
Computer certified efficient exact reals in Coq

Bas Spitters
Robbert Krebbers

Eelis van der Weegen

Radboud University Nijmegen

Supported by EU FP7 STREP FET-open ForMATH



Why do we need certified exact arithmetic?

I There is a big gap between:
I Numerical algorithms in research papers.
I Actual implementations (Mathematica, MATLAB, . . . ).

I This gap makes the code difficult to maintain.

I Makes it difficult to trust the code of these implementations!
I Undesirable in proofs that rely on the execution of this code.

I Kepler conjecture.
I Existence of the Lorentz attractor.



Why do we need certified exact arithmetic?

I There is a big gap between:
I Numerical algorithms in research papers.
I Actual implementations (Mathematica, MATLAB, . . . ).

I This gap makes the code difficult to maintain.

I Makes it difficult to trust the code of these implementations!

I Undesirable in proofs that rely on the execution of this code.
I Kepler conjecture.
I Existence of the Lorentz attractor.



Why do we need certified exact arithmetic?

I There is a big gap between:
I Numerical algorithms in research papers.
I Actual implementations (Mathematica, MATLAB, . . . ).

I This gap makes the code difficult to maintain.

I Makes it difficult to trust the code of these implementations!
I Undesirable in proofs that rely on the execution of this code.

I Kepler conjecture.
I Existence of the Lorentz attractor.



Why do we need certified exact real arithmetic?

(http://xkcd.com/217/)

http://xkcd.com/217/


Bishop’s proposal

Use constructive analysis to bridge this gap.

I Exact real numbers instead of floating point numbers.

I Functional programming instead of imperative programming.

I Dependent type theory.

I A proof assistant to verify the correctness proofs.

I Constructive mathematics to tightly connect mathematics
with computations.



Real numbers

I Cannot be represented exactly in a computer.

I Approximation by rational numbers.

I Or any set that is dense in the rationals (e.g. the dyadics).



O’Connor’s implementation in Coq

I Based on metric spaces and the completion monad.

R := CQ := {f : Q+ → Q | f is regular}

I To define a function R→ R: define a uniformly continuous
function f : Q→ R, and obtain f̌ : R→ R.

I Efficient combination of proving and programming.



O’Connor’s implementation in Coq

I Based on metric spaces and the completion monad.

R := CQ := {f : Q+ → Q | f is regular}

I To define a function R→ R: define a uniformly continuous
function f : Q→ R, and obtain f̌ : R→ R.

I Efficient combination of proving and programming.



O’Connor’s implementation in Coq

Problem:

I A concrete representation of the rationals (Coq’s Q) is used.

I Cannot swap implementations, e.g. use machine integers.

Solution:
Build theory and programs on top of abstract interfaces instead of
concrete implementations.

I Cleaner.

I Mathematically sound.

I Can swap implementations.



O’Connor’s implementation in Coq

Problem:

I A concrete representation of the rationals (Coq’s Q) is used.

I Cannot swap implementations, e.g. use machine integers.

Solution:
Build theory and programs on top of abstract interfaces instead of
concrete implementations.

I Cleaner.

I Mathematically sound.

I Can swap implementations.



Our contribution

I Provide an abstract specification of the dense set.

I For which we provide an implementation using the dyadics:

n ∗ 2e for n, e ∈ Z

I Use Coq’s machine integers.

I Extend our algebraic hierarchy based on type classes

I Implement range reductions.
I Improve computation of power series:

I Keep auxiliary results small.
I Avoid evaluation of termination proofs.



Interfaces for mathematical structures

I Algebraic hierarchy (groups, rings, fields, . . . )

I Relations, orders, . . .

I Categories, functors, universal algebra, . . .

I Numbers: N, Z, Q, R, . . .

Need solid representations of these, providing:

I Structure inference.

I Multiple inheritance/sharing.

I Convenient algebraic manipulation (e.g. rewriting).

I Idiomatic use of names and notations.

S/and van der Weegen: use type classes



Type classes

I Useful for organizing interfaces of abstract structures.

I Similar to AXIOM’s so-called categories.

I Great success in Haskell and Isabelle.

I Recently added to Coq.

I Based on already existing features (records, proof search,
implicit arguments).

Proof engineering
Similar to canonical structures



Unbundled using type classes

Define operational type classes for operations and relations.

Class Equiv A := equiv: relation A.
Infix ”=” := equiv: type scope.
Class RingPlus A := ring plus: A → A → A.
Infix ”+” := ring plus.

Represent algebraic structures as predicate type classes.

Class SemiRing A {e plus mult zero one} : Prop := {
semiring mult monoid :> @CommutativeMonoid A e mult one ;
semiring plus monoid :> @CommutativeMonoid A e plus zero ;
semiring distr :> Distribute (.∗.) (+) ;
semiring left absorb :> LeftAbsorb (.∗.) 0 }.



