
Learning Object-Orientation through ICT-mediated Apprenticeship

Annita Fjuk
InterMedia, University of Oslo /

Telenor R&D, Norway
annita.fjuk@telenor.com

Jens Bennedsen

it university west, Denmark
jbb@it-vest.dk

Ola Berge
InterMedia, University of Oslo /

Telenor R&D, Norway
ola.berge@telenor.com

Michael E. Caspersen

Department of Computer Science,
University of Aarhus, Denmark

mec@daimi.au.dk

Abstract

This paper gives insights into how socio-cultural
theories are applied in a course design directed to-
wards introduction to object-oriented programming.
The particular focus is on the apprenticeship between
learners (apprentice) and more experienced peers (co-
learners and teacher).

1. Introduction

It is widely accepted that activities directed towards
object-oriented programming and modeling require
different ways of thinking and different approaches to
a phenomenon than procedural development activities.
In agreement with this line of thought, there is a long
tradition in discussing the challenges around teaching
and instructional design connected to introductory
courses in programming (SIGCSE; OOPSLA, etc).
We argue, however, that there has been a lack of
explicit foundation in learning theories underlying past
research and course design. The field tends to focus on
the technology rather than on the learning theories, or
didactics of computer science [8]. As a consequence,
the important analytical issue of how programming as
a knowledge domain is created by the individual as
well as what aspects are considered as critical for the
individual’s understanding, are both missing. Many
computer science educators have no formal training in
education [8, 3] or do not have capacity to do research
on this area besides their own research area in
computer science.

This paper is concerned with how socio-cultural
theories about learning can inform design of a model-
based introductory programming course (Introduction

to Obejct-Oriented Programming, IOOP), at Aarhus
University, Denmark. In addition to the particular
model-based philosophy, the characteristics of the tar-
get group have essential impacts on how the learning
theory is incorporated into the course design. The tar-
get group of the course is adult part-time students,
committed to different work organizations, families,
geographical places, etc. Given this situation, the
learning activities need to be provided in a flexible
manner. A conscious combination of new information-
and communication technologies (ICTs) facilitate for
organizing learning activities across individual con-
straints such as technical infrastructure, profession and
experiences as well as preferences with regard to
learning style.

2. Method

The research is based on a case study carried out
during the fall semester of 2003 on IOOP. The unit of
analysis for the case study is the learning activity. This
means that the focus of our analysis is on the constella-
tion of learning resources and what effect each of them
have on the learning activity. We believe that the rela-
tionships between these resources are rather inter-
woven, implying that it is complicated, sometimes
even impossible, to consider which ones that are most
critical with respect to the learners’ understanding of
object-oriented programming.

The data gathering has been carried out by observa-
tion of the online activities and weekend seminars, and
by in-depth interviews with 9 students, the instructor,
and the teaching assistant. Finally, this study is sup-
plemented by a survey carried out among the students
as a part of the course evaluation.

3. Theoretical foundations

To illustrate the importance of using learning theo-
ries in the course design, we will focus on a core set of
concepts that we, first, considered as important for un-
derstanding the particular case of IOOP and, then, for
understanding the role of ICTs herein (e.g., Vygotsky
[15, 16], Leont'ev [12] and Davydov, Zinchenco &
Talyzina [4])).

The core argument for using socio-cultural theories
is the focus on the social and contextual dimension of
knowledge construction and the rich approach of un-
derstanding the inseparable role of artifacts. The
learning theoretical heritage from Vygotsky [15,16] is
that knowledge construction is social by its very
nature, and that intellectual development takes place
on two levels: First it appears on a social level, through
interpersonal interaction. Then it appears on an
individual level through intrapersonal interactions.
These interactions take place through a range of
actions that are directed towards conscious objectives.
The actions have operational aspects, i.e., the way the
action is actually carried out.

