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Abstract

We consider NCA labeling schemes: given a rooted tree T , label the nodes
of T with binary strings such that, given the labels of any two nodes, one can
determine, by looking only at the labels, the label of their nearest common
ancestor.

For trees with n nodes we present upper and lower bounds establishing
that labels of size (2± ǫ) log n, ǫ < 1 are both sufficient and necessary.1

Alstrup, Bille, and Rauhe (SIDMA’05) showed that ancestor and NCA
labeling schemes have labels of size log n + Ω(log log n). Our lower bound
increases this to log n+Ω(log n) for NCA labeling schemes. Since Fraigniaud
and Korman (STOC’10) established that labels in ancestor labeling schemes
have size log n + Θ(log log n), our new lower bound separates ancestor and
NCA labeling schemes. Our upper bound improves the 10 log n upper bound
by Alstrup, Gavoille, Kaplan and Rauhe (TOCS’04), and our theoretical result
even outperforms some recent experimental studies by Fischer (ESA’09) where
variants of the same NCA labeling scheme are shown to all have labels of size
approximately 8 log n.

1 Introduction

A labeling scheme assigns a label, which is a binary string, to each node of a tree
such that, given only the labels of two nodes, one can compute some predefined
function of the two nodes. The main objective is to minimize the maximum label
length: that is, the maximum number of bits used in a label.

With labeling schemes it is possible, for instance, to avoid costly access to large,
global tables, to compute locally in distributed settings, and to have storage used for
names/labels be informative. These properties are used in XML search engines [2],
network routing and distributed algorithms [57, 29, 22, 24, 29, 30], graph represen-
tations [40] and other areas. An extensive survey of labeling schemes can be found
in [35].

A nearest common ancestor (NCA) labeling scheme labels the nodes such that,
for any two nodes, their labels alone are sufficient to determine the label of their
NCA. Labeling schemes can be found, for instance, for distance, ancestor, NCA,
connectivity, parent and sibling [36, 44, 51, 7, 40, 57, 8, 41, 15, 16, 45, 55], and have
also been analyzed for dynamic trees [20]. NCA labeling schemes are used, among
other things, to compute minimum spanning trees in a distributed setting [50, 28,
13].
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Our main result establishes that labels of size (2 ± ǫ) logn, ǫ < 1 are both
necessary and sufficient for NCA labeling schemes for trees with n nodes. More
precisely, we show that label sizes are lower bounded by 1.008 logn − O(1) and
upper bounded by 2.772 logn+O(1).

Since our lower bound is logn+ Ω(logn), this establishes an exponential sepa-
ration (on the nontrivial, additive term) between NCA labeling and the closely re-
lated problem of ancestor labeling which can be solved optimally with labels of size
logn+Θ(log logn) [32, 6]. (An ancestor labeling scheme labels the nodes in a tree
such that, for any two nodes, their labels alone are sufficient to determine whether
the first node is an ancestor of the second.) The upper bound of logn+O(log logn)
for ancestor [32] is the latest result in a sequence [2, 41, 42, 8, 1, 31] of improvements
from the trivial 2 logn bound [58].

Our upper bound improves the 10 logn label size of [7]. In addition to the NCA
labeling scheme used to establish our upper bound, we present another scheme with
labels of size 3 logn which on the RAM uses only linear time for preprocessing and
constant time for answering queries, meaning that it may be an efficient solution
for large trees compared to traditional non-labeling scheme algorithms [38].

NCAs, also known as least common ancestors or lowest common ancestors
(LCAs), have been studied extensively over the last several decades in many varia-
tions; see, for example, [48, 3, 5, 56, 21, 10, 53, 11, 33, 56, 12]. A linear time algo-
rithm to preprocess a tree such that subsequent NCA queries can be answered in
constant time is described in [38]. NCAs have numerous applications for graphs [34,
43, 23, 5], strings [37, 25], planarity testing [59], geometric problems [18, 33], evolu-
tionary trees [26], bounded tree-width algorithms [19] and more. A survey on NCAs
with variations and application can be found in [7].

A logn+O(log∗ n) adjacency labeling scheme is presented in [9], and adjacency
labeling schemes of logn + O(1) are presented in [14] for the special cases of bi-
nary trees and caterpillars. We present NCA labeling schemes with labels of size
2.585 logn+O(1) and logn+ log logn+O(1) for binary trees and caterpillars, re-
spectively. Our lower bound holds for any family of trees that includes all trees of
height O(log n) in which all nodes either have 2 or 3 children.

1.1 Variations and related work.

The NCA labeling scheme in [7] is presented as an O(logn) result, but it is easy to see
that the construction gives labels of worst-case size 10 logn. The algorithm uses a
decomposition of the tree, where each component is assigned a sub-label, and a label
for a node is a combination of sub-labels. Fischer [27] ran a series of experiments
using various techniques for sub-labels [7, 49, 39] and achieved experimentally that
worst-case label sizes are approximately 8 logn.

Peleg [52] has established labels of size Θ(log2 n) for NCA labeling schemes in
which NCA queries have to return a predefined label of O(logn) bits. Experimental
studies of this variation can be found in [17]. In [13] the results from [7] are extended
to predefined labels of length k. We have included a corollary that shows that such
an extension can be achieved by adding k logn bits to the labels.

In [46] a model (1-query) is studied where one, in addition to the label of the
input nodes, can access the label of one additional node. With this extra informa-
tion, using the result from [7] for NCA labeling, they present a series of results for
NCA and distance. As our approach improves the label length from [7], we also
improve some of the label lengths in [46].

