
Distributed Shuffling in Adversarial Environments

Kasper Green Larsen1!, Maciej Obremski2!!, and Mark Simkin3! ! !

1 Aarhus University
2 National University of Singapore

3 Ethereum Foundation

Abstract. We formalize and study the problem of distributed shuffling in adversarial environments.
In this setting, there are m shufflers that have access to a public bulletin board that stores a vector
(c1, . . . , cn) of re-randomizable commitments. The shufflers repeatedly read k of the n commitments,
with k potentially much smaller than n, and shuffle them. An adversary has the ability to initially
corrupt and then track some of the commitments throughout the shuffles and can adaptively corrupt a
bounded number of shufflers in every single round. The goal of the distributed shuffling protocol is to
hide the output locations of commitments that are not corrupted by the adversary.
We present and analyze a protocol that solves this problem with essentially optimal shuffling complexity.
As an exemplary data point, our protocol can shuffle a list of length n with shuffles of size k, where
k ∈ Ω(lg2 n), in the presence of an adversary that can corrupt 4n/5 many shufflers in each round and
can corrupt 4n/5 commitments in the input vector. Our m-party shuffling protocol with m ∈ Ω(n/k)
terminates in O(lg n) rounds. We provide numerical benchmarks that validate our theoretically proven
guarantees and in fact show that the number of rounds is not just theoretically, but also concretely
small.
Our shuffling protocol can either improve efficiency or lead to more secure solutions in multiple research
domains, such as the design of mix-nets, single secret leader election protocols, and electronic voting.

1 Introduction

Shuffling the elements of a long vector efficiently is a problem that appears in various shapes
and forms throughout many different domains of cryptography. In anonymous communication sys-
tems [Cha81, SK95, JJR02] a set of senders would each like to communicate one messages to a set
of receivers without revealing who is talking to who. In electronic voting [SK95, JJR02, Nef01], we
have a long list of votes and we would like to determine the election outcome without revealing who
voted for who. In the domain of cryptocurrencies [Max13, BNM+14], we have multiple payers, who
would like to transfer money to multiple payees without revealing who is paying who. One popular
approach, which dates back to Chaum’s original work [Cha81], for achieving anonymity in all of
the above applications, is through the use of so called mix-nets. The main idea of mix-nets is to
let one or more semi-trusted shufflers read the whole input vector, shuffle it locally, and send it to
the next shuffler before eventually publishing the output vector that has been shuffled by multiple
entities. From a security point of view, this approach provides strong anonymity guarantees. As
long as only a single shuffler is honest, the order of elements in the output vector looks completely
random to any adversarial observer.

From an efficiency perspective, however, such strong anonymity guarantees do not come for free.
The computational and the bandwidth overhead of each shuffler grows linearly in the length of the

! larsen@cs.au.dk. Supported by Independent Research Fund Denmark (DFF) Sapere Aude Research Leader grant
No 9064-00068B and a Villum Young Investigator grant.

!! obremski.math@gmail.com. Funded by MOE2019-T2-1-145 Foundations of quantum-safe cryptography.
! ! ! mark.simkin@ethereum.org

vector that should be shuffled. In applications like electronic voting, the length of a vector of votes
could easily be in the millions, which places a significant burden on each shuffler. In addition, many
applications also require each shuffler to provide a zero-knowledge proof attesting the correctness
of the performed shuffle [SK95, FS01, Nef01, BG12], which incurs a large computational cost.

Mix-nets are not the only approach for achieving anonymity in applications, such as the ones
mentioned above. Alternatives, like onion routing schemes [GRS96, RSG98, DMS04], do exist and
can provide much better performance, but often do so at the cost of weaker anonymity guaran-
tees [MD05, MZ07, BMG+07]. If a maximum degree of anonymity is required, then mix-nets are a
very attractive approach.

1.1 Our Contribution

In this work, we formalize and study the problem of distributed shuffling in adversarial environ-
ments. Here, we have m shufflers and a public bulletin board, visible to everyone, that stores a
vector (c1, . . . , cn) of re-randomizable commitments4. A distributed shuffling protocol is an inter-
active process by which all shufflers repeatedly read k of the n commitments, locally re-randomize
and shuffle them, and then upload them back to the bulletin board. At the end of the protocol
execution, a permutation of the original vector of commitments should be written on the bulletin
board. At the start of a protocol execution, adversary A is allowed to corrupt a subset of indices
I ⊂ {1, . . . , n} with |I| ≤ α and can then track all commitments ci for i ∈ I throughout the shuf-
fling process. A can actively corrupt different subsets consisting of β shufflers adaptively in every
single round of the protocol. Finally, A even gets to see γ additional values in the output vector
and where they came from at the end of the protocol execution.

We present a distributed shuffling protocol, which guarantees that the adversary’s probability of
guessing the location of a commitment ci with i ∕∈ I that was not among the γ opened commitments,
is only a small constant factor better than random guessing. The main result of our work is a
general theorem that captures the relationship between the number of parties, the size of each local
shuffle, the required number of rounds in our shuffling protocol and the various corruptions that
the adversary can perform. The following informal theorem is a corollary of our main result for a
parameter setting that allows the adversary to corrupt large constant fractions of commitments in
the input vector, shufflers per round, and commitments in the output vector.

Theorem 1 (Informal). Let β = 4n/5 be the number of corruptions per round, let α ≤ 4n/5
be the number of corrupted commitments in the input vector, and let γ ≤ 4n/5 be the number of
commitments in the output vector, whose location in the input vector is revealed. For a universal
constant C, for any k ≥ C · (lg2 n), there exists a secure distributed shuffling protocol among
m ∈ Ω(n/k) parties that runs in O(lg n) rounds.

The theorem above shows that even in highly adversarial settings our protocol can quickly, i.e. on
the order of lg n rounds, shuffle the elements of the input vector. It also shows that for certain
parameter ranges, our protocol allows the the total workload of each individual shuffler to be
sublinear in the length of the vector. To underline the practicality of our presented solution, we
provide benchmarks, which show that the efficiency of our protocol is not only asymptotic, but also
concrete.

4 Throughout the paper we focus on commitments, but all of our results apply equally well to ciphertexts of a
(re-randomizable) encryption scheme.

2

Lastly, we discuss several applications, such as mix-nets, single secret leader elections, and
electronic voting, that can benefit from our new shuffling protocol in terms of either improved
security or improved efficiency.

1.2 Other Related Works

A series of existing works [Tho73, BD92, H̊as06, H̊as16, RY13, MR14] has studied the question
of how long it takes to shuffle the elements of a vector via either smaller or restricted shuffling
operations. There, the problem is studied in a benign setting without an adversarial presence. All
of these shuffling algorithms immediately fail in the presence of an adaptive adversary and can thus
not be translated to solve the problem considered in this work.

2 Preliminaries

Notation. We write [n] to denote the set {1, . . . , n}. For a set X, we write x ← X to denote the
process of sampling a uniformly random element x from X. For a randomized algorithm A we write
A(x; r) to explicitly specify the random tape r when A is executed on some input x. Otherwise, we
write A(x) and simply assume that r is implicitly chosen uniformly at random. We write ⊥ ← A(x)
to denote that an algorithm A failed to produce an output. We define that for any n ∈ N and any
function f that ⊥ + n := ⊥ and f = ⊥ =⇒ f(n) = ⊥. We denote the computational security
parameter by λ.

