
Cell Probe Lower Bounds and Approximations
for Range Mode

Mark Greve, Allan Grønlund Jørgensen, Kasper Dalgaard Larsen, and Jakob
Truelsen

MADALGO?, Department of Computer Science, Aarhus University, Denmark.
{mgreve,jallan,larsen,jakobt}@madalgo.au.dk

Abstract. The mode of a multiset of labels, is a label that occurs at
least as often as any other label. The input to the range mode problem is
an array A of size n. A range query [i, j] must return the mode of the sub-
array A[i], A[i+ 1], . . . , A[j]. We prove that any data structure that uses
S memory cells of w bits needs Ω(log n

log(Sw/n)
) time to answer a range mode

query. Secondly, we consider the related range k-frequency problem. The
input to this problem is an array A of size n, and a query [i, j] must
return whether there exists a label that occurs precisely k times in the
subarray A[i], A[i+1], . . . , A[j]. We show that for any constant k > 1, this
problem is equivalent to 2D orthogonal rectangle stabbing, and that for
k = 1 this is no harder than four-sided 3D orthogonal range emptiness.
Finally, we consider approximate range mode queries. A c-approximate
range mode query must return a label that occurs at least 1/c times that
of the mode. We describe a linear space data structure that supports
3-approximate range mode queries in constant time, and a data struc-
ture that uses O(n

ε
) space and supports (1 + ε)-approximation queries

in O(log 1
ε
) time.

1 Introduction

In this paper we consider the range mode problem, the range k-frequency prob-
lem, and the c-approximate range mode problem. The frequency of a label l in
a multiset S of labels, is the number of occurrences of l in S. The mode of S is
the most frequent label in S. In case of ties, any of the most frequent labels in
S can be designated the mode.

For all the problems we consider the input is an array A of length n containing
labels. For simplicity we assume that each label is an integer between one and n.
In the range mode problem, we must preprocess A into a data structure that
given indices i and j, 1 ≤ i ≤ j ≤ n, returns the mode, Mi,j , in the subarray
A[i, j] = A[i], A[i + 1], . . . , A[j]. We let Fi,j denote the frequency of Mi,j in
A[i, j]. In the c-approximate range mode problem, a query is given indices i
and j, 1 ≤ i ≤ j ≤ n, and returns a label that has a frequency of at least Fi,j/c.

? Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

In the range k-frequency problem, a query is given indices i and j, 1 ≤ i ≤ j ≤ n,
and returns whether there is a label occurring exactly k times in A[i, j].

For the upper bounds we consider the unit cost RAM with word size w =
Θ(log n). For lower bounds we consider the cell probe model of Yao [1]. In this
model of computation a random access memory is divided into cells of w bits.
The complexity of an algorithm is the number of memory cells the algorithm
accesses. All other computations are free.

Previous Results. The first data structure supporting range mode queries in con-
stant time was developed in [2], and this data structure uses O(n2 log log n/ log n)
space. This was subsequently improved to O(n2/ log n) space in [3] and finally to
O(n2 log log n/ log2 n) in [4]. For non-constant query time, the first data struc-
ture developed uses O(n2−2ε) space and answers queries in O(nε log n) time,
where 0 < ε ≤ 1

2 is a query-space tradeoff constant [2]. The query time was later
improved to O(nε) without changing the space bound [3].

Given the rather large bounds for the range mode problem, the approximate
variant of the problem was considered in [5]. With constant query time, they solve
2-approximate range mode with O(n log n) space, 3-approximate range mode
with O(n log log n) space, and 4-approximate range mode with linear space. For
(1 + ε)-approximate range mode, they describe a data structure that uses O(nε)
space and answers queries in O(log log(1+ε) n) = O(log log n+ log 1

ε) time. This
data structure gives a linear space solution with O(log log n) query time for c-
approximate range mode when c is constant. There are no known non-trivial
lower bounds for the any of the problems we consider.

Our Results. In this paper we show the first lower bounds for range mode data
structures and range k-frequency data structures and provide new upper bounds
for the c-approximate range mode problem and the range k-frequency problem.

In Section 2 we prove our lower bound for range mode data structures. Specif-
ically, we prove that any data structure that uses S cells and supports range
mode queries must have a query time of Ω(logn

log(Sw/n)). This means that any data
structure that uses O(n logO(1) n) space needs Ω(log n/ log log n) time to answer
a range mode query. Similarly, any data structure that supports range mode
queries in constant time needs n1+Ω(1) space.