Sometimes various computability requirements are imposed on the labeling scheme:
in [45] a query should be computable in polynomial time; in [2] in constant time
on the RAM; and in [40] in polynomial time on a Turing machine. We use the
same approach as in [7], but with a different kind of sub-labels and with different
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encodings for lists of strings, and it is only the 2.772 logn + O(1) labeling scheme
for trees that we do not show how to implement efficiently.

2 Preliminaries

The size or length of a binary string s = s1 · · · sk is the number of bits |s| = k in it.
The concatenation of two strings s and t is denoted s · t.

Let T be a rooted tree with root r. The depth of a node v, denoted depth(v),
is the length of the unique path from r to v. If a node u lies on the path from r
to a node v, then u is an ancestor of v and v is a descendant of u. If, in addition,
depth(v) = depth(u) + 1 so that uv is an edge in the tree, then u is the unique
parent of v, denoted parent(v), and v is a child of u. A binary tree is a rooted tree
in which any node has at most two children. A common ancestor of two nodes v
and w is a node that is an ancestor of both v and w, and their nearest common
ancestor (NCA), denoted nca(v, w), is the unique common ancestor with maximum
depth. The descendants of v form an induced subtree Tv with v as root. The size
of v, denoted size(v), is the number of nodes in Tv.

Let T be a family of rooted trees. An NCA labeling scheme for T consists of an
encoder and a decoder. The encoder is an algorithm that accepts any tree T from
T as input and produces a label l(v), which is a binary string, for every node v in
T . The decoder is an algorithm that takes two labels l(v) and l(w) as input and
produces the label l(nca(v, w)) as output. Note that encoder knows the entire tree
when producing labels for nodes, whereas the decoder knows nothing about v, w
or the tree from which they come, although it does know that they come from the
same tree and that this tree belongs to T . The worst-case label size is the maximum
size of a label produced by the encoder from any node in any tree in T .

3 Lower bound

This section introduces a class of integer sequences, 3-2 sequences, and an associated
class of trees, 3-2 trees2, so that two 3-2 trees that have many labels in common
when labeled with an NCA labeling scheme correspond to two 3-2 sequences that
are “close” in the sense of a metric known as Levenshtein distance. By considering
a subset of 3-2 sequences that are pairwise distant in this metric, the corresponding
set of 3-2 trees cannot have very many labels in common, which leads to a lower
bound on the total number of labels and hence on the worst-case label size.

3.1 Levenshtein distance and 3-2 sequences.

The Levenshtein distance [47], or edit distance, between two sequences x and y is
defined as the number lev(x, y) of single-character edits (insertion, deletion and
substitution) required to transform x into y. A 3-2 sequence of length 2k is an
integer sequence x = (x1, . . . , x2k) with exactly k 2s and k 3s.

Lemma 3.1. For any h, k with 2 ≤ h ≤ k and k an integer with k ≥ 90, there exists
a set Σ of 3-2 sequences of length 2k with |Σ| ≥ 21.95k/(16k/h)3h and lev(x, y) > h
for all x, y ∈ Σ.

Proof. Since lev(x, y) > h is equivalent to lev(x, y) > ⌊h⌋ and 21.95k/(16k/h)3h ≤
21.95k/(16k/⌊h⌋)3⌊h⌋, we can safely assume that h is an integer.

2The related “2-3 trees” [4] have a slightly different definition, which is why we use a different
terminology here.
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Now, let x be an arbitrary 3-2 sequence of length 2k, and consider the number
of 3-2 sequences y of length 2k with lev(x, y) ≤ h. We can transform x into y by
performing r deletions followed by s substitutions followed by t insertions, where
r + s+ t ≤ h. This leads to the following upper bound on the number of y’s:

h
∑

r=0

(

2k

r

) h−r
∑

s=0

(

2k − r

s

) h−r−s
∑

t=0

(

2k − r − s+ t

t

)

2t ≤ (h+ 1)3
(

2k

h

)2(
3k

h

)

2h.

Using Stirling’s approximation [54] and the fact that (h+ 1)3 ≤ 8h for all h ≥ 2, it
follows that this is upper bounded by

8h(2ke/h)2h(3ke/h)h2h = 3h(4ke/h)3h ≤ (16k/h)3h.

We now construct Σ as follows. Let Σ′ denote the set of 3-2 sequences of length
2k, and note that |Σ′| =

(

2k
k

)

. Pick an arbitrary 3-2 sequence x from Σ′, add it to
Σ and remove all strings y from Σ′ with lev(x, y) ≤ h. Continue by picking one of
the remaining strings from Σ′, add it to Σ and remove all strings from Σ′ within
distance h. When we run out of strings in Σ′ we will, according to the previous
calculation and Stirling’s approximation [54], have

|Σ| ≥
(

2k
k

)

(16k/h)3h
≥ 22k−1

k1/2(16k/h)3h
≥ 21.95k

(16k/h)3h
,

where the last inequality follows from the fact that 20.05k−1 ≥ k1/2 whenever k ≥
90.

3.2 3-2 trees and a lower bound.

Given a 3-2 sequence x = (x1, . . . , x2k) of length 2k, we can create an associated
tree of depth 2k where all nodes at depth i − 1 have exactly xi children, and all
nodes at depth 2k are leaves. We denote this tree the 3-2 tree associated with x.
The number of nodes at depth i in the 3-2 tree associated with x is x1 · · ·xi; in
particular, the number of leaves is x1 · · ·x2k = 6k. The number of nodes in total is
upper bounded by 2 · 6k.