The notion of artifact mediation becomes funda-
mental in this respect. Artifacts are incorporated parts
of the actions, they carry with them a particular culture
and history, and – as such – influence how human ac-
tions are operationalised. Because of this nature of arti-
facts, they should not be considered as given, but be
viewed inseparable from every human activity. Many
computer-based artifacts occupy interrelated roles as
both means for thought and reflection and as tools for
operationalising the same action. A text-based commu-
nication system (e.g., chat, e-mail, etc) is one typical
example and the object-oriented language Java is an-
other example. Java can be regarded as an artifact for
operationalising an object-oriented way of thinking
into program code. It may serve as a means for
thinking into this perspective on programming, but at
the same time providing a communication language for
communities of programmers. Moreover, object-
oriented programming languages contain some
fundamental different principles than e.g., procedural
programming languages, implying that a comparable
task will be performed completely different by these
two types of artifacts.

The socio-cultural groundwork has received vastly
differing interpretations, under which knowledge con-
struction (and intrapersonal processes) play different
roles. One widely known interpretation is how the stu-
dent internalizes the scaffolding and guidance of more
capable peers. The pedagogical approaches seek to
provide instructional support for performance of tasks

and are often conceptually tied to the pedagogical in-
tentions of teachers and other caregivers. Without ex-
plicitly referring to this theoretical foundation, we ar-
gue that the CS1 area is dominated by this instructional
view, however, without any clear interpretation of how
learning takes place. For example, Bergin [3] has de-
veloped pedagogical patterns that are generally aimed
at providing – in a uniform way - solutions to common
problems in teaching object-oriented programming.
These patterns serve as artifacts for mediating the
teaching activities, but do not in any strong sense in-
clude basic theoretical principles of learning [2]. The
work of Kölling and colleagues [10] on the BlueJ envi-
ronment is another example. The background for de-
veloping BlueJ is the challenges around teaching
object-oriented programming and, the pedagogy
behind BlueJ is reflected upon such a view by
describing instructional guidelines [10].

Another and “cultural” interpretation (as Lave &
Wenger [11] term it) comes along with Vygotsky’s
distinction between scientific (specialized language
such as e.g., programming languages) and everyday
concepts, and on his argument that a mature concept is
created when the scientific and everyday versions have
merged. Holmboe [8] uses this theoretical foundation
when demonstrating how data modeling incorporates
both of these concepts simultaneously. Holmboe’s
study indicates that students tend to confuse natural
language and formal elements of the programming lan-
guage. The challenge of the individual student,
Holmboe [8] argues, is to use the language to describe
the world in a context-independent and stringent man-
ner so that the computer can understand it.

Recent interpretations of socio-cultural perspectives
take collective and societal perspectives rather thor-
oughly into considerations. The works of Engeström
[7] and Lave & Wenger [11] have significant positions
in this respect. These interpretations extend the study
of learning beyond the context of pedagogical struc-
turing and schooling, and focus on the contradictory
nature of social practice. According to Engeström,
learning is the mastery of expansion from everyday
actions of individual to new activity collectively gener-
ated as a solution to so-called double-bind situations.
The work of Engeström has influenced a variety of
studies within the computer science field.

Lave & Wenger [11] share the focus on social proc-
esses of learning with Engeström, but place more em-
phasis on connecting issues to socio-cultural transfor-
mation with the changing relations between
newcomers and old-timers in the context of a changing
shared practice [11]. With an absence of what we
traditionally know as formal teaching in
apprenticeship, crucial issues are what promote the

