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Abstract. The skyline of a set of points in the plane is the subset of
maximal points, where a point (x,y) is maximal if no other point (z’,y")
satisfies ' > x and 3’ > y. We consider the problem of preprocessing a
set P of n points into a space efficient static data structure supporting or-
thogonal skyline counting queries, i.e. given a query rectangle R to report
the size of the skyline of P N R. We present a data structure for storing
n points with integer coordinates having query time O(lgn/lglgn) and
space usage O(n) words. The model of computation is a unit cost RAM
with logarithmic word size. We prove that these bounds are the best pos-
sible by presenting a matching lower bound in the cell probe model with
logarithmic word size: Space usage nlgo(l) n implies worst case query
time 2(1gn/lglgn).

1 Introduction

In this paper we consider orthogonal range skyline queries for a set of points in
the plane. A point (z,y) € R? dominates a point (z',%') if and only if 2’ < x
and 3’ < y. For a set of points P, a point p € P is mazimal if no other point
in P dominates p, and the skyline of P, Skyline(P), is the subset of maximal
points in P.

We consider the problem of preprocessing a set P of n points in the plane
with integer coordinates into a data structure to support orthogonal range skyline
counting queries: Given an axis-aligned query rectangle R = [x1,22] X [y1, y2] to
report the size of the skyline of the subset of the points from P contained in R,
i.e. report |Skyline(P N R)|. The main results of this paper are matching upper
and lower bounds for data structures supporting such queries, thus completely
settling the problem. Our model of computation is the standard unit cost RAM
with logarithmic word size.

Previous Work. Orthogonal range searching is one of the most fundamental
and well-studied topics in computational geometry, see e.g. [1] for an extensive
list of previous results. For orthogonal range queries in the plane, with integer
coordinates in [n] x [n] = {0,...,n — 1} x {0,...,n — 1}, the main results are
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the following: For the orthogonal range counting problem, i.e. queries report the
total number of input points inside a query rectangle, optimal O(lgn/lglgn)
query time using O(n) space was achieved in [2]. Optimality was shown in [3],
where it was proved that space nlgo(l) n implies query time 2(lgn/lglgn) for
range counting queries.

For range reporting queries it is known that space nlgo(l) n implies query
time 2(lglgn + k), where k is the number of points reported within the query
range [4]. The best upper bounds known for range reporting are: Optimal space
O(n) and query time O((k + 1)1g® n) [1], and optimal query time O(lglgn + k)
with space O(nlg®n) [5]. In both cases € > 0 is an arbitrarily small constant.

Orthogonal range skyline counting queries were first consider in [6], where
a data structure was presented with space usage O(nlg?n/lglgn) and query
time O(lgg/ ?n/1glgn). This was subsequently improved to O(nlgn) space and
O(lgn) query time [7]. Finally, a data structure achieving an even faster query
time of O(lgn/lglgn) was presented, however the space usage of that solution
was a prohibitive O(nlg®n/lglgn) [8]. Thus to date, no linear space solution
exists with a non-trivial query time. Also, from a lower bound perspective, it
is not known whether the problem is easier or harder than the standard range
counting problem.

For orthogonal skyline reporting queries, the best bound is O(nlgn/lglgn)
space with query time O(lgn/lglgn + k) [6], where k is the size of the reported
skyline. Note that an £2(lglgn) search term is needed for skyline range reporting
since the 2(1glgn) lower bound for standard range reporting was proved even
for the case of determining whether the query rectangle is empty [4].

In [11] solutions for the sorted range reporting problem were presented, i.e.
the problem of reporting the k leftmost points within a query rectangle in sorted
order of increasing z-coordinate. With space O(n), O(nlglgn) and O(nlg® n),
respectively, query times O((k +1)1g°n), O((k+1)(Iglgn)?), and O(k +1glgn)
were achieved, respectively. The structures of [11] support finding the rightmost
(skyline) point in a query range (k = 1). By recursing on the rectangle above
the reported point one immediately get the bounds for skyline reporting listed
in Table 2, where only the linear space solution achieves query times matching
those of general orthogonal range reporting.



Our Results. In Section 3 we present a linear space data structure supporting
orthogonal range skyline counting queries in O(lgn/lglgn) time, thus for the
first time achieving linear space and improving over all previous tradeoffs. In Sec-
tion 2 we show that this is the best possible by proving a matching lower bound.
More specifically, we prove a lower bound stating that the query time ¢ must
satisty t = 2(1gn/lg(Sw/n)). Here S > n is the space usage in number of words
and w = 2(Ign) is the word size in bits. For w = 1g% n) and § = n1g®W n,
this bound becomes t = 2(Ign/lglgn). The lower bound is proved in the cell
probe model of Yao [12], which is more powerful than the unit cost RAM and
hence the lower bound also applies to RAM data structures.

As a side result, we can also modify our counting data structure to support
reporting queries. The details are in the full version of the paper. Our reporting
data structure has query time O(lgn/lglg n+k) and space usage O(nlg® n). The
best previous reporting structure with a linear term in k has O(lgn/lglgn + k)
query time but O(nlgn/lglgn) space [6]. The reporting structure can also be
modified to achieve O(lgn/lglgn + klglgn) query time and O(nlglgn) space.
See Table 2 for a comparison to previous results.

Our lower bound follows from a reduction of reachability in butterfly graphs
to two-sided skyline counting queries, extending reductions by Patragcu [13]
for two-dimensional rectangle stabbing and range counting queries. Our upper
bounds are achieved by constructing a balanced search tree of degree ©(lg°n)
over the points sorted by z-coordinate. At each internal node we store several
space efficient rank-select data structures storing the points in the subtrees sorted
by rank-reduced y-coordinates. Using a constant number of global tables, queries
only need to spend O(1) time at each level of the tree.

