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Proof theory and Constructive mathematics (type theory, topos theory, ...)
Applications:

● Proof mining
(new theorems from old proofs)

● Computer mathematics
(implementation of analysis)

● Quantum theory
(Combining non-commutative geometry with topos theory)
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Relate algebraic quantum mechanics to topos theory to construct new
foundations for quantum logic and quantum spaces.
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Relate algebraic quantum mechanics to topos theory to construct new
foundations for quantum logic and quantum spaces.

New foundations gives new mathematics
new mathematics gives new foundations of physics

(freely after Sambin)
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Standard presentation of classical physics:
A phase space Σ.
E.g. Σ ⊂ Rn × Rn (position, momentum)
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a proposition ‘a ∈ ∆’ by the set a−1∆.
Spatial logic: logical connectives ∧,∨,¬ are interpreted by ∩,∪,
complement
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Standard presentation of classical physics:
A phase space Σ.
E.g. Σ ⊂ Rn × Rn (position, momentum)
An observable is a function a : Σ → R

(e.g. position or energy)

An observable a and an interval ∆ ⊆ R together define
a proposition ‘a ∈ ∆’ by the set a−1∆.
Spatial logic: logical connectives ∧,∨,¬ are interpreted by ∩,∪,
complement
For a phase σ in Σ,
σ |= a ∈ ∆ (in the phase σ the proposition a ∈ ∆ holds) iff
a(σ) ∈ ∆ iff
δσ(a ∈ ∆) = 1



Quantum
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Goal: generalize this to quantum setting by

1. Identifying a quantum phase ‘space’ Σ.

2. Defining ‘subsets’ of Σ acting as propositions of quantum mechanics.

3. Describing observables and states in terms of Σ.

4. Associating a proposition a ∈ ∆ (⊂ Σ) to an observable a and an
open subset ∆ ⊆ R.

5. Finding a pairing map between states and ‘subsets’ of Σ
(and hence between states and propositions of the type a ∈ ∆).



Old-style quantum logic
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von Neumann proposed:

1. A quantum phase space is a Hilbert space H. Cn.

2. Elementary propositions correspond to closed linear subspaces of H.

3. Observables are selfadjoint operators on H and pure states are unit
vectors in H. Symmetric real matrices.

4. The closed linear subspace [a ∈ ∆] is the image E(∆)H of the
spectral projection E(∆) defined by a and ∆.
E(∆) collection of eigenvectors with values in ∆.

5. The pairing map takes values in [0, 1] and is given by the Born rule:

〈Ψ, a ∈ ∆〉 = (Ψ, E(∆)Ψ).
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von Neumann proposed:

1. A quantum phase space is a Hilbert space H. Cn.

2. Elementary propositions correspond to closed linear subspaces of H.

3. Observables are selfadjoint operators on H and pure states are unit
vectors in H. Symmetric real matrices.

4. The closed linear subspace [a ∈ ∆] is the image E(∆)H of the
spectral projection E(∆) defined by a and ∆.
E(∆) collection of eigenvectors with values in ∆.

5. The pairing map takes values in [0, 1] and is given by the Born rule:

〈Ψ, a ∈ ∆〉 = (Ψ, E(∆)Ψ).

Von Neumann later abandoned this.
No implication, no deductive system.
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In classical physics we have a spatial logic.
Want the same for quantum physics. So we consider two generalizations
of topological spaces:

● C*-algebras (Connes’ non-commutative geometry)

● toposes and locales (Grothendieck)

We connect the two generalizations by:

1. Algebraic quantum theory

2. Constructive Gelfand duality

3. Bohr’s doctrine of classical concepts



Classical concepts
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Bohr’s “doctrine of classical concepts” states that we can only look at the
quantum world through classical glasses, measurement merely providing
a “classical snapshot of reality”. The combination of all such snapshots
should then provide a complete picture.