We suspect that the actual lower bound for near-linear space data structures
for the range mode problem is significantly larger. However a fundamental ob-
stacle in the cell probe model is to prove lower bounds for static data structures
that are higher than the number of bits needed to describe the query. The highest
known lower bounds are achieved by the techniques in [6, 7] that uses reductions
from problems in communication complexity. We use this technique to obtain
our lower bound and our bound matches the highest lower bound achieved with
this technique.

Actually our construction proves the same lower bound for queries on the
form, is there an element with frequency at least (or precisely) k in A[i, j], where
k is given at query time. In the scenario where k is fixed for all queries it is trivial
to give a linear space data structure with constant query time for determining

whether there is an element with frequency at least k. In Section 3 we consider
the case of determining whether there is an element with frequency exactly k,
which we denote the range k-frequency problem. To the best of our knowledge,
we are the first to consider this problem. We show that 2D rectangle stabbing
reduces to range k-frequency for any constant k > 1. This reduction proves
that any data structure that uses S space, needs Ω(log n/ log(Sw/n)) time for
a query [7, 8], for any constant k > 1. Secondly, we reduce range k-frequency
to 2D rectangle stabbing. This reduction works for any k. This immediately
gives a data structure for range k-frequency that uses linear space, and answers
queries in optimalO(log n/ log log n) time [9] (we note that 2D rectangle stabbing
reduces to 2D range counting). In the restricted case where k = 1, this problem
corresponds to determining whether there is a unique label in a subarray. The
reduction from 2D rectangle stabbing only applies for k > 1. We show, somewhat
surprisingly, that determining whether there is a label occurring exactly twice (or
k > 1 times) in a subarray, is exponentially harder than determining if there is
a label occurring exactly once. Specifically, we reduce range 1-frequency to four-
sided 3D orthogonal range emptiness, which can be solved with O(log2 log n)
query time and O(n log n) space by a slight modification of the data structure
presented in [10].

In Section 4 we present a simple data structure for the 3-approximate range
mode problem. The data structure uses linear space and answers queries in
constant time. This improves the best previous 3-approximate range mode data
structures by a factor O(log log n) either in space or query time. With linear
space and constant query time, the best previous approximation factor was 4.
In Section 5 we use our 3-approximate range mode data structure, to develop
a data structure for (1 + ε)-approximate range mode. This data structure uses
O(nε) space and answers queries in O(log 1

ε) time. This removes the dependency
on n in the query time compared to the previously best data structure, while
matching the space bound. Thus, we have a linear space data structure with
constant query time for the c-approximate range mode problem for any constant
c > 1. We note that we get the same bound if we build on the 4-approximate
range mode data structure from [5].

2 Cell Probe Lower Bound for Range Mode

In this section we show a query lower bound of Ω(log n/ log(Sw/n)) for any range
mode data structure that uses S space for an input array of size n. The lower
bound is proved for the slightly different problem of determining the frequency
of the mode. Since the frequency of an element in any range can be determined
in O(log log n) time by a linear space data structure the lower bound for range
mode follows. This data structure stores a linear space static rank data struc-
ture [11] for each label ` in the input, containing the positions in A storing `.
The frequency of a label in A[i, j] is the rank difference between i− 1 and j.

Communication Complexity and Lower Bounds. In communication complexity
we have two players Alice and Bob. Alice receives as input a bit string x and

Bob a bit string y. Given some predefined function, f , the goal for Alice and
Bob is to compute f(x, y) while communicating as few bits as possible.

Lower bounds on the communication complexity of various functions have
been turned into lower bounds for static data structure problems in the cell probe
model. The idea is as follows [12]: Assume we are given a static data structure
problem and consider the function f(q,D) that is defined as the answer to a
query q on an input set D for this problem. If we have a data structure for
the problem that uses S memory cells and supports queries in time t we get a
communication protocol for f where Alice sends t logS bits and Bob sends tw
bits. In this protocol Alice receives q and Bob receives D. Bob constructs the
data structure on D and Alice simulates the query algorithm. In each step Alice
sends logS bits specifying the memory cell of the data structure she needs and
Bob replies with the w bits of this cell. Finally, Alice outputs f(q,D). Thus, a
communication lower bound for f gives a lower bound tradeoff between S and t.

This construction can only be used to distinguish between polynomial and
superpolynomial space data structures. Since range mode queries are trivially
solvable in constant time with O(n2) space, we need a different technique to ob-
tain lower bounds for near-linear space data structures. Pǎtraşcu and Thorup [6,
7] have developed a technique for distinguishing between near linear and polyno-
mial space by considering reductions from communication complexity problems
to k parallel data structure queries. The main insight is that Alice can simulate
all k queries in parallel and only send log

(
S
k

)
= O(k log S

k) bits to define the k
cells she needs. For the right values of k this is significantly less than k logS bits
which Alice needs if she performs the queries sequentially.