Preliminaries. If the coordinates of the input and query points are arbitrary
integers fitting into a machine word, then we can map the coordinates to the
range [n] by using the RAM dictionary from [14], which support predecessor
queries on the lexicographical orderings of the points in time O(y/lgn/lglgn)
using O(n) space. This is less than the O(lgn/lglgn) query time we are aiming
for. Our solution makes extensive use of the below results from succinct data
structures.

Lemma 1 ([15]). A vector X[1..s] of s zero-one values, with t values equal to
one, can be stored in a data structure of size O(t(1+1g s/t)) bits supporting rank
and select in O(1) time, where rank(i) returns the number of ones in X[1..i],
provided X[i] = 1, and select(i) returns the position of the i’th one in X.

Lemma 2 ([16]). Let X[1..s] be a vector of s non-negative integers with total
sum t. There exists a data structure of size O(slg(2 +t/s)) bits, supporting the
lookup of X[i] and the prefix sum 23:1 X[j] in OQ1) time, fori=1,...,s.

Lemma 3 ([17,18]). Let X[1..s] be a vector of integers. There exists a data
structure of size O(s) bits supporting range-mazimum-queries in O(1) time, i.e.
given ¢ and j, 1 < i < j < s, reports the index k, + < k < j, such that
X[k] = max(X[i..j]). Queries only access this data structure, i.e. the vector X
is not stored.



2 Lower Bound

That an orthogonal range skyline counting data structure requires £2(nlgn) bits
space, follows immediately since each of the n! different input point sets of size n,
where points have distinct - and y-coordinates from [n], can be reconstructed
using query rectangles considering each possible point in [n]? independently, i.e.
the space usage is at least [lgo(n!)] = 2(nlgn) bits.

In the remainder of this section, we prove that any data structure using S > n
words of space must have query time ¢ = 2(1gn/lg(Sw/n)), where w = 2(1gn)
denotes the word size in bits. In particular for w = lgo(l) n, this implies that any
data structure using nlg®® n space must have query time ¢ = 2(Ig n/lglgn),
showing that our data structure from Section 3 is optimal. Our lower bound holds
even for data structures only supporting skyline counting queries inside 2-sided
rectangles, i.e. query rectangles of the form (—oo, 2] x (—o0, y]. The lower bound
is proved in the cell probe model of Yao [12] with word size w = 2(Ign). Since
we derive our lower bound by reduction, we will not spend time on introducing
the cell probe model, but merely note that lower bounds proved in this model
applies to data structures developed in the unit cost RAM model. See e.g. [3]
for a brief description of the cell probe model.

Reachability in the Butterfly Graph. We prove our lower bound by reduction
from the problem known as reachability oracles in the butterfly graph [13]. A
butterfly graph of degree B and depth d is a directed graph with d + 1 layers,
each having B¢ nodes ordered from left to right. The nodes at level 0 are the
sources and the nodes at level d are the sinks. Each node, except the sinks, has
out-degree B, and each node, except the sources, has in-degree B.

If we number the nodes at each level with 0,..., B¢ —1 from left to right and
interpret each index i € [BY] as a vector v(i) = v(i)[d — 1] ---v()[0] € [B]? (just
write ¢ in base B), then the node at index ¢ at layer k € [d] has an out-going
edge to each node j at layer k + 1 for which v(j) and v(¢) differ only in the k’th
coordinate. Here the 0’th coordinate is the coordinate corresponding to the least
significant digit when thinking of v(i) and v(j) as numbers written in base B.
Observe that there is precisely one directed path between each source-sink pair.
For the s’th source and the t’th sink, this path corresponds to “morphing” one
digit of v(s) into the corresponding digit in v(t) for each layer traversed in the
butterfly graph.

The input to the problem of reachability oracles in the butterfly graph, with
degree B and depth d, is a subset of the edges of the butterfly graph, i.e. we are
given a subgraph G of the butterfly as input. A query is specified by a source-
sink pair (s,t) and the goal is to return whether there exists a directed path
from the given source s to the given sink ¢ in G. Péatragcu proved the following:

Theorem 1 (Patrascu [13], Section 5). Any cell probe data structure an-
swering reachability queries in subgraphs of the butterfly graph with degree B and
depth d, having space usage S words of w bits, must have query time t = 2(d),
provided B = Q2(w?) and lgB = 2(1g Sd/N). Here N denotes the number of
non-sink nodes in the butterfly graph.



We derive our lower bound by showing that any cell probe data structure for
skyline range counting can be used to answer reachability queries in subgraphs
of the butterfly graph for any degree B and depth d.

Edges to 2-d Rectangles. Consider the butterfly graph with degree B and depth
d. The first step of our reduction is inspired by the reduction Patragcu used
to obtain a lower bound for 2-d rectangle stabbing: Consider an edge of the
butterfly graph, leaving the i’th node at layer k € [d] and entering the j’th node
in layer k 4+ 1. We denote this edge ex(, 7). The source-sink pairs (s,t) that are
connected through ey (7, j) are those for which:

1. The source has an index s satisfying v(s)[h] = v(i)[h] for h > k, i.e. s and i
agree on the d — k most significant digits when written in base B.

2. The sink has an index ¢ satisfying v(¢)[h] = v(j)[h] for h < k + 1, i.e. t and
j agree on the k + 1 least significant digits when written in base B.

