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Programming is recognized as one of seven grand challenges in computing education. Decades
of research have shown that the major problems novices experience are composition-based—they
may know what the individual programming language constructs are, but they do not know how
to put them together. Despite this fact, textbooks, educational practice, and programming educa-
tion research hardly address the issue of teaching the skills needed for systematic development
of programs.

We provide a conceptual framework for incremental program development, called Stepwise
Improvement, which unifies best practice in modern software development such as test-driven
development and refactoring with the prevailing perspective of programming methodology,
stepwise refinement. The conceptual framework enables well-defined characterizations of incre-
mental program development.

We utilize the conceptual framework to derive a programming process, STREAM, designed
specifically for novices. STREAM is a carefully down-scaled version of a full and rich agile software
engineering process particularly suited for novices learning object-oriented programming. In using
it we hope to achieve two things: to help novice programmers learn faster and better while at
the same time laying the foundation for a more thorough treatment of more advanced aspects of
software engineering. In this article, two examples demonstrate the application of STREAM.

The STREAM process has been taught in the introductory programming courses at our uni-
versities for the past three years and the results are very encouraging. We report on a small,
preliminary study evaluating the learning outcome of teaching STREAM. The study indicates a
positive effect on the development of students’ process competences.
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1. INTRODUCTION

Teaching beginners to program is hard. Many teachers agree that this always
has been, and remains, a very difficult task that has no quick solutions. What
is especially worrying, though, is that the task of teaching programming did
not become easier over the last decades. Initially, one might have claimed
that much of the difficulty could be related to the relative immaturity of our
discipline: since we do not have the many decades of teaching experience other
subjects have gone through, some initial problems could be expected. This
might have been viewed as teething problems.

The worrying fact, however, is that this does not seem to be true. Many
teachers now agree that the teaching of programming has recently become
more difficult, rather than easier, as it should have been had maturity of the
discipline been the significant factor. Instructors now look back at the days of
teaching Pascal and mourn the relative simplicity of teaching in those days.

Some attribute the increased level of difficulty to intrinsic characteristics of
new paradigms used in teaching, such as object orientation, some attribute it
rather to our relatively naı̈ve treatment of object orientation and lack of expe-
rience with this paradigm. Others again blame increasingly complex tools and
infrastructure. One thing that seems certain is that the number of concepts
covered in introductory programming courses has grown. Group work, GUI
programming, testing, debugging, concurrency, correctness, patterns, refactor-
ing, and many other topics are now regularly found in first-year courses, while
they were much less prominent a decade ago.

We can easily accept that most or all of the above contribute to the problems
that teachers currently experience. However, in our view, one of the main
reasons for the increasing problems is a lack of recognition of process as an
important topic in introductory programming courses.

Several aspects of programming courses have changed dramatically over
the last decade. One significant addition to the traditional discussion of al-
gorithms and data structures at the heart of the course is the coverage of
real world (large) software systems. Issues such as code quality, maintain-
ability, extendibility, testing, modularization, group work, etc., have gained
prominence. With this, the programs under investigation are often larger (not
always written by the students alone—often code is provided by the teacher to
be corrected, modified, or extended).

With the increase in size and complexity of the artefacts being worked on
by students, the concept of a development process has become increasingly
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important. This is often not clearly reflected in the academic content of intro-
ductory courses.

While software development processes are well established among profes-
sional programmers, very little is done to address process in introductory
programming courses. Most textbooks, and with it most courses, focus on pre-
senting programming language constructs, programming concepts, and com-
puter programs. “Program,” in short, is treated as a noun, not as a verb.

A typical pattern of introducing material is the presentation of a problem,
followed by the presentation of a program that solves the problem, followed
by a detailed discussion of the language constructs and concepts or algorithms
involved.

This pattern of introducing material creates—unintentionally—the illusion
that these programs were developed (by an expert programmer) in a single
step from the problem formulation. The fact that we all start with incomplete
and incorrect programs when we start addressing a problem, which we then
slowly modify to improve and extend our implementation until we arrive at
an acceptable solution, seems to be swept under the carpet as if it was an
embarrassing secret that must not be mentioned.

While the ultimate solution to the problem is explained in detail, the
process—how we go about developing the solution—is often entirely neglected
in beginners’ courses.

Developing software is, by its very nature, always a process, whether we
are formally aware of it or not. If we do not explicitly teach the programming
process, we end up with two groups of students: those who cannot cope with
the challenge of development and those who can and who discover their own
implicit process.

Some of the first group, those students we lose, might have been saved had
we given them better techniques to address this problem.

Students in the second group can also greatly benefit from a systematic
process, since the techniques they discover and apply in an ad-hoc manner
often (and unsurprisingly) lead to inadequate and badly designed solutions.
The most applied development technique among students is probably the “first
solution that comes to mind” technique. Many of our students are so happy
to find any solution at all that it does not occur to them to investigate alter-
natives. Thus, a systematic process should not only help those students who
have fundamental problems arriving at any solution at all but should improve
the quality of solutions of all students.

Another problem with hiding the development process is the misleading im-
pressions students develop about the nature of software development, which
can lead to a discouraging experience. When going through a rather normal
activity of struggling with their implementation, chasing bugs, getting stuck,
and tearing their hair out before finishing an assignment, they often think that
they are inadequate programmers because they find software development dif-
ficult. It would help them to know that most developers as a matter of course
go through exactly the same experience.