Consider the set of labels produced by an NCA labeling scheme for the nodes in
a tree. Given a subset S of these labels, let S′ denote the set of labels which can be
generated from S by the labeling scheme: thus, S′ contains the labels in S as well
as the labels for the NCAs of all pairs of nodes labeled with labels from S. The
labels in S′ can be organized as a rooted tree according to their ancestry relations,
which can be determined directly from the labels using the decoder of the labeling
scheme and without consulting the original tree. The tree produced in this way is
denoted T S and is uniquely determined from S. Note that, if all the nodes in S are
leaves, then all internal nodes in T S must have been obtained as the NCA of two
leaves, and hence must have at least two children.

Now, given a tree T S induced by a subset S of labels assigned to the leaves of
a tree T by an NCA labeling scheme, we can create an integer sequence, I(S), as
follows. Start at the root of T S , and let the first integer be the number of children
of the root. Then recurse to a child v for which the subtree T S

v contains a maximum
number of leaves, and let the second integer be the number of children of this child.
Continue this until a leaf is reached (without writing down the last 0). Note that,
if T is a 3-2 tree of depth 2k, the produced sequence I(S) will have length at most
2k and will contain only 2s and 3s.

Lemma 3.2. Let T be a 3-2 tree associated with the 3-2 sequence x = (x1, . . . , x2k).
Let S be a set of m labels assigned to the leaves of T by an NCA labeling scheme.
Then lev(x, I(S)) ≤ log3/2(6

k/m).
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Proof. We describe a way to transform x into I(S). Start at the root of T , and let
i be the depth in T containing the node v whose label l(v) is the root in T S. Delete
all entries x1, . . . , xi−1 from x and compare the number of children of l(v) in T S

to xi. If the numbers are the same, leave xi be; if not, we must have that xi = 3
and that the number of children of l(v) is 2, so replace xi by 2. Then recurse to a
child w of v in T for which the corresponding subtree in T S contains a maximum
number of leaves, and repeat the process with Tw, the corresponding subtree of T S

and the remaining elements xi+1, . . . , xk.
Clearly, this transforms x into I(S) using only deletions and substitutions, where

all substitutions replace a 3 by a 2. Each of these edits modify the maximum possible
number of leaves in T S compared to T with a factor of either 1/2 or 2/3. It follows
that the number m of leaves in T S satisfies m ≤ 6k · (2/3)lev(x,I(S)), which implies
lev(x, I(S)) ≤ log3/2(6

k/m) as desired.

We now present our main lower bound result. The result is formulated for a
family T that is large enough to contain all 3-2 trees with N nodes; in particular,
it holds for the family of all rooted trees with at most N nodes.

Theorem 3.3. If T is a family of trees that contains all 3-2 trees with up to
N ≥ 2 · 3240 nodes, then any NCA labeling scheme for T has a worst-case label size
of at least 1.008 logN − 318.

Proof. Let k = 120⌊ 1
120 log6(N/2)⌋ be log6(N/2) rounded down to the nearest

multiple of 120, and let n = 6k ≤ N/2. Further, set m = n119/120 and h =
2 log3/2(n/m). Note that n, m and n/m = n1/120 are all integers. Observe also

that n > (N/2)/6120 ≥ (3/2)120 and thereby that h ≥ 2. Finally, observe that
h = 1

60k log3/2 6 ≤ k and that k ≥ 120.
According to Lemma 3.1, there exists a set Σ of 3-2 sequences of length 2k with

|Σ| ≥ 21.95k/(16k/h)3h and lev(x, y) > h for all x, y ∈ Σ. The set Σ defines a set of
|Σ| associated 3-2 trees with n leaves and at most 2n ≤ N nodes. In particular, all
the associated trees belong to T . We can estimate the number of elements in Σ as
follows:

|Σ| ≥ 21.95k

(16k/h)3h

=
21.95 log

6
n

(8 log6 n/ log3/2(n/m))6 log
3/2(n/m)

=
n1.95 log

6
2

(960 log6 n/ log3/2 n)
(6 log

3/2 n)/120

=
n1.95 log

6
2

(960 log6(3/2))
0.05 log

3/2 n

=
n1.95 log

6
2

n0.05 log
3/2(960 log

6
(3/2))

= n1.95 log
6
2−0.05 log

3/2(960 log
6
(3/2))

≥ n0.09

Now suppose that an NCA labeling scheme labels the nodes of all 3-2 trees
associated with sequences in Σ. Consider two trees associated with sequences x, y ∈
Σ, and let S denote the set of leaf labels that are common to x and y. We must
then have |S| < m, since otherwise, by Lemma 3.2, we would have

lev(x, y) ≤ lev(x, I(S)) + lev(I(S), y) ≤ h

2
+

h

2
= h.
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It follows that, if we restrict attention to a subset T consisting of min(|Σ|, ⌊n/(2m)⌋)
of the trees associated with strings in Σ, then the leaves of any tree in T can share
a total of at most n/2 labels with all other trees in T . In other words, every tree
in T has at least n/2 leaf labels that are unique for this tree within the set of all
leaf labels of trees in T . This gives a total of at least

n

2
min(|Σ|, ⌊n/(2m)⌋) = n

2
min(n0.09, ⌊n1/120/2⌋)

= n121/120/8

≥ n1.008/8

distinct labels. If the worst-case label size is L, we can create 2L+1 − 1 distinct
labels, and we must therefore have n1.008/8 ≤ 2L+1 − 1 from which it follows that

L ≥ ⌊1.008 logn⌋ − 3 ≥ ⌊1.008 log(N/2 · 6120)⌋ − 3

≥ 1.008 logN − 318.