We now map each edge e (i, j) of the butterfly graph to a rectangle in 2-d. For
the edge ey (i, ), we create the rectangle 74 (i,5) = [21,22] X [y1,y2] where:

— 21 =v(i)[d — 1Jv(i)[d — 2] - --v(i)[k]0--- 0 in base B,

— xy = v(i)[d — 1]v(i)[d 2]---v(i)[k](B—1)---(B—1) in base B,
— y1 =v(§)[0Jv(H)[1] - --v(5)[k + 1]0---0 in base B, and

= y2 = v()Olo(HA] -0k +1](B=1)-- (B —1) in base B.

The crucial observation is that for a source-sink pair, where the source is the
s’th source and the sink is the ¢’th sink, the edges on the path from the source
to the sink in the butterfly graph are precisely those edges e (i, 7) for which the
corresponding rectangle r (¢, ) contains the point (s,revg(t)), where revpg(t) is
the number obtained by writing ¢ in base B and then reversing the digits.

We now collect the set of rectangles R, containing each rectangle r4(i,7)
corresponding to an edge of the butterfly graph. Given an input subgraph G, we
mark all rectangles 7 (7, j) € R for which the corresponding edge e (i, j) is also
in G. It follows that there is a directed path from the s’th source to the t’th sink
in the subgraph G if and only if (s,revg(t)) is not contained in any unmarked
rectangle in R.

Our goal is now to transform marked and unmarked rectangles to points,
such that we can use a skyline counting data structure to determine whether a
given point (s,revp(t)) is contained in an unmarked rectangle. Note that our
reduction only works for the rectangle set R obtained from the butterfly graph,
and not for any set of rectangles, i.e. we could not have reduced from the general
problem of 2-d rectangle stabbing.

2-d Rectangles to Points. To avoid tedious details, we from this point on allow the
input to skyline queries to have multiple points with the same x- or y-coordinate
(though not two points with both coordinates identical). This assumption can
easily be removed, but it would only distract the reader from the main ideas of
our reduction. We still use the definition that a point (z,y) dominates a point
(2',y") if and only if 2’ < z and ¢y’ < y.



The next step of the reduction is to map the rectangles R to a set of points.
For this, we first transform the coordinates slightly: For every rectangle 7 (i, 7) €
R, having coordinates [x1, 2] X [y1, y2], we modify each of the coordinates in the
following way: z1 < dx1 + (d — 1 — k), 2 + dzos +d — 1, y1 < dy1 + k, and
Yo < dys +d—1. The multiplication with d essentially corresponds to expanding
each point with integer coordinates to a d x d grid of points. The purpose of
adding k to y; and (d — 1 — k) to x1 is to ensure that, if two rectangles share
a lower-left corner (only possible for two rectangles ry(i,j) and 74 (¢, j/) where
k # k'), then those corners do not dominate each other in the transformed set
of rectangles. We will see later that the particular placement of the points based
on k also plays a key role. We use 7 : [BY* — [dB%]* to denote the above map.
With this notation, the transformed set of rectangles is denoted 7(R) and each
rectangle 74 (4, j) € R is mapped to w(rg(4,5)) € m(R).

We now create the set of points P’ containing the set of lower-left corner
points for all rectangles 7 (ry(4,j)) € w(R), i.e. for each m(rk(i,7)) = [z1, x2] X
[y1,y2], we add the point (x1,y1) to P’. The set P’ has the following crucial
property:

Lemma 4. Let (x,y) be a point with coordinates in [BY] x [B?]. Then for the
two-sided query rectangle Q = (—oo,dx +d — 1] x (—oo,dy +d — 1], it holds that
Skyline(QNP’) contains precisely the points in P’ corresponding to the lower-left
corners of the rectangles m(ry(i,7)) € w(R) for which ri(i,j) contains (z,y).

Proof. Firstlet p = (z1,y1) € P’ be the lower-left corner of a rectangle m(ry (¢, 7))
such that r (4, j) contains the point (z,y). We want to show that p € Skyline(@QnN
P’). Since 71 (7, j) contains the point (z,y), we have x > |z1/d] and y > |y1/d].
From this, we get de +d—1 > d|x1/d] +(d—1—k) =z; and dy+d —1 >
d|y1/d] + k = y1, i.e. p is inside Q. Since (x,y) is inside r¢(¢, ), we also have
that (de4+d—1,dy+d—1) is dominated by the upper-right corner of 7(r (4, 7)),
ie. (dx+d—1,dy+d—1) is inside 7w (ri(i, 5)).

What remains to be shown is that no other point in @ N P’ dominates p. For
this, assume for contradiction that some point p’ = (z/,y;) € P’ is both in @ and
also dominates p. First, since p’ is dominated by (dx+d—1,dy+d—1) and also
dominates p, we know that p’ must be inside m(rg (4, 5)). Now let w(ry (¢/,5")) #
7w(ri(i,7)) be the rectangle in 7(R) from which p’ was generated, i.e. p’ is the
lower-left corner of m(ry/ (¢',5")). We have three cases:

1. First, if ¥ = k we immediately get a contradiction since the rectangles
m(R) = {n(ri(?',5") € 7(R) | k¥’ = k} are pairwise disjoint and hence p’
could not have been inside 7 (rk (¢, 5)).