The problem with teaching a formal process from the start in an introduc-
tory course is the overhead in time and complexity this imposes on the course.
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Fig. 1. Top-down programming.

Most software processes described in the literature have been developed for
professional software engineers working on large systems in teams. Lately, ag-
ile processes have become more popular, which are described as ”lightweight”—
they remove some of the overhead associated with more traditional processes.
However, they are still not easy to follow for new students. An even simpler
process is needed.

Stepwise Improvement is a model of program development that unifies
elements of Stepwise Refinement and agile methods. It provides a concep-
tual framework which can be used to derive a simple, semiformal program-
ming process. This process, named STREAM, is simple enough to be taught
to beginners. It provides clear guidance through development steps while its
overhead is kept low enough to be integrated into many introductory courses.

Stepwise Improvement itself is an instance of an approach to programming
which we call Growing Islands of Functionality.

In this article, we will first briefly introduce the ideas of Growing Islands
of Functionality and Stepwise Improvement. We will then present the main
elements of the STREAM process. We present this process at a sufficient level
of detail for it to be used directly in teaching situations by interested readers.

We do not mean to suggest that the introduction of a semiformal process for
beginners will somehow remove all problems that students have in developing
software. Providing a process, even one that is lightweight and reasonably
precise, will still leave plenty of grey areas that students have to struggle with.
Some decisions to be made will still be difficult. Some students will still have
problems, but we believe that teaching a process can help with some problems
that students face and result in some meaningful improvement.

2. GROWING ISLANDS OF FUNCTIONALITY

In the 1970s and 1980s, Structured Programming (a.k.a. Stepwise Refinement

and Top-Down Development) was the dominant development paradigm. In this
model, the development of a computer program starts at the highest level of
abstraction, which is repeatedly refined until its level of detail reaches that of
an available machine for execution (see Figure 1).

This idea, while compelling at a theoretical level, does not usually work very
well in practice for nontrivial systems [Caspersen 2007, p. 90-91]. Experience
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Fig. 2. Bottom-up programming.

Fig. 3. Islands of functionality.

over time has shown that it presents a useful way to reason about the structure
of a program, but is problematic as a development process in practice, since
it requires the developer to have the full (abstract) solution in mind before
commencing the implementation.

The widespread acceptance of object-oriented programming in the early
1990s saw increased prominence of the idea of Bottom-Up Development (see
Figure 2).

In this model, lower level components are developed first, with higher-level
functionality slowly being built on top of the low-level modules. The concrete
machine is slowly built up toward the required functionality.

While the top-down development process results in partial programs during
the development that do not compile, the bottom-up process produces programs
that compile, but do not (yet) provide required functionality.

The model of Growing Islands of Functionality is based on an approach that
initially implements small subsets of functionality. This functionality is im-
plemented completely (from the user interface down to the available machine),
but it can be very thin (see Figure 3). The overall available functionality is
then gradually increased by growing the available islands of implementation.

Systems developed according to this model reach compilable and functional
stages early and often. Most agile methodologies are compatible with this
model.

The model of Growing Islands of Functionality and the notion of Stepwise
Improvement are inspired by a qualitative study of the programming practice
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Fig. 4. Stepwise refinement: programming as a one-dimensional activity.

Fig. 5. Stepwise improvement: programming as a three-dimensional activity.

of experts [Caspersen 2007, p. 81-85] as well as recent developments in best-
practice in modern software development.

Computing is a vocational discipline, which means that a large group of
professionals are developing and expanding the practices of the discipline in
parallel with academia. Examples of recent major contributions to the pro-
gramming practices primarily offered by people outside academia are design
patterns and frameworks, extreme programming, refactoring, agile develop-
ment, and test-driven development [Beck 2000, 2003; Cockburn 2002; Fowler
1999; Gamma et al. 1995; Martin 2003]. Further references to this are pre-
sented in Section 8 on related and future work.

3. STEPWISE IMPROVEMENT

In traditional stepwise refinement [Dijkstra 1969; Wirth 1971; Back 1978;
Morgan 1990; Back 1998], programming is regarded as the one-dimensional
activity of refining abstract programs (i.e., programs containing nonexecutable
specifications) to concrete programs (i.e., executable code) through a series of
behavior-preserving program transformations. The fundamental assumption
of traditional stepwise refinement is that the complete specification, the re-
quirements, is known and addressed from the outset. Algorithmically, stepwise
refinement can be characterized as shown in Figure 4 (req is the requirements,
impl the implementation, and abstract means “not executable”):

Typically, stepwise refinement is described as a strict top-down process of
programming.

Programming by Stepwise Improvement [Caspersen 2007], on the other
hand, is characterized as an explorative activity of discovery and invention
that takes place in the three-dimensional space of extension, refinement, and
restructuring. Extension is the activity of extending the specification to cover
more (use-) cases; refinement is the activity of refining abstract code to exe-
cutable code to meet the current specification; and restructure is the activity
of improving nonfunctional aspects of a solution without altering its observable
behavior, such as design improvements through refactoring, efficiency optimi-
sation, or portability improvements. Algorithmically, stepwise improvement
can be characterized as shown in Figure 5 (spec is the current specification
that the implementation is supposed to meet):
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Fig. 6. Stepwise improvement: moving through three-dimensional space.

Stepwise Improvement captures the Islands of Functionality model. It can
be illustrated as a movement graph in a three-dimensional space. Figure 6
illustrates a development scenario consisting of five activities that in order are
refine, extend, refine, restructure, and refine.