However far the phenomena transcend the scope of classical
physical explanation, the account of all evidence must be
expressed in classical terms. (. . . ) The argument is simply that
by the word experiment we refer to a situation where we can tell
others what we have done and what we have learned and that,
therefore, the account of the experimental arrangements and of
the results of the observations must be expressed in
unambiguous language with suitable application of the
terminology of classical physics.
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Let A be a C*-algebra. Put C(A) := {V ⊆ A | V commutative C*-algebra}.
It is a order under inclusion. Elements V can be viewed as ‘classical
contexts’, ‘windows on the world’.
The associated topos is T (A) := SetC(A)

1. The quantum phase space of the system described by A is the locale
Σ ≡ Σ(A) in the topos T (A).

2. Propositions about A are simply the ‘opens’ in Σ. Thus the quantum
logic of A is given by the Heyting algebra underlying Σ(A).

3. Observables a ∈ Asa define locale maps δ(a) : Σ → IR, where IR is
the so-called interval domain. States ρ on A yield probability
measures (valuations) µρ on Σ.

4. The frame map O(IR)
δ(a)−1

−→ O(Σ) applied to an open interval ∆ ⊆ R

yields the desired proposition.

5. State-proposition pairing is defined as µρ(δ(a) ∈ ∆) = 1.



Another motivation
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Doering-Isham use topos theory for quantum theory
We use some of their ideas, but use the internal logic which simplifies the
presentation

Some problems in quantum theory:

● Kochen-Specker: no hidden variables in quantum mechanics.
Quantum mechanics does not reduce to classical mechanics.

● External observer does not exist in quantum gravity.
The universe is the only closed system.

Ideas (Isham):

● Apply coarse graining (presheaf model)

● Quantum theory in a topos should be the base for quantum gravity



Commutative C*-algebras
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For X ∈ CptHd, consider C(X, C).

It is a complex vector space: (f + g)(x) := f(x) + g(x),
(z · f)(x) := z · f(x).

It is a complex associative algebra: (f · g)(x) := f(x) · g(x).
It is a Banach algebra: ‖f‖ := sup{|f(x)| : x ∈ X}.
It has an involution: f∗(x) := f(x).

It is a C*-algebra: ‖f∗ · f‖ = ‖f‖2.

It is a commutative C*-algebra: f · g = g · f .

In fact, X can be reconstructed from C(X):
one can trade topological structure for algebraic structure.



Gelfand duality
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More precisely, there is a categorical equivalence (Gelfand duality):

CommC∗

Σ
//

CptHdop

C(−,C)
oo

⊥

The structure space Σ(A) is called the (Gelfand) spectrum of A.
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Now drop commutativity: a C*-algebra is a complex Banach algebra with
involution (−)∗ satisfying ‖a∗ · a‖ = ‖a‖2.

Slogan: C*-algebras are non-commutative topological spaces.
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Now drop commutativity: a C*-algebra is a complex Banach algebra with
involution (−)∗ satisfying ‖a∗ · a‖ = ‖a‖2.

Slogan: C*-algebras are non-commutative topological spaces.

Prime example:
B(H) = {f : H → H | f bounded linear}, for H Hilbert space.
or even matrices.

is a complex vector space: (f + g)(x) := f(x) + g(x),
(z · f)(x) := z · f(x),

is an associative algebra: f · g := f ◦ g,
is a Banach algebra: ‖f‖ := sup{‖f(x)‖ : ‖x‖ = 1},
has an involution: 〈fx, y〉 = 〈x, f∗y〉
satisfies: ‖f∗ · f‖ = ‖f‖2,

but not necessarily: f · g = g · f .
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Slogan: C*-algebras are non-commutative topological spaces.
This is one instance of Connes’ non-commutative geometry.
(Von Neumann-algebra theory is ‘non-commutative measure theory’.
Prime example of a commutative Von Neumann-algebra: L∞(X).)
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In classical mechanics, A = C(X, C), X is the phase space. A state is a
limit of convex combinations of phases/ a (Daniell) integral on C(X, R).
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Slogan: C*-algebras are non-commutative topological spaces.
This is one instance of Connes’ non-commutative geometry.
(Von Neumann-algebra theory is ‘non-commutative measure theory’.
Prime example of a commutative Von Neumann-algebra: L∞(X).)

In classical mechanics, A = C(X, C), X is the phase space. A state is a
limit of convex combinations of phases/ a (Daniell) integral on C(X, R).