learning process, what actions must be focused and
how to structure the social interactions. In the context
of IOOP, one important learning objective is the
processes of programming. This means that it is
regarded as important that the students gain insights
into how programmers develop their solutions from the
initial problems, e.g. how one frequently compile code,
use documentation and test partial solutions. One way
of attaining this goal is to expose the students to how
an expert programmer works. Another is to consider
the student as an active participant in a community of
co-students. Concerning the former, it is close to what
Nielsen & Kvale [13] term a person-centered
approach. The master reflects and thinks aloud of the
particular action, making them visible and as a source
of identification (Ibid.). As such, the apprentice learns
from observing the master (teacher) performing the
actions embedded in the profession (e.g. coding,
testing, etc). From this particular position, the role of
language (oral and written) becomes important.
Furthermore, the master’s comments to the student’s
practice have an important position in the student’s
reflection in action (cf. [18]). Concerning the latter, it
is described as a decentered approach by Nielsen &
Kvale [13]. Knowledge construction is considered as
legitimate peripheral participation, i.e., the attention is
on the student’s inevitably participation in
communities of practitioners where the old-timers
legitimate the skills and knowledge of the individual
newcomer. The student is the apprentice and the
teacher (or more capable peer) is the expert in the
social interactions. Mastery does not reside on the
master, but on the organization of the community (of
which the master is a part) and on the structuring of a
community’s learning resources (ibid.).

The next section is concerned with how the two ap-
proaches is combined in the course design, as well as
what ICTs and learning resources that were selected to
operationalise the actions in the interactional
processes.

4. The design
One important aspect in introductory programming
courses is the role of the programming language. In
IOOP three perspectives are identified [9]: Instructing
the computer, managing the program description, and
conceptual modeling. A central issue pertaining to the
design is the decision to maintain a balanced view on
these three aspects in the course design. The primary
outcome of this choice of balancing are expected to be
that the students: 1) learn a systematic approach to pro-
gramming; 2) obtain a deeper understanding of the
programming process; and 3) focus on general pro-

gramming concepts instead of language constructs in a
particular programming language. The rationale for
this choice is described in more detail in [1].

4.1. The person-centered approach

Apprenticeship learning with respect to the three
above interrelated aspects of learning object-oriented
programming implies a definition of what actions that
are needed to be performed by the teacher and the stu-
dent. This implies not just as in the traditional form
where topics are listed, but also in a broader sense in-
cluding working patterns, traditions and habits. When
the teacher’s role is to legitimate the skills and knowl-
edge of the student, the teacher needs a fairly deep un-
derstanding of the level of skills - otherwise it is very
difficult to legitimate anything.

One central artifact is the weekly assignment. An
assignment is designed as programming exercises, and
is based on the readings and exercises scheduled for
that week. The assignment is a means for thinking and
for understanding the practice of programmers as well
as to engage in the process of creating object-oriented
computer programs. Together with Java, the Blue J
environment is used by the individual to operationalise
these sets of actions. Moreover, the assignment is a
fundamental means for interaction between student and
teacher, and thus for legitimating the student’s actions
towards the problem. As such, the apprenticeship ap-
proach implies a change from viewing the assignments
as control / evaluation mechanisms to a communicative
artifact between the master and the apprentice. The
assignments are therefore not part of the final grade
but used with the communicative purpose and as a way
of structuring the student’s time.

In order to enrich the pedagogical philosophy of the
assignment, a corresponding weekly online meeting is
conducted. The topics treated in these meetings are
based on the individual student’s experiences in
solving the assignment, combined with her/his request
posted in an asynchronous discussion forum
beforehand. This approach denotes a particular mode
of engagement and participant control, at the same
time as the teacher legitimates and shows how
programming / modeling processes associated with the
weekly problem areas can be approached.

The online meetings are mediated by real-time
video streaming of the teacher’s PC screen, where his
use of the various programming and modeling tools are
shown. There is a corresponding audio stream, where
the students can hear how the teacher reason and think
aloud about the problem. In some theories of appren-
ticeship, the use of language is considered crucial in
the master-apprentice relationship. This is pertinent for
the apprentice’s learning while the master is

performing the actions of the craft of programming.
But it is also important in order for the teacher to get a
feeling of the skills and knowledge of the students, and
in particular in situations where the teacher and the
students are geographically separated. In order to
support interactions amongst students and between
student and teacher during the online meetings, a text-
based chat conference in conjunction with the real-
time audio- and video streams are organized.