2. If ¥’ < k, we know that 7 (rg (¢, 5)) is shorter in z-direction and longer in
y-direction than m(r (7, 5)). From our transformation, we know that (y; mod
d) = k and (y] mod d) = k¥’ < k. Thus since p’ dominates p, we must have
lyi/d] > |y1/d]. But these two values are precisely the y-coordinates of the
lower-left corners of r (¢, ) and rg (¢, /). By definition, we get:

v(i) O] -0 E +1]0--- 0> v() 0w ()] - - v(j)[k +1]0---0 .



Since k' < k, this furthermore gives us
v(G)0Jo(F)A] - - v()E + 1] > v(H)[0Je()A] - - v(H)K + 1] .
From this it follows that
v(G)[0] - v(F)E +1]0- 0> v(5)[0] - v(i)[k +1](B—1)--- (B -1),

i.e. the lower-left corner of rg/(i',5’) is outside 74(¢,7), which also implies
that the lower-left corner of m(rg/(i',5’)) is outside m(rx(i,7)). That is, p’ is
outside 7(r (4, 7)), which gives the contradiction.

3. The case for k¥’ > k is symmetric to the case ¥’ < k, just using the z-
coordinates instead of the y-coordinates to derive the contradiction.

The last step of the proof is to show that no point p = (x1,y1) € P’ can be
in Skyline(Q N P’) but at the same time correspond to the lower-left corner of
a rectangle m(rg(4,7)) where rg(,7) does not contains the point (x,y). First
observe that (dx + d — 1,dy + d — 1) is contained in precisely one rectangle
7w(rg (i, §')) for each value of k' € [d]. Now let 7(ri(i’, ;")) # 7(rk(i, 7)) be the
rectangle containing (dz +d—1,dy + d — 1) amongst the rectangles 7(R)x. The
lower-left corner of this rectangle is dominated by (dx +d — 1,dy +d — 1) but
also dominates p, hence p is not in Skyline(Q N P’). O

Handling Marked and Unmarked Rectangles. The above steps are all independent
of the concrete input subgraph G. As discussed, we need a way to determine
whether a query point is contained in an unmarked rectangle or not. This step is
now very simple in light of Lemma 4: First, multiply all coordinates of points in
P’ by 2. This corresponds to expanding each point with integer coordinates into
a 2 x 2 grid. Now for every point p € P’, if the rectangle m(r (¢, 7)) from which
p was generated is marked, then we add 1 to both the z- and y-coordinate of p,
i.e. we move p to the upper-right corner of the 2 x 2 grid in which it is placed.
If 7(ri(i,4)) is unmarked, we replace it by two points, one where we add 1 to
the x-coordinate, and one where we add 1 to the y-coordinate. We denote the
resulting set of points P(G). It follows immediately that:

Corollary 1. Let G be a subgraph of the butterfly graph with degree B and
depth d. Also, let (x,y) be a point with coordinates in [B%) x [BY]. Then for the
two-sided query rectangle Q = (—o0,2d(x+1) — 1] x (=00, 2d(y+ 1) — 1], it holds
that Skyline(Q N P(Q)) contains precisely one point from P(G) for every marked
rectangle in R that contains (xz,y), two points from P(G) for every unmarked
rectangle in R that contains (x,y), and no other points, i.e. |Skyline(QNP(G))|—
d equals the number of unmarked rectangles in R which contains (x,y).

Corollary 2. Let G be a subgraph of the butterfly graph with degree B and
depth d. Let s be the index of a source and t the index of a sink. Then the s’th
source can reach the t’th sink in G if and only if |Skyline(Q N P(G))| = d for the
two-sided query rectangle Q = (—o0,2d(s + 1) — 1] x (—o0, 2d(revp(t) + 1) — 1].



Deriving the Lower Bound. The lower bound can be derived from Corollary 2
and Theorem 1 as follows. First note that the set R contains NB rectangles,
since each rectangle corresponds to an edge of the buttefly graph and each of
the N non-sink nodes of the butterfly graph has B outgoing edges. Each of these
rectangles gives one or two points in P(G). Letting n denote |P(G)|, we have
NB<n<2NB.From N =d-B?<n wegetd<lgnandd=0(ggzN).

Given n, w > lgn, and S > n, we now derive a lower bound on the query
time. Setting B = 2w? we have B = 2(w?) and g B = 2(lg 52) (as required by
Theorem 1), where the last bound follows from lg 3¢ < g i/lgg < lg(QB%—Lw) <
1g(2B?) = O(lg B). Furthermore we have lg 5% = 1]g(52)2 > Ll]g(Zy?) =
%lg B. From Theorem 1 we can now bound the time for a skyline counting
query by t = 2(d) = 2(lgg N) = 2(1gn/1g B) = 2(lgn/1g(Sw/n)).

3 Skyline Counting Data Structure

In this section we describe a data structure using O(n) space supporting orthog-
onal skyline counting queries in O(lgn/lglgn) time. We describe the basic idea
of how to support queries, and present the details of the stored data structure.
The details of the query can be found in the full version of the paper.