Different software development methodologies put different emphasis on
the order of the activities described in Stepwise Improvement. Waterfall meth-
ods are characterized by a strict separation of the activities (extension first,
refinement and restructure later) whereas agile methods allow a much more
fine-grained interleaving of the activities.

The traditional approach to programming education is to invite the
students for a random walk in the 3D space. Students are shown a few fin-
ished programs and told to solve programming problems on their own. Our
approach to programming education offers an alternative to random walks.
Instead, we suggest guided tours. By providing guidance and scaffolding1 with
respect to all dimensions involved, we can ensure that students exercise the
important aspects of programming while keeping the cognitive load within the
bounds where learning outcome is optimized. Our primary means of providing
guidance with respect to extension (incremental development) is through the
structure of the teaching material (textbook, exercises and assignments, and
videos) and an apprentice-based teaching approach. Guidance with respect to
refinement is provided through a carefully designed novice’s process of object-
oriented programming. The process, which we call STREAM, is described in
the next section.

1Scaffolding is a term from cognitive apprenticeship describing support provided by the master to
apprentices in order to carry out some given task: “this can range from doing almost the entire
task for them to giving them occasional hints on what to do next” [Collins 1991, p. 24].
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4. STREAM: A SYSTEMATIC PROCESS FOR NOVICES

In this section, we describe, in a general way, some simple steps that can
be followed to implement classes whose intended behavior is essentially
understood.

This section is kept brief and is intended as an initial overview—we will
discuss the techniques in more detail using an example in the following section.

Our techniques do not address the analysis phase or the finding of the
classes from the problem domain. This may be achieved by using the noun/verb
method or other simple methodologies. More likely, in very early student exer-
cises, the teacher or the textbook will provide the class structure.

The name STREAM is an acronym for the six steps that make up this
process: Stubs, Tests, Representation, Evaluation, Attributes, and Methods.

4.1 Step 1: Stubs (Create a Skeleton Class with Method Stubs)

We assume that the classes and their observable (public) functionality are un-
derstood and given, for example in the form of a Java interface and carefully
written Javadoc comments.

The first step towards implementation is to create an implementation class
that implements this interface (or, if the interface is not formally given, pro-
vides methods with the intended signatures). The method implementations at
this stage are stubs (i.e., minimal method bodies).

For methods that do not return values, the method body is empty. For
methods with return values, the method body consists of a single return state-
ment. The value returned is a default value (zero for numbers, null for object
types, etc.).

Repeat this for every class in the project. The resulting project, which com-
piles but does noting when executed, is called a walking skeleton.

4.2 Step 2: Tests (Ensure that Tests Are Available)

Once method stubs have been defined, test cases can be written for every
method. This is commonly done using JUnit [JUnit 2009]. Several educational
tools support JUnit testing (e.g., BlueJ and Dr. Java [Kölling et al. 2003;
Dr. Java ]), and in environments that support recording of interactive testing,
such as BlueJ [Kölling 2009], the existence of stubs enables the test interaction
to be recorded.

Initially, most tests will fail. Details about how these tests should be devel-
oped are beyond the scope of this article and have been discussed elsewhere
[Beck 2003; Hunt and Thomas 2003]. In early teaching examples, the tests
may be provided by the teacher.

4.3 Step 3: Representations (Consider Alternative Representations)

The next steps aim at deciding on an implementation representation for the
objects to be defined. The representation is defined by the instance fields of
the class.
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Table I. Representation Evaluation Matrix (Effort)

R1: a short description of the first representation alternative here

R2: a short description of the second representation alternative here

IMPL.EFFORT R1 R2

method1() Challenging Trivial

method2() Trivial Hard

method3() Easy Hard

For every class, alternative representations must be considered. These can
be as many as a student can think of, but must be at least two. The alternative
representations should be briefly described in writing.

We label our candidate representations R1 to Rn.

4.4 Step 4: Evaluation (Evaluate the Alternative Representations)

Next, we evaluate each representation with respect to difficulty of implemen-
tation. To do this, we create a Representation Evaluation Matrix (REM). A
REM is a table with one column for each candidate representation, and one
row for each method in our class to be implemented (see Table I). Above the
table is the short description of each alternative.

We use this matrix to compare each method that must be implemented
for each possible object representation. The comparison criteria may vary—
leading to different tables—but is initially always “implementation effort.”
Table I shows an example of an Effort REM. In this table, we compare the
estimated effort it takes to implement each method using a particular object
representation. As values, we use a small ordered set of effort qualifiers. They
are Trivial, Easy, Average, Challenging, and Hard (the “TEACH scale”).

In later exercises, different REMs may be used for other criteria that are
explicitly mentioned in the task specification. For example, if runtime perfor-
mance is an explicitly stated goal, a Performance REM may be used.

It is crucial not to judge representations on imaginary requirements. Espe-
cially, performance consideration should not play a role in early exercises, and
it should be made clear that performance is entirely irrelevant for judgement
of the Effort REM. We recommend focusing on Effort REMs in early exercises.

It is also worth noting that the emphasis on minimizing implementation
effort does not at all mean that we intend to encourage “quick-and-dirty” im-
plementations, and thus are prepared to compromise implementation quality.
On the contrary! Usually, a simpler implementation (one that requires less
effort to understand and implement) will include fewer bugs, and therefore be
of higher quality. This focus merely intends to avoid premature optimization
efforts, and represents a straightforward application of Dijkstra’s principle of
Separation of Concerns.