4 Upper bound

In this section we construct an NCA labeling scheme that assigns to every node
a label consisting of a sequence of sub-labels, each of which is constructed from a
decomposition of a tree known as heavy-light decomposition. The labeling scheme
is similar to that of [7] but with a different way of constructing sub-labels (presented
in Section 4.4), a different way of ordering sub-labels (presented in Section 4.2) and
a different way of encoding lists of sub-labels (presented in Section 4.1).

4.1 Encodings.

We begin with a collection of small results that show how to efficiently encode
sequences of binary strings.

Lemma 4.1. A collection of n objects can be uniquely labeled with binary strings
of length at most L if and only if L ≥ ⌊logn⌋.

Proof. There are 2L binary strings of length L, and hence there are 2L+1−1 binary
strings of length at most L. Thus, we can create unique labels for n different
objects using labels of length at most L whenever n ≤ 2L+1− 1, which is equivalent
to L ≥ ⌈log(n + 1)⌉ − 1 = ⌊logn⌋. (The latter equality follows from the simple
fact that ⌊r⌋ = ⌈s⌉ − 1 for all real numbers r < s for which there does not exist an
integer z with r < z < s.)

Lemma 4.2. A collection of n objects can be uniquely labeled with binary strings
of length exactly L if and only if L ≥ ⌈logn⌉.

Proof. The argument is similar to the one in Lemma 4.1, but with the modification
that we only use labels of length exactly equal to L. This yields the inequality
n ≤ 2L, which is equivalent to L ≥ ⌈logn⌉.

Lemmas 4.1 and 4.2 can only be efficiently implemented if there is a way to
efficiently implement the 1-1 correspondence between the objects and the numbers
1, . . . , n. The remaining lemmas of this section show how to encode sequences of
binary strings whose concatenation has length t, and all of them except Lemma 4.4
can be implemented with linear time encoding and constant time decoding on a
RAM machine in which a machine word has size O(t).
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Lemma 4.3. Let a = (a1, a2) be a pair of (possibly empty) binary strings with
|a1 ·a2| = t. We can encode a as a single binary string of length t+ ⌈log t⌉ such that
a decoder without any knowledge of a or t can recreate a from the encoded string
alone.

Proof. Since |a1| ≤ |a1 · a2| = t, we can use Lemma 4.2 to encode |a1| with exactly
⌈log t⌉ bits. We then encode a by concatenating the encoding of |a1| with a1 · a2
to give a string of exactly t + ⌈log t⌉ bits. Since t is uniquely determined from
t+ ⌈log t⌉, the decoder can split up the encoded string into the encoding of |a1| and
the concatenation a1 · a2 from which it can recreate a1 and a2.

We thank Mathias Bæk Tejs Knudsen for inspiring parts of the proof of Lemma 4.4
below. As the proof shows, the encoding in Lemma 4.4 is optimal with respect to
size but comes with no guarantees for time complexities. Lemma 4.5 further below
is a suboptimal version of Lemma 4.4 but with a more efficient implementation.

Lemma 4.4. Let a = (a0, . . . , a2k) be a list of (possibly empty) binary strings with
|a0 · · · a2k| = t and with a2i · a2i+1 6= ε for all i < k. We can encode a as a single
binary string of length ⌈(1+log(2+

√
2))t⌉ such that a decoder without any knowledge

of a, t or k can recreate a from the encoded string alone.

Proof. We will use Lemma 4.2 to encode a for a fixed t. To do this, we must count
the number of possible sequences in the form of a. There are 2t choices for the t
bits in the concatenation a0 · · · a2k, and every subdivision of the concatenation into
the substrings ai corresponds to a solution to the equation

x0 + x1 + · · ·+ x2k = t

where x2i + x2i+1 ≥ 1 for i = 0, . . . , k − 1. Note that we must have k ≤ t. For a
given t, let st denote the number of solutions (including choices of k) to the above
equation. We shall prove further below that

st =
1

4
ct+1 +

1

4
dt+1, (1)

where c = 2 +
√
2 and d = 2 −

√
2, which easily implies st ≤ (2 +

√
2)t. It then

follows that the total number of sequences a for fixed t is bounded by 2t(2 +
√
2)t,

and using Lemma 4.2 we can therefore encode any such a as a string with exactly
⌈(1+ log(2+

√
2))t⌉ bits. Since t is uniquely determined by this length, the decoder

can determine t from the length of the string and then use Lemma 4.2 to recreate
a.

It remains to show (1). For any t, the number of solutions with k = 0 is 1.
Given a solution where k > 0, let j = x0 + x1, and note that j ≥ 1 and that
x2+ · · ·+x2k = t− j is a solution to the problem for t− j. There are j+1 solutions
to x0 + x1 = j, and hence the total number of solutions is

st = 1 +

t
∑

j=1

st−j(j + 1).

Using this expression, it is straightforward to see that

st − 2st−1 + st−2 = 2st−1 − st−2,

which implies st = 4st−1 − 2st−2. The characteristic polynomial of this recurrence
relation has roots c and d, and hence st = αct + βdt for some α, β. Using s0 = 1
and s1 = 3 to solve, we obtain α = c/4 and β = d/4, which proves (1).
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Lemma 4.5. Let a = (a0, . . . , a2k) be a list of (possibly empty) binary strings with
|a0 · · · a2k| = t and with a2i · a2i+1 6= ε for all i < k. We can encode a as a single
binary string of length 3t such that a decoder without any knowledge of a, t or k
can recreate a from the encoded string alone.