Lopsided Set Disjointness (LSD). In LSD Alice and Bob receive subsets S and T
of a universe U . The goal for Alice and Bob is to compute whether S∩T 6= ∅. LSD
is parameterized with the size |S| = N of Alice’s set and the fraction between the
size of the universe and N , which is denoted B, e.g. |U | = NB. Notice that the
size of Bob’s set is arbitrary and could be as large as NB. We use [X] to denote
the set {1, 2, . . . , X}. There are other versions of LSD where the input to Alice
has more structure. For our purpose we need Blocked-LSD. For this problem the
universe is considered as the cartesian product of [N] and [B], e.g. U = [N]× [B]
and Alice receives a set S such that ∀j ∈ [N] there exists a unique bj ∈ [B] such
that (j, bj) ∈ S, e.g. S is of the form {(1, b1), (2, b2), . . . , (N, bN) | bi ∈ [B]}. The
following lower bound applies for this problem [7].

Theorem 1. Fix δ > 0. In a bounded-error protocol for Blocked-LSD, either
Alice sends Ω(N logB) bits or Bob sends Ω(NB1−δ) bits.

Blocked-LSD reduces to N/k parallel range mode queries. Given n, we describe a
reduction from Blocked-LSD with a universe of size n (n = NB) to N/k parallel
range mode queries on an input array A of size Θ(n). The size of A may not be
exactly n but this will not affect our result. The parameters k and B are fixed
later in the construction. From a high level perspective we construct an array of
permutations of [kB]. A query consists of a suffix of one permutation, a number

of complete permutations, and a prefix of another permutation. They are chosen
such that the suffix determines a subset of Bob’s set and the prefix a subset of
Alice’s set. These two subsets intersect if and only if the frequency of the mode
is equal to two plus the number of complete permutations spanned by the query.

Bob stores a range mode data structure and Alice simulates the query al-
gorithm. First we describe the array A that Bob constructs when he receives
his input. Let T ⊆ [N] × [B] be this set. The array Bob constructs consists of
two parts which are described separately. We let · denote concatenation of lists.
We also use this operator on sets and in this case we treat the set as a list by
placing the elements in lexicographic order. Bob partitions [N] into N/k con-
secutive chunks of k elements, e.g. the i’th chunk is {(i − 1)k + 1, . . . , ik} for
i = 1, . . . , N/k. With the i’th chunk Bob associates the subset Li of T with first
coordinate in that chunk, e.g. Li = T ∩ ({(i− 1)k+ t | t = 1, . . . , k}× [B]). Each
Li is mapped to a permutation of [kB].

We define the mapping f : (x, y) → (x− 1 mod k)B + y and let the permu-
tation be ([kB] \ f(Li)) · f(Li), e.g. we map the elements in Li into [kB] and
prepend the elements of [kB] not mapped to by any element in Li such that
we get a full permutation of [kB]. The first part of A is the concatenation of
the permutations defined for each chunk Li ordered by i, e.g. ([kB] \ f(L1)) ·
f(L1) · · · ([kB] \ f(LN/k)) · f(LN/k). The second part of A consists of Bk per-
mutations of [kB]. There is one permutation for each way of picking a set of
the form {(1, b1), . . . , (k, bk) | bi ∈ [B]}. Let R1, . . . , RBk denote the Bk sets
on this form ordered lexicographically. The second part of the array becomes
f(R1) · ([kB] \ f(R1)) · · · f(RBk) · ([kB] \ f(RBk)).

We now show how Alice and Bob can determine whether S ∩ T 6= ∅ from
this array. Bob constructs a range mode data structure for A and sends |Li|
for i = 1, . . . , N/k to Alice. Alice then simulates the query algorithm on the
range mode data structure for N/k queries in parallel. The i’th query determines
whether the k elements Qi = {((i−1)k+1, b(i−1)k+1), . . . , (ik, bik)} from S have
an empty intersection with T (actually Li) as follows.

Alice determines the end index of f(Qi) in the second part of A. We note
that f(Qi) always exists in the second part of A by construction and Alice
can determine the position without any communication with Bob. Alice also
determines the start index of f(Li) in the first part of A from the sizes she
initially received from Bob. The i’th query computes the frequency Ri of the
mode between these two indices. Let p be the number of permutations of [kB]
stored between the end of f(Li) and the beginning of f(Qi) in A, then Fi−p = 2
if and only if Qi ∩ T 6= ∅, and Fi − p = 1 otherwise. Since each permutation of
[kB] contributes one to Fi, Fi−p is equal to two if and only if at least one of the
elements from Qi is in Li meaning that S∩T 6= ∅. We conclude that Blocked-LSD
reduces to N/k range mode queries in an array of size NB +BkkB.

