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Goal

Relate algebraic quantum mechanics to topos theory to construct
new foundations for quantum logic and quantum spaces.
— A spectral invariant for non-commutative algebras —
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Classical physics

Standard presentation of classical physics:
A phase space Σ.
E.g. Σ ⊂ Rn × Rn (position, momentum)

An observable is a function a : Σ→ R
(e.g. position or energy)

An observable a and an interval ∆ ⊆ R together define
a proposition ‘a ∈ ∆’ by the set a−1∆.
Spatial logic:
logical connectives ∧,∨,¬ are interpreted by ∩,∪, complement
For a phase σ in Σ,
σ |= a ∈ ∆
a(σ) ∈ ∆
δσ(a) ∈ ∆ (Dirac measure)
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Quantum

How to generalize to the quantum setting?

1. Identifying a quantum phase space Σ.

2. Defining subsets of Σ acting as propositions of quantum
mechanics.

3. Describing states in terms of Σ.

4. Associating a proposition a ∈ ∆ (⊂ Σ) to an observable a and
an open subset ∆ ⊆ R.

5. Finding a pairing map between states and ‘subsets’ of Σ
(and hence between states and propositions of the type
a ∈ ∆).

Bas Spitters Steve Vickers, Sander Wolters Gelfand spectra in Grothendieck toposes, geometrically



Old-style quantum logic

von Neumann proposed:

1. A quantum phase space is a Hilbert space H.

2. Elementary propositions correspond to closed linear subspaces
of H.

3. Pure states are unit vectors in H.

4. The closed linear subspace [a ∈ ∆] is the image E (∆)H of the
spectral projection E (∆) defined by a and ∆.

5. The pairing map takes values in [0, 1] and is given by the Born
rule:

〈Ψ,P〉 = (Ψ,PΨ).

Von Neumann later abandoned this.
No implication, no deductive system.
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Bohrification

In classical physics we have a spatial logic.
Want the same for quantum physics. So we consider two
generalizations of topological spaces:

I C*-algebras (Connes’ non-commutative geometry)

I toposes and locales (Grothendieck)

We connect the two generalizations by:

1. Algebraic quantum theory

2. Constructive Gelfand duality

3. Bohr’s doctrine of classical concepts

[Heunen, Landsman, S]
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HLS proposal

Consider the Kripke model for (C(A),⊃): T (A) := Set(C(A),⊂)

Define Bohrification A(C ) := C

1. The quantum phase space of the system described by A is the
locale Σ ≡ Σ(A) in the topos T (A).

2. Propositions about A are the ‘opens’ in Σ. The quantum logic
of A is given by the Heyting algebra underlying Σ(A).
Each projection defines such an open.

3. Observables a ∈ Asa define locale maps δ(a) : Σ→ IR, where
IR is the so-called interval domain. States ρ on A yield
probability measures (valuations) µρ on Σ.

4. The frame map O(IR)δ(a)−1−→O(Σ) applied to an open
interval ∆ ⊆ R yields the desired proposition.

5. State-proposition pairing is defined as µρ(P) = 1.

Motivation: Butterfield-Doering-Isham use topos theory for
quantum theory. (Are D-I considering the co-Kripke model?)

Bas Spitters Steve Vickers, Sander Wolters Gelfand spectra in Grothendieck toposes, geometrically



HLS proposal

Consider the Kripke model for (C(A),⊃): T (A) := Set(C(A),⊂)

Define Bohrification A(C ) := C

1. The quantum phase space of the system described by A is the
locale Σ ≡ Σ(A) in the topos T (A).

2. Propositions about A are the ‘opens’ in Σ. The quantum logic
of A is given by the Heyting algebra underlying Σ(A).
Each projection defines such an open.

3. Observables a ∈ Asa define locale maps δ(a) : Σ→ IR, where
IR is the so-called interval domain. States ρ on A yield
probability measures (valuations) µρ on Σ.

4. The frame map O(IR)δ(a)−1−→O(Σ) applied to an open
interval ∆ ⊆ R yields the desired proposition.

5. State-proposition pairing is defined as µρ(P) = 1.

Motivation: Butterfield-Doering-Isham use topos theory for
quantum theory. (Are D-I considering the co-Kripke model?)

Bas Spitters Steve Vickers, Sander Wolters Gelfand spectra in Grothendieck toposes, geometrically



Internal C*-algebra

InternalC*-algebras in SetC are functors of the form C→ CStar.
‘Bundle of C*-algebras’.

We define the Bohrification of A as the internal C*-algebra

A : C(A)→ Set,

V 7→ V .

in the topos T (A) = SetC(A), where
C(A) := {V ⊆ A | V commutative C*-algebra}.