A quantum mechanical system is modeled by a C*-algebra A.
Physical observables are its self-adjoint elements (a = a∗).
A state on A is a functional ρ : A → C that is
linear: ρ(a + b) = ρ(a) + ρ(b), (

∫
f + g =

∫
f +

∫
g)

ρ(z · a) = z · ρ(a), (
∫

zf = z
∫

f )
positive: ρ(a∗ · a) ≥ 0 for all a ∈ A, (

∫
f∗f =

∫
|f |2 ≥ 0)

unital: ρ(1) = 1 (
∫

1 = 1).
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Let A be a C*-algebra. Put C(A) := {V ⊆ A | V commutative C*-algebra}.
It is a order under inclusion. Elements V can be viewed as ‘classical
contexts’, ‘windows on the world’.
The associated topos is T (A) := SetC(A)

1. The quantum phase space of the system described by A is the locale
Σ ≡ Σ(A) in the topos T (A).

2. Propositions about A are simply the ‘opens’ in Σ. Thus the quantum
logic of A is given by the Heyting algebra underlying Σ(A).

3. Observables a ∈ Asa define locale maps δ(a) : Σ → IR, where IR is
the so-called interval domain. States ρ on A yield probability
measures (valuations) µρ on Σ.

4. The frame map O(IR)
δ(a)−1

−→ O(Σ) applied to an open interval ∆ ⊆ R

yields the desired proposition.

5. State-proposition pairing is defined as µρ(δ(a) ∈ ∆) = 1.
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A topos is a category resembling Set. It has analogues of

● Subsets, characteristic functions, truth values Ω = {0, 1}

● (Disjoint) union, empty set

● Products, singletons

● Power sets, element-of relation

The notion generalizes

● Set theory (Set is a topos)

● Topology (Sh(X) is a topos, for X ∈ Top)

● Kripke models (PSh(K,≥) is a topos, for (K,≥) a Kripke frame)

● Computability theory (Eff is a topos)



Topos logic
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One can think of a topos as a ‘universe of discourse’.

But not necessarily Dependent Choice.
However, in a presheaf topos, Dependent Choice does hold.

In fact, ‘usual’ mathematics (i.e. ZF set theory with classical logic and AC)
is just working in the topos Set.

Sheaves are ‘variable sets’.
Example: Topos Sh([0, 1]) of sheaves over [0, 1]. ‘Sets indexed by [0, 1]’.
The set C([0, 1], R) generates a sheaf and can be considered as the
collection of variable real numbers. It is the real number object in
Sh([0, 1]).
Example: Sheaf of rings is an internal ring



Topos logic
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A truth value in Sh([0, 1]) is an open subset of [0, 1].
The logical connectives (∧,∨,¬) are represented by (∩,∪, interior of the
complement).

x

x>0
not x>0

x<0 a

The continuous function x is an internal real number. Hence ‘x > 0 or not
x > 0’ is not a (global) tautology since [0, a) ∪ (a, 1] is not [0, 1].
The internal logic of a topos does not satify P ∨ ¬P .



Toposes
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Let A be a C*-algebra. Put

C(A) := {V ⊆ A | V commutative C*-algebra}.

It is a order under inclusion. Elements V can be viewed as ‘classical
contexts’, ‘windows on the world’

The associated topos is the functor topos:

T (A) := SetC(A)

Sets varying over the classical contexts.



Overview
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● A be a C*-algebra (the physical system)

● Topos T (A) over classical contexts

● Bohrification A of A in the topos T (A)

● Phase space Σ of A (Gelfand)

● Quantity object IR in topos T (A) (interval domain)

● Observables as continuous functions Σ → IR

● Valuation µ on Σ

● Probability µ(a ∈ ∆) in IR



Internal C*-algebra
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An internal C*-algebra in a topos T is an object A, equipped with maps

+: A × A → A, · : CQ × A → A, 0: 1 → A, (−)∗ : A → A,

− : A → A, · : A × A → A, 1: 1 → A, N : Q+
֌ ΩA,

satisfying

T |= ∀a,b∈A[(a + b)∗ = a∗ + b∗],

T |= ∀a∈A∀q∈CQ
[(qa)∗ = qa∗],

T |= ∀a,b∈A[(ab)∗ = b∗a∗],

T |= ...
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An internal C*-algebra in a topos T is an object A, equipped with maps

