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Two generalizations of Sets

Groupoids:

To keep track of isomorphisms we generalize sets to
groupoids (proof relevant equivalence relations)
2-groupoids (add coherence conditions for associativity),
. . .
weak ∞-groupoids

Weak ∞-groupoids are modeled by Kan simplicial sets.
(Grothendieck homotopy hypothesis)
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Topos theory

A topos is like:

• a semantics for intuitionistic formal systems
model of intuitionistic higher order logic/type theory.

• a category of sheaves on a site (forcing)

• a category with finite limits and power-objects

• a generalized space
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Higher topos theory

Combine these two generalizations of sets.
A higher topos is (represented by):
a model category which is Quillen equivalent to simplicial Sh(C )S
for some model ∞-site (C , S)
Less precisely:

• a generalized space (presented by homotopy types)

• a place for abstract homotopy theory

• a place for abstract algebraic topology

• a semantics for Martin-Löf type theory with
univalence (Shulman/Cisinski) and
higher inductive types (Shulman/Lumsdaine).
(current results are incomplete but promising)
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Envisioned applications

Type theory with univalence and higher inductive types as the
internal language for higher topos theory?

• higher categorical foundation of mathematics

• framework for large scale formalization of mathematics

• foundation for constructive mathematics
e.g. type theory with the fan rule

• expressive programming language with a clear semantics (e.g.
cubical)

Towards elementary ∞-topos theory.
Effective ∞-topos?, glueing (Shulman),. . .
Coq formalization



Higher toposes Internal logic Modalities Sub-∞-toposes Formalization

Envisioned applications

Type theory with univalence and higher inductive types as the
internal language for higher topos theory?

• higher categorical foundation of mathematics

• framework for large scale formalization of mathematics

• foundation for constructive mathematics
e.g. type theory with the fan rule

• expressive programming language with a clear semantics (e.g.
cubical)

Towards elementary ∞-topos theory.
Effective ∞-topos?, glueing (Shulman),. . .
Coq formalization



Higher toposes Internal logic Modalities Sub-∞-toposes Formalization

Envisioned applications

Type theory with univalence and higher inductive types as the
internal language for higher topos theory?

• higher categorical foundation of mathematics

• framework for large scale formalization of mathematics

• foundation for constructive mathematics
e.g. type theory with the fan rule

• expressive programming language with a clear semantics (e.g.
cubical)

Towards elementary ∞-topos theory.
Effective ∞-topos?, glueing (Shulman),. . .
Coq formalization1

1https://github.com/HoTT/HoTT/

https://github.com/HoTT/HoTT/
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Type theory

Type theory is another elephant

• a foundation for constructive mathematics
an abstract set theory (ΠΣ).

• a calculus for proofs

• an abstract programming language

• a system for developing computer proofs
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topos axioms

HoTT+UF gives:

• functional extensionality

• propositional extensionality

• quotient types

In fact, hSets forms a predicative topos (Rijke/Spitters)
as we also have a large subobject classifier
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Large subobject classifier

The subobject classifier lives in a higher universe.

B��

α
��

! // 1

True
��

A
P // hPropi

With propositional univalence, hProp classifies monos into A.

A,B : Ui hPropi := ΣB:Ui
isprop(B) hPropi : Ui+1

Equivalence between predicates and subsets.
Use universe polymorphism (Coq). Check that there is some way to
satisfy the constraints.
This correspondence is the crucial property of a topos.

Sanity check: epis are surjective (by universe polymorphism).



Higher toposes Internal logic Modalities Sub-∞-toposes Formalization

Large subobject classifier

The subobject classifier lives in a higher universe.

B��

α
��

! // 1

True
��

A
P // hPropi

With propositional univalence, hProp classifies monos into A.

A,B : Ui hPropi := ΣB:Ui
isprop(B) hPropi : Ui+1

Equivalence between predicates and subsets.
Use universe polymorphism (Coq). Check that there is some way to
satisfy the constraints.
This correspondence is the crucial property of a topos.
Sanity check: epis are surjective (by universe polymorphism).



Higher toposes Internal logic Modalities Sub-∞-toposes Formalization

higher toposes

Definition

A 1-topos is a 1-category which is

1 Locally presentable

2 Locally cartesian closed

3 Has a subobject classifier (a “universe of truth values”)

Definition (Rezk,Lurie,. . . )

A higher topos is an (∞, 1)-category which is

1 Locally presentable (cocomplete and “small-generated”)

2 Locally cartesian closed (has right adjoints to pullback)

3 Has object classifiers (“universes”)
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Object classifier

Fam(A) := {(B, α) | B : Type, α : B → A} (slice cat)
Fam(A) ∼= A→ Type
(Grothendieck construction, using univalence)

B

α

��

i // Type•

π1

��

A
P // Type

Type• = {(B, x) | B : Type, x : B}
Classifies all maps into A + group action of isomorphisms.
Crucial construction in ∞-toposes.
Grothendieck universes from set theory by universal property

Accident: hProp• ≡ 1?
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Object classifier

Theorem (Rijke/Spitters)

In type theory, assuming pushouts, TFAE

1 Univalence

2 Object classifier

3 Descent: Homotopy colimits (over graphs) defined by higher
inductive types behave well.

In category theory, 2, 3 are equivalent characterizing properties of a
higher topos (Rezk/Lurie).
Shows that univalence is natural.
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Examples of toposes I

Example

The (∞, 1)-category of ∞-groupoids is an ∞-topos. The object
classifier U is the ∞-groupoid of (small) ∞-groupoids.

