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Goal

Relate algebraic quantum mechanics to topos theory to construct
new foundations for quantum logic and quantum spaces.

— A spectrum for non-commutative algebras —
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Classical physics

Standard presentation of classical physics:
A phase space Σ.
E.g. Σ ⊂ Rn × Rn (position, momentum)

An observable is a function a : Σ→ R
(e.g. position or energy)

An observable a and an interval ∆ ⊆ R together define
a proposition ‘a ∈ ∆’ by the set a−1∆.
Spatial logic:
logical connectives ∧,∨,¬ are interpreted by ∩,∪, complement
For a phase σ in Σ,
σ |= a ∈ ∆
a(σ) ∈ ∆
δσ(a) ∈ ∆ (Dirac measure)
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Quantum

How to generalize to the quantum setting?

1. Identifying a quantum phase space Σ.

2. Defining subsets of Σ acting as propositions of quantum
mechanics.

3. Describing states in terms of Σ.

4. Associating a proposition a ∈ ∆ (⊂ Σ) to an observable a and
an open subset ∆ ⊆ R.

5. Finding a pairing map between states and ‘subsets’ of Σ
(and hence between states and propositions of the type
a ∈ ∆).
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Old-style quantum logic

von Neumann proposed:

1. A quantum phase space is a Hilbert space H.

2. Elementary propositions correspond to closed linear subspaces
of H.

3. Pure states are unit vectors in H.

4. The closed linear subspace [a ∈ ∆] is the image E (∆)H of the
spectral projection E (∆) defined by a and ∆.

5. The pairing map takes values in [0, 1] and is given by the Born
rule:

〈Ψ,P〉 = (Ψ,PΨ).

Von Neumann later abandoned this.
No implication, no deductive system.
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Bohrification

In classical physics we have a spatial logic.
Want the same for quantum physics. So we consider two
generalizations of topological spaces:

I C*-algebras (Connes’ non-commutative geometry)

I toposes and locales (Grothendieck)

We connect the two generalizations by:

1. Algebraic quantum theory

2. Constructive Gelfand duality

3. Bohr’s doctrine of classical concepts

[Heunen, Landsman, S]
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Classical concepts

Bohr’s “doctrine of classical concepts” states that we can only
look at the quantum world through classical glasses, measurement
merely providing a “classical snapshot of reality”. The combination
of all such snapshots should then provide a complete picture.

Let A be a C*-algebra (quantum system)
The set of as ‘classical contexts’, ‘windows on the world’:

C(A) := {V ⊆ A | V commutative C*-algebra}

Connes: A is not entirely determined by C(A)

Doering and Harding, Hamhalter
the Jordan structure can be retrieved.
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HLS proposal
Consider the Kripke model for (C(A),⊃): T (A) := Set(C(A),⊂)

Define Bohrification A(C ) := C

1. The quantum phase space of the system described by A is the
locale Σ ≡ Σ(A) in the topos T (A).

2. Propositions about A are the ‘opens’ in Σ. The quantum logic
of A is given by the Heyting algebra underlying Σ(A).
Each projection defines such an open.

3. Observables a ∈ Asa define locale maps δ(a) : Σ→ IR, where
IR is the so-called interval domain. States ρ on A yield
probability measures (valuations) µρ on Σ.

4. The frame map O(IR)δ(a)−1−→O(Σ) applied to an open
interval ∆ ⊆ R yields the desired proposition.

5. State-proposition pairing is defined as µρ(P) = 1.

Motivation: Butterfield-Doering-Isham use topos theory for
quantum theory.
Are D-I considering the co-Kripke model?
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Commutative C*-algebras

For X ∈ CptHd, consider C (X ,C).

It is a complex vector space: (f + g)(x) := f (x) + g(x),
(z · f )(x) := z · f (x).

It is a complex associative algebra: (f · g)(x) := f (x) · g(x).
It is a Banach algebra: ‖f ‖ := sup{|f (x)| : x ∈ X}.
It has an involution: f ∗(x) := f (x).

It is a C*-algebra: ‖f ∗ · f ‖ = ‖f ‖2.

It is a commutative C*-algebra: f · g = g · f .

In fact, X can be reconstructed from C (X ):
one can trade topological structure for algebraic structure.
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Gelfand duality

There is a categorical equivalence (Gelfand duality):

CommC∗
Σ //

CptHdop

C(−,C)
oo ⊥

The structure space Σ(A) is called the Gelfand spectrum of A.
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C*-algebras

Now drop commutativity: a C*-algebra is a complex Banach
algebra with involution (−)∗ satisfying ‖a∗ · a‖ = ‖a‖2.