Initially the instructor can supply the representation alternatives and the
REM, but gradually the students should be responsible for finding representa-
tion alternatives and filling in the REM. (This is a good group exercise.)

Once the Effort REM is complete, we choose the representation that is
judged to have the simplest overall implementation.
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4.5 Step 5: Attributes (Define Instance Fields)

When we have settled on one particular representation, we can refine our im-
plementation class.

We now define the fields needed to represent the object. (The field defini-
tions need not be complete; further fields may be added later to support method
implementations. However, many important fields are derived from the imple-
mentation representation.) The field definitions may include their role (in the
form of a comment) and possible constraints on their values (also in comment
form).

At this stage, we also provide appropriate initialisations for the fields, either
in the form of default values or by using client-supplied values. This includes
at least partial implementation of the class’s constructor.

4.6 Step 6: Methods (Implement the Methods)

Step 6 is actually more than a single step: it has the form of a nested loop. The
definition is:

while there is an unfinished method:

Pick an unfinished method;

Implement the method

The “Implement the method” step itself contains a loop:

while not done:

improve the method;

test

In the latter loop, “improve” means one of three things: Extend (the specifi-
cation), refine (the implementation), or restructure (the implementation).

The order in which a student chooses the methods is essentially arbitrary.
Our recommendation for students who are not entirely confident is to choose
the method that, according to the Effort REM, is easiest to implement first.

It is easy to see that this completes the implementation. If a student suc-
cessfully completes this step, the class is finished.

All the magic now lies in the “Implement the method” steps. This is still a
large task, and needs further advice to break it down into smaller steps.

4.7 Method Implementation Rules

Implementing a method is potentially a large and nontrivial task. We aim to
provide a process that breaks this task into smaller steps as well. This time
we cannot give a single recipe since details of the method may vary widely.
Instead, we give a set of rules that can be applied in certain cases.

Some methods, of course, consist of only a few lines of code and may be easy
to write. Our rules aim at breaking all methods down into smaller chunks
until they approach the complexity of those easy-to-write methods. This is es-
sentially a small variation of stepwise refinement [Dijkstra 1969; Wirth 1971].
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At the heart of this technique is the Mañana Principle. The Mañana
Principle says:

When – during implementation of a method – you wish you had a

certain support method, write your code as if you had it. Implement

it later.

Thus, the Mañana Principle encourages separation of concerns and the use
of many small methods. We discuss an example below.

To get beginners used to the Mañana Principle, there are some more specific
forms of this rule, each of which state a more concrete situation in which this
principle should be used. They are:

Special Case Rule: If you write code to treat a special case in your algo-
rithm, treat the special case in a separate method.

Nested Loop Rule: If you have a nested loop, move the inner loop into a
separate method.

Code Duplication Rule: If you write the same code segment twice, move
the segment into a separate method.

Hard Problem Rule: If you need the answer to a problem that you cannot
immediately solve, make it a separate method.

Heavy Functionality Rule: If a sequence of statements or an expression
becomes long or complicated, move some of it into a separate method.

The special methods created as part of these rules are usually private meth-
ods, unless they are created in different classes—we discuss this further below.

It is important to remind students that these separate methods do not need
to be implemented straight away. The calling method can be written as if
the method existed. Following this, a stub for the Mañana method should be
created. (If the programming environment had specific tool support for the
Mañana principle, this could be automated by the IDE.)

The specific rules are initially easier to apply, because they provide concrete
hints to times when they should be applied. They are, however, just instances
of the Mañana Principle, and, if applied regularly, develop a coding habit that
encourages the understanding and application of the principle in general.

This principle—and the specific rules—may sound abstract or complicated
when presented in this theoretical form, but they are quite easy to understand
when presented in the context of an example. In the next section, we discuss
the development of a class defining objects for dates (day, month, and year) to
illustrate these techniques in practice.

5. A FIRST EXAMPLE: DATE

We demonstrate the techniques discussed above in the context of a simple
programming problem: the implementation of a class representing a date.

5.1 Specification of Date

Here, we give the specification of the problem as a Java interface (see
Figure 7). It could easily be presented more informally; the introduction of
interfaces is not a requirement for this process.
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Fig. 7. Specification of date.

Fig. 8. Date class with method stubs.

5.2 Creating Method Stubs

The first step is to create a class for the implementation that contains method
stubs. The resulting class is presented in Figure 8. (Note that we do not for-
mally implement the interface given above to demonstrate that the use of Java
interfaces is not a requirement.)

If the specification was provided in the form of a Java interface, this process
is essentially mechanical and could be automated by a development environ-
ment. For students in early stages of learning, however, it might help to write
this class skeleton by hand. The important thing is that simple rules can be
given to guide the creation of this class.

5.3 Test Cases

The next step is to ensure that appropriate test cases exist.
Our techniques do not necessarily prescribe a strict test-first approach, in

which students create tests for all methods themselves. A viable alternative

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 4, Pub. date: March 2009.



STREAM: A First Programming Process · 4: 13

Table II. Estimate of Required Effort to Implement Date

R1: Use three integers for date: day: int; month: int; year: int

R2: Use one integer: number of days since 1 Jan 0001

IMPL. EFFORT R1 R2

setToNextDate() Challenging Trivial

toString() Trivial Hard

for early programming tasks is to use teacher-provided tests. The teacher may
provide a test suite for the expected methods as part of the specification of the
task.