2.1 Commitment schemes

Here we recall the standard definition of a commitment scheme.

Definition 1. A commitment scheme with message space M is a tuple of PPT algorithms (Setup,
Commit, Open) that are defined as follows:

pp ← Setup(1λ): The setup algorithm takes the security parameter 1λ as input and returns public
parameters pp.

(e, d) ← Commit(pp,m): The commitment algorithm takes public parameters pp and a message m ∈
M as input and returns a commitment e along with opening information d.

m ← Open(pp, e, d): The opening algorithm takes the public parameters pp, commitment e, and
opening d as input and returns m ∈ M ∪ {⊥}.

Definition 2 (Hiding). A commitment scheme (Setup, Commit, Open) is computationally hiding,
if for any adversary PPT A and for any two messages v1, v2, it holds that

|Pr[A(pp, Commit(pp, v1) = 1] = Pr[A(pp, Commit(pp, v2) = 1]| ≤ negl(λ) ,

where the randomness is taken over the random coins of the setup algorithm, the adversary, and
the commitment scheme.

Definition 3 (Binding). A commitment scheme (Setup, Commit, Open) is perfectly biding, if for
any PPT adversary A, it holds that

Pr

!

"""#
(e, d1, d2, v1, v2) ← A(pp) :

pp ← Setup(1λ)

∧ Open(pp, e, d1) = v1

∧ Open(pp, e, d2) = v2

∧ v1 ∕= v2

$

%%%&
≤ negl(λ) ,

3

Remark 1. Throughout the paper we will omit the public parameters pp from the explicit inputs
to the algorithms and assume that pp was generated in a trusted manner and is available to all
shufflers.

For each shuffler to be able to read, re-randomize, and permute k commitments locally, we need
to assume that the commitments in the input vector for our distributed shuffling protocol satisfy
the re-randomizability property defined below. We will never make explicit use of this property in
our protocol descriptions, since we state our protocol in a fashion that is oblivious to the exact
local shuffles that are being performed, but we provide the property here for completeness.

Definition 4 (Perfect Re-Randomizability). We say a commitment scheme (Setup, Commit,
Open) is perfectly re-randomizable, if there exists a PPT algorithm Rand, such that for any pp ←
Setup(1λ), any message v it holds that e for (e, d) ← Commit(pp, v; r) for a uniformly random r is
identically distributed to e′ ← Rand(e, r′) for a uniformly random r′.

3 Model

In our model, we have a public bulletin board, where parties can post messages that are visible to
all other parties. In the beginning, the only thing written on the message board are re-randomizable
commitments c1, . . . , cn to distinct messages v1, . . . , vn.

An (m,n, k)-shuffle Π is a protocol among m parties known as the shufflers. At the end of the
protocol, the bulletin board will contain commitments c̃1, . . . , c̃n to some permutation of v1, . . . , vn.
The execution of Π proceeds in rounds over a synchronized network. During each round, each
shuffler reads k commitments from the bulletin board and publish re-randomized and permuted
versions thereof back on the board. Which commitments were shuffled by a shuffler is publicly
visible. We stress two things. Firstly, during the protocol execution, multiple shufflers can read the
same commitment from the board and publish independent copies of that commitment back on the
board. Secondly, we assume that the commitments are (computationally) hiding in the sense that
no PPT party other than the shuffler can determine the permutation between the read and the
published commitments.

At the beginning of each round i, a randomness beacon B publishes an unpredictable uniformly
random λ-bit string on the board. The shufflers can use it as an auxiliary input in rounds j ≥ i
and can make their decisions of which k commitments to shuffle dependent on these strings.

Corruptions. The shuffling protocol runs in the presence of adversarial behavior. The PPT adver-
sary can see who posts which messages on the bulletin board and in addition can perform two types
of corruptions. At the beginning of a protocol execution, before any shuffling is being performed,
the adversary can corrupt α commitments. For each corrupted commitment (or re-randomized copy
thereof), the adversary can see the corresponding values inside the commitment at any point in
time during the protocol execution, thus it is effectively able to track these commitments. Addi-
tionally, the adversary is given a budget β of adaptive corruptions of shufflers. In every round, after
the value of the randomness beacon is revealed, the adversary can corrupt at most β shufflers of
its own choice for the duration of the round. We stress that a shuffler corrupted in round t is not
necessarily corrupted in round t+1 and that the adversary may choose different sets of β shufflers

4

that are corrupted in rounds t and t+ 1 adaptively.5 Shufflers that are corrupted by the adversary
can perform arbitrarily malicious permutations on arbitrary choices of at most k commitments.

We restrict maliciously corrupted shufflers to always be honest about which commitments they
shuffled and to always honestly return a vector of valid commitments that commits to the same
set as the vector of commitments that was read by that shuffler. In principle, we do not need to
require either of those restrictions on the adversary’s behavior, since both these guarantees can
be enforced via standard zero-knowledge shuffling arguments. If the list were to contain pedersen
commitments [Ped91], then efficient shuffling arguments of Bünz et al. [BBB+18] or Hoffmann et
al. [HKR19] could be used. If the list were to contain ElGamal encryptions, then efficient shuffling
arguments of Bayer and Groth [BG12] or Bünz et al. [BBB+18] could be used. For the sake of
clarity, we chose to simply restrict the adversary to avoid talking about zero-knowledge arguments
in this work.

Efficiency metrics. We measure the efficiency of a shuffling protocol through two metrics. The first
one is the total number of shuffles performed during a protocol execution. The second one is the
round complexity of the protocol.

Definitions. For a shuffling protocol Π and an adversary A, we write (z,π) ← 〈Π(r),A(r̃)〉 to
denote the execution Π with random coins r in the presence of A with random coins r̃, where
z is the adversary’s output and π is the permutation on domain [n], i.e. between the input and
output commitments’ values. If at the end of a protocol execution the values inside the output
commitments are not a permutation of the input commitents’ values, then we write π = ⊥.

Definition 5 (Correctness). We say that an (m,n, k)-shuffle Π is correct in the presence of an
adversary A, if

Pr[(z,π) ← 〈Π(r),A(r̃)〉 : π ∕= ⊥] = 1,

where the probability is taken over the random coins r and r̃.

Definition 6 (Security). Let A = (A0,A1) be a stateful adversary that corrupts at most α com-
mitments and β shufflers. We say that an (m,n, k)-shuffle Π is (α,β, γ, δ, ε)-secure in the presence
of a PPT adversary A, if with probability at least 1− δ it holds that

Pr

'
(z,π) ← 〈Π(r),A0(r̃)〉

(i, j) ← AO(π,·)
1 (z)

: π(i) = j ∧ i ∕∈ Qα ∪Qγ

(
≤ ε,

where the randomness is taken over the random coins r and r̃. The set Qα with |Qα| ≤ α is the set
of indices of commitments that were initially corrupted and Qγ with |Qγ | ≤ γ is the set of inputs
that A1 submits to oracle O(π, ·), which is initialized with a counter c = 1 and, upon being triggered
by A1, returns π−1(c) and sets c = c+ 1 as long as c ≤ γ and otherwise returns ⊥.

4 Construction

In this section, we present our distributed shuffling protocol. Since our protocol relies on randomness
beacons, we first formally define these in Section 4.1, before formally presenting our protocol in
Section 4.2.
5 This also means that, in principle, the shufflers in different rounds do not even need to be the same entities, but
for the sake of simplicity we focus on shuffling as an m-party protocol.

