * g$ and $P f=$ $\int T_{x} T^{x} f d x$, where $T^{x} f(z)=f(z x)$. So

$$
\begin{aligned}
P(f * g) & =\int T_{x} T^{x} f * g d x \\
& =\int\left(T_{x} T^{x} f\right) * g d x \\
& =\int\left(T_{x} T^{x} f\right) d x * g \\
& =(P f) * g
\end{aligned}
$$

where the second equality follows from Formula 3.4.
For the rest of this section we fix a point σ in Σ, that is a ${ }^{*}$-algebra homomorphism $\sigma: Z \rightarrow \mathbf{C}$.

Since $\sigma \in \Sigma$, there exists g in Z such that $\sigma \in D(g)$. We define $\chi_{\sigma}(x):=$ $\sigma\left(P T_{x} g\right) / \sigma(g)$. We drop the subscript when no confusion is possible. Since $P(\tilde{f})=$ $\widetilde{P(f)}$ for all $f \in C(G, \mathbf{C})$, we see that $\chi=\tilde{\chi}$.

We will show that χ is a character - that is a central function such that $\chi * f=$ $(f, \chi) \chi$ for all central $f-$ and that $D\left(\chi_{\sigma}\right)=\{\sigma\}$.

By Lemma 3.2 and Formula 3.3

$$
\sigma(f) \sigma(g)=\sigma(f * g)=\int f(t) \chi_{\sigma}(t) \sigma(g) d t
$$

so $\sigma(f)=\int f(t) \chi_{\sigma}(t) d t=\left(f, \tilde{\chi}_{\sigma}\right)=\left(f, \chi_{\sigma}\right)$.
The first equation in the following lemma is called the character formula.
Lemma 3.9. $\chi(x) \chi(y)=\int \chi\left(x t y t^{-1}\right) d t=\left(P T_{x} \chi\right)(y)$.
Proof. It follows from Lemma 3.8 and Formula 3.4 that:

$$
P T_{x} g * P T_{y} g=P\left(T_{x} g * P T_{y} g\right)=P\left(g * T_{x} P T_{y} g\right)=g * P T_{x} P T_{y} g
$$

We have $P T_{x} P T_{y} g=\int P T_{x t y t^{-1}} g d t$, so

$$
\sigma\left(P T_{x} P T_{y} g\right) / \sigma(g)=\int \chi_{\sigma}\left(x t y t^{-1}\right) d t=P T_{x} \chi_{\sigma}(y)
$$

On the other hand, $\sigma\left(P T_{x} g * P T_{y} g\right) / \sigma(g)^{2}=\chi_{\sigma}(x) \chi_{\sigma}(y)$.
Put in other words, the lemma states that $P T_{x} \chi=\chi(x) \chi$. It follows that χ is a central function, since

$$
\chi=\chi(e) \chi=P T_{e} \chi=P \chi
$$

Also

$$
\begin{equation*}
(f * \chi)=\int f(t)\left(P T_{t} \chi\right) d t=\int f(t) \chi(t) \chi d t=(f, \tilde{\chi}) \chi=(f, \chi) \chi \tag{3.5}
\end{equation*}
$$

Consequently, $p_{\sigma}:=\chi_{\sigma} /\left(\chi_{\sigma}, \chi_{\sigma}\right)$ is a projection, that is a self-adjoint idempotent.
We claim that $D\left(\chi_{\sigma}\right)=\{\sigma\}$. Indeed, by Formula 3.5 $D\left(\chi_{\sigma}\right)$ contains only one point and since $\hat{\chi_{\sigma}}(\sigma)=\sigma\left(\chi_{\sigma}\right)=\left(\chi_{\sigma}, \chi_{\sigma}\right)>0$, this point is equal to σ. We see that Σ is discrete. We observe that

$$
I\left(\chi_{\sigma}\right)=\chi_{\sigma}(e)=\frac{\sigma\left(P T_{e} g\right)}{\sigma(g)}=1
$$

Conversely, if χ is a character then $\sigma(f):=(f, \chi)$ is a *-algebra homomorphism $Z \rightarrow \mathbf{C}$. Indeed,

$$
\sigma(\tilde{f})=(\tilde{f}, \chi)=(f, \tilde{\chi})^{*}=(f, \chi)^{*}=\sigma(f)^{*}
$$

for all $f \in Z$, and

$$
\sigma(f * g)=(f * g, \chi)=(g, \tilde{f} * \chi)=(\tilde{f}, \chi)^{*}(g, \chi)=(f, \chi)(g, \chi)=\sigma(g) \sigma(f)
$$

for all $f, g \in Z$.