The basic idea is to store the n points in left-to-right xz-order at the leaves
of a balanced tree T of degree O(log® n), i.e. height O(logn/loglogn), and for
each internal node v have a list L, of the points in the subtree rooted in v
in sorted y-order. The slab of v is the narrowest infinite vertical band contain-
ing L,. To obtain the overall linear space bound, L, will not be stored explic-
itly but implicitly and rank-reduced using rank-select data structures, where
navigation is performed using fractional cascading on rank-select data struc-
tures (details below). A 4-sided query R decomposes into 2-sided subqueries at
O(logn/loglogn) nodes (in Figure 1, R is decomposed into subqueries R;i-Rj,
white points are nodes on the skyline within R, double circled points are the top-
most points within each R;). For skyline queries (both counting and reporting)
it is important to consider the subqueries right-to-left, and the lower y-value for
the subquery in R; is raised to the maximal y-value of a point in the subqueries
to the right. Since the tree T" has non-constant degree, we need space efficient
solutions for multislab queries at each node v. We partition L, into blocks of
size O(log* n), and a query R; decomposes into five subqueries (1-5), see Fig-
ure 2: (1) and (3) are on small subsets of points within a single block and can be
answered by tabulation (given the signature of the block); (2) is a block aligned
multislab query; (4) and (5) are for single slabs (at the children of v). For (2,4,5)
the skyline size between points ¢ and j (numbered bottom-up) can be computed
as one plus the difference between the size of the skyline from 1 to j and 1 to k,
where k is the rightmost point between ¢ and j (see Figure 3, white and black
circles and crosses are all points, crosses indicate the skyline from i to j, white
circles from 1 to k, and white circles together with crosses from 1 to j). Finally,
the skyline size from 1 to 4 can be computed from a prefix sum, if we for point
i store the number of points in the skyline from 1 to ¢ — 1 dominated by 4 (see
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Figure 4, the skyline between 1 and 6 consists of the three white nodes, and the
sizeis 6 —(2+0+0+0+1+0)=3).

The details of the construction are as follows. We let A = max{2, [1g° n]} be
a parameter of our construction, where 0 < € < 1/3 is a constant. We build a
balanced base tree T over the set of points P, where the leafs from left-to-right
store the points in P in sorted order w.r.t. z-coordinate. Each internal node of T'
has degree at most A and T has height [lg,n]| + 1. (See Figure 1)

For each internal node v of T" we store a set of data structures. Before de-
scribing these we need to introduce some notation. The subtree of T' rooted
at a node v is denoted T,, and the set of points stored at the leaves of T,
is denoted P,. We let n, = |P,| and L,[l..n,] be the list of the points in P,
sorted in increasing y-order. We let I,, = [{,,, r,] denote the z-interval defined by
the x-coordinates of the points stored at the leaves of T, and denote I, x [n]
the slab spanned by v. The degree of v is denoted d,, the children of v are
from left-to-right denoted cl,...,cd, and the parent of node v is denoted p,.
A list L, is partitioned into a sequence of blocks B,[1..[n,/A?]] of size AZ
such that B,[i] = Ly[(i — 1)A% + 1..min{n,,,iA?}]. The signature o,[i] of a
block B,[i] is a list of pairs: For each point p from B,[i] in increasing y-order
we construct a pair (j,7), where j is the index of the child ¢/ of v storing p
and r is the rank of p’s z-coordinate among all points in B, [i] stored at the



same child ¢/ as p. The total number of bits required for a signature is at most
A%(Ig A +1g A?) = O(1g* n - 1glgn).

To achieve overall O(n) space we need to encode succinctly sufficient infor-
mation for performing queries. In particular we will not store the points in L,
explicitly at the node v, but only partial information about the points relative
position will be stored.

Queries on a block B, [i] are handled using table lookups in global tables using
the block signature o, [i]. We have tables for the below block queries, where we
assume o is the signature of a block storing points p1,...,pa2 distributed in A
child slabs.

Below(o, t,7) Returns the number of points from p1, ..., p; contained in slab i.

Rightmost(o,b,t,14,j) Returns k, where py, is the rightmost point among py, . . ., p;
contained in slabs [i, j]. If no such point exists, -1 is returned.

Topmost (o, b, t,4,7) Returns k, where py is the topmost point among py, ..., p;
contained in slabs [i, j]. If no such point exists, -1 is returned.

SkyCount(o, b, t,7,7) Returns the size of the skyline for the subset of the points
Db, - - -, p¢ contained in slabs [, j].

The arguments to each of the above lookups consists of at most |o|+21g A%+
2lg A = |o| + O(lglgn) = O(1g* n - 1glgn) bits and the answer is lg(A + 1) =
O(lglgn) bits, i.e. each query can be answered in O(1) time using a table of size
O(2'8* nlglsn . g lgn) = o(n) bits, since & < 1/3.

For each internal node v of T" we store the following data structures, each
having O(1) access time.

Cy(#) Compact array that for each i, where 1 < i < n,,, stores the index of the
child of v storing L,[i], i.e. 1 < C,(i) < A. Space usage O(n, lg A) bits.
my(i) For each i, 1 < i < n,, stores the index of L,[i] in L, , i.e. L, [m,(2)] =
L,[i]. This can be supported by constructing the select data structure of
Lemma 1 on the bit-vector X, where X[i{] = 1 if and only if L, [i] is
in L,. A query to m,(i) simply becomes a select(i) query. Space usage

O(ny1g(ny, /ny)) = O(n, 1g A) bits.

o,(i) Array of signatures for the blocks B,[1..[n,/A?%]]. Space usage O(n,/A? -
A% 1g A) = O(n, 1g A) bits.

Pred,(t,7) / Succ,(t,7) Supports finding the predecessor/successor of L,[t] in
the 4’th child list L. . Returns max{k | 1 < k < nu A7 [k] < t} and
min{k | 1 < k < ng Amlk] > t}, respectively. For each child index i,
we construct an array X of size [n/A?], such that X‘[b] is the number
of points in block B,[b] that are stored in the ¢’th child slab. The prefix
sums of each X? are stored using the data structure of Lemma 2 using
space O((n,/A?%)1g(A?)) bits. The total space for all A children of v be-
comes O(A - n, /A% -1g A) = O(n,) bits. The result of a Pred,(¢,4) query is
AT X (] 4 Below (0, ([t/A%]), 1+ (t — 1 mod A2), i), where the first
term can be computed in O(1) time by Lemma 2 and the second term is a
constant time global table lookup. The result of Succ,(t,7) = Pred,(¢,4) if
Cy[t] = i, otherwise Succ,(t,7) = Pred, (¢,7) + 1.