5

4.1 One Randomness Beacon to Rule Them All

In the following, we will show that one randomness beacon that returns a λ-bit string in every
round is sufficient to simulate multiple structured random outputs per round. Let us first define
what we mean by a randomness beacon.

Definition 7. Let B : N → {0, 1}λ be a randomness beacon that takes a time step t ∈ N as input
and returns a λ-bit string. Let A be a PPT adversary, then for all t ∈ N it holds that

Pr

'
z ← A(r1, . . . , rt) :

r ← B(i) ∀i ∈ [t]

∧ B(t+ 1) = z

(
≤ negl(λ) ,

where the probability is taken over the random choice of B and the random coins of A.

!B(i)

r ← B(i)
(r1, . . . , rℓ) ← G0(r)

return (G1(r1), . . . , Gℓ(rℓ))

Fig. 1. Beacon with many outputs from beacon with one short output.

In the following theorem, we show that one can stretch a short pseudorandom seed returned by
the randomness beacon into a long sequence of random outputs from different structured domains,
if one is given PRGs with the appropriate output domains.

Theorem 2. Let B : N → {0, 1}λ be a randomness beacon, let Gi : {0, 1}λ → Yi for i ∈ [ℓ] and
G0 : {0, 1}λ → ({0, 1}λ)ℓ be secure pseudorandom generators. Then the construction in Figure 1 is
a randomness beacon with output domain Y1 × · · ·× Yℓ.

Proof. Let us start with hybrid0, which is defined like the game that the PPT adversary A is
playing against randomness beacon)B. Define hybrid1 identically to hybrid0 with the difference that
all outputs of G0 are replaced by uniformly random values. Indistinguishability of the two hybrids
directly follows form the pseudo-randomness of G0. We note that now in hybrid1, in every round,
each PRG is called on an independent uniformly random input. Thus, pseudo-randomness of the
output of)B directly follows form the security of all individual PRGs.

4.2 Distributed Shuffling Protocol

We will now present our main construction. We assume that the parties have access to multiple
randomness beacons, which can all be simulated by one beacon as explained above. At the start of
each round t the beacon Bπ outputs a uniformly random permutation πt over [n], the beacon Br

outputs a uniformly random
*
w1
1, . . . , w

T
1 , w

1
2, . . . , w

T
m

+
∈ ZT ·m

n/k , and the beacon Bs takes a vector*
ℓ1, . . . , ℓn/k

+
as input and returns a uniformly random vector

*
b1, . . . , bn/k

+
∈ [ℓ1] × · · · ×

,
ℓn/k

-
.

We note that in practice the beacon does not actually take any input, but instead the inputs, other
than the time step, would simply define the domains of the PRGs that are applied to the beacon’s

6

output. Furthermore, we will assume that all randomness beacons return perfectly random values
as opposed to pseudo-random values to simplify the exposition of the proof of Theorem 5. It will
be easy to see that all proofs and results carry over to randomness beacons with pseudo-random
outputs.

In the description of our construction, we will make use of a method Shuffle that takes a
vector of commitments (c̃1, . . . , c̃k) as input and returns a vector (ĉ1, . . . , ĉk) of valid output com-
mitments. The vector of messages inside the output commitments corresponds to a permutation
of the messages inside the input vector and we assume that given the input and output vectors of
commitments the permutation between them is computationally hidden.

Protocol Intuition. The main challenge that our protocol needs to overcome is the following.
Assume a hypothetical distributed shuffling protocol that runs in T rounds. In every round the
shufflers take disjoint portions of size k of the n commitments and shuffle them separately. The
result of this “light” shuffling constitutes the list of n commitments that will be further shuffled
in the proceeding rounds. Since the protocol runs for T rounds and since no two shufflers read
intersecting sets of commitments, it follows that none of the commitments in the initial list will
be shuffled more than T times in total. Furthermore, let us assume that the protocol, at the start,
reveals who will shuffle what subset of k commitments in each round. Now assume that an adversary
A wants to ensure that some honest commitment ci in the initial list will end up in a position that
is known to the adversary at the end of the shuffling protocol. To achieve this, the adversary merely
needs to spend T adaptive corruptions to corrupt the one shuffler in each round, who is supposed
to touch commitment ci. Thus, for such an approach to work, we either need a protocol with a
large number of rounds or an adversary that can only adaptively corrupt very few of the shufflers.

In order to tolerate more adaptive corruptions, the protocol could somehow require each com-
mitment to be shuffled by multiple parties in each round. This approach, however, only leads to a
mediocre improvement in the number of adaptive corruptions that can be tolerated at the cost of
significantly more shuffles that are being performed during the protocol execution. If every shuffler
performs ℓ shuffles of k commitments each in each round, then the total number of shuffles in
the protocol is increased by a multiplicative factor of ℓ. At the same time, the adversary’s cost of
performing the same attack as above is also only increased by the same factor ℓ. The main prob-
lem with the approaches outlined above is that they always publicly reveal who will shuffle which
subsets of commitments.

Somewhat surprisingly, it turns out that one can tolerate a substantially larger amount of
adaptive corruptions, when the shuffling protocol does not publicly reveal which shuffler will shuffle
which subset. The main idea here is that the adversary cannot efficiently prevent certain commit-
ments from being shuffled, since it does not know who shuffles what. Not publicly coordinating
who shuffles what in each round, however, leads to two new problems of its own. Firstly, how do
we ensure that each commitment is being shuffled often enough? Secondly, what do we do if two
shufflers read and shuffle intersecting subsets of commitments. Recall that we would like the final
shuffled list to be a permutation of the initial list.

Our protocol resolves these issues roughly as follows. Assume we are in round t of the protocol
execution and (c1, . . . , cn) are the somewhat shuffled commitments from round t− 1. At the begin-
ning of the round, the randomness beacon Bπ(t) returns a permutation πt over [n], which effectively
defines a partition of the n commitments into n/k batches. The commitments belonging to batch
i ∈ {0, . . . , n/k − 1} are defined as the commitments

*
cπ(i·k+1), . . . , cπ(i·k+k)

+
. Every shuffler Sj for

7

j ∈ [m] independently selects a batch, locally shuffles it, and publishes this shuffle on the bulletin
board. At the end of the round each batch was shuffled either zero, one, or multiple times. In the
next round, we use the randomness beacon to select one winning shuffle per batch that was shuffled
at least once and all other shuffles for that batch will be discarded and ignored. Any untouched
batch simply proceeds to the next round as is. If a batch in a round is not shuffled by anybody
or if a adversarially corrupted shuffler is selected as the winning shuffle, then we say this batch
failed. Any batch that does not fail, then succeeds. If the size k of each local shuffle is not too small
in the sense that the number of batches n/k is not too large compared to the number m − β of
honest shufflers, then we are guaranteed that most commitments will be shuffled, and in particular,
shuffled by somebody honest in each round. In other words, we are guaranteed that after some, as
we will show, not too large number of rounds all honest commitments will have been shuffled by
an honest party sufficiently often to hide their location in the final shuffled list.

Formal Protocol Description. Armed with the intuition from above, we are now ready to
present our full protocol, which can be found in Figure 2. The main result of this paper in its
full generality is stated Theorem 5, which can be found in Section 5 along with its proof. The
full theorem statement is quite technical and can be challenging to parse. For this reason we first
provide Corollaries 3 and 4 with simpler statements for some fixed choices of parameters.