Proof. We encode a as a concatenation of three binary strings of lengths t, t−1 and
t+ 1, respectively. The first string is the concatenation ã = a0 · · ·a2k. The second
string has a 1 in the i’th position for i ≤ t− 1 exactly when the (i+ 1)’th position
of ã is the first bit in a substring a2j · a2j+1 (which by the assumption is nonempty
for all j). The third string has a 1 in the i’th position for i ≤ t exactly when the
i’th position of ã is the first bit in a substring a2j+1 for some j or in a2k, and a 1

in the (t+ 1)’th position exactly when a2k 6= ε.
If the decoder receives the concatenation of length 3t of these three strings, it

can easily recreate the three strings by splitting up the string into three substrings
of sizes t, t − 1 and t + 1. The first string is ã, which it can then split up at all
positions where the second string has a 1. This gives a list of nonempty strings in
the form a2i ·a2i+1 for i ≤ k−2 as well as the string a2k−2 ·a2k−1 ·a2k. The decoder
can then use the third string to split up each of these concatenations as follows.
For every (nonempty) concatenation a2i · a2i+1, consider the corresponding bits in
the third string. If one of these bits is a 1, then the concatenation should be split
up at that position; in particular, if the 1 is at the first bit in the concatenation,
then it means that a2i is empty. If none of the bits is a 1, then it means that a2i+1

is empty. In all cases, we can recreate a2i and a2i+1. Likewise, the concatenation
a2k−2 ·a2k−1 ·a2k can be split up using the 1s in the corresponding bits in the third
string. If there are two 1s among these bits, then it is clear how to split up the
concatenation. If there are no 1s, then it means that a2k−1 and a2k are both empty.
If there is exactly one 1, then we can split up the concatenation into a2k−2 and
a2k−1 · a2k, and exactly one of a2k−1 and a2k must be empty. The last bit of the
third string determines which of these two cases we are in.

Lemma 4.6. Let a = (a0, . . . , ak) be a list of (possibly empty) binary strings with
|a0 · · · ak| = t and with ai ·ai+1 6= ε for all i < k. We can encode a as a single binary
string of length ⌈(1 + log 3)(t − 1)⌉+ 3 such that a decoder without any knowledge
of a, t or k can recreate a from the encoded string alone.

Proof. We encode a by concatenating ã = a0 · · · ak of length t with a string s of
length ⌈(log 3)t⌉. To describe s, we first construct a string s̃ of length t − 1 over
the alphabet {0, 1, 2}. The i’th bit s̃i of s̃ is defined according to the role of the
(i+ 1)’th bit x in ã as follows:

s̃i =











































0, if x is the first bit of a nonempty string aj ,

where aj−1 is nonempty,

1, if x is the first bit of a nonempty string aj ,

where aj−1 is empty,

2, else.

The string s̃ represents a unique choice out of 3t−1 possibilities, and by Lemma 4.2
we can represent this choice with a binary string s of length exactly equal to
⌈log 3t−1⌉ = ⌈(t − 1) log 3⌉. We concatenate this with a single indicator bit repre-
senting whether a0 is empty or not, and another indicator bit representing whether
ak is empty or not. Finally, we concatenate all this with ã, giving a string of total
length ⌈(t− 1) log 3⌉+ 2 + t = ⌈(1 + log 3)(t− 1)⌉+ 3.
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Since the value t is uniquely determined from the length of the encoded string,
the decoder is able to split up the encoded string into ã, s and the two indicator
bits. It can then convert s to s̃ and use the entries in s̃ and the indicator bits to
recreate a from ã. This proves the theorem.

4.2 An order on binary strings.

Consider the total order � on binary strings defined by

s · 0 · t ≺ s ≺ s · 1 · t′

for all binary strings s, t, t′. Here we have written s ≺ t as short for s � t ∧ s 6= t.
This order naturally arises in many contexts and has been studied before; see, for
example, [57]. All binary strings of length three or less are ordered by � as follows:

000 ≺ 00 ≺ 001 ≺ 0 ≺ 010 ≺ 01 ≺ 011 ≺ ε ≺ 100 ≺ 10 ≺ 101 ≺ 1 ≺ 110 ≺ 11 ≺ 111

A finite sequence (ai) of binary strings is ≺-ordered if ai ≺ aj for i < j.

Lemma 4.7. Given a finite sequence (wi) of positive numbers with w =
∑

iwi,
there exists an ≺-ordered sequence (ai) with |ai| ≤ ⌊logw − logwi⌋ for all i.

Proof. The proof is by induction on the number of elements in the sequence (wi).
If there is only one element, w1, then we can set a1 = ε, which satisfies |a1| = 0 =
⌊logw1 − logw1⌋. So suppose that there is more than one element in the sequence
and that the theorem holds for shorter sequences. Let k be the smallest index
such that

∑

i≤k wi > w/2, and set ak = ε. Then ak clearly satisfies the condition.
The subsequences (wi)i<k and (wi)i>k are shorter and satisfy

∑

i<k wi ≤ w/2 and
∑

i>k wi ≤ w/2, so by induction there exist ≺-ordered sequences (bi)i<k and (bi)i>k

with |bi| ≤ ⌊log(w/2) − logwi⌋ = ⌊logw − logwi⌋ − 1 for all i 6= k. Now, define
ai for i < k by ai = 0 · bi and for i > k by ai = 1 · bi. Then (ai) is a ≺-ordered
sequence with |ai| ≤ ⌊logw − logwi⌋ for all i.