The important step here is to ensure that tests exist, can be compiled, and
can be executed (but do not need to pass).

In this article, we do not present the specific tests, since the actual test
development is not the main focus of this article. There is, however, nothing
special about these tests, and any standard test-first strategy can be applied.

5.4 Alternative Representations for Date

The next step in our technique is to consider alternative representations (at
least two).

An obvious representation for this problem is to use three integer variables
day, month, and year; we will denote this alternative R1. An alternative repre-
sentation is to store the number of days from a certain start date, say 0001-01-
01; we denote this alternative R2. (In in-class discussions, students typically
come up with more creative alternatives, for example, representing the month
or the complete date as a string.)

5.5 Evaluation of Alternative Representations for Date

R1 simplifies the implementation of toString whereas the implementation of
setToNextDate will be more challenging, since it must deal with the special
case of the last day of a month.

R2 leads to a simple implementation of setToNextDate (a simple increment),
whereas implementing toString will be hard.

The result of this analysis is the Effort REM for Date (see Table II).
We choose to use R1 for our class, since it seems to be the representation

that allows for the quickest implementation of Date.

5.6 Attributes

Choosing R1 as the basis for our implementation determines the instance
fields. The definition of class Date1 after adding the fields is presented in
Figure 9. The method stubs are unchanged. Comments from previous code
segments are left out for brevity; only comments for new methods are included
from here on.

5.7 Implementing the Methods of Date

The next step is to implement and test the methods. Some methods may be
easy to implement in one step; toString in our example falls into this category.
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Fig. 9. Adding instance fields to Date.

Fig. 10. Naı̈ve implementation of Date.

Other methods may require more work. In this case, partial solutions may
be used for initial versions. Figure 10 shows our class after implementing
function toString and a first, naı̈ve version of setToNextDate.

This partial solution is indeed a very naı̈ve implementation. Nevertheless,
we might claim that the setToNextDate method is 97% correct since it works
correctly in 353 out of 365 cases! In some sense, we are very close to a full
solution, and if the class is part of a larger system, it can now be used (as a
test stub) by other parts of the system.
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Fig. 11. Partial implementation of Date.

Incrementing the field day might violate the representation invariant, and
in this special case the above implementation of setToNextDate fails to work
properly. We have to check for this special case and handle it appropriately.
For simplicity, we temporarily assume 30 days in every month.

In the special case where day after being incremented exceeds the num-
ber of days in the month, we must set day to 1 and increment field month.
Following our Special Case rule from Section 2, we deal with this special case
by introducing a new private method, checkDayOverflow. Figure 11 shows the
resulting code.

Now, incrementing the variable month might also violate the representation
invariant; this special case is handled similarly by introducing a new private
method checkMonthOverflow, which is called after incrementing month. Ex-
cept for the assumption of 30 days in every month, the method is now finished.

To finish our implementation, we have to replace the literal 30 with the
correct number of days in every month. Here, the Mañana Principle comes
in again, this time in the form of the Hard Problem rule: If we need some
information that we do not have, we pretend we have a method that gives us
the answer. Thus, we just assume a method daysInMonth that does exactly
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Fig. 12. Final version of checkDayOverflow().

what we need. We do not worry about the implementation of this method now;
it is postponed until later.

The new version of the checkDayOverflow method is shown in Figure 12.
This method will not compile until we provide a method stub for daysIn-

Month. The stub, in this case, should not return a zero, but should return
30—the approximation we have used previously.

The most important thing at this stage is that we have explicitly separated
two independent problems: the correct use of this method and the implemen-
tation of the method. Separating these problems makes each half easier to
solve.

Since our checkDayOverflow method is now complete, we might now pro-
ceed to implement checkMonthOverflow. In the general case, implementing
one method may generate several other methods via the Mañana Principle,
which can then be gradually implemented.

For our example, implementing the daysInMonth method is the last thing
that is missing. To calculate the number of days in the current month, we
declare a local array variable in this method to hold the number of days per
month (with 28 days for February), and the method returns the number of
days in the current month by looking up the number in the array. This brings
us almost to the finishing line: the implementation now works, except for the
special case where the current year is a leap year (“99.93% correctness”).

As previously, we treat a special case by introducing a new private method
to deal with it. In this case, we introduce a boolean method isLeapYear that
returns true if the current year is a leap year. The implementation of this
method is a straightforward implementation of the leap year rule: a year is a
leap year if the year is divisible by four but not by 100 or if it is divisible by
400.

The hardest part of this calculation is the check whether a number can be
divided by another so, again, following the Mañana Principle, we use a method
divides that gives us the result, and then we implement that method later.

The complete implementation of our Date class, including these methods, is
shown in Figure 13.

5.8 Discussion of Date Implementation

The above development of a class implementing Date demonstrates the appli-
cation of the techniques set out in Section 4. The most relevant observation is
that every step is broken into small, manageable chunks.
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Fig. 13. Complete implementation of Date.

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 4, Pub. date: March 2009.



4: 18 · M. E. Caspersen and M. Kölling

Some of the steps in our technique are fairly easy to learn (creating method
stubs, defining the instance fields after deciding on a representation); others
require much practice (creating tests, implementing methods).

The detailed discussion of the method implementation has shown that, at
least in this case, the harder tasks can also be broken down into small parts.
This technique can be applied to any implementation of a method.