Example

C a small (∞, 1)-category; the (∞, 1)-category of presheaves of
∞-groupoids on C is an ∞-topos.

Example

If E is an ∞-topos and F ⊆ E is reflective with accessible left-exact
reflector, then F is an ∞-topos: a sub-∞-topos of E .

Every ∞-topos arises by combining these.
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Examples of toposes II

Example

X a topological space; the (∞, 1)-category Sh(X ) of sheaves of
∞-groupoids on X is an ∞-topos.

For nice spaces X ,Y ,

• Continous maps X → Y are equivalent to ∞-topos maps
Sh(X )→ Sh(Y ).

• Every subspace Z ⊆ X induces a sub-∞-topos Sh(Z ) ⊆ Sh(X ).
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Topos-general mathematics

Idea

• We can “do mathematics” to apply generally in any ∞-topos.

• A single theorem yields results about many different models.

Example

The topos-general theory of “abelian groups” yields:

• In ∞-Gpd, classical abelian groups

• In Sh(X ), sheaves of abelian groups

• In ∞-Gpd/X , local systems on X

• In presheaves on O(G ), equivariant coefficient systems
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Topos-general mathematics

Idea

• We can “do mathematics” to apply generally in any ∞-topos.

• A single theorem yields results about many different models.

Example

The topos-general theory of “spectra” yields:

• In ∞-Gpd, classical stable homotopy theory

• In Sh(X ), sheaves of spectra

• In ∞-Gpd/X , parametrized stable homotopy theory

• In presheaves on O(G ), equivariant stable homotopy theory∗
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Topos-general mathematics

Idea

• We can “do mathematics” to apply generally in any ∞-topos.

• A single theorem yields results about many different models.

Example

The topos-general construction of “Eilenberg–MacLane objects”

abelian groups → spectra

can be done once and applied in all cases.

Eilenberg-MacLane object: For any abelian group G and positive integer n, there is an

n-type K(G , n) such that πn(K(G , n)) = G , and πk (K(G , n)) = 0 for k 6= n.
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Internalization

Idea

We can “do mathematics” to apply generally in any ∞-topos.

There are two ways to do this:

1 Write mathematics in a “point-free” category-theoretic style, in
terms of objects and morphisms.

2 Give a procedure that “compiles” point-ful mathematics to
make sense in any ∞-topos — the internal logic / type theory.
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Internalization – first style

Example

A group object in a category is

• an object G ,

• a morphism m : G × G → G ,

• the square

G × G × G
m×1

//

1×m
��

G × G

m
��

G × G m
// G

commutes.

• more stuff . . .
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Internalization – second style

Example

A group is

• A set G ,

• For each x , y ∈ G , an element x · y ∈ G

• For each x , y , z ∈ G , we have (x · y) · z = x · (y · z),

• more stuff . . .

Definition
of group

Internal logic
interpretation function

Definition of
group object



Higher toposes Internal logic Modalities Sub-∞-toposes Formalization

Internalization – second style

Example

A group is

• A set G ,

• For each x , y ∈ G , an element x · y ∈ G

• For each x , y , z ∈ G , we have (x · y) · z = x · (y · z),

• more stuff . . .

Definition
of group

Internal logic
interpretation function

Definition of
group object



Higher toposes Internal logic Modalities Sub-∞-toposes Formalization

Outline

1 Higher toposes

2 Internal logic

3 Modalities

4 Sub-∞-toposes

5 Formalization



Higher toposes Internal logic Modalities Sub-∞-toposes Formalization

Modalities in Logic

In traditional logic:

• A “modality” is a unary operation on propositions like “it is
possible that P” (denoted �P) or “it is necessary that P”
(denoted �P).

• Lawvere-Tierney topologies j : ‘P holds locally’.

• j is an idempotent monad on the poset of propositions, while
� is a comonad.

Our “modalities” # are higher modalities, which act on all types,
not just subterminals.
Idempotent monads on Type
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Modalities

Two classes of examples of modalities:

• n-truncations

• Lawvere-Tierney j-operators (closure operators) on hProp.
• ¬¬
• For u : hProp

open modality p 7→ (u ⇒ p)
closed modality p 7→ (u ? p)
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Reflective subuniverses

Definition (in HoTT)

A reflective subuniverse consists of

• A predicate in# : U → Ω.