A linear time implementation of the previous lemma can be achieved as follows.
First compute the numbers ti = ⌊logw − logwi⌋ in linear time. Now set a1 = 0

t1

to be the minimum (with respect to the order �) binary string of length at most
t1. At the i’th step, set ai to be the minimum binary string of length at most ti
with ai−1 ≺ ai. If this process successfully terminates, then the sequence (ai) has
the desired property. On the other hand, the process must terminate, because the
above lemma says that there exists an assignment of the ai’s, and our algorithm
conservatively chooses each ai so that the set of possible choices left for ai+1 is
maximal at every step. A similar argument shows that the following lemma can be
implemented in linear time.

Lemma 4.8. Given a finite sequence (wi) of positive numbers with w =
∑

iwi,
there exist an ≺-ordered sequence (ai) of nonempty strings and a k such that |ai| ≤
⌊log(w + wk)− logwi⌋ for all i.

Proof. Let k be the smallest index such that
∑

i≤k wi > w/2 and add an extra copy
of wk next to wk in the sequence of weights. The total sequence of weights will now
sum to w + wk, and if we apply Lemma 4.7 to this sequence, exactly one of the
two copies of wk will be assigned the empty string. Discard this string, and what
is left is a ≺-ordered sequence (ai) with |ai| ≤ ⌊log(w + wk) − logwi⌋ for all i as
desired.
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4.3 Heavy-light decomposition.

We next describe the heavy-light decomposition of Harel and Tarjan [38]. Let T
be a rooted tree. The nodes of T are classified as either heavy or light as follows.
The root r of T is light. For each internal node v, pick one child node w where
size(w) is maximal among the children of v and classify it as heavy; classify the
other children of v as light. We denote the unique heavy child of v by hchild(v) and
the set of light children by lchildren(v). The light size of a node v is the number
lsize(v) = 1+

∑

w∈lchildren(v) size(w), which is equal to size(v)−size(hchild(v)) when

v is internal. The apex of v, denoted apex(v), is the nearest light ancestor of v.
By removing the edges between light nodes and their parents, T is divided into a
collection of heavy paths. The set of nodes on the same heavy path as v is denoted
hpath(v). The top node of hpath(v) is the light node apex(v).

For a node v, consider the sequence u0, . . . , uk of light nodes encountered on
the path from the root r = u0 to v. The number k is the light depth of v, denoted
ldepth(v). The light depth of T , ldepth(T ) is the maximum light depth among the
nodes in T . Note that ldepth(v) ≤ ldepth(T ) ≤ logn; see [38].

4.4 One NCA labeling scheme.

We now describe the labeling scheme that will be used for various families of trees,
although with different encodings for each family. Given a rooted tree T , we begin
by assigning to each node v a heavy label, hlabel(v), and, when v is light and not
equal to the root, a light label, llabel(v), as described in Lemmas 4.9 and 4.10 below.

Lemma 4.9. There exist binary strings hlabel(v) for all nodes v in T so that the
following hold for all nodes v, w belonging to the same heavy path:

depth(v) < depth(w) =⇒
hlabel(v) ≺ hlabel(w)

(2)

| hlabel(v)| ≤ ⌊log size(apex(v)) − log lsize(v)⌋ (3)

Proof. Consider each heavy path H separately and use the sequence (lsize(v))v∈H ,
ordered ascendingly by depth(v), as input to Lemma 4.7.

Lemma 4.10. There exist binary strings llabel(v) for all light nodes v 6= r in T so
that the following hold for all light siblings v, w:

v 6= w =⇒ llabel(v) 6= llabel(w) (4)

| llabel(v)| ≤ ⌊log lsize(parent(v))− log size(v)⌋ (5)

Proof. Consider each set L of light siblings separately and use the sequence (size(v))v∈L,
not caring about order, as input to Lemma 4.7.

In many cases we are not going to use the constructions in Lemmas 4.9 and 4.10
directly, but will instead use the following two modifications:

Lemma 4.11. It is possible to modify the constructions in Lemmas 4.9 and 4.10
so that, for all nodes u, v where v is a light child of u,

hlabel(u) = ε =⇒ llabel(v) 6= ε. (6)

The modification still satisfies (2), (3), (4) and (5) except that when hlabel(u) is
empty, (5) is replaced by

| hlabel(u)|+ | llabel(v)| ≤ ⌊log size(apex(u))− log size(v)⌋ (7)
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Proof. First observe that without modifying the construction in Lemmas 4.9 and 4.10
we can combine (3) with (5) to obtain (7). We now describe the modification: the
construction works exactly as in the two lemmas except that in cases where hlabel(u)
is empty, we use Lemma 4.8 in place of Lemma 4.7 in the construction of light labels
in Lemma 4.10. This clearly makes (6) true, so it remains to prove (7).

So let u and v be as above. By construction of the heavy-light decomposition,
size(hchild(u)) is larger than or equal to the size of any of the light children of u,
and hence larger than the size that corresponds to the weight wk in Lemma 4.8.
Further, lsize(u) + size(hchild(u)) = size(u) ≤ size(apex(u)). Using these two facts
together, Lemma 4.8 now yields

| llabel(v)| ≤ ⌊log size(apex(u))− log size(v)⌋.

Since | hlabel(u)| = 0, we have therefore obtained (7).