Another artifact organized to facilitate the students’
knowledge construction while working on the weekly
assignments, is a collection of short demonstrations of
how to approach specific issues. These are made in a
similar manner to the online meetings; there is a video
stream showing how the teacher approaches the prob-
lem together with an audio stream where the teacher
thinks aloud. The difference from the online-meetings
is that these demonstrations are available at any time,
and that there is no opportunity for interaction. The
basic principle, however, is that the teacher legitimates
an approach to solving the problem. Such a demonstra-
tion typically involves modeling and programming in
the Blue J environment, including frequent compila-
tions that sometimes reveal (intentional) syntax errors,
tests of parts of the solution, and consultation of Java
SDK documentation. In this way there is a focus on the
programming process as well as the conceptual under-
standing of object orientation

4.2. The decentered approach

The idea behind the design is to create opportunities
for the students to participate in an actual practice of
programming experts so as they gradually learn
through legitimate peripheral participation. This can be
further operationalised by utilizing the different back-
grounds of the adult students so as they become each
other’s experts and legitimates in the shared learning
community. Theoretically, individual knowledge is
mediated by the apprentices’ shared interests in learn-
ing object-oriented programming and by the ICTs and
other resources s(he) has available.

This important social aspect of learning is taken
into the pedagogical design, and operationalised
through both technological and organizational
elements. On the technological side, the course design
facilitates for collaboration by offering the students
tools for text-based communication. All the students
installed the chat client Yahoo! Messenger, and
registered all the course participants as “friends” –
enabling them to see who of their peer students that are
available for interaction at any given time. Thus, in
addition to acting as a tool for planned collaborative
events, Yahoo! Messenger also gives the students

opportunities for more spontaneous interaction.
Additionally, there is a web-based discussion forum
available for the students. This tool is aimed at
mediating the student’s dialogues with peer-students
where time is not a critical factor.

On the organizational side, there are two important
mechanisms for supporting the social interactions
amongst students. During the course, the students meet
physically three times. One central aspect of these
weekend seminars is to stimulate collaborative activi-
ties while the student works distributed. Experience
from net-based learning points to the importance of
such face-to-face meetings for online collaboration [5].
The other mechanism is that the students are divided
into groups. These groups are put together based on
where the students live, in order to make physical
meetings outside the weekend seminars easier. The
student groups are given tasks during the weekend
seminars, and they are encouraged to work together
during the full length of the course.

5. Concluding remarks

In this paper, we have shown how socio-cultural theo-
ries have informed the design of a course resting on a
model-based philosophy of object-orientation. An es-
sential learning objective within this philosophy is the
programming processes as such. This means that the
individual student should construct knowledge on how
programmers develop their solutions from the initial
problems to the final code. To move toward this learn-
ing goal, the IOOP course design has incorporated a
combination of the so-called person-centered and de-
centered approaches to apprenticeship learning.

By using these socio-culturally inspired
approaches, the design focus is the individual learning
activity rather than instructional techniques and
guidelines. Furthermore, the aim of designs is to
organize for a combination of artifacts that each has
embedded characteristics and conditions for
operationalising the individual actions. As such, the
theory is strong for analyzing what artifact (learning
resources, the instructor’s guides, text book, etc.) that
is important for the individual learning processes of
object-oriented programming. Analysis of the
qualitative interviews (in forthcoming papers) will
hopefully provide insights on this important issue of
the field of learning object-oriented programming.

Our study so far, however, indicates that the
person-centered approach to apprentice learning has
been very successful, while the decentered approach to
apprentice learning is found to be more problematic
when it comes to practice. There are at least three

aspects that make the decentered approach to
apprenticeship problematic for our target group. First,
the students are novices in object-oriented
programming and may as such be too immature to play
a role as experts for co-students. Second, ICT-
mediated collaboration requires a well-orchestrated
interdependence amongst the students (requires
sharing of meaning, certain division of labor, etc.) [6],
and that a certain level of regulation and tutor guidance
are often desired to succeed [5]. Third, and certainly
in line with the second argument: due to the life
situation of many of the students (committed to family
and work besides their study), individual study –
which allows for greater flexibility – was preferred to
collaboration with peer students.