6. A SECOND EXAMPLE: A SIMULATION

Our second example is the core of a simulation, in which actors move in a two-
dimensional bounded world. The world is divided into a limited set of discrete
locations, so that the position of the actors in the world can be specified as a
coordinate pair in a grid (row, column).

For the purpose of this discussion, we examine a fairly simple version of such
a simulation. The principles discussed here are, however, generally applicable.

We examine two classes that specify this application: a class Actor that rep-
resents the actors that live and act within the simulated world, and a class
Simulator, the main class that holds and controls the collection of actors. We
discuss this example to illustrate some additional points (while mostly skip-
ping those parts that we have already covered above).

6.1 Specification of Simulator

Again, we give the specifications of Simulator and Actor in the form of Java
interfaces (see Figure 14). Alternatively, they may be provided as a UML dia-
gram or informally as a list of required methods.

6.2 Creating Method Stubs and Test Cases

For this example, we skip the discussion of method stub creation and test
case definitions, since the process is essentially the same as in the first ex-
ample. Instead, we jump straight ahead to the discussion of representation
alternatives.

6.3 Alternative Representations for Simulator

As always, before embarking on implementing a specification, alternative rep-
resentations must be considered. This must be done for each class. In this
discussion, we consider only the implementation of class Simulator and ignore
class Actor.

The main task of the Simulator class is to hold a collection of all actors, and
to manipulate and process this collection. One representation makes use of an
unordered list of actors. Actors store information about their location in the
world in their instance data; we will denote this representation R1.

An alternative representation uses a grid (a two-dimensional array). Actors
are stored in this grid according to their logical position, they do not need to
store their position in the actor object itself. We will denote this representation
R2.
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Fig. 14. Specification of Simulator and Actor.

6.4 Evaluation of Alternative Representations for Simulator

For both R1 and R2, implementation of the add method is trivial (adding an
element to the end of the list for R1, or storing an actor object at a given grid
position in R2).

R2 simplifies the programming task of getActorAt, since only a single access
to the grid at a known location is required, whereas a linear search of the actor
list is required with R1. (This will also effect efficiency, with the time complex-
ity of R1 being O(n), where n denotes the number of actors in the simulation,
while R2 is O(1). However, our concern here is exclusively implementation dif-
ficulty; efficiency should not greatly influence our discussion at this stage.) We
might assign an REM value of Trivial to R2, while R1 is slightly more work,
but still Easy.

Implementation of the simulator’s act method (invoking act on all actors)
requires a simple sweep of all actors in R1. Again, we classify a simple iterator
loop as Easy. Using R2, this method requires a traversal of the grid, which
includes a nested loop. Since this is harder than a single sweep, we might
classify this as Average.

The last method, display, is intended to print a representation of the current
world to the screen. For the grid variant, R2, this is similar to the previous
method—a nested loop—and therefore classified as Average again. For R1, the
task is considerable harder, since the list has no particular order. We consider
this to be Hard. The result of the analysis is summarized in the Effort REM
for class Simulator (see Table III).
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Table III. Estimate of Required Effort to Implement Class Simulator

R1: Use unordered list to store actors

R2: Use 2-dimensional array to hold actors

IMPL. EFFORT R1 R2

add() Trivial Trivial

getActor() Easy Trivial

act() Easy Average

display() Hard Average

Fig. 15. Partial implementation of Simulator.

We choose R2 because it allows for the simplest implementation of
Simulator.

6.5 Attributes

We are now ready to add the instance fields and constructor to our stub version
of Simulator (see Figure 15). Again, the work here is fairly straightforward:

ACM Transactions on Computing Education, Vol. 9, No. 1, Article 4, Pub. date: March 2009.



STREAM: A First Programming Process · 4: 21

Fig. 16. Implementation of add().

Fig. 17. Implementation of getActor().

we create a version of our chosen representation in Java (field definition and
setup in the constructor – this is a largely mechanical task).

This is indeed a very small step toward a complete implementation of Sim-
ulator, but it compiles and maybe even makes a few test cases run. For novices
(and indeed for others), making small successful steps toward the goal is a
rewarding and satisfying way of developing software.

6.6 Implementing the Methods of Simulator

Having decided upon a representation of the simulator, we have decoupled the
four subtasks of implementing the methods of the Simulator interface. This
is an instance of the principle separation of concerns—Dijkstra’s mantra and
primary instrument of thought [Dijkstra 1976, p. 211].

The add method can be implemented simply by storing the new actor at the
specified location in the grid (assuming replacement of possibly existing actors
is the intended behaviour). This gives us the implementation for the first of
our four methods (see Figure 16).

The getActorAt method has a similarly simple implementation. All that is
required is a direct access at the specified world location, and a return of that
value found at that position (see Figure 17).

The act and display methods are a little more interesting—they both in-
volve traversing the whole grid. The implementation for both methods is quite
similar—we discuss the display method here, and leave the act method as an
exercise to the reader.

Implementing display involves traversing the grid structure and display-
ing the contents of every grid location. For this implementation, we assume
our specification requires that the output is in the form of ASCII characters
arranged in lines and columns, with a dot (“.”) for an empty location and the
letter “A” for an actor. A first step towards implementing display is shown in
Figure 18.

Here, we iterate over the rows of the grid, and note the remaining work to
be done informally.

It is obvious that displaying the actors in each row involves an itera-
tion within that row, and consequently a nested loop. One of our rules for
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Fig. 18. Partial implementation of display().