Lemma 4.12. It is possible to modify the constructions in Lemmas 4.9 and 4.10
so that, for all nodes u, v, w where v is a light child of u and w is a descendant of
v on the same heavy path as v,

hlabel(u) = ε and llabel(v) = ε =⇒ hlabel(w) 6= ε. (8)

The modification still satisfies (2), (3), (4) and (5) except that when hlabel(u) and
llabel(v) are both empty, (3) is replaced by

| hlabel(u)|+ | llabel(v)|+ | hlabel(w)| ≤ ⌊log size(apex(u))− log lsize(w)⌋ (9)

Proof. The proof is similar to that of the previous lemma. First observe that without
modifying the construction in Lemmas 4.9 and 4.10 we can combine (3), (5) and (3)
again to obtain (9). We now describe the modification: the construction works
exactly as in the two lemmas except that in cases where hlabel(u) and llabel(v) are
both empty, we use Lemma 4.8 in place of Lemma 4.7 in the construction of heavy
labels in Lemma 4.9. This clearly makes (8) true, so it remains to prove (9).

So let u, v and w be as above. Note that size(v) is larger than or equal to
the light size of any of the nodes on the heavy path with v as apex, and hence
larger than the light size that corresponds to the weight wk in Lemma 4.8. Further,
2 size(v) ≤ lsize(u) + size(hchild(u)) = size(u)) ≤ size(apex(u)). Using these two
facts together, Lemma 4.8 now yields

| hlabel(w)| ≤ ⌊log size(apex(u))− log lsize(w)⌋.

Since | hlabel(u)| = | llabel(v)| = 0, we have therefore obtained (9).

We next assign a new set of labels for the nodes of T . Given a node v with
ldepth(v) = k, consider the sequence u0, v0, . . . , uk, vk of nodes from the root r = u0

to v = vk, where ui = apex(vi) is light for i = 0, . . . , k and vi−1 = parent(ui) for i =
1, . . . , k. Let l(v) = (h0, l1, h1, . . . , lk, hk), where li = llabel(ui) and hi = hlabel(vi).
Figure 1 shows an example of a tree with the labels l(v). Note that we have used
Lemmas 4.9 and 4.10 for the construction of labels in this figure and not any of the
modifications in Lemmas 4.11 and 4.12.

To define a labeling scheme, it remains to encode the lists l(v) of binary strings
into a single binary string. Before we do this, however, we note that l(nca(v, w))
can be computed directly from l(v) and l(w). The proof is essentially the same as
that in [7] although with the order � in place of the usual lexicographic order.

Lemma 4.13. Let v and w be nodes in T , and let u = nca(v, w).

(a) If l(v) is a prefix of l(w), then l(u) = l(v).
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Figure 1: A tree with the labels l(v) from Section 4.4 and with heavy sub-labels under-
lined.

(b) If l(w) is a prefix of l(v), then l(u) = l(w).

(c) If l(v) = (h0, l1, . . . , hi, li, . . . ) and l(w) = (h0, l1, . . . , hi, l
′
i, . . . ) with li 6= l′i,

then l(u) = (h0, l1, h1, . . . , hi).

(d) If l(v) = (h0, l1, . . . , li−1, hi, . . . ) and l(w) = (h0, l1, h1, . . . , li−1, h
′
i, . . . ) with

hi 6= h′
i, then l(u) = (h0, l1, h1, . . . li−1,min�{hi, h

′
i}).

Proof. By construction, l = l(parent(apex(u))) is a prefix of both l(v) and l(w),
and

l(u) = l · (llabel(apex(u)), hlabel(u)).
Suppose first that v is an ancestor of w, so that u = v, and let x be the nearest

ancestor of w on hpath(v). Then apex(x) = apex(u), so

l(w) = l · (llabel(apex(u)), hlabel(x), . . . )

If u = x, then hlabel(x) = hlabel(u) and case (a) applies. (If v = w then case (b)
applies too.) If u 6= x, then hlabel(u) ≺ hlabel(x) by (2) and case (d) applies. The
case where w is an ancestor of v is analogous.

Suppose next that v and w are not ancestors of each other. Then u must have
children v̂ and ŵ with v̂ 6= ŵ such that v̂ is an ancestor of v and ŵ is an ancestor of
w. At most one of v̂ and ŵ can be heavy. If neither of them are heavy, then they
are apexes for their own heavy paths, and hence

l(v) = l(u) · (llabel(v̂), . . . )

and
l(w) = l(u) · (llabel(ŵ), . . . ).

By (4), llabel(v̂) and llabel(ŵ) are distinct, so case (c) applies. If v̂ is heavy,
then apex(v̂) = apex(u) and l(v) = l · (llabel(apex(u)), hlabel(v̂), . . . ) while l(w)
is still on the above form, i.e. l(w) = l · (llabel(apex(u)), hlabel(u), . . . ). By (2),
hlabel(u) ≺ hlabel(v̂), so (d) applies. The case where ŵ is heavy is analogous.

Note that, as in [7], the above theorem can be used to find labels for NCAs in
constant time on the RAM as long as the labels have size O(log n).

As a final step, before presenting the encodings of the labels l(v), we present a
lemma that makes it easier to compute the size of the encodings. For brevity, we
let l̃(v) = h0 · l1 · h1 · · · lk · hk denote the concatenation of the sub-labels of l(v).
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Lemma 4.14. If T has n nodes, then |l̃(v)| ≤ ⌊logn⌋ for every node v in T . This
holds no matter if we use Lemmas 4.9 and 4.10 combined or any of the variants in
Lemmas 4.11 and 4.12 for the construction of heavy and light labels.