+: A × A → A, · : CQ × A → A, 0: 1 → A, (−)∗ : A → A,

− : A → A, · : A × A → A, 1: 1 → A, N : Q+
֌ ΩA,

satisfying

T |= ∀a,b∈A[(a + b)∗ = a∗ + b∗],

T |= ∀a∈A∀q∈CQ
[(qa)∗ = qa∗],

T |= ∀a,b∈A[(ab)∗ = b∗a∗],

T |= ...

Internal C*-algebras in SetC are functors of the form C → CStar.



Canonical internal C*-algebra in a topos
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We define the Bohrification of A as the internal C*-algebra

A : C(A) → Set,

V 7→ V.

in the topos T (A) = SetC(A), where
C(A) := {V ⊆ A | V commutative C*-algebra}.

The internal C*-algebra A is commutative!
This reflects our Bohrian perspective.



Overview
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● A be a C*-algebra

● Topos T (A) over classical reference frames

● Bohrification A of A in the topos T (A)

● Phase object Σ of A (Gelfand)

● Quantity object IR in topos T (A) (interval domain)

● Observables as continuous functions Σ → IR

● Valuation µ on Σ

● Probability µ(a ∈ ∆) in IR



Kochen-Specker
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Theorem (Kochen-Specker): no hidden variables in quantum mechanics.
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Theorem (Kochen-Specker): no hidden variables in quantum mechanics.
More precisely: All observables having definite values contradicts that the
values of those variables are intrinsic and independent of the device used
to measure them.
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Theorem (Kochen-Specker): no hidden variables in quantum mechanics.
More precisely: All observables having definite values contradicts that the
values of those variables are intrinsic and independent of the device used
to measure them.
Mathematically: It is impossible to assign a value to every observable:
there is no v : Asa → R such that v(a2) = v(a)2
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Theorem (Kochen-Specker): no hidden variables in quantum mechanics.
More precisely: All observables having definite values contradicts that the
values of those variables are intrinsic and independent of the device used
to measure them.
Mathematically: It is impossible to assign a value to every observable:
there is no v : Asa → R such that v(a2) = v(a)2

Isham-Döring: a certain global section does not exist.
(‘Axiom of Choice does not hold in the quantum world’)
We can still have neo-realistic interpretation by considering also
non-global sections.
These global sections turn out to be points of the internal Gelfand
spectrum of the Bohrification A.



Pointfree Topology
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We want to consider the phase space of the Bohrification.
Use internal constructive Gelfand duality.
The classical proof of Gelfand duality uses the axiom of choice (only) to
construct the points of the spectrum.
Solution: use topological spaces without points!
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We want to consider the phase space of the Bohrification.
Use internal constructive Gelfand duality.
The classical proof of Gelfand duality uses the axiom of choice (only) to
construct the points of the spectrum.
Solution: use topological spaces without points!
We now present three views on topology.



Point-set topology
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A topological space consists of set X with a collection O(X) of subsets
containing ∅, X and is closed under ∩,

⋃
.

A continous function from X to Y is a map f : X → Y such that
f−1 : O(Y ) → O(X).
This defines a category Top of topological spaces and continuous maps.



Locales
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Abstracting from the encoding in set theory we abstractly consider a
pointfree topological space:
A frame is a complete distributive lattice (∧,∨)
A frame map preserves ∧,

∨

A continuous map X → Y in Top defines a frame map O(Y ) → O(X)
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Abstracting from the encoding in set theory we abstractly consider a
pointfree topological space:
A frame is a complete distributive lattice (∧,∨)
A frame map preserves ∧,

∨

A continuous map X → Y in Top defines a frame map O(Y ) → O(X)
[Define locale=frameop, duality topology/logic]
Point α of a locale L is a completely prime filter: α ⊂ PL

● L ∈ α

● U, V ∈ α ⇒ U ∧ V ∈ α

●
⋃

Ui ∈ α ⇒ ∃i.Ui ∈ α

● ∅ 6∈ α



Locales

Padova, 24th Oct 2008 Heunen & Landsman & Spitters – A topos for algebraic quantum theory – 27 / 48