To obtain a lower bound for range mode data structures we consider the
parameters k and B and follow the approach from [7]. Let S be the size of
Bob’s range mode data structure and let t be the query time. In our protocol
for Blocked-LSD Alice sends t log

(
S
N/k

)
= O(tNk log Sk

N) bits and Bob sends

twN/k + N/k log(kB) bits. By Theorem 1, either Alice sends Ω(N logB) bits
or Bob sends Ω(NB1−δ). Fix δ = 1

2 . Since N/k log(kB) = o(N
√
B) we obtain

that either tNk log(SkN) = Ω(N logB) or twN/k = Ω(N
√
B). We constrain B

such that B ≥ w2 and logB ≥ 1
2 log(SkN) ⇒ B ≥ Sk

n and obtain t = Ω(k).
Since |A| = NB + BkkB and we require |A| = Θ(n), we set k = Θ(logB n).
To maximize k we choose B = max{w2, Skn }. We obtain that t = Ω(k) =
Ω(logN/ log Swk

n) = Ω(log n/ log Sw
n) since w > k.

Summarizing, we get the following theorem.

Theorem 2. Any data structure that uses S space needs Ω
(

logn
log(Sw

n)

)
time for

a range mode query in an array of size n.

It follows from the construction that we get the same lower bound for data
structures that support queries that are given i, j and k, and returns whether
there exists an element with frequency exactly k in A[i, j] or support queries
that are given i, j and k and returns whether there is an element with frequency
at least k in A[i, j].

3 Range k-frequency

In this section, we consider the range k-frequency problem and its connection to
classic geometric data structure problems. We show that the range k-frequency
problem is equivalent to 2D rectangle stabbing for any fixed constant k > 1, and
that for k = 1 the problem reduces to four-sided 3D orthogonal range emptiness.

In the 2D rectangle stabbing problem the input is n axis-parallel rectangles.
A query is given a point, (x, y), and must return whether this point is con-
tained1 in at least one of the n rectangles in the input. A query lower bound
of Ω(log n/ log(Sw/n)) for data structures using S space is proved in [7], and
a linear space static data structure with optimal O(log n/ log log n) query time
can be found in [9].

In four-sided 3D orthogonal range emptiness, we are given a set P of n points
in 3D, and must preprocess P into a data structure, such that given an open-
ended four-sided rectangle R = (−∞, x] × [y1, y2] × [z,∞), the data structure
returns whether R contains a point p ∈ P . Currently, the best solution for this
problem uses O(n log n) space and supports queries in O(log2 log n) time [10].

For simplicity, we assume that each coordinate is a unique integer between
one and 2n (rank space).

Theorem 3. Let k be a constant greater than one. The 2D rectangle stabbing
problem reduces to the range k-frequency problem.

Proof. We show the reduction for k = 2 and then generalize this construction
to any constant value k > 2.

Let R1, . . . , Rn be the input to the rectangle stabbing problem. We construct
a range 2-frequency instance with n distinct labels each of which is duplicated
1 points on the border of a rectangle are contained in the rectangle

1
2
3
4
5

1 2 3 4 5 6

A
B

C

p5 i5
q3
j3

X Y

A = [BBCCCAABA︸ ︷︷ ︸ CBABBAACC]︸ ︷︷ ︸
X=[(6,B)(6,B)(5,C)(5,C)(4,C)(3,A)(3,A)(2,B)(1,A)]

Y=[(1,C)(2,B)(3,A)(4,B)(4,B)(5,A)(5,A)(6,C)(6,C)]

6

Fig. 1. Reduction from 2D rectangle stabbing to range 2-frequency. The × marks a
stabbing query, (5, 3). This query is mapped to the range 2-frequency query [i5, |X|+j3]
in A, which is highlighted. Notice that i5 = p5 + 2 since A[p5] = A[p5 + 1].

exactly 6 times. Let R` be the rectangle [x`0 , x`1]× [y`0 , y`1]. For each rectangle,
R`, we add the pairs (x`0 , `), (x`1 , `) and (x`1 , `) to a list X. Similarly, we add the
pairs (y`0 , `), (y`1 , `), and (y`1 , `) to a list Y . We sort X in descending order and
Y in ascending order by their first coordinates. Since we assumed all coordinates
are unique, the only ties are amongst pairs originating from the same rectangle,
here we break the ties arbitrarily. The concatenation of X and Y is the range
2-frequency instance and we denote it A, i.e. the second component of each pair
are the actual entries in A, and the first component of each pair is ignored.