The first corollary considers parameter ranges, where the number of shufflers m is sufficiently
large compared to the number of batches n/k and it assumes that k is not too small. Informally,
the Corollary 3 tells us that the round complexity only depends logarithmically on the length of
the vector that is being shuffled, even if a large fraction of the commitments are corrupted. The
resulting shuffle will provide security with an overwhelming probability and the adversaries winning
probability is only a constant factor better than pure guessing.

Corollary 3. Let n be the number of commitments and m the number of parties. Assume at
most a µ-fraction of shufflers are corrupted in any round and that at most a 4/5-fraction of
commitments have been opened and at most a 4/5-fraction of commitments are adversarially cor-
rupted. Let (Commit, Open) be a perfectly hiding and computationally binding commitment scheme.
Let Shuffle be a computationally hiding local shuffling scheme. Then there are universal con-
stants c1, c2, c3, c4 > 0 such that for any δ ≥ exp(−o(n)), if we have T = c1(lg1/µ(n/δ) + lgk n),

k ≥ c2 lg
2(n/δ) and m ≥ c3(n/k) lg(1/µ), then it holds with probability at least 1− δ that

Pr

'
(z,π) ← 〈Π(r),A0(r̃)〉

(i, j) ← AO(π,·)
1 (z)

: π(i) = j ∧ i ∕∈ Qα ∪Qγ

(
≤ c4/n+ negl(λ) ,

Our next corollary considers the setting, where the number of parties m is smaller than the
number of batches n/k. Effectively, Corollary 4 tells us that the m being smaller than n/k by a
factor of ξ requires us to pick k and T by a factor of ξ larger.

Corollary 4. Let n be the number of commitments and m = ξ(n/k) the number of parties for some
0 < ξ < 1/2. Assume at most a 4/5-fraction of shufflers are corrupted in any round and that at most
a 4/5-fraction of commitments have been opened and at most a 4/5-fraction of commitments are
adversarially corrupted. Let (Commit, Open) be a perfectly hiding and computationally commitment
scheme. Let Shuffle be a computationally hiding local shuffling scheme. Then there are universal

8

DistributedShuffle(c1, . . . , cn)

(c̃1, . . . , c̃n) := (c1, . . . , cn)

for i ∈ [m] :

Shuffler Si picks (v
1
i , . . . , v

T
i) ← ZT

n/k

Si publishes (e
1
i , . . . , e

T
i),

where (eji , d
j
i) ← Commit(vji) for j ∈ [T]

(w1
1, . . . , w

T
m) ← Br(0)

for t ∈ [T + 1] :

πt ← Bπ(t) // Public permutation for round t

if t > 1 : // Select one shuffle per batch from last round
"
u0, . . . , un/k−1

#
← Bs

"
ℓ0, . . . , ℓn/k−1

#

for i ∈ {0, . . . , n/k − 1} with ℓi > 0 :

(j1, . . . , jk) := (πt−1(i · k + 1), . . . ,πt−1(i · k + k))

parse qui
i as

"
dt−1
j , j, s, (ĉj1 , . . . , ĉjk)

#

if Open(et−1
j , dt−1

j) + wt−1
j = s : // Was correct batch shuffled?

(c̃j1 , . . . , c̃jk) :=
$
ĉ
bj
j1
, . . . , ĉ

bj
jk

%

if t ∈ [T] : // Shuffling of batches

(ℓ0, . . . , ℓn/k−1) := (0, . . . , 0) // Counter for each batch

for i ∈ [m] : // Each shuffler of round

s :=
"
vti + wt

i mod n/k
#
// Batch to be shuffled by Si

(j1, . . . , jk) := (πt(s · k + 1), . . . ,πt(s · k + k)) // Batch s

Si computes (ĉj1 , . . . , ĉjk) ← Shuffle (c̃j1 , . . . , c̃jk)

Si publishes q
ℓs
s :=

"
dti, i, s, (ĉj1 , . . . , ĉjk)

#

ℓs := ℓs + 1 // Increase counter of batch that is shuffled

(j1, . . . , jn) := (πT+1(1), . . . ,πT+1(n)) // One final public permutation

return (c̃j1 , . . . , c̃jn)

Fig. 2. Formal description of the distributed shuffling protocol among m parties for shuffling n commitments with
k-sized shuffles.

9

constants c1, c2, c3, c4 > 0 such that for any δ ≥ exp(−o(n)), if we have T = c1ξ
−1 lg(n/δ) and

k ≥ c2(lg
2(n/δ) + ξ−1 lg(n/δ)), then it holds with probability at least 1− δ that

Pr

'
(z,π) ← 〈Π(r),A0(r̃)〉

(i, j) ← AO(π,·)
1 (z)

: π(i) = j ∧ i ∕∈ Qα ∪Qγ

(
≤ c4/n+ negl(λ) ,

It will not be directly obvious that Corollary 4 follows from Theorem 5 and for this reason we
provide a proof thereof in Section 5.3.

5 Proof of Theorem 5

In this section, we proceed to prove our main theorem, which is stated below.

Theorem 5. Let n be the number of commitments, m the number of parties, k the size of a lo-
cal shuffle. Let α be the maximum number of adversarially corrupted commitments, let β be the
maximum number of corrupted shufflers per round, and let γ be the maximum number of opened
commitments after the shuffle. Let (Commit, Open) be a perfectly hiding and computationally bind-
ing commitment scheme. Let Shuffle be a computationally hiding local shuffling scheme. Then the
following statements are all true:

(i) The set of values in the output commitments is a permutation of values in the input commit-
ments.

(ii) The probability that a batch fails is p with

p = (1− k/n)m + (1− (1− k/n)m) · β
m
.

(iii) Let T = 10 lg1/p(n/δ) + 4 lgk(n) and η = γ + α− γα/n+
.

α ln(1/δ). Then for any k with

k ≥ max

/
01

02

(64/9)2 ln2(8n3 lg2(n)/δ)
3

n
n−η

42
,

ln(8n3 lg2(n)/δ)
8n
n−η ,

3e lg1/p(n/δ) + e lgk n

5
06

07

it holds that with probability at least 1− δ that

Pr

'
(z,π) ← 〈Π(r),A0(r̃)〉

(i, j) ← AO(π,·)
1 (z)

: π(i) = j ∧ i ∕∈ Qα ∪Qγ

(
≤ 4/(n− η) + negl(λ) ,

where the probability is taken over the random coins r and r̃ as well as the random choice of
the randomness beacon.

Proof. To see that our scheme outputs a permutation of the input list, we make the following
observations. In every round, every batch may be shuffled more than once, but in the successive
round exactly one shuffle per batch survives. Furthermore, we recall that in our model, the adversary
never lies about which batch it actually shuffled. Thus in every round, we have a valid permutation
of the input list and therefore the protocol produces a correct output.

10

Let hybrid0 be the the protocol execution in the presence of an adversary as defined in Defini-
tion 6. Let us consider hybrid1, which is identical to hybrid0 with the only difference being that we
replace all commitments in the input vector with commitments to 0. We observe that in hybrid1,
due to the perfect re-randomizability of the input commitments, each local shuffle now also returns
input and output vectors of length k that perfectly hide the permutation between them. Due to
the computationally hiding property of the commitments, we know that the adversary’s success
probability in hybrid0 and hybrid1 can at most differ by a negligible in λ amount. In the following
we will analyze the success probability of the adversary in hybrid1.