Abstracting from the encoding in set theory we abstractly consider a
pointfree topological space:
A frame is a complete distributive lattice (∧,∨)
A frame map preserves ∧,

∨

A continuous map X → Y in Top defines a frame map O(Y ) → O(X)
[Define locale=frameop, duality topology/logic]
Point α of a locale L is a completely prime filter: α ⊂ PL

● L ∈ α

● U, V ∈ α ⇒ U ∧ V ∈ α

●
⋃

Ui ∈ α ⇒ ∃i.Ui ∈ α

● ∅ 6∈ α

Adjunction between Loc and Top
Restricts to equivalence (points should be separated by opens etc)
Example: compact Hausdorff spaces≡compact regular locales



Geometric logic
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A positive formula is build up from ∧,
∨

.
A geometric (propositional) formula is P ⇒ Q (P, Q positive)
A geometric theory is defined by geometric formulas
A model of a geometric theory assigns a truth value in {0, 1} to every
proposition.
A geometric theory defines a locale P ≤ Q := P ⇒ Q.
A model of the theory defines a point of the locale.
(Vice versa)



Reals
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Locale is generated by the rational intervals (base for the topology)
Dedekind reals as a theory: pairs of rational intervals such that

● (p, q) ⇒ (p, q′) ∨ (p′, q) if p < p′ < q′ < q

● (p, q) ⇒
∨

(p′, q′), where p < p′ < q′ < q

● (p, q) for some p, q

This directly defines the corresponding locale, only after that the
topological space.



Pointfree Topology
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Choice is used to construct ideal points (real numbers, max. ideals).
Avoiding points one can avoid choice and non-constructive reasoning
(Joyal).
Elimination of points, like elimination of infinitesimals
Slogan: using the axiom of choice is a choice!
(Tychonoff, Krein-Millman, Alaoglu, Hahn-Banach, Gelfand, Zariski, ...)
Point free approaches to topology:

● Pointfree topology (formal opens)

● Commutative C*-algebras (formal continuous functions)



Pointfree Topology

Padova, 24th Oct 2008 Heunen & Landsman & Spitters – A topos for algebraic quantum theory – 30 / 48

Choice is used to construct ideal points (real numbers, max. ideals).
Avoiding points one can avoid choice and non-constructive reasoning
(Joyal).
Elimination of points, like elimination of infinitesimals
Slogan: using the axiom of choice is a choice!
(Tychonoff, Krein-Millman, Alaoglu, Hahn-Banach, Gelfand, Zariski, ...)
Point free approaches to topology:

● Pointfree topology (formal opens)

● Commutative C*-algebras (formal continuous functions)

These formal objects model basic observations:

● Formal opens are used in computer science (domains) to model
observations.

● Formal continuous functions, self adjoint operators, are observables in
quantum theory.



More pointfree functions
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Definition 1 A Riesz space (vector lattice) is a vector space with
‘compatible’ lattice operations ∨,∧.
E.g. f ∨ g + f ∧ g = f + g.

Prime (‘only’) example:
vector space of real functions with pointwise ∨,∧.
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Definition 3 A Riesz space (vector lattice) is a vector space with
‘compatible’ lattice operations ∨,∧.
E.g. f ∨ g + f ∧ g = f + g.

Prime (‘only’) example:
vector space of real functions with pointwise ∨,∧.
We assume that Riesz space R has a strong unit 1: ∀f∃n.f ≤ n · 1.
A representation of a Riesz space is a Riesz homomorphism to R.
The representation of the Riesz space C(X) are the point evaluations.

Theorem 4 (Classical Stone-Yosida) Let R be a Riesz space. Let
Max(R) be the space of representations. The space Max(R) is compact
Hausdorff and there is a Riesz embedding ·̂ : R → C(Max(R)). The
uniform norm of â equals the norm of a.