3.5 Plancherel and Peter-Weyl

In the following theorem, and the rest of the section, we use non-constructive reasoning. A constructive version of this result will be given in section 4.

We recall that Σ is discrete. Define for each σ in $\Sigma, a_{\sigma}:=\hat{f}(\sigma) /\left\|\chi_{\sigma}\right\|_{2}^{2}$. Then $\hat{f}(\sigma)=a_{\sigma} \hat{\chi_{\sigma}}(\sigma)$.
Theorem 3.10. For all $f \in Z$ such that $\hat{f} \geq 0, I(f)=\sum a_{\sigma}$ and $f=\sum a_{\sigma} \chi_{\sigma}$.
Proof. The functional I is positive (Corollary 3.6), so $I(f) \geq I(g)$, whenever $0 \leq \hat{g} \leq \hat{f}$. Consequently, for each finite $U \subset \Sigma$, we have $I(f) \geq \sum_{\sigma \in U} a_{\sigma} I\left(\chi_{\sigma}\right)=$ $\sum_{\sigma \in U} a_{\sigma}$, since $f \succeq \sum_{\sigma \in U} a_{\sigma} \chi_{\sigma}$. It follows that $\sum a_{\sigma}$ converges. Note that classical reasoning is used here, and that it is used only for this point. By Lemma 3.7, $\|\chi\|_{\infty}=$ $I(\chi)=1$, for all characters χ. Consequently, $\sum a_{\sigma} \chi_{\sigma}$ converges uniformly in $C(G)$, to g say. Now for all $\sigma, \widehat{f-g}(\sigma)=0$, so $f=g$ and $I(f)=\sum a_{\sigma}$.

Let $e_{\sigma}:=\chi_{\sigma} /\left\|\chi_{\sigma}\right\|_{2}$ and $b_{\sigma}(f):=\left(f, e_{\sigma}\right)$. Then $\left\|e_{\sigma}\right\|_{2}=1$ and $b_{\sigma}=\hat{f}(\sigma) /\left\|\chi_{\sigma}\right\|_{2}$.
Corollary 3.11. [Plancherel] For all f in $Z, I(f * \tilde{f})=\sum\left|b_{\sigma}\right|^{2}$ and e_{σ} is an orthonormal basis for the pre-Hilbert space Z.

Proof. We apply the previous theorem to $f * \tilde{f}$. Then

$$
I(f * \tilde{f})=\frac{\sum|\sigma(f * \tilde{f})|}{\left\|\chi_{\sigma}\right\|_{2}^{2}}=\frac{\sum|\sigma(f)|^{2}}{\left\|\chi_{\sigma}\right\|_{2}^{2}}=\sum\left|b_{\sigma}\right|^{2}
$$

It is straightforward to show that the system e_{σ} is orthonormal. For each finite $U \subset \Sigma,\left\|f-\sum_{\sigma \in U}\left(f, e_{\sigma}\right) e_{\sigma}\right\|_{2}^{2}$ equals $\sum\left|b_{\sigma}\right|^{2}$ where the last sum ranges over $\Sigma-U$. Consequently, $f=\sum b_{\sigma} e_{\sigma}$ and the system e_{σ} forms a basis.

We now obtain the main theorem in the Peter-Weyl theory.
Theorem 3.12. [Peter-Weyl] For each $f \in C(G), \sum_{\sigma} e_{\sigma} * f$, where $\sigma \in \Sigma$, converges to f in L_{2}.

Proof. For every such f in $C(G)$, Lemma 3.5 supplies a central u such that $0 \leq \hat{u} \leq 1$ and $\|f * u-f\|_{2}$ is small. We apply the Plancherel theorem to u to obtain the theorem.

3.6 An alternative definition of character

Traditionally, given a finite dimensional representation π, one defines its character as $x \mapsto \operatorname{Tr}(\pi(x))$. The following theorem and Lemma 3.9 show that our definition coincides with the traditional one.

Theorem 3.13. [6, p.197] Let ψ be a complex continuous function on G. Then ψ is the normalized ${ }^{1)}$ character of an irreducible unitary representation if and only if $\psi \neq 0$ and $\psi(x) \psi(y)=\int \psi\left(x t y t^{-1}\right) d t$ for all x, y in G.

It is not difficult to obtain a representation from a character (as defined in the present paper).

[^0]Theorem 3.14. For each character χ, the function $x \mapsto T_{x} \chi$ extends to an irreducible representation of the group G on the finite dimensional space $\operatorname{span}\left\{T_{x} \chi: x \in G\right\}$.