The internal C*-algebra A is commutative!
This reflects our Bohrian perspective.
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Kochen-Specker

Theorem (Kochen-Specker): no hidden variables in quantum
mechanics.

More precisely: All observables having definite values contradicts
that the values of those variables are intrinsic and independent of
the device used to measure them.
Mathematically:
It is impossible to assign a value to every observable:
there is no v : Asa → R such that v(a2) = v(a)2

Isham-Döring: a certain global section does not exist.
We can still have neo-realistic interpretation by considering also
non-global sections.
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Pointfree Topology

We want to consider the phase space of the Bohrification.
Use internal constructive Gelfand duality.
The classical proof of Gelfand duality uses the axiom of choice
(only) to construct the points of the spectrum.
Solution: use topological spaces without points (locales)!
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Pointfree Topology

Choice is used to construct ideal points (e.g. max. ideals).
Avoiding points one can avoid choice and non-constructive
reasoning (Joyal, Mulvey, Coquand).
Slogan: using the axiom of choice is a choice!
(Tychonoff, Krein-Millman, Alaoglu, Hahn-Banach, Gelfand,
Zariski, ...)
Point free approaches to topology:

I Pointfree topology (formal opens)

I Commutative C*-algebras (formal continuous functions)

These formal objects model basic observations:

I Formal opens are used in computer science (domains) to
model observations.

I Formal continuous functions, self adjoint operators, are
observables in quantum theory.

Bas Spitters Steve Vickers, Sander Wolters Gelfand spectra in Grothendieck toposes, geometrically



Pointfree Topology

Choice is used to construct ideal points (e.g. max. ideals).
Avoiding points one can avoid choice and non-constructive
reasoning (Joyal, Mulvey, Coquand).
Slogan: using the axiom of choice is a choice!
(Tychonoff, Krein-Millman, Alaoglu, Hahn-Banach, Gelfand,
Zariski, ...)
Point free approaches to topology:

I Pointfree topology (formal opens)

I Commutative C*-algebras (formal continuous functions)

These formal objects model basic observations:

I Formal opens are used in computer science (domains) to
model observations.

I Formal continuous functions, self adjoint operators, are
observables in quantum theory.

Bas Spitters Steve Vickers, Sander Wolters Gelfand spectra in Grothendieck toposes, geometrically



More pointfree functions

Definition
A Riesz space (vector lattice) is a vector space with ‘compatible’
lattice operations ∨,∧.
E.g. f ∨ g + f ∧ g = f + g .

We assume that Riesz space R has a strong unit 1: ∀f ∃n.f ≤ n · 1.
Prime (‘only’) example:
vector space of real functions with pointwise ∨,∧.

A representation of a Riesz space is a Riesz homomorphism to R.
The representations of the Riesz space C (X ) are x̂(f ) := f (x)

Theorem (Classical Stone-Yosida)

Let R be a Riesz space. Let Max(R) be the space of
representations. The space Max(R) is compact Hausdorff and
there is a Riesz embedding ·̂ : R → C (Max(R)). The uniform
norm of â equals the norm of a.
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Formal space Σ(Asa)

Logical description of the space of representations:
D(a) = {φ ∈ Σ(Asa) : â(φ) > 0}. a ∈ R, â(φ) = φ(a)}

1. D(a) ∧ D(−a) = 0;
(D(a),D(−a) ` ⊥)

2. D(a) = 0 if a ≤ 0;

3. D(a + b) ≤ D(a) ∨ D(b);

4. D(1) = 1;

5. D(a ∨ b) = D(a) ∨ D(b)

6. D(a) =
∨

r>0 D(a− r).

Σ(Asa) is compact completely regular (cpt Hausdorff)
Pointfree description of the space of representations Σ(Asa)
‘Every commutative C*-algebra is a C*-algebra of functions’
[Banaschewski/Mulvey, Coquand, Coquand/Spitters)]
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Phase object in a topos

Apply constructive Gelfand duality to the Bohrification to obtain
the (internal) spectrum Σ.
This is our phase object. (motivated by Döring-Isham).

Kochen-Specker = Σ has no (global) section
However, Σ is a well-defined interesting compact regular locale.
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Externalizing

LocSh(X ) ≡ Loc/X
There is an external locale Σ equivalent to Σ in T (A)
When applied to the lattice of projections of a Hilbert space we
turn old style quantum logic into a Heyting algebra.

Our definition of the spectrum (as a posite) is geometric.
Hence, Σ can be computed fiberwise:
points (I , σI ), I ideal in C (A).
Also works if we put a topology on C (A).
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Points

Is Σ spatial, is V(Σ) spatial (‘have enough points’)?