We translate a 2D rectangle stabbing query, (x, y), into a query for the range
2-frequency instance as follows. Let px be the smallest index where the first
coordinate of X[px] is x, and let qy be the largest index where the first coordinate
of Y [py] is y. If A[px] = A[px + 1], two consecutive entries in A are defined by
the right endpoint of the same rectangle, we set ix = px + 2 (we move ix to
the right of the two entries), otherwise we set ix = px. Similarly for the y
coordinates, if A[|X| + qy] = A[|X| + qy − 1] we set jy = qy − 2 (move jy left
of the two entries), otherwise we set jy = qy. Finally we translate (x, y) to the
range 2-frequency query [ix, |X|+jy] on A, see Figure 1. Notice that in the range
2-frequency queries that can be considered in the reduction, the frequency of a
label is either one, two, three, four or six. The frequency of label ` in A[ix, |X|] is
one if x`0 ≤ x ≤ x`1 , three if x > x`1 and zero otherwise. Similar, the frequency
of ` in A[|X| + 1, |X| + jy] is one if y`0 ≤ y ≤ y`1 , three if y > y`1 and zero
otherwise. We conclude that the point (x, y) stabs rectangle R` if and only if the
label ` has frequency two in A[ix, |X|+ jy].

Since x, y ∈ {1, . . . , 2n}, we can store a table with the translations from x
to ix and y to jy. Thus, we can translate 2D rectangle stabbing queries to range
2-frequency queries in constant time.

For k > 2 we place k−2 copies of each label between X and Y and translate
the queries accordingly. ut

The following theorem provides a matching upper bound.

Theorem 4. The range k-frequency problem reduces to 2D rectangle stabbing.

Proof. Let A be the input to the range k-frequency problem. We translate the
ranges of A where there is a label with frequency k into O(n) rectangles as
follows. Fix a label x ∈ A, and let sx ≥ k denote the number of occurrences
of x in A. If sx < k then x is irrelevant and we discard it. Otherwise, let
i1 < i2 < . . . < is be the position of x in A, and let i0 = 0 and is+1 = n + 1.
Consider the ranges of A where x has frequency k. These are the subarrays,
A[a, b], where there exists an integer ` such that i` < a ≤ i`+1 and i`+k ≤ b <
i`+k+1 for 0 ≤ ` ≤ sx − k. This defines sx − k + 1 two dimensional rectangles,
[i` + 1, i`+1]× [i`+k, i`+k+1 − 1] for ` = 0, . . . , sx − k, such that x has frequency
k in A[i, j] if and only if the point (i, j) stabs one of the sx − k + 1 rectangles
defined by x. By translating the ranges of A where a label has frequency k into
the corresponding rectangles for all distinct labels in A, we get a 2D rectangle
stabbing instance with O(n) rectangles. ut

This means that we get a data structure for the range k-frequency problem that
uses O(n) space and supports queries in O(log n/ log log n) time.

Theorem 5. For k = 1, the range k-frequency problem reduces to four-sided
orthogonal range emptiness queries in 3D.

Proof. For each distinct label x ∈ A, we map the ranges of A where x has
frequency one (it is unique in the range) to a 3D point. Let i1 < i2 < . . . < is be
the positions of x in A, and let i0 = 0 and is+1 = n+1. The label x has frequency
one in A[a, b] if there exist an integer ` such that i`−1 < a ≤ i` ≤ b < i`+1. We
define s points, Px = {(i`−1 + 1, i`, i`+1 − 1) | 1 ≤ ` ≤ s}. The label x has
frequency one in the range A[a, b] if and only if the four-sided orthogonal range
query [−∞, a]× [a, b]× [b,∞] contains a point from Px (we say that x is inside
range [x1, x2] if x1 ≤ x ≤ x2). Therefore, we let P =

⋃
x∈A Px and get a four-

sided 3D orthogonal range emptiness instance with O(n) points. ut

Thus, we get a data structure for the range 1-frequency problem that uses
O(n log n) space and supports queries in O(log2 log n) time and we conclude that
for data structures using O(n logO(1) n) space, the range k-frequency problem is
exponentially harder for k > 1 than for k = 1.

4 3-Approximate Range Mode

In this section, we construct a data structure that given a range [i, j] computes
a 3-approximation of Fi,j .

We use the following observation also observed in [5]. If we can cover A[i, j]
with three disjoint subintervals A[i, x], A[x + 1, y] and A[y + 1, j] then we have
1
3Fi,j ≤ max{Fi,x, Fx+1,y, Fy+1,j} ≤ Fi,j .

