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Goal

Relate algebraic quantum mechanics to topos theory to construct
new foundations for quantum logic and quantum spaces.

— A spectrum for non-commutative algebras —
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Classical physics

Standard presentation of classical physics:
A phase space Σ.
E.g. Σ ⊂ Rn × Rn (position, momentum)

An observable is a function a : Σ→ R
(e.g. position or energy)

An observable a and an interval ∆ ⊆ R together define
a proposition ‘a ∈ ∆’ by the set a−1∆.
Spatial logic:
logical connectives ∧,∨,¬ are interpreted by ∩,∪, complement
For a phase σ in Σ,
σ |= a ∈ ∆
a(σ) ∈ ∆
δσ(a) ∈ ∆
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Quantum

How to generalize to the quantum setting?

1. Identifying a quantum phase space Σ.

2. Defining subsets of Σ acting as propositions of quantum
mechanics.

3. Describing states in terms of Σ.

4. Associating a proposition a ∈ ∆ (⊂ Σ) to an observable a and
an open subset ∆ ⊆ R.

5. Finding a pairing map between states and ‘subsets’ of Σ
(and hence between states and propositions of the type
a ∈ ∆).

Bas Spitters Topos theory and Algebraic Quantum theory



Old-style quantum logic

von Neumann proposed:

1. A quantum phase space is a Hilbert space H.

2. Elementary propositions correspond to closed linear subspaces
of H.

3. Pure states are unit vectors in H.

4. The closed linear subspace [a ∈ ∆] is the image E (∆)H of the
spectral projection E (∆) defined by a and ∆.

5. The pairing map takes values in [0, 1] and is given by the Born
rule:

〈Ψ,P〉 = (Ψ,PΨ).

Von Neumann later abandoned this.
No implication, no deductive system.
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Bohrification

In classical physics we have a spatial logic.
Want the same for quantum physics. So we consider two
generalizations of topological spaces:

I C*-algebras (Connes’ non-commutative geometry)

I toposes and locales (Grothendieck)

We connect the two generalizations by:

1. Algebraic quantum theory

2. Constructive Gelfand duality

3. Bohr’s doctrine of classical concepts
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Classical concepts

Bohr’s “doctrine of classical concepts” states that we can only
look at the quantum world through classical glasses, measurement
merely providing a “classical snapshot of reality”. The combination
of all such snapshots should then provide a complete picture.

Let A be a C*-algebra (quantum system)
The set of as ‘classical contexts’, ‘windows on the world’:

C(A) := {V ⊆ A | V commutative C*-algebra}

Connes: A is not entirely determined by C(A)

Doering and Harding much of the structure can be retrieved
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HLS proposal
Consider the Kripke model for (C(A),⊃): T (A) := Set(C(A),⊂)

Define Bohrification A(C ) := C

1. The quantum phase space of the system described by A is the
locale Σ ≡ Σ(A) in the topos T (A).

2. Propositions about A are the ‘opens’ in Σ. The quantum logic
of A is given by the Heyting algebra underlying Σ(A).
Each projection defines such an open.

3. Observables a ∈ Asa define locale maps δ(a) : Σ→ IR, where
IR is the so-called interval domain. States ρ on A yield
probability measures (valuations) µρ on Σ.

4. The frame map O(IR)δ(a)−1−→O(Σ) applied to an open
interval ∆ ⊆ R yields the desired proposition.

5. State-proposition pairing is defined as µρ(P) = 1.

Motivation: Butterfield-Doering-Isham use topos theory for
quantum theory.
Are D-I considering the co-Kripke model?
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Commutative C*-algebras

For X ∈ CptHd, consider C (X ,C).

It is a complex vector space: (f + g)(x) := f (x) + g(x),
(z · f )(x) := z · f (x).

It is a complex associative algebra: (f · g)(x) := f (x) · g(x).
It is a Banach algebra: ‖f ‖ := sup{|f (x)| : x ∈ X}.
It has an involution: f ∗(x) := f (x).

It is a C*-algebra: ‖f ∗ · f ‖ = ‖f ‖2.

It is a commutative C*-algebra: f · g = g · f .