Furthermore, let us make the following observations. For each shuffler Si, the adversary sees
commitments

*
e1i , . . . , e

T
i

+
to the values vji ← Commit(vji) for j ∈ [T]. Together with the output*

w1
1, . . . , w

T
m

+
of randomness beacon Br(0), these values define which batches each party will shuffle

throughout the protocol execution. By assumption, the commitment scheme used for these com-
mitments is perfectly hiding, which means that the adversary obtains no information about the
committed values of the honest parties. The best the adversary can do is guess which batch will be
shuffled by an honest shuffler. Furthermore, we observe that in every round t, every adversarially
corrupt party Si is forced to shuffle a uniformly random batch

*
vti + wt

i mod n/k
+
, unless it were

to break the computational binding property of the commitment scheme.

Let us now consider our starting vector c1, . . . , cn of commitments and fix some index z ∈ [n],
which is not adversarially corrupted and whose location in the final permuted vector is not yet
revealed. Let us now see how well this index will be hidden by the shuffling protocol. To obtain our
final statement we will simply perform a union bound over all z ∈ [n] that are honest and not yet
opened.

We will view each commitment as a cup of water. Initially cup z has 1 unit of water and the
remaining have 0. This can be interpreted as the adversary knowing with certainty where the z-th
commitment is before the shuffling starts. Among the cups, η of them are idle and the remaining
n−η cups are active. The idle commitments correspond to those either controlled by the adversary
or already opened at the end of the protocol execution. The active ones are those belonging to
an honest shuffler that are not yet revealed. For now, we deal with the case of a fixed η and in
Section 5.2, we generalize the result to the whole execution of opening up to γ commits, including
also the possibility that adversarial commits have been opened.

For T rounds, the cups are randomly shuffled and partitioned into n/k batches of k cups each.
Let Bt

1, . . . , B
t
n/k denote the batches in round t.

In each round, there are β adversarial tokens and m − β honest tokens. The tokens are each
assigned to a uniform random batch and among the tokens assigned to a batch, a uniform random
one is chosen. If a batch either chooses an adversarial token or is not assigned any token, then
the batch fails. The batches that do not fail succeed. The assignment of tokens correspond to the
protocol in the sense that a batch is either assigned an honest shuffler, an adversarial shuffler or no
shuffler at all.

In each succeeding batch Bt
i , all water from active cups is collected and distributed evenly

among the active cups. This intuitively corresponds to the fact that the local shuffling operation
distributes the probability of a commitment being in a certain position evenly among all other
honest commitments within that shuffle. We use Ct

i ⊆ Bt
i to denote the active cups in batch Bt

i .
We also define bt,i as the amount of water in the i’th cup after round t. The initial water in the
cups are denoted by b0,i. Finally, we define W (Bt

i) =
8

j∈Ct
i
bt−1,j/|Ct

i | as the average amount of

11

water in the active cups entering batch i during round t. We remark that for all j ∈ Ct
i , we have

bt,j = W (Bt
i).

Let us also bound the probability that a batch fails. A batch fails if it is not assigned an honest
token. The probability that a batch receives any token is 1− (1− k/n)m. Conditioned on receiving
a token, it receives an adversarial token with probability β/m. Hence it fails with probability p
satisfying:

p = (1− k/n)m + (1− (1− k/n)m) · β
m
.

We wish to bound the probability that after T rounds, there is a cup with more than 4/(n − η)
units of water in it. To do so, we identify a few different things that may go wrong. Intuitively,
there are two different ways that we could have a cup of water with more than 4/(n − η) units
of water in it after each round. Either (1), many cups with slightly more than 4/(n − η) units of
water appear in the same batch Bt

i , or (2) a cup with much more than 4/(n − η) units of water
appeared in a batch. We claim that it is very unlikely that (1) ever occurs and we claim that (2)
cannot occur too often. For (1), we show:

Lemma 6. If we have

k ≥ max

/
1

2
(64/9)2 ln2(8n3 lg2(n)/δ)

3
n

n−η

42
,

ln(8n3 lg2(n)/δ)
8n
n−η

5
6

7

and T ≤ 4k/e, then

Pr

'
∃t, i : max

j∈Ct
i

bt−1,j ≤ k1/4W (Bt
i) ∧W (Bt

i) ≥ 4/(n− η)

(
≤ δ/2.

Lemma 6 shows that it is very unlikely that many cups without a lot of water combine to create
a batch with above 4/(n− η) units of water. Intuitively, this is true since without cups having a lot
water, we get strong concentration on the average amount of water in a batch. We defer the proof
of the lemma to Section 5.1.

Despite ruling out many cups without a lot of water creating a batch with above 4/(n − η)
water, there may still be a few cups with lots of water. In particular, there is a single cup with 1
unit of water in the beginning. For step (2), we argue about such cups by considering a notion of
a witness:

Witness. We define a witness of failure. Such a witness consists of up to a indices 1 ≤ i1 < i2 · · · <
ia ≤ T and for each index ij , also an integer xj ∈ [k]. Here a is a parameter to be fixed. Note that
there are no more than

a9

i=0

:
T

i

;
ki ≤ (eTk/a)a

distinct witnesses. A witness W = (i1, . . . , ia, x1, . . . , xa) and an execution of the shuffling produces
a trace as follows: Before round 1, let h0 = 1 be an index pointing to the batch with all the water.
Then process the rounds in turn, from t = 1, . . . , T . When processing round t, if t ∕= ij for any j,
we simply let ht = ht−1. Otherwise, we update ht to equal the xj ’th cup from the batch containing
ht−1 in round t. The trace of a witness is thus a sequence of cups that change only in rounds ij .

The trace h0, . . . , hT of a witness W = (i1, . . . , ia, x1, . . . , xa) is valid if:

12

– For all t ∈ {i1, . . . , ia}, it holds that bt−1,ht−1 ≥ k1/4 · bt,ht .
– For all t /∈ {i1, . . . , ia}, it holds that ht is in a failing batch in round t.
– bT,hT

≥ 4/(n− η).

These properties already puts some constraints on the number of valid witnesses. Concretely, ob-
serve that for any t ∈ {i1, . . . , ia}, the amount of water in the cup bt−1,ht−1 increases by a factor at

least k1/4 over bt,ht . Since we end with bT,hT
≥ 4/(n − η) and start with b0,h0 = 1, it follows that

a ≤ 4 lgk(n− η). We will thus only consider witnesses with a ≤ 4 lgk n.
To build some intuition for a witness and its trace, note that it if we look at the path from the

last round and back to the first, it corresponds to tracing a path backwards through the rounds of
shuffling, all the time keeping track of a cup with a lot of water. In each round, either the traced
cup is in a failing batch, or one of the cups entering the batch had much more water in the previous
round (a factor k1/4). We then trace that cup with lots of water. Since the amount of water in the
traced cup increases a lot (recall that we trace a cup backwards through the rounds) whenever we
are not in a failing batch, this cannot happen too often.

The crucial point is that if we rule out the unlikely event defined in Lemma 6, then there can
only be a cup with more than 4/(n − η) water left at the end, if there is a witness with a valid
trace:

Lemma 7. If for all t, i, it holds that maxj∈Ct
i
bt−1,j ≥ k1/4W (Bt

i) or W (Bt
i) < 4/(n− η), then if

there is a cup j with bT,j ≥ 4/(n− η), then there must be a witness with a valid trace.