Examples

(* z & x = z & y → x = y *)

Instance group cancel ‘{Group G} : ∀ z, LeftCancellation (&) z.

Lemma preserves inv ‘{Group A} ‘{Group B}
‘{!Monoid Morphism (f : A → B)} x : f (−x) = −f x.

Proof.
apply (left cancellation (&) (f x)).
rewrite ← preserves sg op.
rewrite 2!right inverse.
apply preserves mon unit.

Qed.

Lemma cancel ring test ‘{Ring R} x y z : x + y = z + x → y = z.
Proof.
intros.
apply (left cancellation (+) x).
now rewrite (commutativity x z).

Qed.



Examples

(* z & x = z & y → x = y *)

Instance group cancel ‘{Group G} : ∀ z, LeftCancellation (&) z.

Lemma preserves inv ‘{Group A} ‘{Group B}
‘{!Monoid Morphism (f : A → B)} x : f (−x) = −f x.

Proof.
apply (left cancellation (&) (f x)).
rewrite ← preserves sg op.
rewrite 2!right inverse.
apply preserves mon unit.

Qed.

Lemma cancel ring test ‘{Ring R} x y z : x + y = z + x → y = z.
Proof.
intros.
apply (left cancellation (+) x).
now rewrite (commutativity x z).

Qed.



Examples

(* z & x = z & y → x = y *)

Instance group cancel ‘{Group G} : ∀ z, LeftCancellation (&) z.

Lemma preserves inv ‘{Group A} ‘{Group B}
‘{!Monoid Morphism (f : A → B)} x : f (−x) = −f x.

Proof.
apply (left cancellation (&) (f x)).
rewrite ← preserves sg op.
rewrite 2!right inverse.
apply preserves mon unit.

Qed.

Lemma cancel ring test ‘{Ring R} x y z : x + y = z + x → y = z.
Proof.
intros.
apply (left cancellation (+) x).
now rewrite (commutativity x z).

Qed.



Number structures

S/van der Weegen specified:

I Naturals: initial semiring.

I Integers: initial ring.

I Rationals: field of fractions of Z.



Basic operations

I Common definitions:
I nat pow: repeated multiplication,
I shiftl: repeated duplication.

I Implementing these operations this way is too slow.

I We want different implementations for different number
representations.

I And avoid definitions and proofs becoming implementation
dependent.

Hence we want an abstract specification.



Basic operations

I Common definitions:
I nat pow: repeated multiplication,
I shiftl: repeated duplication.

I Implementing these operations this way is too slow.

I We want different implementations for different number
representations.

I And avoid definitions and proofs becoming implementation
dependent.

Hence we want an abstract specification.



Basic operations

I For example:

Class ShiftL A B := shiftl: A → B → A.
Infix ”� ” := shiftl (at level 33, left associativity).

Class ShiftLSpec A B (sl : ShiftL A B) ‘{Equiv A} ‘{Equiv B}
‘{RingOne A} ‘{RingPlus A} ‘{RingMult A}
‘{RingZero B} ‘{RingOne B} ‘{RingPlus B} := {

shiftl proper : Proper ((=) =⇒ (=) =⇒ (=)) (�) ;
shiftl 0 :> RightIdentity (�) 0 ;
shiftl S : ∀ x n, x � (1 + n) = 2 ∗ x � n }.



Approximate rationals

Class AppDiv AQ := app div : AQ → AQ → Z → AQ.
Class AppApprox AQ := app approx : AQ → Z → AQ.

Class AppRationals AQ {e plus mult zero one inv} ‘{!Order AQ}
{AQtoQ : Coerce AQ Q as MetricSpace} ‘{!AppInverse AQtoQ}
{ZtoAQ : Coerce Z AQ} ‘{!AppDiv AQ} ‘{!AppApprox AQ}
‘{!Abs AQ} ‘{!Pow AQ N} ‘{!ShiftL AQ Z}
‘{∀ x y : AQ, Decision (x = y)} ‘{∀ x y : AQ, Decision (x ≤ y)} : Prop := {
aq ring :> @Ring AQ e plus mult zero one inv ;
aq order embed :> OrderEmbedding AQtoQ ;
aq ring morphism :> SemiRing Morphism AQtoQ ;
aq dense embedding :> DenseEmbedding AQtoQ ;
aq div : ∀ x y k, B2k (’app div x y k) (’x / ’y) ;
aq approx : ∀ x k, B2k (’app approx x k) (’x) ;
aq shift :> ShiftLSpec AQ Z (�) ;
aq nat pow :> NatPowSpec AQ N (ˆ) ;
aq ints mor :> SemiRing Morphism ZtoAQ }.