Formal spaceMax(R)
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Logical description of the space of representations:
D(a) = {φ ∈ Max(R) : â(φ) > 0}. a ∈ R, â(φ) = φ(a)

1. D(a) ∧ D(−a) = 0;
(D(a), D(−a) ⊢ ⊥)

2. D(a) = 0 if a ≤ 0;

3. D(a + b) ≤ D(a) ∨ D(b);

4. D(1) = 1;

5. D(a ∨ b) = D(a) ∨ D(b)

6. D(a) =
∨

r>0 D(a − r).

Max(R) is compact completely regular (cpt Hausdorff)
The frame with generators D(a) is a pointfree description of the space of
representations Max(R). We proved a constructive Stone-Yosida theorem
‘Every Riesz space is a Riesz space of functions’
[Coquand, Coquand/Spitters (inspired by Banaschewski/Mulvey)]



Retract
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Every compact regular space is retract (conservative extension) of a
coherent space.
Strategy: first define a finitary cover, then add the infintary part and prove
that it is a conservative extension. (Coquand, Mulvey)
This was used above: adding axiom 6 was proved to be a conservative
extension.
This can be used to give an entirely finitary proof.



C*-algebras
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Theorem 5 (Gelfand) Every commutative C*-algebra A is the space of
functions on its spectrum.

We obtain an entirely elementary proof of Gelfand duality (Coquand/S):
Proof: The self-adjoint part of A is a Riesz space.



Phase object in a topos
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Apply constructive Gelfand duality (Banachewski, Mulvey) to the
Bohrification to obtain the (internal) spectrum Σ.
This is our phase object. (motivated by Döring-Isham).

Kochen-Specker = Σ has no (global) point.
However, Σ is a well-defined interesting compact regular locale.
Pointless topological space of hidden variables.



Overview
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● A be a C*-algebra

● Topos T (A) over classical reference frames

● Bohrification A of A in the topos T (A)

● Phase object Σ of A (Gelfand)

● Quantity object IR in topos T (A) (interval domain)

● Observables as continuous functions Σ → IR

● Valuation µ on Σ

● Probability µ(a ∈ ∆) in IR



Interval domain
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In computer science (domain theory) one uses an ‘information topology’.
The interval domain (partially defined reals) is the topological space with
as points the real intervals. Basic opens:

↓ (p, q) := {[a, b] | p < a < b < q}

The points [0, 1] and [12 , 1
2 ] cannot be separated by an open (not T1).

One can interpret [0, 1] as a partial information about a real number,
possibly to be refined further.
Continuous maps for this topology preserve this information order.
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● A be a C*-algebra

● Topos T (A) over classical reference frames

● Bohrification A of A in the topos T (A)

● Phase object Σ of A (Gelfand)

● Quantity object IR in topos T (A) (interval domain)

● Observables as continuous functions Σ → IR

● Valuation µ on Σ

● Probability µ(a ∈ ∆) in IR



Daseinisation: observables in a topos
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We would like to make an observable a ∈ Asa into an observable in Asa.
Hence we’ll have to approximate a from V ∈ V(A):
Motivated by Doering-Isham daseinisation (Heidegger).

La(V ) = {b ∈ V | b ≤ a},

Ua(V ) = {b ∈ V | a ≤ b}

are functors, hence internal sets of functions in T (A).

δ(a)(σ) = [ sup
b∈La

b̂(σ), inf
c∈Ua

ĉ(σ)].

Defined using the generic point.
Now δ(a) ∈ C(Σ, IR), and δ is an injection.
So IR is our quantity object.
Observables are represented by maps Σ → IR.
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● A be a C*-algebra

● Topos T (A) over classical reference frames

● Bohrification A of A in the topos T (A)

● Phase object Σ of A (Gelfand)

● Quantity object IR in topos T (A) (interval domain)

● Observables as continuous functions Σ → IR

● Valuation µ on Σ

● Probability µ(a ∈ ∆) in IR



States in a topos
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An integral is a pos lin functional I on a commutative C*-algebra, with
I(1) = 1.
A state is a pos lin functional ρ on a C*-algebra, with
ρ(1) = 1.

In the foundations of QM one uses quasi-states (linear only on
commutative parts)
Theorem(Gleason): Quasi-states = states most of the time
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States in a topos
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An integral is a pos lin functional I on a commutative C*-algebra, with
I(1) = 1.
A state is a pos lin functional ρ on a C*-algebra, with
ρ(1) = 1.