Slogan: C*-algebras are non-commutative topological spaces.

Prime example:
B(H) = {f : H → H | f bounded linear}, for H Hilbert space.

is a complex vector space: (f + g)(x) := f (x) + g(x),
(z · f )(x) := z · f (x),

is an associative algebra: f · g := f ◦ g ,
is a Banach algebra: ‖f ‖ := sup{‖f (x)‖ : ‖x‖ = 1},
has an involution: 〈fx , y〉 = 〈x , f ∗y〉
satisfies: ‖f ∗ · f ‖ = ‖f ‖2,

but not necessarily: f · g = g · f .
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Internal C*-algebra

Internal C*-algebras in SetC are functors of the form C→ CStar.
‘Bundle of C*-algebras’.

We define the Bohrification of A as the internal C*-algebra

A : C(A)→ Set,

V 7→ V .

in the topos T (A) = SetC(A), where
C(A) := {V ⊆ A | V commutative C*-algebra}.

The internal C*-algebra A is commutative!
This reflects our Bohrian perspective.
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Kochen-Specker

Theorem (Kochen-Specker): no hidden variables in quantum
mechanics.

More precisely: All observables having definite values contradicts
that the values of those variables are intrinsic and independent of
the device used to measure them.
Mathematically:
It is impossible to assign a value to every observable:
there is no v : Asa → R such that v(a2) = v(a)2

Isham-Döring: a certain global section does not exist.
We can still have neo-realistic interpretation by considering also
non-global sections.
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Pointfree Topology

We want to consider the phase space of the Bohrification.
Use internal constructive Gelfand duality.
The classical proof of Gelfand duality uses the axiom of choice
(only) to construct the points of the spectrum.
Solution: use topological spaces without points (locales)!
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Pointfree Topology

Choice is used to construct ideal points (e.g. max. ideals).
Avoiding points one can avoid choice and non-constructive
reasoning (Joyal, Mulvey, Coquand).
Slogan: using the axiom of choice is a choice!
(Tychonoff, Krein-Millman, Alaoglu, Hahn-Banach, Gelfand,
Zariski, ...)
Point free approaches to topology:

I Pointfree topology (formal opens)

I Commutative C*-algebras (formal continuous functions)

These formal objects model basic observations:

I Formal opens are used in computer science (domains) to
model observations.

I Formal continuous functions, self adjoint operators, are
observables in quantum theory.
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More pointfree functions

Definition
A Riesz space (vector lattice) is a vector space with ‘compatible’
lattice operations ∨,∧.
E.g. f ∨ g + f ∧ g = f + g .

We assume that Riesz space R has a strong unit 1: ∀f ∃n.f ≤ n · 1.
Prime (‘only’) example:
vector space of real functions with pointwise ∨,∧.

A representation of a Riesz space is a Riesz homomorphism to R.
The representations of the Riesz space C (X ) are x̂(f ) := f (x)

Theorem (Classical Stone-Yosida)

Let R be a Riesz space. Let Max(R) be the space of
representations. The space Max(R) is compact Hausdorff and
there is a Riesz embedding ·̂ : R → C (Max(R)). The uniform
norm of â equals the norm of a.
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Formal space Max(R)

Logical description of the space of representations:
D(a) = {φ ∈ Max(R) : â(φ) > 0}. a ∈ R, â(φ) = φ(a)}

1. D(a) ∧ D(−a) = 0;
(D(a),D(−a) ` ⊥)

2. D(a) = 0 if a ≤ 0;

3. D(a + b) ≤ D(a) ∨ D(b);

4. D(1) = 1;

5. D(a ∨ b) = D(a) ∨ D(b)

6. D(a) =
∨

r>0 D(a− r).

Max(R) is compact completely regular (cpt Hausdorff)
Pointfree description of the space of representations Max(R)
‘Every Riesz space is a Riesz space of functions’
[Coquand, Coquand/Spitters (inspired by Banaschewski/Mulvey)]

Geometric theory of representations, GRD-system
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C*-algebras

Obtain an elementary proof of Gelfand duality (Coquand/S):

Theorem (Gelfand)

A commutative C*-algebra A is the space of functions on Σ(A)

Proof: The self-adjoint part of A is a Riesz space.
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Phase object in a topos

Apply constructive Gelfand duality (Banachewski, Mulvey) to the
Bohrification to obtain the (internal) spectrum Σ.
This is our phase object. (motivated by Döring-Isham).