In fact, X can be reconstructed from C (X ):
one can trade topological structure for algebraic structure.
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Gelfand duality

There is a categorical equivalence (Gelfand duality):

CommC∗
Σ //

CptHdop

C(−,C)
oo ⊥

The structure space Σ(A) is called the Gelfand spectrum of A.
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C*-algebras

Now drop commutativity: a C*-algebra is a complex Banach
algebra with involution (−)∗ satisfying ‖a∗ · a‖ = ‖a‖2.

Slogan: C*-algebras are non-commutative topological spaces.

Prime example:
B(H) = {f : H → H | f bounded linear}, for H Hilbert space.

is a complex vector space: (f + g)(x) := f (x) + g(x),
(z · f )(x) := z · f (x),

is an associative algebra: f · g := f ◦ g ,
is a Banach algebra: ‖f ‖ := sup{‖f (x)‖ : ‖x‖ = 1},
has an involution: 〈fx , y〉 = 〈x , f ∗y〉
satisfies: ‖f ∗ · f ‖ = ‖f ‖2,

but not necessarily: f · g = g · f .
Slogan: C*-algebras are non-commutative topological spaces.
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Internal C*-algebra

Internal C*-algebras in SetC are functors of the form C→ CStar.
‘Bundle of C*-algebras’.

We define the Bohrification of A as the internal C*-algebra

A : C(A)→ Set,

V 7→ V .

in the topos T (A) = SetC(A), where
C(A) := {V ⊆ A | V commutative C*-algebra}.

The internal C*-algebra A is commutative!
This reflects our Bohrian perspective.
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Kochen-Specker

Theorem (Kochen-Specker): no hidden variables in quantum
mechanics.

More precisely: All observables having definite values contradicts
that the values of those variables are intrinsic and independent of
the device used to measure them.
Mathematically:
It is impossible to assign a value to every observable:
there is no v : Asa → R such that v(a2) = v(a)2

Isham-Döring: a certain global section does not exist.
We can still have neo-realistic interpretation by considering also
non-global sections.
These global sections turn out to be global points of the internal
Gelfand spectrum of the Bohrification A.
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Pointfree Topology

We want to consider the phase space of the Bohrification.
Use internal constructive Gelfand duality.
The classical proof of Gelfand duality uses the axiom of choice
(only) to construct the points of the spectrum.
Solution: use topological spaces without points (locales)!
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Pointfree Topology

Choice is used to construct ideal points (e.g. max. ideals).
Avoiding points one can avoid choice and non-constructive
reasoning (Joyal, Mulvey, Coquand).
Slogan: using the axiom of choice is a choice!
(Tychonoff, Krein-Millman, Alaoglu, Hahn-Banach, Gelfand,
Zariski, ...)
Point free approaches to topology:

I Pointfree topology (formal opens)

I Commutative C*-algebras (formal continuous functions)

These formal objects model basic observations:

I Formal opens are used in computer science (domains) to
model observations.

I Formal continuous functions, self adjoint operators, are
observables in quantum theory.
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More pointfree functions

Definition
A Riesz space (vector lattice) is a vector space with ‘compatible’
lattice operations ∨,∧.
E.g. f ∨ g + f ∧ g = f + g .

We assume that Riesz space R has a strong unit 1: ∀f ∃n.f ≤ n · 1.
Prime (‘only’) example:
vector space of real functions with pointwise ∨,∧.

A representation of a Riesz space is a Riesz homomorphism to R.
The representations of the Riesz space C (X ) are x̂(f ) := f (x)

Theorem (Classical Stone-Yosida)

Let R be a Riesz space. Let Max(R) be the space of
representations. The space Max(R) is compact Hausdorff and
there is a Riesz embedding ·̂ : R → C (Max(R)). The uniform
norm of â equals the norm of a.
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Formal space Max(R)

Logical description of the space of representations:
D(a) = {φ ∈ Max(R) : â(φ) > 0}. a ∈ R, â(φ) = φ(a)

1. D(a) ∧ D(−a) = 0;
(D(a),D(−a) ` ⊥)

2. D(a) = 0 if a ≤ 0;

3. D(a + b) ≤ D(a) ∨ D(b);

4. D(1) = 1;

5. D(a ∨ b) = D(a) ∨ D(b)

6. D(a) =
∨

r>0 D(a− r).