Proof. Assume that for all t, i, it holds that maxj∈St
i
bt−1,j ≥ k1/4W (Bt

i) or W (Bt
i) < 4/(n − η),

but that there is an j such that bT,j ≥ 4/(n − η). In this case, we claim there must be a witness
with a valid trace.

We find the witness and trace starting from the last round and trace it backwards. That is, we
start by setting hT = j for an index j with bT,j ≥ 4/(n − η). Then we trace a cup back through
the rounds. Assume we are at round t + 1 and want to determine ht. Consider the batch that
contains the cup ht+1 in round t. The average amount of water among the active cups in that
batch is precisely bt+1,ht+1 . If the batch failed in round t, we simply set ht = ht+1 and observe that
bt,ht = bt+1,ht+1 . Otherwise, the batch did not fail and we let ht be the index of the cup with the
most water entering the same batch as ht+1 in round t. Clearly, bt,ht ≥ bt+1,ht+1 since we pick the
max. Thus the values bt,ht may only increase as we go back and thus stay above 4/(n − η). Thus
using the assumption that maxj∈Ct

i
bt−1,j ≥ k1/4W (Bt

i) or W (Bt
i) < 4/(n− η) for all i, t, we must

in fact have bt,ht > k1/4bt+1,ht+1 . It follows that the trace we construct is indeed valid.

In light of Lemma 7, what remains is to argue that it is unlikely to have a witness with a valid
trace:

Lemma 8. Let p be the probability that a batch fails. If we have k ≥ 3e lg1/p(n/δ) + e lgk n and
set T = 10 lg1/p(n/δ) + 4 lgk n, then T ≤ 4k/e and the probability that there exists a witness with a

valid trace is at most δ10/n2.

Proof. Observe that for a fixed witness W , the probability that its trace is valid is at most pT−a,
where p is the probability that a fixed batch fails in a round. If we let T satisfy

:
eTk

4 lgk n

;4 lgk n

· pT−4 lgk n ≤ δ10/n2,

13

then a union bound over all possible witnesses shows that the probability that there is witness
with a valid trace is no more than δ10/n2. If we assume k ≥ 3 lg1/p(n/δ) + e lgk n and set T =
10 lg1/p(n/δ) + 4 lgk n, then T ≤ 4k/e and we see that the above is satisfied:

:
eTk

4 lgk n

;4 lgk n

· pT−4 lgk n

≤
*
k2
+4 lgk n · p10 lg1/p(n/δ) = n8(δ/n)10 ≤ δ10/n2.

Corollary 9. Let p be the probability that a batch fails. If we set T = 10 lg1/p(n/δ) + 4 lgk n and
have

k ≥ max

/
01

02

(64/9)2 ln2(8n3 lg2(n)/δ)
3

n
n−η

42
,

ln(8n3 lg2(n)/δ)
8n
n−η ,

3e lg1/p(n/δ) + e lgk n

5
06

07
,

then with probability at least 1− δ/(2n2)− δ10/n2, there is no index j with bT,j ≥ 4/(n− η).

Proof. By Lemma 8, we have T ≥ 4k/e and by the requirement on k, Lemma 6 gives us that

Pr

'
∃t, i : max

j∈Ct
i

bt−1,j ≤ k1/4W (Bt
i) ∧W (Bt

i) ≥ 4/(n− η)

(

≤δ/(2n2).

Combining this with Lemma 8 gives us that with probability at least 1−δ/(2n2)−δ10/n2, there is no
witness with a valid trace and for all i, t we have maxj∈Ct

i
bt−1,j ≥ k1/4W (Bt

i) or W (Bt
i) < 4/(n−η).

Lemma 7 finally implies that there is no cup j with bT,j ≥ 4/(n− r).

5.1 Proof of Lemma 6

For group i in round t, denote by Et,i the undesirable event that maxj∈Ct
i
bt−1,j ≤ k1/4W (Bt

i) ∧
W (Bt

i) ≥ 4/(n−η). To bound Pr[Et,i], we further define events Et,i,v that occur if v ≤ W (Bt
i) ≤ 2v

and maxj∈Ct
i
bt−1,j ≤ 2k1/4v. Then Pr[Et,i] ≤

8lg2(n−η)−2
h=0 Pr[Et,i,2h+2/(n−η)].

To bound Pr[Et,i,2h+2/(n−η)], let v = 2h+2/(n− η) and observe that:

Pr[Et,i,v] =

k9

s=0

Pr[|Ct
i | = s] Pr[Et,i,v | |Ct

i | = s]

=

k9

s=0

Pr[|Ct
i | = s] Pr[max

j∈Ct
i

bt−1,j ≤ k1/42v | |Ct
i | = s]

· Pr[Et,i,v | max
j∈Ct

i

bt−1,j ≤ k1/42v, |Ct
i | = s]

≤
k9

s=0

Pr[|Ct
i | = s]·

Pr[W (Bt
i) ≥ v | max

j∈Ct
i

bt−1,j ≤ k1/42v, |Ct
i | = s].

14

Conditioned on maxj∈St
i
bt−1,j ≤ k1/42v, |Ct

i | = s, the cups in Ct
i are distributed precisely as s

samples without replacement from the set of all active cups h with bt−1,h ≤ k1/42v. If we consider one
such sample/cup, then the expected amount of water in it is at most that of a sample from among
all active indices (since removing the cups with the most water only decreases the expectation).
Thus each of the s samples contains no more than 1/(n− η) ≤ v/4 water in expectation. It follows
from a Hoeffding bounding without replacement that

Pr[W (Bt
i) ≥ v | max

j∈Ct
i

bt−1,j ≤ k1/42v, |Ct
i | = s]

≤ exp

:
−2(3/4)2v2s2

s4k1/2v2

;
= exp

:
− 9s

32
√
k

;
.

Notice that E[|Ct
i |] = k · n−η

n . By Chernoff, we have

Pr

<
|Ct

i | <
k(n− η)

2n

=
≤ exp

:
−k · n− η

8n

;

If we assume k ≥ ln(8n3 lg2 n/δ)
8n
n−η , then this is no more than δ/(8n3 lg2 n). Hence

Pr[Et,i,v] ≤ δ/(8n3 lg2 n) + exp

>
−9

√
k(n− η)

64n

?
.

Let us also assume k ≥ (64/9)2 ln2(8n3 lg2(n)/δ)
3

n
n−η

42
, then this is at most δ/(4n3 lg2 n). A union

bound over all T rounds, all n/k groups and all lg2(n − η) − 2 ≤ lg2 n values of v shows that the
probability that there is an Et,i that occurs is at most (using T ≤ 4k/e):

(n/k)(4k/e)(δ lg2 n)/(4n
3 lg2 n) = δ/(n2e) < δ/(2n2).

5.2 Random Number of Idle Cups.

In the previous analysis, we assumed that a fixed number of cups, denoted η, were idle. We will now
generalize the results to the following setup: Before the random shuffling process begins, we have
two phases. In the first phase, we have a fixed set of α marked cups. In the second phase, we choose
a uniform random subset of γ of the cups and mark them. If a cup was marked either during the
first or second phase, it becomes idle and otherwise it is active. Notice that this corresponds to first
having chosen the α adversarially corrupted commitments and then opening γ random commits.