First, we describe a data structure that uses O(n log log n) space, and then
we show how to reduce the space to O(n). The data structure consists of a tree T
of polynomial fanout where the i’th leaf stores A[i], for i = 1, . . . , n. For a node
v let Tv denote the subtree rooted at v and let |Tv| denote the number of leaves

in Tv. The fanout of node v is fv = d
√
|Tv|e. The height of T is Θ(log log n).

Along with T , we store a lowest common ancestor (LCA) data structure, which
given indices i and j, finds the LCA of the leaves corresponding to i and j in T
in constant time [13].

For every node v ∈ T , let Rv = A[a, b] denote the consecutive range of
entries stored in the leaves of Tv. The children c1, . . . , cfv

of v partition Rv
into fv disjoint subranges Rc1 = A[ac1 , bc1], . . . , Rcfv

= A[acfv
, bcfv

] each of
size O(

√
|Tv|). For every pair of children cr and cs where r < s − 1, we store

Facr+1 ,bcs−1
. Furthermore, for every child range Rci we store Faci

,k and Fk,bci
for

every prefix and suffix range of Rci respectively. To compute a 3-approximation
of Fi,j , we find the LCA of i and j. This is the node v in T for which i and j
lie in different child subtrees, say Tcx

and Tcy
with ranges Rcx

= [acx
, bcx

] and
Rcy

= [acy
, bcy

]. We then lookup the frequency Facx+1 ,bcy−1
stored for the pair

of children cx and cy, as well as the suffix frequency Fi,bcx
stored for the range

A[i, bcx] and the prefix frequency Facy ,j
stored for A[acy , j], and return the max

of these.
Each node v ∈ T uses O(|Tv|) space for the frequencies stored for each of the

O(|Tv|) pairs of children, and for all the prefix and suffix range frequencies. Since
each node v uses O(|Tv|) space and the LCA data structure uses O(n) space,
our data structure uses O(n log log n) space. A query makes one LCA query and
computes the max of three numbers which takes constant time.

We just need one observation to bring the space down to O(n). Consider a
node v ∈ T . The largest possible frequency that can be stored for any pair of
children of v, or for any prefix or suffix range of a child of v is |Tv|, and each such
frequency can be represented by b = 1+blog |Tv|c bits. We divide the frequencies
stored in v into chunks of size b lognb c and pack each of them in one word. This
reduces the total space usage of the nodes on level i to O(n/2i). We conclude
that the data structure uses O(n) space and supports queries in constant time.

Theorem 6. There exists a data structure for the 3-approximate range mode
problem that uses O(n) space and supports queries in constant time.

5 (1 + ε)-Approximate Range Mode

In this section, we describe a data structure using O(nε) space that given a range
[i, j], computes a (1 + ε)-approximation of Fi,j in O(log 1

ε) time. Our data struc-
ture consists of two parts. The first part solves all queries [i, j] where Fi,j ≤ d 1εe
(small frequencies), and the latter solves the remaining. The first data structure
also decides whether Fi,j ≤ d 1εe. We use that 1

log (1+ε) = O(1
ε) for any 0 < ε ≤ 1.

Small Frequencies. For i = 1, . . . , n we store a table, Qi, of length d 1εe, where
the value in Qi[k] is the largest integer j ≥ i such that Fi,j = k. To answer a
query [i, j] we do a successor search for j in Qi. If j does not have a successor
in Qi then Fi,j > d 1εe, and we query the second data structure. Otherwise, let s
be the index of the successor of j in Qi, then Fi,j = s. The data structure uses
O(nε) space and supports queries in O(log 1

ε) time.

Large Frequencies. For every index 1 ≤ i ≤ n, define a list Ti of length t =
dlog1+ε(εn)e, with the following invariant: For all j, if Ti[k − 1] < j ≤ Ti[k]
then d 1ε (1 + ε)ke is a (1 + ε)-approximation of Fi,j . The following assignment of
values to the lists Ti satisfies this invariant:

Let m(i, k) be the largest integer j ≥ i such that Fi,j ≤ d 1ε (1 + ε)k+1e − 1.
For T1 we set T1[k] = m(1, k) for all k = 1, . . . , t. For the remaining Ti we set

Ti[k] =
{
Ti−1[k] if Fi,Ti−1[k] ≥ d 1ε (1 + ε)ke+ 1
m(i, k) otherwise

The n lists are sorted by construction. For T1, it is true since m(i, k) is increasing
in k. For Ti, it follows that Fi,Ti[k] ≤ d 1ε (1 + ε)k+1e − 1 < Fi,Ti[k+1], and thus
Ti[k] < Ti[k + 1] for any k.