Approximate rationals
Compress

Class AppDiv AQ := app div : AQ → AQ → Z → AQ.
Class AppApprox AQ := app approx : AQ → Z → AQ.
Class AppRationals AQ . . . : Prop := {
. . .

aq div : ∀ x y k, B2k (’app div x y k) (’x / ’y) ;
aq approx : ∀ x k, B2k (’app approx x k) (’x) ;
. . . }

I app approx is used to to keep the size of the numbers “small”.

I Define compress := bind (λ ε, app approx x (Qdlog2 ε)) such that
compress x = x.

I Greatly improves the performance [O’Connor].



Power series

I Well suited for computation if:
I its coefficients are alternating,
I decreasing,
I and have limit 0.

I For example, for −1 ≤ x ≤ 0:

exp x =
∞∑
i=0

x i

i !

I To approximate exp x with error ε we find a k such that:

xk

k!
≤ ε



Power series

Problem: we do not have exact division.

I Parametrize InfiniteAlternatingSum with streams n and d
representing the numerators and denominators to postpone
divisions.

I Need to find both the length and precision of division.

n1
d1︸︷︷︸

ε
2k
error

+
n2
d2︸︷︷︸

ε
2k
error

+ . . .+
nk
dk︸︷︷︸

ε
2k
error

such that
nk
dk
≤ ε/2

I Thus, to approximate exp x with error ε we need a k such that:

B ε
2

(app div nk dk (log
ε

2k
) +

ε

2k
) 0.



Power series

Problem: we do not have exact division.

I Parametrize InfiniteAlternatingSum with streams n and d
representing the numerators and denominators to postpone
divisions.

I Need to find both the length and precision of division.

n1
d1︸︷︷︸

ε
2k
error

+
n2
d2︸︷︷︸

ε
2k
error

+ . . .+
nk
dk︸︷︷︸

ε
2k
error

such that
nk
dk
≤ ε/2

I Thus, to approximate exp x with error ε we need a k such that:

B ε
2

(app div nk dk (log
ε

2k
) +

ε

2k
) 0.



Power series

I Computing the length can be optimized using shifts.

I Our approach only requires to compute few extra terms.

I Approximate division keeps the auxiliary numbers “small”.

I We need a trick to avoid evaluation of termination proofs.



What have we implemented so far?

Verified versions of:

I Basic field operations (+, ∗, -, /)

I Exponentiation by a natural.

I Computation of power series.

I exp, arctan, sin and cos.

I π := 176∗arctan 1
57+28∗arctan 1

239−48∗arctan 1
682+96∗arctan 1

12943 .

I Square root using Wolfram iteration.



Benchmarks

I Our Haskell prototype is ∼15 times faster.

I Our Coq implementation is ∼100 times faster.
I For example:

I 500 decimals of exp (π ∗
√

163) and sin (exp 1),
I 2000 decimals of exp 1000,

within 10 seconds in Coq!

I (Previously about 10 decimals)

I Type classes only yield a 3% performance loss.

I Coq is still too slow compared to unoptimized Haskell
(factor 30 for Wolfram iteration).



Benchmarks

I Our Haskell prototype is ∼15 times faster.

I Our Coq implementation is ∼100 times faster.
I For example:

I 500 decimals of exp (π ∗
√

163) and sin (exp 1),
I 2000 decimals of exp 1000,

within 10 seconds in Coq!

I (Previously about 10 decimals)

I Type classes only yield a 3% performance loss.

I Coq is still too slow compared to unoptimized Haskell
(factor 30 for Wolfram iteration).



Recent improvements

I Verified versions of sin and cos.

I Type class interfaces for constructive {setoids, fields, orders}.
I Additional implementations of AppRationals.

I Avoid evaluation of termination proofs.



Further work

I Newton iteration to compute the square root.

I Geometric series (e.g. to compute log).

I native compute: evaluation by compilation to Ocaml.
gives Coq 10× boost.

I Flocq: more fine grained floating point algorithms.

I Type classified theory on metric spaces.

I What are the benefits of univalence?



Conclusions

I Greatly improved the performance of the reals.

I Abstract interfaces allow to swap implementations and share
theory and proofs.

I Type classes yield no apparent performance penalty.

I Nice notations with unicode symbols.

Issues:

I Type classes are quite fragile.

I Instance resolution is too slow.

I Need to adapt definitions to avoid evaluation in Prop.



Conclusions

I Greatly improved the performance of the reals.

I Abstract interfaces allow to swap implementations and share
theory and proofs.

I Type classes yield no apparent performance penalty.

I Nice notations with unicode symbols.

Issues:

I Type classes are quite fragile.

I Instance resolution is too slow.

I Need to adapt definitions to avoid evaluation in Prop.



Sources

http://robbertkrebbers.nl/research/reals/

http://robbertkrebbers.nl/research/reals/