Proof. The set $\left\{T_{x} \chi: x \in G\right\}$ is invariant under the projection $T_{\chi} f:=\chi * f$, since $\chi * T_{x} \chi=T_{x}(\chi * \chi)=T_{x} \chi$. The projection is compact, so its range is finite dimensional.

Suppose that M is a translation invariant closed subspace of $\operatorname{span}\left\{T_{x} \chi: x \in G\right\}$ and f a nonzero element in M. Then $P(f * \tilde{f})$ is a central element in M, which is nonzero since

$$
P(f * \tilde{f})(e)=\int(f * \tilde{f})\left(t e t^{-1}\right) d t=f * \tilde{f}(e)=\|f\|_{2}^{2}>0
$$

The range of the projection T_{χ} on Z is one-dimensional, so $P f$ is a nonzero multiple of χ. Therefore M contains χ and hence $\left\{T_{x} \chi: x \in G\right\}$. It follows that $\left\{T_{x} \chi: x \in G\right\}$ is irreducible.

4 Constructive proof

In this section we obtain a constructive Peter-Weyl theorem.
Bishop [2] has the following variant of Gelfand's theorem.
Theorem 4.1. [Gelfand] Let \mathcal{A} be a unital commutative C^{*}-algebra of operators on a separable Hilbert space. The spectrum X of \mathcal{A} - that is, the set of C^{*}-algebra morphisms from \mathcal{A} to \mathbf{C} - can be equipped with a metric such that X is a compact metric space and the Gelfand transform ${ }^{\wedge}: \mathcal{A} \rightarrow C(X)$, defined by $\hat{a}(x):=x(a)$, is a C^{*}-isomorphism.

It is implicit in the statement of the previous theorem that the norms of all the elements in the C^{*}-algebra are computable. Fortunately, this holds for the present application, as we shall prove shortly.

Define for each $f \in C(G)$ the operator $T_{f}(g):=f * g$ for all $g \in L_{2}$.
Theorem 4.2. The operators $T_{f}(f \in C(G))$ are compact and hence normable, (this $i s$, the operator norm can be computed).

Proof. Let $B:=\left\{g \in L_{2}:\|g\|_{2} \leq 1\right\}$. We need to prove that the image of B under T_{f} is totally bounded. To do this we use the the Ascoli-Arzelà theorem [2, p.100]. Since $(f * g)(x)=\left(T_{x} f, \tilde{g}\right)$, we have for all $x, y \in G$ and $g \in B$,

$$
\begin{aligned}
|(f * g)(x)-(f * g)(y)| & \leq\left|\left(T_{x} f-T_{y} f, \tilde{g}\right)\right| \\
& \leq\left\|T_{x} f-T_{y} f\right\|_{2}
\end{aligned}
$$

We see that $\{f * g: g \in B\}$ is equicontinuous. If $x_{1}, \ldots, x_{n} \in G$, then the set

$$
\left\{\left(f * g\left(x_{1}\right), \ldots, f * g\left(x_{n}\right)\right): g \in B\right\}
$$

is totally bounded, since we can find a finite set C of linear independent vectors close to $\left\{T_{x_{1}} f, \ldots, T_{x_{n}} f\right\}$ and the set

$$
\left\{\left(\left(T_{x_{1}} f, c\right), \ldots\left(T_{x_{n}} f, c\right)\right): c \in \operatorname{span} C,\|c\|_{2} \leq 1\right\}
$$

is totally bounded.

We note that the compactness of the operators T_{f} is used only to prove that Z generates a C^{*}-algebra. However, the spectral theorem for compact operators is not needed.

To obtain a constructive Plancherel theorem, we give a constructive proof of Theorem 3.10. The notation is as before.

Theorem 4.3. For all $f \in Z$ such that $\hat{f} \geq 0, I(f)=\sum a_{\sigma}$ and $f=\sum a_{\sigma} \chi$.
Proof. The functional I is positive, so $I(f) \geq I(g)$, whenever $0 \leq \hat{g} \leq \hat{f}$. Consequently, for each finite $U \subset \Sigma$, we have $I(f) \geq \sum_{\sigma \in U} a_{\sigma} I\left(\chi_{\sigma}\right)$. We know that

$$
\|\hat{f}\|_{X}=\sup _{x \in X}|x(f)| \geq \sup _{\sigma \in \Sigma}|\sigma(f)| .
$$

Moreover, if $|x(f)|>0$, then $x \in \Sigma$. It follows that $\sup _{x \in X}|x(f)|=\sup _{\sigma \in \Sigma}|\sigma(f)|$. Let $\epsilon>0$. Lemma 3.5 supplies a central w such that for $u:=w * \tilde{w}, 0 \leq I(f)-I(f * u) \leq \epsilon$. Let $d>0$ be such that $d I(u) \leq \epsilon$. We construct a finite set $K \subset \Sigma$ such that for all $\sigma \in \Sigma-K, \hat{f}(\sigma)<d$. This set K is build recursively, we start with the empty set. Then we decide whether $\|\hat{f}\|<d$ or $\|\hat{f}\|>d / 2$. In the former case, we are done. In the latter case we pick σ in Σ such that $\hat{f}(\sigma)>d / 2$ and add it to K. We then consider $\hat{f}-\widehat{f * \chi_{\sigma}}$ recursively.