Max(R) is compact completely regular (cpt Hausdorff)
The frame with generators D(a) is a pointfree description of the
space of representations Max(R). We proved a constructive
Stone-Yosida theorem
‘Every Riesz space is a Riesz space of functions’
[Coquand, Coquand/Spitters (inspired by Banaschewski/Mulvey)]
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Retract

Every compact regular space X is retract of a coherent spaceY
f : Y � X , g : X � Y , st f ◦ g = id in Loc
f : X � Y , g : Y � X , st g ◦ f = id in Frm
Strategy: first define a finitary cover, then add the infintary part
and prove that it is a conservative extension. (Coquand, Mulvey)

Above: The interpretation D(a) :=
∨

r>0 D(a− r) defines a
embedding g : Y � X in Frm validating axiom 6
Obtain a finitary proof of Stone-Yosida
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C*-algebras

Obtain an elementary proof of Gelfand duality (Coquand/S):

Theorem (Gelfand)

A commutative C*-algebra A is the space of functions on Σ(A)

Proof: The self-adjoint part of A is a Riesz space.
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Phase object in a topos

Apply constructive Gelfand duality (Banachewski, Mulvey) to the
Bohrification to obtain the (internal) spectrum Σ.
This is our phase object. (motivated by Döring-Isham).

Kochen-Specker = Σ has no (global) point.
However, Σ is a well-defined interesting compact regular locale.
Pointless topological space of hidden variables.
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States in a topos

An integral is a pos lin functional I on a commutative C*-algebra,
with I (1) = 1.
A state is a pos lin functional ρ on a C*-algebra,
with ρ(1) = 1.

Mackey: In QM only quasi-states can be motivated (linear only on
commutative parts)
Theorem(Gleason): Quasi-states = states (dim H > 2)

Theorem: There is a one-to-one correspondence between
(quasi)-states on A and integrals on C (Σ) in A.
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States in a topos

Integral on commutative C*-algebras C (X ) (Daniell,Segal/Kunze)
An integral is a positive linear functional on a space of continuous
functions on a topological space

Prime example: Lebesgue integral
∫

Linear:
∫

af + bg = a
∫

f + b
∫

g
Positive: If f (x) ≥ 0 for all x , then

∫
f ≥ 0

Other example: Dirac measure δt(f ) := f (t).
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Riesz representation theorem
Riesz representation: Integral = Regular measure = Valuation
A valuation is a map µ : O(X )→ R, which is lower
semicontinuous and satisfies the modular laws.

Theorem (Coquand/Spitters)

The locales of integrals and of valuations are homeomorphic.

Proof The integrals form a compact regular locale, presented by a
geometric theory. Only (∧,

∨
).

Similarly for the theory of valuations.
By the classical RRT the models(=points) are in bijective
correspondence.
Hence by the completeness theorem for geometric logic

(Truth in all models ⇒ provability)
we obtain a bi-interpretation/a homeomorphism.

Once we have first-order formulation (no DC), we obtain a
transparent constructive proof by ‘cut-elimination’.
Giry monad in domain theory in logical form (cf Jung/Moshier)
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Valuations

This allows us to move internally from integrals to valuations.
Integrals are internal representations of states
Valuations are internal representations of measures on projections
(Both are standard QMs)

Thus an open ‘δ(a) ∈ ∆’ can be assigned a probability. In general,
this probability is only partially defined, it is in the interval domain.
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Externalizing

There is an external locale Σ such that Sh(Σ) in T (A) is
equivalent to Sh(Σ) in Set.
HLS proposal for intuitionistic quantum logic.
When applied to the lattice of projections of a Hilbert space we
turn old style quantum logic into a Heyting algebra.