Rightmost, (¢, j) Returns the index k, where ¢ < k < j, such that L,[k] has
the maximum z-value among L, [i..j]. Using Lemma 3 on the array of the
z-coordinates of the points in L, we achieve O(1) time queries and space
usage O(n,) bits.

SkyCount,, (i) Returns |Skyline(L,[1..7])|. Construct an array X, where X[i] is
the number of points in Skyline(L,[1..i — 1]) dominated by L, [i]. (See Fig-
ure 4) We can now compute |Skyline(L,[1..7])| as i — Z;le[j]. Using
Lemma 2 the query time becomes O(1) and the space usage O(n,) bits,
since >0, X[j] <ny — 1.

SkyCount, (i, j) Returns |Skyline(L,[é..5])|, computable by the following expres-
sion: SkyCount, (j) — SkyCount,, (Rightmost, (i, 7)) + 1 (see Figure 3).

Finally, we store for each node v and slab interval [i,j] the following data
structures.

Rightmost,, ; ;(b,t) Returns k, where L,[k] is the rightmost point among the
points in blocks B, [b..t] contained in slabs [¢, j]. If no such point exists, -1 is
returned. Can be solved by applying Lemma 3 to the array X, where X[s] is
the z-coordinate of the rightmost point in B, [s] contained in slabs [, j]. A
query first finds the block ¢ containing the rightmost point using this data
structure, and then returns (¢ — 1)A? + Rightmost(o,[/], 1, A%, i, ). Space
usage O(n,/A?) bits.

Topmost,, ; ;(b,t) Returns k, where L,[k] is the topmost point among the points
in blocks B,[b..t] contained in slabs [i,j]. If no such point exists, -1 is
returned. Can be solved by first using Lemma 3 on the array X, where
X|[s] = s if there exists a point in B, [s] contained in slabs [i, j]. Otherwise
X[s] = 0. Let ¢ be the block found using Lemma 3. Return the result of
(¢ — 1)A? + Topmost(o,[f],1, A% i, j). Space usage O(n,/A?) bits.

SkyCount,, ; ;(b,t) Returns the size of the skyline for the subset of points in
blocks B, [b..t] contained in slabs [¢, j]. Can be supported by two applications
of Lemma 2 on two arrays X and Y: Let X|[s] = SkyCount(o,[s], 1, A2,4, j),
i.e. the size of the skyline of the points in block B, [s] contained in slabs [z, j].
Let B, ; ;[s| denote the points in B,[s| contained in slabs [z, j]. Let Y[s] =
|Skyline(B, ; ;[1..s — 1]) \ Skyline(B, ; ;[1..s])|, i.e. the number of points on
Skyline(B,,;,j[1..s — 1]) dominated by points in B, ; ;[s]. Space usage for
X and Y is O(n,/A? - 1g A?) bits. We can compute SkyCount,, , -(b,t) =
S X[s] - ZZ:kH Y'[s], where k = [Rightmost b,t)/A%].

U,i,j(
v,1, (
J

The total space of our data structure, in addition to the o(n) bits for our
global tables, can be bounded as follows. The total space for all O(A?) multislab
data structures for a node v is O(A?% - n,/A? - 1g A) bits. The total space for
all data structures at a node v becomes O(n,lg A) bits. Since the sum of all
n, for a level of T' is at most n, the total space for all nodes at a level of T
is O(nlg A) bits. Since T has height O(lg, n), the total space usage becomes
O(nlgA -lgyan) = O(nlgn) bits, i.e. O(n) words. The data structure can be
constructed bottom-up in O(nlogn) time.
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The following appendix is not contained in the version of the paper
appearing in the proceedings of the 14th Scandinavian Symposium
and Workshops on Algorithm Theory.

A Skyline Range Counting Queries

To answer a skyline counting query R = [x1,x2] X [y1, 2], we identify the nodes
on the paths in T from the two leaves storing z; and x5 up to the lowest common
ancestor of the two leaves. Let vq,...,v,, be the set of these nodes in a right-to-
left traversal in T' (see Figure 1). The horizontal span of the query, [x1, z3], is
the concatenation of the span of at most one multislab I, ..., I, from each of
V1,...,Um. For each such multislab I, we form a new subquery Ry = I X [z¢, y2],
completely spanning the multislab in the horizontal direction and vertically has
a range [zy, yo], where 21 = y; and 2z, = max{z,_1,y"** + 1}, for £ = 2 to m and
Y™ is the maximal y-coordinate of a point in I,_; X [1, y2]. By definition of the
Ry queries, the skyline of the points contained within R is exactly the union of
the skylines for each of the R, subqueries (see Figure 1), since the points in Ry
cannot be dominated by other points that are both in R and to the right of I,.

To navigate in T' we need to find the index of the successor of y; and the
predecessor y» in each of the L,, lists. We start with y; and y» being the indexes
at the root, and then use the Succ, /Pred, structures at the nodes to find the
successor of y; and predecessor of y, at all the nodes on the two paths from
the root to x; and x5. To find the topmost point below ys in a multislab we
use Topmost,, ; ;. To navigate y™** values up and down between the levels of T
we use T, (y™**) to move upwards and Succ, (y™**, 7) to move downwards to a
slab j. These navigations can be performed in O(1) time per node on the paths,
i.e. total time O(lg, n).