Define $g:=\sum_{\sigma \in K} \chi_{\sigma} * f * u$. Then $\hat{g} \leq \sum_{\sigma \in K} \hat{\chi_{\sigma}} \hat{f} \leq \hat{f}$, since $f * u \preceq f$. So

$$
I(f * u-g)=I\left(u *\left(f-f * \sum_{\sigma \in K} \chi_{\sigma}\right)\right) \leq I(u) d \leq \epsilon .
$$

Here we used that since $u=w * \tilde{w}$,

$$
|I(h * u)|=|(h * w, w)| \leq d\|w\|_{2}^{2}
$$

for all $|\hat{h}| \leq d$, a result that follows immediately from the definition of the order on operators. We see that $I(g)$ is within 2ϵ of $I(f)$, as required.

The proofs of the Plancherel Theorem and the Peter-Weyl theorem above are constructive.

Acknowledgement. This work originates from the PhD thesis work of the second author [9]. He would like to thank W. Veldman for his advise during this PhD project. He would also like to thank M. Frank [4] for drawing his attention to the Peter-Weyl theorem. We had interesting discussions with W. Bosma and B. Souvignier about finite groups and computer algebra. Finally, A van Rooij and the anonymous referee provided helpful suggestions on the presentation of the paper.

The second author was partially supported by the Netherlands Organization for Scientific Research (NWO).

References

[1] W. Ambrose. Structure theorems for a special class of Banach algebras. Transactions of the American Mathematical Society, 57:364-386, 1945.
[2] Errett Bishop and Douglas Bridges. Constructive analysis, volume 279 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, 1985.
[3] W. Burnside. Theory of groups of finite order. Dover Publications Inc., New York, 1955. 2d ed.
[4] Matthew Frank. Schur's Lemma and Irreducibility from a Constructive Point of View. http://zaphod.uchicago.edu/~mfrank/, June 2000.
[5] Lynn H. Loomis. An introduction to Abstract Harmonic Analysis. University Series in Higher Mathematics. van Nostrand, New York, 1953.
[6] M.A. Naimark and A.I. Stern. Theory of Group Representations, volume 246 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, 1982.
[7] F. Peter and H. Weyl. Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuerlichen Gruppe. Mathematische Annalen, 97:737-755, 1927.
[8] Irvin Segal. Algebraic integration theory. Bulletin of the American Mathematical Society, 71:419-489, 1965.
[9] Bas Spitters. Constructive and intuitionistic integration theory and function al analysis. PhD thesis, University of Nijmegen, 2002.
[10] John von Neumann. Zum Haarschen Mass in topologischen Gruppen. In A.H. Taub, editor, Collected Works, volume II: Operators, ergodic theory and almost periodic functions in a group, pages 445-453. Pergamon, 1961.
[11] André Weil. L'intègration dans les groupes topologiques et ses applications. Actual. Sci. Ind., no. 869. Hermann et Cie., Paris, 1940. [This book has been republished by the author at Princeton, N. J., 1941.].

Appendix A Compact groups

A. 1 Haar measure

We give a constructive adaptation of a proof by von Neumann [10] for the existence of Haar measure on a compact group.

Let G be a compact group. We define for all $x \in G$, the left-translation over x by $\left(T_{x} f\right)(y):=f\left(x^{-1} y\right)$ for all $f \in C(G)$. Then $T_{x} T_{y}=T_{x y}$ and $T_{x^{-1}}=T_{x}^{-1}$. Define $S_{f}:=\left\{T_{x} f: x \in G\right\}$. Let e be the unit in G. Let co A denote the convex hull of the set A and let $\overline{\operatorname{co}} A$ denote the closure of $\operatorname{co} A$.

Proposition A.1. Let G be a compact group and $f \in C(G)$. There is a constant function a such that for each $\varepsilon>0$, there are x_{1}, \ldots, x_{n} in G such that $\| \frac{1}{n} \sum_{i=1}^{n} T_{x_{i}} f-$ $a \| \leq \varepsilon$.