It is constructively locally compact!
a. Σ is compact regular in Sh(Idl(C(A)))
b. Idl(C(A)) is locally compact
c. Locally compact maps compose
d. Locally compact locales are classically spatial
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Points

(C , σ), σ ∈ Σ(C ).
Its frame is the frame of Σ.
Pt(Σ) also contains (I , {σC | σC ∈ C ,C ∈ I}), where I ideal.
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Locally compact

LocSh(X ) ≡ Loc/X
TFAE:

I Y locally compact

I The exponential SY exists; S=Sierpiński locale

I Y is exponentiable

Theorem: Yp locally compact in Sh(X ), X locally compact. Then
Y is locally compact.
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Locally compact

Need to construct SY

Locales by geometric theories
Continuous map: constructive transformations of points
Continuous map as a bundle
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Locally compact

Y is given by the theory with generalized models
{(x , t) | x ∈ X , t ∈ Yx}
SYX external description SYq in Sh(X )

The exponent is geometric: SYX = {(x ,w) | x ∈ X ,w ∈ SYx}

E := {σ : X → SYX | q ◦ σ = idX}

By local compactness of X , X → SYX is a space
Define (σ, y) 7→ (σ(py), y) : E × Y → SYX ×X Y
Compose with ((x ,w), (x , t)) 7→ ev(w , t) : SYX ×X Y → S
ev is geometric, so we have an evaluation map from E × Y to S
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Locally compact

E = SY ?
For f : Z → E , we uncurry: f̂ (z , y) := ev(f (z), y) in Z × Y → S

Conversely, given g : Z × Y → S, we curry:

g̃(z) := λx .(x , λv : Yx .g(z , (x , v)) : Z → E

·̂ and ·̃ are inverse
We have constructed SY ! So, Y is locally compact

Alternative proof using �. Hard to compute due to Power set.
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Locally perfect

Perfect maps correspond to internal compact locales
Locally perfect maps correspond to internal locally compact locales
Locally perfect maps compose (needs some separation).
Corollary: the external spectrum is locally compact and hence
spatial
Towards a similar result for valuations.

Bas Spitters Steve Vickers, Sander Wolters Gelfand spectra in Grothendieck toposes, geometrically



States in a topos

An integral is a pos lin functional I on a commutative C*-algebra,
with I (1) = 1.
A state is a pos lin functional ρ on a C*-algebra,
with ρ(1) = 1.

Mackey: In QM only quasi-states can be motivated (linear only on
commutative parts)
Theorem(Gleason): Quasi-states = states (dim H > 2)

Theorem: There is a one-to-one correspondence between
(quasi)-states on A and integrals on C (Σ) in A.

Segal-Kunze developed integration theory using states, with
intended interpretation:
an expectation defined on an algebra of observables.
We will present a variation on this.
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States in a topos

Integral on commutative C*-algebras C (X ) (Daniell,Segal/Kunze)
An integral is a positive linear functional on a space of continuous
functions on a topological space

Prime example: Lebesgue integral
∫

Linear:
∫

af + bg = a
∫

f + b
∫

g
Positive: If f (x) ≥ 0 for all x , then

∫
f ≥ 0

Other example: Dirac measure δt(f ) := f (t).
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Riesz representation theorem
Riesz representation: Integral = Regular measure = Valuation
A valuation is a map µ : O(X )→ R, which is lower
semicontinuous and satisfies the modular laws.

Theorem (Coquand/Spitters)

The locales of integrals and of valuations are homeomorphic.

Proof The integrals form a compact regular locale, presented by a
geometric theory.
Similarly for the theory of valuations.
By the classical RRT the models(=points) are in bijective
correspondence.
Hence by the completeness theorem for geometric logic
we obtain a bi-interpretation/a homeomorphism.

Once we have first-order formulation (no DC), we obtain a
transparent constructive proof by ‘cut-elimination’.
Giry monad in domain theory in logical form
(cf Jung/Moshier)
Vickers: Generalization of Giry monad to Loc!
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Valuations

This allows us to move internally from integrals to valuations.
Integrals are internal representations of states
Valuations are internal representations of measures on projections
(Both are standard QMs)
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Algebraic Quantum Field Theory

Minkowski spacetime M
AQFT: local net is functor A : (O(M),⊂)→ C ∗

a C*-algebra A in the presheaf topos [O(M),Sets].
Internal to this topos we can Bohrify A ...

This is an advantage of constructive/geometric reasoning

See also: Nuiten thesis, Halvorson/Wolters
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Conclusions

Bohr’s doctrine suggests a functor topos making a C*-algebra
commutative

I Spatial quantum logic via topos logic

I Phase space via internal Gelfand duality

I Intuitionistic quantum logic

I Spectrum for non-commutative algebras.

I States (non-commutative integrals) become internal integrals.

Reasoning with bundles
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