In the foundations of QM one uses quasi-states (linear only on
commutative parts)
Theorem(Gleason): Quasi-states = states most of the time
Theorem: There is a one-to-one correspondence between (quasi)-states
of A and integrals on C(Σ) in A.

Segal-Kunze developed integration theory using states, with intended
interpretation: an expectation defined on an algebra of observables.
We will present a variation on this.



Constructive integration
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Integral on commutative C*-algebras of functions
(Daniell,Segal/Kunze)
An integral is a positive linear functional on a space of continuous
functions on a topological space

Prime example: Lebesgue integral
∫

Linear:
∫

af + bg = a
∫

f + b
∫

g

Positive: If f(x) ≥ 0 for all x, then
∫

f ≥ 0
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Integral on commutative C*-algebras of functions
(Daniell,Segal/Kunze)
An integral is a positive linear functional on a space of continuous
functions on a topological space

Prime example: Lebesgue integral
∫

Linear:
∫

af + bg = a
∫

f + b
∫

g

Positive: If f(x) ≥ 0 for all x, then
∫

f ≥ 0

Other example: Dirac measure δt(f) := f(t).



Riesz representation theorem
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Riesz representation theorem: Integral = Regular measure = Valuation
A valuation is a map µ : O(X) → R, which is lower semicontinuous and
satisfies the modular laws.

Theorem 6 (Coquand/Spitters) The spaces of integrals and valuations
are homeomorphic (even in a topos).

Proof The integrals form a compact regular locale, presented by a
geometric theory. Only (∧,

∨
).

Similarly for the theory of valuations.
By the classical RRT the models(=points) are in bijective correspondence.
Hence by the completeness theorem for geometric logic (If a statements
holds for all models, then it is provable), this proof is a bi-interpretation
map/a homeomorphism.
[We also provide a direct constructive proof.]
Example of proof mining: Obtaining new theorems from old proofs by
using their logical form.



Valuations
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This allows us to move internally from integrals to valuations.
Integrals are internal representations of states
Valuations are internal representations of measures on projections
(Both are standard QM.)
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This allows us to move internally from integrals to valuations.
Integrals are internal representations of states
Valuations are internal representations of measures on projections
(Both are standard QM.)

Thus an open ‘δ(a) ∈ ∆’ can be assigned a probability. In general, this
probability is only partially defined, it is in the interval domain.
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● A be a C*-algebra

● Topos T (A) over classical reference frames

● Bohrification A of A in the topos T (A)

● Phase object Σ of A (Gelfand)

● Quantity object IR in topos T (A) (interval domain)

● Observables as continuous functions Σ → IR

● Valuation µ on Σ

● Probability µ(a ∈ ∆) in IR
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Let A be a C*-algebra. Put C(A) := {V ⊆ A | V commutative C*-algebra}.
It is a order under inclusion. Elements V can be viewed as ‘classical
contexts’, ‘windows on the world’. The associated topos is
T (A) := SetC(A)

1. The quantum phase space of the system described by A is the locale
Σ ≡ Σ(A) in the topos T (A).

2. Propositions about A are simply the ‘opens’ in Σ. Thus the quantum
logic of A is given by the Heyting algebra underlying Σ(A).

3. Observables a ∈ A define locale maps δ(a) : Σ → IR, where IR is the
so-called interval domain. States ρ on A yield probability measures
(valuations) µρ on Σ.

4. The frame map O(IR)
δ(a)−1

−→ O(Σ) applied to an open interval ∆ ⊆ R

yields the desired proposition.

5. State-proposition pairing is defined as µ(a ∈ ∆) = 1.



Conclusions
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Bohr’s doctrine suggests a functor topos making a C*-algebra
commutative

● Spatial quantum logic via topos logic

● Phase space via internal Gelfand duality

● Observables are partially defined reals (domains from CS)

● Quasi-states as internal integrals

New research program in constructive mathematics.
Computing the interpretation is simplified by predicative/geometric
point-free reasoning.
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● A constructive proof of Gelfand duality for C*-algebras (with Coquand)
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