Proof. The set S_{f} is the uniformly continuous image of G and hence it is totally bounded. It follows that $\operatorname{co} S_{f}$ is totally bounded, and hence so is $B:=\{\sup g: g \in$ $\left.\operatorname{co} S_{f}\right\}$. We claim that the constant function with value $\inf B$ is in $\overline{\operatorname{co}} S_{f}$.

Let $\varepsilon>0$. Choose, x_{1}, \ldots, x_{n} in G and a neighborhood V of e such that $x_{i} V$ covers G and $|f(x)-f(y)| \leq \epsilon$ for all $x, y \in x_{i} V$. Define the average $A(g):=\frac{1}{n} \sum_{i=1}^{n} T_{x_{i}} g$ for all $g \in C(G)$. The operator A maps $\operatorname{co} S_{f}$ to $\operatorname{co} S_{f}$, so $\sup A g \leq \sup g$. Choose $g \in \operatorname{co} S_{f}$ such that $\sup g-\inf B<\varepsilon / n$. In particular, $\sup g-\sup A g<\varepsilon / n$. Hence for some $x \in G$, $\sup g-(A g) x<\varepsilon / n$. So $\sup g-g\left(x_{i}^{-1} x\right) \leq \varepsilon$ for all $i \leq n$. If x and y are in V, then $|g(x)-g(y)|<\varepsilon$ for all $g \in S_{f}$. Consequently, $\sup g-g(y) \leq 2 \varepsilon$ for all $y \in G$, so $\|g-\inf B\|_{\infty} \leq 2 \varepsilon$.

We obtain a similar result for $S^{f}:=\left\{T^{s} f: s \in G\right\}$, here T^{s} denotes righttranslation over s, that is $T^{s} f(x)=f(x s)$ for all $s \in G$.

Lemma A.2. The constant function in Proposition A. 1 is unique. We denote this unique constant by $M(f)$.

Proof. Let $\varepsilon>0$. Choose x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{m} in G and a and b in \mathbf{R} such that $a-\varepsilon \leq A f \leq a+\varepsilon$ and $b-\varepsilon \leq B f \leq b+\varepsilon$, where $A:=(1 / n) \sum_{i=1}^{n} T_{x_{i}}$ and $B:=(1 / m) \sum_{j=1}^{m} T^{y_{j}}$. Then $a-\varepsilon \leq T^{s} A f \leq a+\varepsilon$ for all $s \in G$, so $a-\varepsilon \leq B A f \leq a+\varepsilon$. Similarly, it follows that $b-\varepsilon \leq A B f \leq b+\varepsilon$. So $|a-b| \leq 2 \varepsilon$, because $A B=B A$.
Theorem A.3. [Haar] There exists a unique positive linear functional M on $C(G)$ such that $M(1)=1$ and $M(f)=M\left(T_{x} f\right)$ for all $x \in G$.

Proof. We define the Haar measure on G as the map $f \mapsto M(f)$. It is clear that $M(f) \geq 0$, whenever $f \geq 0$. Moreover, for all $f \in C(G)$ and $x \in G$, the constant functions with values $M\left(T_{x} f\right)$ and $M(f)$ are in $\overline{c o} S_{f}$, hence $M\left(T_{x} f\right)=M(f)$. We claim that M is linear. Indeed, let f and g be in $C(G)$ and let $\varepsilon>0$. Choose x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{m} in G such that $\|A f-M(f)\|_{\infty}<\varepsilon$ and $\|B(A g)-M(A g)\|_{\infty}<\varepsilon$, where $A:=\frac{1}{n} \sum_{i=1}^{n} T_{x_{i}}$ and $B:=\frac{1}{m} \sum_{i=1}^{m} T_{y_{i}}$. Then $\mathrm{M}(A g)=M(g)$ and $B(M(f))=M(f)$. Consequently $\|B(A f)-M(f)\|_{\infty}<\varepsilon$, and hence $\|B A(f+g)-M(f)-M(g)\|_{\infty}<2 \varepsilon$. We see that $M(f)+M(g) \in \overline{\operatorname{co}} S_{f+g}$. So $M(f)+M(g)=M(f+g)$. We conclude that M is an invariant positive linear functional on $C(G)$.

To prove the uniqueness of this invariant measure, we observe that if μ is any invariant probability measure on G, then for all $f \in C(G), \mu$ is constant on $\overline{\operatorname{co}} S_{f}$ and hence $\mu(f)=\mu(M(f))=M(f)$.

[^0]: ${ }^{1)}$ That is $\psi(e)=1$.