Once the idle and active cups have been chosen, we run the water shuffling process from above.
We now bound the probability of seeing an active cup with more than 4/(n − η) units of water
after T rounds. As the guarantees of the previous section goes down with the number of idle cups
η, we first bound the probability of seeing many idle cups. For this, notice that the first phase
marks precisely α cups. For the second phase, the number of newly marked cups can be bounded
by observing that the γ samples without replacement each picks a cup already marked in the first
phase with probability precisely α/n (when looking at the marginal distribution of the cup). It
follows by a Hoeffding bound without replacement that the number of newly marked cups in the
second phase, denoted y, satisfies:

Pr[y − (1− α/n)γ > t] < exp(−2t2/γ).

15

n m k α/n β/m

1 214 214 128 1/16 1/16
T 3 4 5 6 7 8
δ 0.8500 0.1800 0.02215 0.00220 0.0002 0.0000

2 214 214 128 1/4 1/4
T 5 6 7 8 9 10 11 12 13
δ 0.4656 0.1910 0.0677 0.0219 0.0066 0.0018 0.0006 0.0002 0.0000

3 214 128 128 1/16 1/16
T 10 12 14 16 18 20 22 24 26
δ 0.3357 0.1384 0.0523 0.0191 0.0061 0.0017 0.0006 0.0005 0.0001

4 214 16 210 1/16 1/16
T 2 4 6 8 10 12 14 16
δ 0.5194 0.1346 0.0362 0.0087 0.0023 0.0007 0.0002 0.0000

5 214 16 128 1/16 1/16
T 20 40 60 80 100 120 140 160
δ 0.9958 0.6230 0.1558 0.0264 0.0026 0.004 0.0002 0.0000

Table 1. Results of our numerical experiments for determining the number of rounds T that is needed for successfully
shuffling with different sets of parameters.

Setting t =
.

γ ln(1/(nδ)) bounds the above by δ2/n2. Thus with probability at least 1 − δ2/n2,
we have η <= α+ y <= α+ t+(1−α/n)γ = α+ γ−αγ/n+

.
γ ln(1/δ). A union bound together

with Corollary 9 gives (assuming δ is small enough that 1− δ/(2n2)− δ10/n2 − δ2/n2 ≥ 1− δ/n2)
us that with probability at least 1 − δ/n2, there is no index j with bT,j ≥ 4/(n − η). The above
analysis was for a fixed number of opened commits γ and a fixed input cup z ∈ [n]. Doing a union
bound over all pairs of a γ′ ≤ γ and all z ∈ [n] that the probability that throughout the opening
of γ commits, that there is ever an input cup z whose output destination can be predicted with
probability greater than 4/(n−η) is at most n2 ·(δ/n2) = δ. This completes the proof of Theorem 5.

5.3 Proof of Corollary 4

Proof. We see that the failure probability of a batch, p, is no more than (1 − k/n)m + (1 − (1 −
k/n)m)(4/5). For any x satisfying (1− k/n)m ≤ x < 1, this is upper bounded by x+ (1− x)(4/5).
We use that (1−k/n)m ≤ exp(−km/n) = exp(−ξ) ≤ exp(−(ξ/2)

8∞
n=1(ξ/2)

n−1/n) = 1− ξ/2 by a
Taylor series for ln(1− x) and using

8∞
n=0(ξ/2)

n/n < 2. Thus we conclude p = (1− k/n)m + (1−
(1−k/n)m)(4/5) ≤ (1−ξ/2)+(ξ/2)(4/5) ≤ 1−ξ/2. Hence lg1/p(n/δ) = ln(n/δ)/ ln((1−ξ/2)−1) ≤
ln(n/δ)/ ln(exp(−ξ/2)−1) = (2/ξ) ln(n/δ). Plugging this into Theorem 5 concludes the proof.

6 Experiments

In this section, we perform numerical experiments to precisely determine the practical constants in
our distributed shuffling protocol. In our experiments we consider n commitments and m shufflers
of which β are adversarial. Moreover, we assume that η = (3/4)n commitments have already been
opened and that α commitments are adversarially corrupted. We then repeatedly simulate the
water mixing process from the proof of Theorem 5 with T rounds and check whether the next
commitment to be opened can be determined with probability greater than 4/(n− η) = 16/n, i.e.
if there is an input commitment that has more than 4/(n − η) water for the next position to be
opened. If so, we count the simulation as failing and if not, we count it as succeeding. In this way,
the fraction of failing simulations, denoted δ, is an unbiased estimate of the true probability that
the next commitment to be opened can be determined with probability greater than 4/(n− η). We
run the experiment with varying values of T and k. The number of simulations we run for each

16

experiment is 20000. From our theoretical results, we know that T = O(lg1/p(n/δ) + lgk n) rounds
suffice and thus we expect that the failure probability decreases by a constant factor, namely a
factor 1/p, with each round once the first few rounds have been performed.

Our benchmarks can be found in Table 1. In parameter set #1, we consider many shufflers
performing small local shuffles and it can be seen that the shuffling terminates quickly, since the
failure probability drops by a factor of ≈ 10 in every round. In #2, we consider the same parameters
with a larger set of corrupted commitments and shufflers, which results in a slightly larger round
complexity to reach the desired failure probability. In every round, δ drops by around a factor of 3.
In #3, we consider a small number of shufflers each performing small local shuffles. As expected it
noticeably increases the round complexity, but even then the failure probability drops by a factor
of 3 every two rounds. In #4, we consider an even smaller number of shufflers m = 16, but this time
consider each of them performing a local shuffle of size k = 210 to shuffle a vector of length 214. Our
benchmarks show that this shuffle already terminates after 16 rounds. Lastly, in #5 we consider
a extreme setting of parameters, where we have very few shufflers m = 16, which perform small
shuffles of size k = 128. Our benchmarks show that for such parameters, the round complexity
increases by an order of magnitude.

Concluding, our benchmarks show that for reasonable parameters, where we either have enough
shufflers or where k is chosen large enough, our distributed shuffling protocol terminates in a
concretely small number of rounds.

7 Applications

In this section, we will highlight some of the applications that can benefit from our distributed
shuffling protocol. We will focus on canonical examples in each of these applications, as providing
fully fledged out solutions is beyond the scope of this work.

7.1 Single Secret Leader Elections

In the single secret leader election (SSLE) problem, recently introduced by Boneh et al. [BEHG20],
we have m parties with access to a public bulletin board that would like to elect exactly one leader
among them. The leader should be fairly chosen, in the sense that each party should have a roughly
equal probability of becoming the leader. Additionally, the leader should remain hidden until they
decide to reveal themselves.

Boneh et al. present three solutions to this problem. The first two solutions are based on
indistinguishability obfuscation and threshold fully homomorphic encryption respectively. Both
of these tools are highly complex and computationally very expensive, thus these two solutions
can be seen as theoretical feasibility results, rather than practical solutions ready for deployment
today. The authors also outline a third solution based on a distributed shuffling protocol.6 Here
each of the m participant Si publishes a commitment ci that only they can open on the bulletin
board. Thereafter, all participants act as shufflers and permute the n := m entries on the bulletin
board using H̊astad’s square shuffle [H̊as06, H̊as16], which shuffles n items using local shuffles of
size k =

√
n. As mentioned in the introduction, H̊astad’s square shuffle is an algorithm whose

6 SSLE based on shuffling has recently sparked some interested in the Ethereum ecosystem [Eth]. The protocol that
is proposed there, however, has no well-defined adversarial model, no security proof, and is not secure against the
adaptive corruption setting we consider in this work.