• A reflector # : U → U with units ηA : A→ #A.

• For all A we have in#(#A).

• If in#(B), then (− ◦ ηA) : B#A → BA is an equivalence.

Examples: truncated types, ¬¬-stable types
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Lex Modalities

Definition (in HoTT)

A reflective subuniverse is a lex modality if # preserves pullbacks.

Lex=left exact, preserves finite limits
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Modalities

Theorem (in HoTT)

A reflective subuniverse # is a modality if:
If in#(A) and ∀(x : A) in#(B(x)), then in#(

∑
x :A B(x)).

It is a lex modality if:
If #A = ∗ then #(x = y) = ∗ for all x , y : A.

The types and type families that are in# are called modal.

Example

Every Lawvere-Tierney topology on Prop lifts to a lex modality.
The n-truncation τn, for any n > −2, is a non-lex modality.
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Factorization systems

In an ∞-topos, a modality corresponds to a pullback-stable
orthogonal factorization system (L,R):

• R = the maps E → B which are modal in E/B.

• the factorization = the local reflection A→ #BA→ B.

Can be internalized in HoTT.

Example

For the n-truncation τn, we have the (n-connected, n-truncated)
factorization system.
n = −1 epi-mono factorization
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Accessibility in ∞-toposes

Definition

For a family {fi : Si → Ti}i∈I of maps in E , an object X is
externally f -local if

E(Ti ,X )
−◦fi−−→ E(Si ,X )

is an equivalence for all i .

Since E is locally presentable, if f is small then the externally
f -local types are reflective.

Definition

A reflective subcategory is accessible if it consists of the externally
f -local types for some (small) family {fi}.



Higher toposes Internal logic Modalities Sub-∞-toposes Formalization

Accessibility in HoTT

Definition (in HoTT)

Given type families S ,T : I → U and a family of maps
f :

∏
i :I (Si → Ti ), a type X is internally f -local if

XTi
−◦fi−−→ X Si

is an equivalence for all i .

With higher inductive types, the internally f -local types form a
reflective subuniverse.

Definition

A reflective subuniverse is accessible if it consists of the internally
f -local types for some family f .
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Accessible modalities

Theorem (in HoTT)

An accessible reflective subuniverse is a modality iff it is generated
by some f :

∏
i :I (Si → ∗) (‘nullification’).

• Such an f is completely determined by a type family
S : I → U , hence by a map p :

∑
i :I Si → I .

• internally f -local ⇐⇒ externally local for all pullbacks of p.

Example

The n-truncation τn is generated by Sn → ∗ (with I = ∗).
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The modal universe

• In HTT, the universe of a sub-∞-topos is constructed by an
inexplicit local-presentability argument.

• In HoTT, we can be very explicit about it:

Theorem

For an accessible lex modality, the universe of modal types

U# :=
∑
X :U

in#(X )

is again modal. Thus, it is an object classifier for the sub-∞-topos
of modal types.

Conversely

If # is a modality and U# is modal, then # is lex.

“A quasitopos with a (sub)object classifier is a topos.”
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Topological localizations

• In HTT, a topological localization is a left exact localization
generated by monomorphisms.

• For internal localizations in HoTT:

Theorem (in HoTT)

If S : I → Ω is a family of truth values, then its localization
modality is lex.

Example

Hypercompletion is lex, but not topological.
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The propositional fracture theorem, a.k.a. Artin gluing

The propositional fracture theorem, a.k.a. Artin gluing

Gluing allows us to ‘reconstruct’ the topos
from the open and the closed modalities.

Example: Freyd cover

Scones, Logical Relations, and Parametricity
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Formalization

All of this theory has been formalized (by Shulman) in the
HoTT-library for Coq.
HoTT-library Bauer, Gross, Lumsdaine, Shulman, Sozeau, Spitters

Interesting use of module system:
A modality is an operator # which acts on types and satisfies a
universal property that quantifies over all types. We need to express
that # at level i has the universal propety with respect to every
level j , not only i . We needed a construct like record types, but
allowing each field to be individually universe-polymorphic.
Modules do the job.

Perhaps, Set in agda?
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Applications

• Coquand: stack models for independence of

• Program/proof transformations (judgemental variant/Coq
plugin by Tabareau et al)

• New mathematics:
generalized Blakers-Massey (Anel, Biedermann, Finster, Joyal)

• physics by cohesive higher toposes (Schreiber, Shulman)
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Conclusion

• Modal type theory internalizes subtoposes from higher toposes

• Joint generalization of n-truncations and Lawvere-Tierney
topologies

• three classes:
• reflective universes, orthogonal factorization systems
• modalities
• lex modalities

• semantics in higher toposes

Basic theory of modalities (83pp) 1706.07526
formalization in the HoTT library
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