What remains is to compute in O(1) time the size the skyline within a query
range Ry. In the following we consider a query range that horizontally spans the
child slabs [¢, j] of a node v, and vertically spans the indexes [Ybottoms Ytop] 1N
Ly,.

If the query range is within a single block of L, (i.e. [ybottom/A?] = [Ytop/A?]),
we compute the skyline size as

SkyCount(c, ([Yiop/A%1), 1 + (Ybottom — L mod A%), 1+ (yop — 1 mod A?), 4, j) .

Otherwise we decompose the skyline counting query into five subranges (1)-
(5), see Figure 2. We first compute the y-coordinate of the rightmost point p;
in the top block Biop of the query range using

pP1.y = RightmOSt(Uv([ytop/A2])7 1, 1+(ytop*1 mod A2)7 i7j)+A2 |Vytop/A2 - 1-| ;

and compute the size of the skyline of the intersection of By,p and the query
region by:

SkyCount (o, ([Ysop/A%1), 1, 1+ (Ysop — 1 mod A?), 4, 5) . (1)



Let k1 be the slab containing p;, computable as k1 = C,(p1.y). If no point is
found in block Biop, then k1 =i — 1.

Next we compute the y-coordinate of the topmost point ps in the multislab
query range spanning slabs [k; + 1, j] and all blocks between Bpottom and Biop.

p2-y = Topmost, 5 11 ; ([Ybottom/A%] + 1, [Ysop/A%] — 1) .

In the same subrange we find the y-coordinate of the rightmost point p3 using

p3.y = Rightmost,, 5 1 ; ([Ybottom /AT + 1, [Ytop/A%] — 1) .

Finally, the number of points on the skyline between py and ps (including po
and p3) is computed by

Skycountv,k1+1,j([ybottorn/AQ] +1, [ytop/A2-| -1). (2)

The slab containing the point ps is k3 = C,(ps.y). We compute the number
of points on the skyline to the right of p3 in block Bpottom by

Skycount(av({ybottom/A2-‘ )7 1 + (ybottom -1 mOd A2)7 AQ; k?) + 17.7) 9 (3)

and the y-coordinate of the topmost point p4 in block Bpottom contained in slabs

bay = TomeSt(o'v([ybottom/AQ-‘)a 1+ (ybottom — 1 mod A2)7 Aza ks + 17])
+A2 |—ybott0m/A2 - 1—| .

The remaining points to be counted are the skyline points in slab ki between
p1 and ps, and in slab k3 between ps and the point p, in block Byottom- These
values can be computed by

SkyCount g, (Succy (p2.y + 1, k1), Pred, (p1.y, k1)) — 1 (4)

SkyCount s (Succy, (ps.y, k3), Pred, (ps.y, k3)) — 1, (5)

where we subtract one in both expressions, to avoid double counting p; and ps.

Figure 2 illustrates the five partial counts computed. In the above we assumed
that all queries ranges were non-empty. In case p; does not exist, then k; =i—1
and (4) is not computed. If p; does not exist, then (5) stretches down to Ypottom-
If po and ps do not exist (p2 and ps are the same point if (4) only contains one
maximal point), then (2) and (5) are not computed, the leftmost slab of (3) is
k1 + 1, and (4) stretches down to ps.y + 1.

To summarize, it follows that the skyline size for each multislab query Ry
can be computed in O(1) time, and the total time for a skyline counting query
becomes O(lgn/lglgn).



B Skyline Range Reporting

In this section, we show how to extend our skyline range counting data structure
from Section 3 to also support reporting. Given a query rectangle R = [z1, z2] X
[y1,y2], welet vy, ..., v, and Iy, ..., I, be defined as in Section A. The goal is to
report the skyline for each of the subqueries Ry = Iy X 24, y2] where z; = y; and
zp = max{ze_1, Y’ + 1} for £ = 2 to m and y;"** is the maximal y-coordinate
of a point in I; x [1,ys]. Using the approach from Section A we assume the z,’s
have been computed as well as the index of the successor of y; and the index of
the predecessor of z; in each of the L,, lists. Recall the lists L, are not stored
explicitly.

To answer the query Ry at a node v = vy, let [i, j] be the range of children of
v that are spanned by Ry in the horizontal direction and let ypottom be the index
of the successor of z; in L, and yiop the index of the predecessor of ¥, in L,. We
first produce an output list Yy storing each point of Skyline(R,N P,) as an index
into L,. The key observation for producing this list is that the skyline inside a
query rectangle is the set of points produced by the following procedure: First
report the rightmost point in the query range and then recurse on the query
rectangle obtained by moving the bottom side of the query to just above the
returned point.

We implement this strategy in the following. First, if Ry is completely within
one block (block [ytop/A%] of L,), we answer it by first running

RightmOSt(o'v([ytop/Aﬁ)a 1+ (ybottom —1 mod Az)a 1+ (ytop —1mod A2)a 7/7.7) .

Adding A?[yop/A? — 1] to the returned value gives the index k into L, of the
rightmost point in the output. We add & to Yy and recurse on the query rectangle
with y-range from k + 1 to yop.

If the query range is not contained in one block, we use the decomposition into
five queries that was introduced in Section A, see Figure 2. We define py,...,p4
and (1),...,(5) as in Section A. The subquery (1) is answered as just described
for the case of a query range completely within a block. The query (4) is answered
using first the query Righ‘cmostcij1 (Sucey (p2.y+1, k1), Pred, (p1.y, k1)). Following
that, we move the bottom of the query rectangle just above the returned point
and recurse.