Kochen-Specker = Σ has no (global) point.
However, Σ is a well-defined interesting compact regular locale.
Pointless topological space of hidden variables.
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Externalizing

LocSh(X ) ≡ Loc/X
There is an external locale Σ equivalent to Σ in T (A)
When applied to the lattice of projections of a Hilbert space we
turn old style quantum logic into a Heyting algebra.

Our definition of the spectrum is geometric.
Hence, Σ can be computed fiberwise: points (C , σ).
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Points

Mathematical physicists are used to bunbles?
Is Σ spatial, is V(Σ) spatial?

1. Yes, frame of a topological space
2. It is constructively locally compact!
2a. Σ is compact regular in Sh(Idl(C(A)))
2b. Idl(C(A)) is locally compact
2c. Locally compact maps compose
2d. Locally compact locales are classically spatial
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Geometric logic

Explicit computations with sites are often geometric!
Vickers’ GRD (Generators, Relations and Disjuncts) language
The theory MaxA is constructed geometrically from A

For A in Sh(Y ), MaxA is a locale map p : MaxA→ Y
For f : X → Y , f ∗(A) is also a Riesz space
By geometricity, Maxf ∗(A) is got by pulling back p along f .

X = 1,Y = Idl(C (A)):
C ∈ C(A) defines a principal ideal, 1→ Idl(C (A))
The pullback C ∗(A) is the set A(C ) = C
So the fibre of the map Max(A)→ Idl(C(A)) over C is MaxC .
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Locally compact

LocSh(X ) ≡ Loc/X
TFAE:

I Y locally compact

I The exponential SY exists; S=Sierpiński locale

I Y is exponentiable

Theorem: Yp locally compact in Sh(X ), X locally compact. Then
Y is locally compact.
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Locally compact

Need to construct SY

Locales by geometric theories
Continuous map: constructive transformations of points
Continuous map as a bundle
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Locally compact

Y is given by the theory with generalized models
{(x , t) | x ∈ X , t ∈ Yx}
SYX external description SYq in Sh(X )

The exponent is geometric: SYX = {(x ,w) | x ∈ X ,w ∈ SYx}

E := {σ : X → SYX | q ◦ σ = idX}

By local compactness of X , X → SYX is a space
Define (σ, y) 7→ (σ(py), y) : E × Y → SYX ×X Y
Compose with ((x ,w), (x , t)) 7→ ev(w , t) : SYX ×X Y → S
ev is geometric, so we have an evaluation map from E × Y to S
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Locally compact

E = SY ?
For f : Z → E , we uncurry: f̂ (z , y) := ev(f (z), y) in Z × Y → S

Conversely, given g : Z × Y → S, we curry:

g̃(z) := λx .(x , λv : Yx .g(z , (x , v)) : Z → E

·̂ and ·̃ are inverse
We have constructed SY ! So, Y is locally compact

Alternative proof using �. Hard to compute due to impredicativity

Bas Spitters Steve Vickers, Sander Wolters Locally perfect maps compose



Locally compact

E = SY ?
For f : Z → E , we uncurry: f̂ (z , y) := ev(f (z), y) in Z × Y → S

Conversely, given g : Z × Y → S, we curry:

g̃(z) := λx .(x , λv : Yx .g(z , (x , v)) : Z → E

·̂ and ·̃ are inverse
We have constructed SY ! So, Y is locally compact

Alternative proof using �. Hard to compute due to impredicativity

Bas Spitters Steve Vickers, Sander Wolters Locally perfect maps compose



Locally perfect

Perfect maps correspond to internal compact locales
Locally perfect maps correspond to internal locally compact locales
Locally perfect maps compose (needs some separation).
Corollary: the external spectrum is locally compact and hence
spatial
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Conclusions

Bohr’s doctrine suggests a functor topos making a C*-algebra
commutative

I Spatial quantum logic via topos logic

I Phase space via internal Gelfand duality

I Intuitionistic quantum logic

I Spectrum for non-commutative algebras.

I States (non-commutative integrals) become internal integrals.

Reasoning with bundles
New results on AQFT (Halvorson/Wolters).
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