Fig. 19. Specification of displayRow() and newLine().

Fig. 20. Implementation of display().

method implementation is the Nested Loop rule: use a new private method
to unfold nested loops. Instead of proceeding with development of the inner
loop, we define a new private method for displaying a single row. We name
the method displayRow. Following the Mañana Principle, we also define a
method for the second task, starting a new line onscreen, named newLine (see
Figure 19). Note that the Mañana Principle can be used independently of
method complexity: the newLine method will be very simple—we can see that
already. However, following this principle still has value, leading to readable,
decoupled code that lends itself to modification more easily (in this case, for
example, output to a different medium).

With methods displayRow and newLine to serve us, we can now finish the
loop body of method display (see Figure 20).

Now we need to implement the new private methods displayRow and new-

Line. The newLine method is easy to do (see Figure 21).
The displayRow method involves two aspects: an iteration over the actors

in the given row, and the display of each of those actors on screen. To separate
those two aspects, we use the Mañana Principle again, and assume we have
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Fig. 21. Implementation of newLine().

Fig. 22. Implementation of displayRow().

Fig. 23. Implementation of displayActor().

a displayActor method. The displayRow method then becomes quite simple to
write (see Figure 22).

The last thing to do is to create the displayActor method, which is shown in
Figure 23. Since this is our last method, we do not need to create a stub, but
can proceed straight to the implementation.

This completes the development of an implementation of Simulator based
on R2. We have seen that by carefully choosing the simpler representation
overall, and repeatedly applying the Mañana Principle, each method becomes
reasonably easy to write and understand.

6.7 Discussion of the Development of Simulator

The discussion of the simulation example has shown the application of the
Nested Loop rule. When consistently applying this rule, the code remains con-
siderably simpler (and easier to understand for beginners) than an alternative
using a nested loop.

In this example, all the methods introduced through our rules were private
methods in class Simulator. In the general case, this does not always have
to be the case. If, for instance, we were dealing with a number of different
actors which are to be displayed differently depending on their type or state,
we might introduce a getDisplayChar method in the Actor class as an applica-
tion of the Hard Problem rule while implementing the simulator’s displayActor

method.
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In early exercises, we usually start with problems where the methods
that naturally develop are in the same class. This can then—a bit later—be
extended and linked to a discussion of responsibility-driven design, and the
question which class should provide a new, required method.

7. A PRELIMINARY EVALUATION OF TEACHING STREAM

In this section we report on a small, preliminary study evaluating the learning
outcomes of teaching STREAM.

The STREAM process has been taught in the introductory programming
courses at the authors’ home universities (Aarhus University and the Univer-
sity of Kent) for the past three years and the results are very encouraging.

In order to conduct a preliminary evaluation of process competence, we set
up an experiment just prior to the final examination at Aarhus University two
years ago. We designed a programming task similar to our final examination.
No guidance was provided with respect to the overall programming process.
The task description consisted of a class model and functional specifications
of methods in the model, and students were told to implement the specified
model.

We first designed and carried out an evaluation based on “think aloud.” We
asked the students to think aloud while solving the given task. For each stu-
dent, the screen and the student’s voice were recorded. This experiment largely
failed because the students often did not think aloud; they were preoccupied
with the programming task and did not have mental resources to also speak
about what they were thinking.

After this, we designed and carried out an evaluation based on observations.
Thirty-eight students took part in the evaluation (they were representative
of the whole population of approximately 400 students). Thirteen teaching
assistants (TAs) helped monitor the students while they solved the program-
ming assignment. The experiment lasted one hour.

Our goal was to evaluate the students’ programming process when no
process guidance is provided in the phrasing of the assignment. A group of
TAs examined the students and took notes of their behaviour; the student/TA
ratio was 3/1.

The TAs were instructed to take notes of the students’ programming process.
A form was designed and used to record the notes. TAs were instructed to
record student activities, in particular noting whenever a student violated the
‘standard process’ that had been taught in the course.

The form consisted of columns for recording the time from the start of the
task and the nature of observed activity. Figure 24 shows the form struc-
ture and some typical entries. A mark in a column indicates activity in that
category.

The completed forms were analysed to produce a condensed characterization
of each student’s programming process with special focus on deviations from
the prescribed process.

The somewhat surprising conclusion of the experiment was that all 38
students followed the process they had been taught even though no process
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Fig. 24. Form for note-taking during experiment.

guidance was provided. The students developed one part of the program at a
time, separating the different concerns of the task. There was some variation
in the frequency of students swapping between writing test code and writing
production code and in writing the test code before or after the production code.
STREAM suggests writing test code before the production code, but almost all
the students wrote the production code first.

Immediately after the experiment, we conducted informal interviews with
groups of students. When asked about their testing behavior (less frequent
than prescribed and after the functionality to be tested was implemented), they
responded that they did not feel the need for the test in order to implement the
requested methods. They wrote the tests because they had to, not because
they needed it to understand the task or to ensure that the production code
worked. It is hard to blame students for this since their behavior mirrors
expert behavior [Caspersen 2007, Section 6.3.2].

We refrain from drawing overly strong conclusions from this experiment,
since it was not a strictly formal study with well-defined research questions.
However, the observations are encouraging and suggest that students under
the right conditions can learn the process we teach—at least when they are
exposed to familiar tasks. Again, this reflects expert behavior. Winslow puts it
this way: “Experts, when given a task in a familiar area, work forward from the
givens and develop subgoals in a hierarchical manner, but given an unfamiliar
problem, fall back on general (opportunistic) problem solving” [Winslow 1996,
p. 18].