17

correctness is proven in a benign setting. It does not provide any provable security guarantees in
the presence of an adversary that may aim to disrupt the shuffling process. In distributed systems
such as cryptocurrencies, it may not always be realistic to assume that all shufflers are always online
and that they all behave honestly.

Our distributed shuffling protocol allows for for solving the SSLE problem in a more realistic
setting, where some participants can be either offline7 or outright malicious. More generally, our
protocol also allows for electing not just one, but an ordered list of up to γ leaders. We note that
our protocol is particularly well-suited for the SSLE setting, since here we naturally have more
shufflers than batches. In such settings, our shuffling protocol is very efficient and only requires a
small number of rounds to terminate. As a concrete example, one can see in Experiment #2 in
Table 1 that our shuffling protocol among m = n = 214 shufflers with k = 128 is likely to terminate
after only 13 rounds, even when 1/4 of all participants are malicious.

7.2 Mix-Nets

One of the most prominent and versatile tools for achieving anonymity in a variety of settings
are mix-nets, which were introduced by Chaum [Cha81] already 40 years ago. For the sake of
concreteness let us focus on the following exemplary applications. We have n senders, who would
each like to send one message to some set of receivers without revealing who sent a message to
which receiver. Each sender sends their message to shuffler S1, which shuffles all of them and
forwards the resulting vector to S2, who shuffles them again and so on and so forth. If we have
m shufflers and only one of them is honest, then the adversary has no ability to link any honest
entry in the input vector to an entry in the output vector. The protocol has a round complexity
that is linear in m. Apart from the large round-complexity, this approach also requires every single
shuffler to have a large memory and to perform an amount of work that is linear in the length of
the input vector. This is problematic for two reasons. From a scalability perspective, the length of
the vector can quickly become a bottleneck hindering a large-scale usage of such mix-nets. From
a participation perspective, the large computational and bandwidth costs for shufflers can be an
entry barrier that prevents users to participate with their own machine in a distributed mix-net.
Especially for distributed systems that aim to provide security guarantees like censorship resistance,
it is important that parties with “normal” hardware can participate and that mix-nets do not
depend on a few dedicated entities running it. Our distributed shuffling protocol provides a trade-
off for classical mix-nets. If we assume that only some constant fraction of shufflers is adversarially
corrupt, then our protocol shuffles all n messages in O (lg n) rounds. The total memory required
by any shuffler is linear in k and for certain parameter choices the total work of any shuffler can
be sub-linear in the length n of the input vector. Additionally, using our protocol as a mix-net
provides security against sleeper attacks [Syv11], where an adversary may corrupt up to α of the
senders to learn something about the locations of the honest senders’ messages.

7.3 Electronic voting

One popular application of mix-nets is electronic voting [SK95, Nef01, JJR02]. In this setting we
have n citizens that would like to vote in an election. Glossing over many details, we havem shufflers
and we have a decryption committee that holds a decryption key dk corresponding to an encryption

7 Offline shufflers can be seen as malicious shufflers that perform the identity permutation.

18

key ek. Each citizen casts its vote and encrypts it using ek. All encrypted votes are published on a
bulletin board. The shufflers, then proceed to permute the votes before the decryption committee
uses dk to decrypt every vote in the output vector. Given the decrypted vector anybody can tally
the votes to determine the election outcome. As in the case of general mix-nets, our approach allows
for reducing the memory and potentially also work required by each shuffler and allows for shuffling
the input vector in only O(lg n) rounds. Anonymity of an honest citizen’s vote is maintained even
if α citizens are maliciously corrupted or coerced.

References

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bul-
letproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 315–334. IEEE, 2018. 3

BD92. Dave Bayer and Persi Diaconis. Trailing the dovetail shuffle to its lair. The Annals of Applied Probability,
pages 294–313, 1992. 1.2

BEHG20. Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single secret leader election. In
Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, pages 12–24, 2020. 7.1

BG12. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a shuffle. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 263–280.
Springer, 2012. 1, 3

BMG+07. Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker. Low-resource routing
attacks against tor. In Proceedings of the 2007 ACM workshop on Privacy in electronic society, pages 11–
20, 2007. 1

BNM+14. Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A Kroll, and Edward W
Felten. Mixcoin: Anonymity for bitcoin with accountable mixes. In International Conference on Financial
Cryptography and Data Security, pages 486–504. Springer, 2014. 1

Cha81. David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications
of the ACM, 24(2):84–90, 1981. 1, 7.2

DMS04. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion router. Tech-
nical report, Naval Research Lab Washington DC, 2004. 1

Eth. Ethereum. Whisk: A practical shuffle-based ssle protocol for ethereum. 6

FS01. Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. In Annual International
Cryptology Conference, pages 368–387. Springer, 2001. 1

GRS96. David M Goldschlag, Michael G Reed, and Paul F Syverson. Hiding routing information. In International
workshop on information hiding, pages 137–150. Springer, 1996. 1

H̊as06. Johan H̊astad. The square lattice shuffle. Random Structures and Algorithms, 29(4):466–474, 2006. 1.2,
7.1

H̊as16. Johan H̊astad. The square lattice shuffle, correction. Random Structures and Algorithms, 48(1):213, 2016.
1.2, 7.1

HKR19. Max Hoffmann, Michael Klooß, and Andy Rupp. Efficient zero-knowledge arguments in the discrete log
setting, revisited. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 2093–2110, 2019. 3

JJR02. Markus Jakobsson, Ari Juels, and Ronald L Rivest. Making mix nets robust for electronic voting by
randomized partial checking. In 11th USENIX Security Symposium (USENIX Security 02), 2002. 1, 7.3

Max13. Coinjoin: Bitcoin privacy for the real world. 2013. 1

MD05. Steven J Murdoch and George Danezis. Low-cost traffic analysis of tor. In 2005 IEEE Symposium on
Security and Privacy (S&P’05), pages 183–195. IEEE, 2005. 1

MR14. Ben Morris and Phillip Rogaway. Sometimes-recurse shuffle. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 311–326. Springer, 2014. 1.2

MZ07. Steven J Murdoch and Piotr Zieliński. Sampled traffic analysis by internet-exchange-level adversaries. In
International workshop on privacy enhancing technologies, pages 167–183. Springer, 2007. 1

Nef01. C Andrew Neff. A verifiable secret shuffle and its application to e-voting. In Proceedings of the 8th ACM
conference on Computer and Communications Security, pages 116–125, 2001. 1, 7.3

19

Ped91. Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
Annual international cryptology conference, pages 129–140. Springer, 1991. 3

RSG98. Michael G Reed, Paul F Syverson, and David M Goldschlag. Anonymous connections and onion routing.
IEEE Journal on Selected areas in Communications, 16(4):482–494, 1998. 1

RY13. Thomas Ristenpart and Scott Yilek. The mix-and-cut shuffle: small-domain encryption secure against n
queries. In Annual Cryptology Conference, pages 392–409. Springer, 2013. 1.2

SK95. Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages 393–403. Springer, 1995. 1, 7.3

Syv11. Paul Syverson. Sleeping dogs lie in a bed of onions but wake when mixed. 4th Hot Topics in Privacy
Enhancing Technologies (HotPETs 2011), 2011. 7.2

Tho73. Edward O Thorp. Nonrandom shuffling with applications to the game of faro. Journal of the American
Statistical Association, 68(344):842–847, 1973. 1.2

20

