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Claims
• Constructive mathematics suffices for applications

of mathematics.

• Constructive mathematics is a high-level
programming language.

• Abstraction (algebra) and constructivity can be
combined.

A constructive view on compact groups – p. 2/16



Claims
• Constructive mathematics suffices for applications

of mathematics.
• Constructive mathematics is a high-level

programming language.

• Abstraction (algebra) and constructivity can be
combined.

A constructive view on compact groups – p. 2/16



Claims
• Constructive mathematics suffices for applications

of mathematics.
• Constructive mathematics is a high-level

programming language.
• Abstraction (algebra) and constructivity can be

combined.

A constructive view on compact groups – p. 2/16



Weyl’s concern
Mathematics attains with Brouwer the highest
intuitive clarity [...] But with pain the mathemati-
cian sees the larger part of his towering theories
fall apart. Hermann Weyl 1928

Bishop showed that large parts of mathematics can
naturally be reconstructed in a constructive way.
Focus on basic observables, or constructive approxi-
mations (Weyl).
In functional analysis this approach is natural.

Now we can prove constructively and naturally (an ex-
tension of) the Peter-Weyl theorem, one of Weyl’s most
important contributions to mathematical physics.
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Constructivism/Intuitionism
Weyl’s concern was about Brouwer’s intuitionism (INT).
INT can be seen as an extension of Bishop’s construc-
tive mathematics (BISH).

BISH

CLASS INT ...

Another way of looking at this is: INT = BISH+‘meta-
theorems’. (Example: real induction.)

Basic objects of intuitionism: sequences of basic ob-
servables.
Only continuous functions.
Pointfree mathematics with points: Idealized objects
(points, sequences,etc.) are only apparently present:
a matter of speaking

A constructive view on compact groups – p. 4/16



Constructivism/Intuitionism
Weyl’s concern was about Brouwer’s intuitionism (INT).
INT can be seen as an extension of Bishop’s construc-
tive mathematics (BISH).

BISH

CLASS INT ...

Another way of looking at this is: INT = BISH+‘meta-
theorems’. (Example: real induction.)
Basic objects of intuitionism: sequences of basic ob-
servables.
Only continuous functions.
Pointfree mathematics with points: Idealized objects
(points, sequences,etc.) are only apparently present:
a matter of speaking

A constructive view on compact groups – p. 4/16



Programming language
BISH can be formalized in constructive type theory. As
such BISH is a very high level programming language.
Does contain inefficient programs.

EffBISH

CLASS

More importantly, usually the right picture for making
actual computations possible. Makes clear which parts
of a proof make non-computable decisions.
Interval arithmetic, exact real number computations.
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Case-study: Peter-Weyl
G is a compact metric group.
Theorem Let π be a representation of a compact group G

on a Hilbert space H. Then there are orthogonal finite di-
mensional subspaces Hi such that H = ⊕iHi and π acts
irreducibly on Hi.

non-commutative Fourier theorem.

Need:

• Integration theory
• Haar measure
• Spectral theorem
• C*-algebras
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Constructive integration theory
[Coquand/Palmgren] Boolean algebra A of basic ob-
servables with a measure µ.
The measure defines a metric on A.
Complete this metric space to obtain a complete
measure space. [metric completion instead of σ-
completion.]

One obtains L1 as the completion of the simple func-
tions S(A).

S(A) → L1(all integrable functions)

↘ ↓

L1 := L1/Null

Alternatively, start with a positive linear functional on
C(X).
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Measurable functions
How to get the measurable functions?
[S] Complete the simple functions wrt metric

d(f, g) =

∫
|f − g| ∧ 1.

Again limit of basic observables.
We have:

• d-convergence is convergence in measure

• multiplication is continuous
• dominated and monotone convergence
• etc
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Haar measure
Theorem [Haar] There is a unique translation invariant mea-
sure on G s.t. µ(G) = 1.

Proof [von Neumann/Coquand]
Let C(G) be the space of continuous functions.
Define Ts by (Tsf)(x) := f(sx), the left translation and Sf :=

{Tsf : s ∈ G}.

coSf is totally bounded and the function sup : C(G) → R is
continuous, so mf := inf{sup g : g ∈ coSf} exists.
There is a unique constant function in the closure of coSf ,

its value is mf .
One can check that µ(f) := mf defines the Haar measure.
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Where are we now?
Need:

• Integration theory

• Haar measure
• Spectral theorems
• C*-algebras
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Spectral theorems
A algebra, a ∈ A, F set of functions C → C, f ∈ F .
Is it possible to define f(a)

?

s.t.

• (
∑

bnzn)(a) =
∑

bnan?

• “continuous” in f

A a F

Algebra Polynomials
Banach Algebra Analytical functions
C*-algebra a∗a = aa∗ Continuous functions
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More spectral theorems
1. There is a basis of eigenvectors.

Does not hold constructively (the eigenvectors do
not depend continuously on the matrix elements).

2. Gelfand: Every separable Abelian C*-algebra A is
isomorphic to C(σA).
σA is compact metric space, the spectrum of A.

1 is a pointwise version and was used by Peter-Weyl.
2 was used by Bishop to prove the Fourier theorem.
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Fourier theorem
For every compact Abelian group there is a dual group
(its group of characters), denoted G∗. When G is com-
pact, G∗ is discrete.
Theorem [Fourier] There is an isometric isomorphism be-
tween (L2(G), ∗) and (L2(G

∗), ·): the Fourier Transform.

Proof The closure of (L2(G), ∗) is a C*-algebra. Use
Gelfand theorem. etc.

Corollary Every complex periodic function on the reals is a
sum the functions z 7→ ecnz.

Proof A periodic function on the reals is a function on the
circle Γ, which is a compact group. Γ∗ = {z 7→ ecnz |n ∈

Z}
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Convolution operators
Theorem The convolution operators T (f) := f ∗g for f ∈ L1

on L2 are compact operators.

Proof Short intuitionistic proof, longer proof in BISH.

The norm of a compact operator can be computed. So
the closure of the group algebra

{T (f) | f ∈ L1}

is a C*-algebra.
Theorem The center of the group algebra of a cpt group is
an Abelian C*-algebra. Its spectrum is a discrete countable
group.
There is a continuous projection onto the center.
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Peter-Weyl
Theorem [Peter-Weyl]Let π be a representation of a com-
pact group G on a Hilbert space H. Then there are orthog-
onal finite dimensional subspaces Hi such that H = ⊕iHi

and π acts irreducibly on Hi.

Follows from:
Theorem The characters {χi : i ∈ Z} form a complete or-
thogonal set in the center of L2(G). The maps f 7→ χi∗f, are
orthogonal projections on finite dimensional subspaces Hi

and L2(G) = ⊕iHi and the spaces Hi are minimal twosided
ideals.
Theorem The two-sided ideals are isomorphic to matrix al-
gebras.

Proof Uses the spectral theorem again.
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Application
• Representation theorem for almost periodic func-

tions.

Main result of Brom’s thesis, Bishop’s student.
A function is almost periodic if Sf = {T (s)f : s ∈ R} is
totally bounded.
Theorem Every almost periodic function f : R → C can be
approximated (L2 or uniform) by a finite linear combination
of characters Γ∗ = {z 7→ ecnz |n ∈ Z}.

Proof Define the metric df (a, b) := supx |f(a+x)−f(b+x)|.
Then the closure of (R, df ) is a compact group.
Now apply Fourier theory this group.

Also non-commutative version.
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