Let s be the index of the successor of j in Ti. We know that Fi,Ti[s] ≤
d 1ε (1 + ε)s+1e − 1, Fi,Ti[s−1] ≥ d 1ε (1 + ε)s−1e + 1 and Ti[s − 1] < j ≤ Ti[s]. It
follows that

d 1ε (1 + ε)s−1e+ 1 ≤ Fi,j ≤ d 1ε (1 + ε)s+1e − 1 (1)

and that d 1ε (1 + ε)se is a (1 + ε)-approximation of Fi,j .
The second important property of the n lists, is that they only store O(nε)

different indices, which allows for a space-efficient representation. If Ti−1[k] 6=
Ti[k] then the following d 1ε (1 + ε)k+1e − 1 − d 1ε (1 + ε)ke − 1 ≥ b(1 + ε)kc − 3
entries, Ti+a[k] for a = 1, . . . , b(1 + ε)kc − 3, are not changed, hence we store
the same index at least max{1, b(1 + ε)kc − 2} times. Therefore, the number of
changes to the n lists, starting with T1, is bounded by

∑t
k=1

n
max{1,b(1+ε)kc−2} =

O(nε) . This was observed in [5], where similar lists are maintained in a partially
persistent search tree [14].

We maintain these lists without persistence such that we can access any
entry in any list Ti in constant time. Let I = {1, 1 + t, . . . , 1 + b(n − 1)/tct}.
For every ` ∈ I we store T` explicitly as an array S`. Secondly, for ` ∈ I and
k = 1, . . . , dlog1+εte we define a bit vector B`,k of length t and a change list C`,k,
where

B`,k[a] =
{

0 if T`+a−1[k] = T`+a[k]
1 otherwise

Given a bit vector L, define sel(L, b) as the index of the b’th one in L. We set

C`,k[a] = T`+sel(B`,k,a)[k] .

Finally, for every ` ∈ I and for k = 1+dlog1+εte, . . . , t we store D`[k] which is the
smallest integer z > ` such that Tz[k] 6= T`[k]. We also store E`[k] = TD`[k][k].
We store each bit vector in a rank and select data structure [15] that uses O(nw)
space for a bit vector of length n, and supports rank(i) in constant time. A
rank(i) query returns the number of ones in the first i bits of the input.

Each change list, Cl,k and every D` and E` list is stored as an array. The
bit vectors indicate at which indices the contents of the first dlog1+εte entries of
T`, . . . , T`+t−1 change, and the change lists store what the entries change to. The

D` and E` arrays do the same thing for the last t− dlog1+εte entries, exploiting
that these entries change at most once in an interval of length t.

Observe that the arrays, C`,k, D`[k] and E`[k], and the bit vectors, B`,k allow
us to retrieve the contents of any entry, Ti[k] for any i, k, in constant time as
follows. Let ` = bi/tct. If k > dlog1+εte we check if D`[k] ≤ i, and if so we return
E`[k], otherwise we return S`[k]. If k ≤ dlog1+εte, we determine r = rank(i− `)
in B`,k using the rank and select data structure. We then return C`,k[r] unless
r = 0 in which case we return S`[k].

We argue that this correctly returns Ti[k]. In the case where k > dlog1+εte,
comparing D`[k] to i indicates whether Ti[k] is different from T`[k]. Since Tz[k]
for z = `, . . . , i can only change once, Ti[k] = E`[k] in this case. Otherwise,
S`[k] = T`[k] = Ti[k]. If k ≤ dlog1+εte, the rank r of i− ` in B`,k, is the number
of changes that has occurred in the k’th entry from list T` to Ti. Since C`,k[r]
stores the value of the k’th entry after the r’th change, C`,k[r] = Ti[k], unless
r = 0 in which case Ti[k] = S`[k].

The space used by the data structure is O(nε). We store 3dnt e arrays, S`, D`

and E` for ` ∈ I, each using t space, in total O(n). The total size of the change
lists, C`,k, is bounded by the number of changes across the Ti lists, which is
O(nε) by the arguments above. Finally, the rank and select data structures, B`,k,
each occupy O(tw) = O(t

logn) words, and we store a total of dnt edlog1+εte such

structures, thus the total space used by these is bounded by O
(

t
logn

n
t log1+εt

)
=

O
(
n
ε

log(n log(εn))
logn

)
= O

(
n
ε

)
. We use that if d 1εe ≥ n then we only store the small

frequency data structure. We conclude that our data structures uses O
(
n
ε

)
space.