The query range (2) is answered by first repeatedly using Rightmost,, ;.4 ; to
identify the blocks within the query range (2) containing points from Skyline(R,N
P,). Let q1, ..., q: be the indexes into L, of the rightmost points returned in each
of these blocks, computable by

q1 = RightmOStv,k1+1,j([ybottom/AQ-‘ + 17 ’—ytop/AQ] - 1) ’
and for r > 1 (until no further point is found) by
¢ = Rightmost, j, 41 ;([¢r-1/A%] + 1, [gi0p/A*] = 1) .

Within each block [g,/A?] we compute the additional points that should be
reported within slabs [kq, j] from right-to-left, starting with

Rightmost(av((q,./AQ]), 2+ (g, — 1 mod A?%), A% ki1,5),



until no point is found or we find the first point f that should not be reported,
i.e. f is dominated by g,41, which can be checked by the condition v < C,(g,+1)
or v = Cy(gr+1) and ¢’ = Rightmost,,(f’,q'), where v = C,(f), v = ¢J and
' =Pred,(f,7), and ¢’ = Pred,(gr+1,7)-

The query (5) is answered by repeatedly using Rightmost ks and finally we
answer (3) using ’

Rightmost (o ([Ybottom /A1), 1 + (Ubottom — 1 mod A?), A% ks + 1, 7)

and recursing above the returned point. It follows that the list Y, is produced
in O(1 + |Skyline(R, N P,)|) = O(1 + |Skyline(R,; N P)|) time. Summing over all
lists Yy, we get a total time of O(lgn/lglgn + k).

What remains is to map the indices in the lists Y, to the actual coordinates
of the corresponding points. Using the 7 arrays, this can be done by repeatedly
determining the position of L,[i] in L, . Doing this for all O(lgn/lglgn) levels
of the tree allows one to deduce the global y-rank of the point corresponding
to L, [i]. Storing an additional O(n) sized array mapping global y-ranks to the
corresponding points gives a total running time of O((1 + k)lgn/lglgn). To
speed this up, we use the Ball-Inheritance structure of [1]. For completeness, we
describe how this data structure is implemented in terms of the 7w arrays we have
defined: Let B > 2 be a parameter. For every level j in the base tree T' that is
a multiple of B?, for i = 0,...,lgzlg, n, we let all nodes v at level j store the
following array:

w,,(,BZ)(j) For each j,1 < j < n,, stores the index of L,[j] in Ly,). Here u(v) is
the ancestor of v at the nearest level that is a multiple of B! (excluding
possibly the level storing v). This can be supported by constructing the
select data structure of Lemma 1 on the bit-vector X, where X[j] = 1 if and

only if Ly [j] is in L,. A query (B (7) becomes select(j). The space usage

for 755" becomes O (ny 1g(ny(v) /10)) = O(ny 1g(AB™)) = O(n, B 1g A)
bits.

Given an index ¢ into L,, we can now recover L, [i] by using the 7 arrays to
first jump B levels up, then B2 levels up and so forth. The number of jumps be-
comes O(lgz 1g o n) and hence we get a query time of O(lgn/lglgn+klgglg, n).
The total space usage for all m arrays becomes

lgglgan
lgan .,
o 3 AT BHgA| =0Wmlgn (Bleglgan)
=1

bits. Setting B = 1g°n for an arbitrarily small constant ¢ > 0 gives a data
structure with query time O(lgn/lglgn + k) and space usage O(nlg®n) words.
Setting B = 2 gives a data structure with query time O(lgn/lglgn + klglgn)
and space usage O(nlglgn) words as claimed.



C Butterfly Graph Example

Fig. 5. A butterfly with degree B = 2 and depth d = 3. The path shown in bold is
the unique path from the source s = 001 to the sink ¢ = 110. A concrete input to the
reachability oracles in the butterfly graph problem consists of a subset of the edges of
the butterfly. An example input is obtained by deleting the dashed edges labelled a,b
and c. For that input, there is no path from the source s to the sink ¢ since the edge b
is not part of the input.
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Fig. 6. The butterfly with degree B = 2 and depth d = 3 from Figure 5 translated to a
set of rectangles. The dashed rectangles correspond to the edges a, b and ¢ from Figure 5.
Every grid point is replaced by up to d points placed on a diagonal. Each rectangle
obtained from an edge of the butterfly graph produces one point on the diagonal
corresponding to the rectangle’s lower left corner. The points corresponding to the
rectangles obtained from edges a,b and ¢ are shown in gray. The query corresponding
to the source s = 001 and the sink ¢ = 110 in Figure 5 is translated to the two-sided
skyline query rectangle with its upper right corner at the x. The double circled points
are the points on the skyline of the query range and these correspond exactly to the
lower left corners of the rectangles containing the x.
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Fig. 7. Points corresponding to unmarked rectangles are replaced by two points. The
example from Figure 5 and Figure 6 has three unmarked rectangles, corresponding to
edges a,b and c of the butterfly graph. As shown, these rectangles become two (gray)
input points and marked rectangles are represented by only one input point. The upper
right corner of the two-sided query rectangle corresponding to the source s = 001 and
sink t = 110 in the previous examples is shown as a x. The double circled points are
the points on the skyline of the query range. As can be seen, the unmarked rectangle
corresponding to the edge labelled b contributes two points to the skyline of the query x.