Proof. Let v be an arbitrary node in T and recall that l(v) = (h0, l1, h1, . . . , lk, hk)
where li = llabel(ui) and hi = hlabel(vi) for nodes ui, vi, i = 0, . . . , k given by
r = u0, v = vk, ui = apex(vi) for all i = 0, . . . , k and vi−1 = parent(ui) for
i = 1, . . . , k. If we use Lemmas 4.9 and 4.10 for the construction of heavy and light
labels, we have by (3) that |hi| ≤ ⌊log size(ui)− log lsize(vi)⌋ for all i = 0, . . . , k and
by (5) that |li| ≤ ⌊log lsize(vi−1) − log sizeui⌋ for i = 1, . . . , k. Summarizing now
gives a telescoping sum:

|l̃(v)| = |h0 · l1 · h1 · · · lk · hk|
≤ ⌊log size(u0)− log lsize(v0)⌋+

⌊log lsize(v0)− log size(u1)⌋+
· · ·+ ⌊log size(uk)− log lsize(vk)⌋

≤ ⌊log size(u0)− log lsize(vk)⌋
≤ ⌊logn⌋.

In the cases where we have used any of the variants in Lemmas 4.11 and 4.12, we
must use (7) or (9) first to collapse sums of two or three terms in the above sum
before collapsing the whole expression. Nevertheless, the result of the computation
remains unchanged.

4.5 NCA labeling schemes for different families of trees.

Let Trees and BinaryTrees denote the families of rooted trees and binary trees,
respectively.

Theorem 4.15. There exists an NCA labeling scheme for Trees whose worst-case
label size is at most ⌈(1 + log(2 +

√
2))⌊logn⌋⌉ ≤ 2.772 logn+ 1.

Proof. The encoder uses the modified construction in Lemma 4.11 to ensure that
every empty heavy label is followed by a nonempty light label. This means that the
sequence l(v) = (h0, l1, h1, . . . , lk, hk) can be encoded using ⌈(1+log(2+

√
2))⌊logn⌋⌉

bits; see Lemma 4.4. Given the encoded labels from two nodes, the decoder can
now decode the labels as described in Lemma 4.4, use Lemma 4.13 to compute the
label of the NCA, and then re-encode that label using Lemma 4.4 once again.

The labeling scheme in Theorem 4.15 makes use of Lemma 4.4 which comes
without any guarantees for the time complexities for encoding and decoding. This
makes the result less applicable in practice. Theorems 4.16, 4.18 and 4.19 and
Corollary 4.17 below all use linear time for encoding and constant time for decoding.

Theorem 4.16. There exists an NCA labeling scheme for Trees whose worst-case
label size is at most 3⌊logn⌋.

Proof. The proof is identical to that of Theorem 4.15 but with Lemma 4.5 in place
of Lemma 4.4.

A variant of NCA labeling schemes [13] allows every node to also have a prede-
fined label and requires the labeling scheme to return the predefined label of the
NCA.

Corollary 4.17. There exists an NCA labeling scheme for Trees with predefined
labels of fixed length k whose worst-case label size is at most (3 + k)⌊logn⌋+ 1.
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Proof. It suffices to save together with the NCA label of a node v a table of the
predefined labels for the at most ⌊logn⌋ parents of light nodes on the path from
the root to v, since the NCA of two nodes will always be a such for one of the
nodes. By prepending a string in the form 0

i
1 to the NCA label of v we can ensure

that it has size exacly 3⌊logn⌋ + 1. We can then append a table of up to ⌊logn⌋
predefined labels of size k. Finally, we append 0s to make the label have size exactly
(3 + k)⌊logn⌋+ 1. The decoder can now use the label’s length to split up the label
into the NCA label and the entries in the table of predefined labels.

Theorem 4.18. There exists an NCA labeling scheme for BinaryTrees whose worst-
case label size is at most ⌈(1 + log 3)(⌊logn⌋ − 1)⌉+ 3 ≤ 2.585 logn+ 2.

Proof. First note that every node in a binary tree has at most one light child. We
can therefore assume that all light labels are empty. Letting the encoder use the
construction in Lemma 4.12, we can then ensure that every empty heavy label is
followed by (an empty light label and) a nonempty heavy label. Since we can ignore
light labels, it suffices to encode the sequence (h0, h1, . . . , hk), and this sequence can
be encoded with ⌈(1 + log 3)(⌊logn⌋ − 1)⌉+ 3 bits; see Lemma 4.6. The rest of the
proof follows the same argument as the proof of Theorem 4.15.

A caterpillar is a tree in which all leaves are connected to a single main path.
We assume caterpillars to always be rooted at one of the end nodes of the main
path. Let Caterpillars denote the family of caterpillars.

Theorem 4.19. There exists an NCA labeling scheme for Caterpillars whose worst-
case label size is at most ⌊log n⌋+ ⌈log⌊logn⌋⌉+ 1.

Proof. By definition of caterpillars, every label l(v) is either in the form (h0) or
(h0, l1, ε). We encode the first case as 0 · h0 and the second case as 1 · x, where x
is the encoding of the pair (h0, l1) using ⌊logn⌋+ ⌈log⌊logn⌋⌉ bits; see Lemma 4.3.
In both cases, the label size is at most ⌊logn⌋+ ⌈log⌊logn⌋⌉+ 1, and the decoder
can easily distinguish the two cases from the first bit. The rest of the proof follows
the same argument as the proof of Theorem 4.15.

For comparison, the best known lower bound for NCA labeling schemes for
caterpillars is the trivial ⌊logn⌋.
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