This preliminary study shows that our teaching of STREAM had a positive
effect on the development of our students’ process competences. To draw more
general conclusions, further and more thorough investigations are needed.
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8. RELATED AND FUTURE WORK

Numerous software engineering topics relate to our efforts of identifying a sys-
tematic programming process for novices. We will discuss these topics in turn.

Stepwise refinement. 40 years ago, Dijkstra and Wirth identified the need for
a constructive and systematic approach to programming—not only for novices,
but for the community as a whole [Dijkstra 1968, 1969; Wirth 1971, 1973]. Our
work builds on the work of Wirth and Dijkstra but concentrates on a special-
ized process for novices learning object-oriented programming.

Programming methodology. In the early seventies Dijkstra formalized his
ideas about structured programming and developed a methodology for system-
atic construction of programs using functional specifications (pre- and post-
conditions) and loop invariants to drive the development process [Dijkstra
1976]. In continuation of Dijkstra’s seminal work, Back developed a refine-
ment calculus [Back 1978, 1998] while Gries and others produced text books
based on the methodology (e.g., Gries [1981]; Cohen [1990]; Morgan [1990]).
Our approach differs from this work by being a formally-based but informally-
practiced approach to systematic program development.

Responsibility-driven design. The Mañana Principle is related to respons-
ibility-driven design [Wirfs-Brock and McKean 2003]. In this article, we ap-
ply the Mañana Principle only for functional decomposition, but even here it
reveals its relationship to responsibility-driven design (the nested loop rule
factors a part of the program to a separate method with the responsibility of
implementing the nested loop functionality).

Refactoring. During a programming session, it is inevitable that decisions
made earlier in the session need to be altered at a later stage. Realizing and
learning that this is the rule rather than the exception helps novice program-
mers come to terms with the fact that programming is not a linear process.
This is refactoring-in-the-small [Fowler 1999]. An interesting aspect here is
programming environment support: in a similar manner in which refactoring
is now commonly supported in development environments, the Mañana Prin-
ciple could easily be supported by automating the creation of method stubs
whenever a new private method is introduced.

XP and agile software development. Extreme programming and agile soft-
ware development covers many aspects of software engineering [Beck 2000;
Martin 2003]; two of the basic principles are: “Take small steps” and “Always
do the simplest thing that will work.” We use these principles as guidelines for
choosing among several possible implementations of an abstraction (a method
specification or an interface) and for the process of implementing it. They are
wise guidelines for novices as well as experts. Extreme programming typically
manifests itself in the classroom as pair programming [Williams and Kessler
2001; Bergin et al. 2004; Hanks 2008]. Agile software development in edu-
cation is covered by a special issue of Computer Science Education [Williams
and Tomayko 2002]; practical software engineering education was the topic for
another special issue of the same journal in 2001 [Saiedian 2001].

Test-driven development. The strategy of test-driven development [Beck
2003; Hunt and Thomas 2003] relates closely to Step 2 in our process:
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Create tests. Test-driven development is gaining increased recognition, and it
is beneficial to apply this strategy with novices for several reasons (e.g., force
a consumer view as well as producer view of program components). But it is
not necessary to adopt test-driven development in order to apply our process;
instead test cases can be provided as part of the specification of a program-
ming task. Several educators promote rethinking of the introductory program-
ming course in terms of test-driven programming [Edwards 2004; Jones 2004;
Janzen and Saiedian 2006].

In this article, we have concentrated on a part of the process where decompo-
sition generates support methods. This part is not exclusively object-oriented
and is equally applicable to functional and procedural languages, even though
we have presented it in the context of an object-oriented language. Future
work includes extending the set of rules that unfolds the Mañana Principle to
cover cases of decomposition that generate not only new methods but also new
classes (or interfaces).

A second direction of future work will focus on investigating and design-
ing tool support for the process in general and in particular for the Mañana
Principle.

An obvious third direction of future work concerns a more thorough evalua-
tion of the learning effects of teaching STREAM. Different methods can be used
for such evaluations, for example, “think aloud,” observation, instrumentation
of the programming environment, and stimulated recall. We particularly wel-
come third-party adoption and evaluation of STREAM.

9. CONCLUSIONS

We have argued that we need to teach novices about the process of software
development in order to enable them to follow organized steps to move toward a
solution to a problem, and that we must treat software development explicitly
as a process that is carried out in stages and small steps, rather than the
writing of a single, monolithic solution.

Furthermore we have briefly presented a model and a conceptual frame-
work of incremental software development called Stepwise Improvement that
characterizes programming development as an explorative activity of discov-
ery and invention taking place in the three-dimensional space of extension,
refinement, and restructuring.

Stepwise Improvement is specialized into an informal but systematic de-
velopment process, STREAM, designed to be applied by beginners. As part
of STREAM we have identified and described principles and systematic pro-
gramming techniques particularly suited for novices learning object-oriented
programming. Through two examples we have demonstrated the application
of STREAM.

STREAM is a carefully down-scaled version of a full and rich software
engineering process. By using it we hope to achieve two things: To help
novice programmers learn faster and better while at the same time laying the
foundation for a more thorough treatment of the various aspects of a software
engineering process.
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We have reported on a small, preliminary study indicating that teaching
STREAM can have a positive effect on the development of the students’ process
competences.
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