Our preliminary analysis indicates that the aspects
of the course modeled on the person-centered approach
to apprenticeship, were more successful. There are,
however, issues to be addressed in this design of the
online meetings too. In the beginning of the course, the
interactions during the online meetings were mediated
by text chat, enabling the students to ask questions
when they had problems. The outcome of this technical
design was silence! This lead to a change in the use of
the chat application, i.e., much more interaction was
initiated by the teacher where he raised questions etc.
to the students. Further elaboration on this part of the
design is needed.

6. Acknowledgments

This research is conducted as a part of project COOL1
(Comprehensive Object-Oriented Learning), financed
by the Norwegian Council of Research; the develop-
ment of the course was done as a part of the Flexnet2
project funded by it university west. A special thanks
to Sten Ludvigsen for giving valuable comments on
drafts of this paper.

7. References

[1] Bennedsen, J., Caspersen, M. A Model-First Approach to
Teaching Introductory Object-Orientation. Workshop on
Learning and Teaching Object-Orientation – Scandinavian
Perspectives. Oslo, 2003.

[2] Bennedsen, J., Eriksen O. “Applying and Developing
Patterns in Teaching”. In: Procedings of Frontiers in
Education 2003.

[3] Bergin, J. Fourteen pedagogical patterns,
http://csis.pace.edu/~bergin/PedPat1.3.html, 2003

1 http://www.intermedia.uio.no/cool/
2 http://www.it-vest.dk/aktiviteter/index.shtml

[4] Davydov, V. V., Zinchenko, V. P., Talyzina, N. F., The
problem of activity in the works of Leont’ev. Soviet
Psychology, Vol 24, No 4, 31-42, 1983.

[5] Fjuk, A. Computer Support for Distributed Collaborative
Learning. Exploring a Complex Problem Area. Dr. Scient
Thesis, Department of Informatics. Oslo, University of Oslo,
1998.

[6] Fjuk, A. and Ludvigsen, S. “The Complexity of
Distributed Collaborative Learning: Unit of Analysis”. In:
Proceedings of Euro CSCL '01. First European Conference
of Computer-supported Collaborative Learning.
Dillenbourg, P., Eurelings, A. and Hakkarainen, K. (Eds.)
Maastricht, 2001.

[7] Engeström, Y. Learning by Expanding: An Activity-
Theoretical Approach to Developmental Research. Helsinki,
Orienta-Konsultit, 1987.

 [8] Holmboe, C. Language, and the learning of data
modelling. Dr. Scient Thesis, Department of Teacher training
and School development, University of Oslo, Norway, 2003

 [9] Knudsen, J.L., and Madsen, O.L., Teaching Object-
Oriented Programming is more than Teaching Object-
Oriented Programming Languages, DAIMI-PB 251,
Department of Computer Science, University of Aarhus,
Denmark, 1990.

[10] Kölling, M., Quig, B., Patterson, A. and Rosenberg, J.
“The BlueJ System and its Pedagogy”. In Computer Science
Education, Vol.13, No.4, pp. 249-268, 2003.

[11] Lave, J. and Wenger, E. Situated Learning: Legitimate
Peripheral Participation. Cambridge, Cambridge University
Press, 1991.

[12] Leont'ev, A. N. Activity, Consciousness, and
Personality. Englewood Cliffs, Prentice-Hall, 1978

[13] Nielsen, K., Kvale, S. “Current issues of
apprenticeship”. In: Nordisk Pedagogik, Vol 17, pp. 130-
139, 1997.

[14] Schön, D. The Reflective Practitioner: How
Professionals Think in Action. Harper Collins Publishers,
1983.

[15] Vygotsky, L., Mind in Society: The Development of
Higher Psychological Processes. Harvard University Press,
Cambridge, 1978.

[16] Vygotsky, L., Thought and language. (Ed. by Kozulin,
A.). The MIT Press, Cambridge, 1994.