Problem: Σ(C (X )) is not X . Here we propose a refinement.
First, a concrete computation of a basis for the Heyting algebra.
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Externalization

Theorem (Moerdijk)

Let C be a site in S and D be a site in S[C], the topos of sheaves
over C. Then there is a site Cn D such that

S[C][D] = S[Cn D].
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Presentation using forcing conditions

C(A) := {C | C is a commutative C*-subalgebra of A}.

Let C := C(A)op and D = Σ the spectrum of the Bohrification.

We compute Cn D:
The objects (forcing conditions): (C , u),
where C ∈ C(A) and u ∈ Σ(C ).
Information order (D, v) ≤ (C , u) as D ⊃ C and v ⊂ u.
Covering relation (C , u)C(Di , vi ): for all i , C ⊂ Di and
C  uCV , where V is the pre-sheaf generated by the conditions
Di  vi ∈ V . This is a Grothendieck topology.
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C  uCV , where V is the pre-sheaf generated by the conditions
Di  vi ∈ V . This is a Grothendieck topology.
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Geometric logic

Explicit computations with sites are often geometric!
Using Vickers’ GRD (Generators, Relations and Disjuncts) language
The theory MaxA is constructed geometrically from A

In Sh(Y ), MaxA is a locale map p : MaxA→ Y
For f : X → Y , f ∗(A) is also a Riesz space
By geometricity, Maxf ∗(A) is got by pulling back p along f .

C ∈ C(A) defines a principal ideal, 1→ Idl(C (A)), or equivalently
a geometric morphism C : Sets→ T (A)
The pullback C ∗(A) is the set A(C ) = C
So MaxC is the fibre over C of the map Max(A)→ Idl(C(A))
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Theorem
The points of the locale generated by Cn D are consistent ideals
of partial measurement outcomes.

Proof: the sites give a direct description of the geometric theory

For C (X ), the points are points of the spectrum of a subalgebra.
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Measurements

In algebraic quantum theory, a measurement is a (maximal)
Boolean subalgebra of the set of projections of a von Neumann
algebra. The outcome of a measurement is the consistent
assignment of either 0 or 1 to each element (test, proposition) of
the Boolean algebra: an element of the Stone spectrum.

C*-algebras need not have enough projections. One replaces the
Boolean algebra by a commutative C*-subalgebra and the Stone
spectrum by the Gelfand spectrum.

Definition
A measurement outcome is a point in the spectrum of a maximal
commutative subalgebra.

How to include maximality?
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Eventually

We are only interested in what happens eventually, for large
subalgebras: consider ¬¬-topology.
Extra: allows classical logic internally (Boolean valued models).

The dense topology on a poset P is defined as pCD if D is dense
below p: for all q ≤ p, there exists a d ∈ D such that d ≤ q.
This topos of ¬¬-sheaves satisfies the axiom of choice.
The associated sheaf functor sends the presheaf topos P̂ to the
sheaves Sh(P,¬¬).
The sheafification for V �W :

¬¬V (p) = {x ∈W (p) | ∀q ≤ p∃r ≤ q.x ∈ V (r)}.
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Eventually

The covering relation for (C(A),¬¬) n Σ is (C , u)C(Di , vi ) iff
C ⊂ Di and C  uCV¬¬, where V¬¬ is the sheafification of the
presheaf V generated by the conditions Di  vi ∈ V . Now,
V � L, where L is the spectral lattice of the presheaf A.

V¬¬(C ) = {u ∈ L(C ) | ∀D ≤ C∃E ≤ D.u ∈ V (E )}.

So, (C , u)C(Di , vi ) iff

∀D ≤ C∃Di ≤ D.uCV (Di ).

Theorem
The locale MO generated by (C(A),¬¬) n Σ classifies
measurement outcomes.

MO(C (X )) = X !
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Theorem (Kochen-Specker)

Let H be a Hilbert space with dim H > 2 and let A = B(H). Then
the ¬¬-sheaf

∑
does not allow a global section.
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Conclusions

Bohr’s doctrine suggests a functor topos making a C*-algebra
commutative

I Spatial quantum logic via topos logic

I Phase space via internal Gelfand duality

I Intuitionistic quantum logic

I Spectrum for non-commutative algebras.

I States (non-commutative integrals) become internal integrals.

Classical logic and maximal algebras
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