To answer a query [i, j], we first compute a 3-approximation of Fi,j in con-
stant time using the data structure from Section 4. Thus, we find fi,j satisfying
fi,j ≤ Fi,j ≤ 3fi,j . Choose k such that d 1ε (1 + ε)ke+1 ≤ fi,j ≤ d 1ε (1 + ε)k+1e−1
then the successor of j in Ti must be in one of the entries, Ti[k], . . . , Ti[k +
O(log1+ε3)]. As stated earlier, the values of Ti are sorted in increasing order,
and we find the successor of j using a binary search on an interval of length
O(log1+ε3). Since each access to Ti takes constant time, we use O(log log1+ε3) =
O(log 1

ε) time.

Theorem 7. There exists a data structure for (1 + ε)-approximate range mode
that uses O(nε) space and supports queries in O(log 1

ε) time.

The careful reader may have noticed that our data structure returns a fre-
quency, and not a label that occurs approximately Fi,j times. We can augment
our data structure to return a label instead as follows.

We set ε′ =
√

(1 + ε)− 1, and construct our data structure from above. The
small frequency data structure is augmented such that it stores the label Mi,Qi[k]

along with Qi[k], and returns this in a query. The large frequency data structure
is augmented such that for every update of Ti[k] we store the label that caused
the update. Formally, let a > 0 be the first index such that Ti+a[k] 6= Ti[k].
Next to Ti[k] we store the label Li[k] = A[i + a − 1]. In a query, [i, j], let s be
the index of the successor of j in Ti computed as above. If s > 1 we return the

label Li[s− 1], and if s = 1 we return Mi,Qi[d1/ε′e], which is stored in the small
frequency data structure.

In the case where s = 1 we know that d 1
ε′ e ≤ Fi,j ≤ d 1

ε′ (1 + ε′)2e − 1 =
d 1
ε′ (1 + ε)e − 1 and we know that the frequency of Mi,Qi[d1/ε′e] in A[i, j] is at

least d 1
ε′ e. We conclude that the frequency of Mi,Qi[d1/ε′e] in A[i, j] is a (1 + ε)-

approximation of Fi,j .
If s > 1 we know that d 1

ε′ (1 + ε′)s−1e + 1 ≤ Fi,j ≤ d 1
ε′ (1 + ε′)s+1e − 1 by

equation (1), and that the frequency, fL, of the label Li[s − 1] in A[i, j] is at
least d 1

ε′ (1 + ε′)s−1e + 1. This means that Fi,j ≤ 1
ε′ (1 + ε′)s+1 ≤ (1 + ε′)2fL =

(1 + ε)fL, and we conclude that fL is a (1 + ε)-approximation of Fi,j .
The space needed for this data structure is O(nε′) = O(n(

√
1+ε+1)
ε) = O(nε),

and a query takes O(log 1
ε′) = O(log 1

ε + log(
√

1 + ε+ 1)) = O(log 1
ε) time.

References

1. Yao, A.C.C.: Should tables be sorted? J. ACM 28(3) (1981) 615–628
2. Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on

lists and trees. Nord. J. Comput. 12(1) (2005) 1–17
3. Petersen, H.: Improved bounds for range mode and range median queries. In: Proc.

34th Conference on Current Trends in Theory and Practice of Computer Science.
(2008) 418–423

4. Petersen, H., Grabowski, S.: Range mode and range median queries in constant
time and sub-quadratic space. Inf. Process. Lett. 109(4) (2008) 225–228

5. Bose, P., Kranakis, E., Morin, P., Tang, Y.: Approximate range mode and range
median queries. In: Proc. 22nd Symposium on Theoretical Aspects of Computer
Science. (2005) 377–388

6. Patrascu, M., Thorup, M.: Higher lower bounds for near-neighbor and further
rich problems. In: Proc. of the 47th Annual IEEE Symposium on Foundations of
Computer Science. (2006) 646–654

7. Pǎtraşcu, M.: (Data) STRUCTURES. In: Proc. 49th Annual IEEE Symposium
on Foundations of Computer Science. (2008) 434–443

8. Pǎtraşcu, M.: Lower bounds for 2-dimensional range counting. In: Proc. 39th
ACM Symposium on Theory of Computing. (2007) 40–46

9. JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for mul-
tidimensional dominance reporting and counting. In: Proc. 15th International
Symposium on Algorithms and Computation. (2004) 558–568

10. Afshani, P.: On dominance reporting in 3D. In: Proc. of the 16th Annual European
Symposium on Algorithms. (2008) 41–51

11. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space
theta(n). Inf. Process. Lett. 17(2) (1983) 81–84

12. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures and asym-
metric communication complexity. J. Comput. Syst. Sci. 57(1) (1998) 37–49

13. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2) (1984) 338–355

14. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. Journal of Computer and System Sciences 38(1) (1989) 86–124

15. Jacobson, G.J.: Succinct static data structures. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA (1988)

