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Abstract

PAC learning, dating back to Valiant’84 and Vapnik and Chervonenkis’64,’74, is a classic model for
studying supervised learning. In the agnostic setting, we have access to a hypothesis set H and a training
set of labeled samples (x1, y1), . . . , (xn, yn) ∈ X × {−1, 1} drawn i.i.d. from an unknown distribution D.
The goal is to produce a classifier h : X → {−1, 1} that is competitive with the hypothesis h⋆

D ∈ H
having the least probability of mispredicting the label y of a new sample (x, y) ∼ D.

Empirical Risk Minimization (ERM) is a natural learning algorithm, where one simply outputs the
hypothesis from H making the fewest mistakes on the training data. This simple algorithm is known to
have an optimal error in terms of the VC-dimension of H and the number of samples n.

In this work, we revisit agnostic PAC learning and first show that ERM is in fact sub-optimal if we
treat the performance of the best hypothesis, denoted τ := PrD[h⋆

D(x) ̸= y], as a parameter. Concretely
we show that ERM, and any other proper learning algorithm, is sub-optimal by a

√
ln(1/τ) factor. We

then complement this lower bound with the first learning algorithm achieving an optimal error for nearly
the full range of τ . Our algorithm introduces several new ideas that we hope may find further applications
in learning theory.

1 Introduction

One of the most basic theoretical models for studying binary classification in a supervised learning setup,
is the Probably Approximately Correct (PAC) learning framework of Valiant [25], and Vapnik and Chervo-
nenkis [27, 28]. In this framework, a training data set consists of n i.i.d. samples S = {(xi,yi)}ni=1 from an
unknown data distribution D over X ×{−1, 1}. Here X is an input domain and {−1, 1} are the two possible
labels. The goal is to design a learning algorithm A, that on a training set S, produces a classifier/hypothesis
hS : X → {−1, 1} minimizing the probability of mispredicting the label of a fresh sample from D, denoted
by erD(h) := PrD[h(x) ̸= y].

In the PAC learning framework, the algorithm A is further given a hypothesis set H ⊆ X → {−1, 1}, and
the performance of the hypothesis hS produced by A must be competitive with the best hypothesis h⋆

D in
H, where h⋆

D := argminh∈H erD(h) (breaking ties arbitrarily). Classic work on PAC learning distinguishes
two important cases, namely realizable and agnostic learning. In the realizable setting, it is assumed that
erD(h

⋆
D) = 0, i.e. that there is a hypothesis in H perfectly classifying all data. Here the goal is to achieve

erD(hS) ≤ ε for ε going to 0 as fast as possible with n. In the often more realistic setup of agnostic learning,
the goal is instead to guarantee erD(hS) ≤ erD(h

⋆
D) + ε, thus being competitive with h⋆

D.

Realizable setting. The realizable setting is by now very well understood, in particular following a surge
of results over the past few years. The most natural learning algorithm in this setting is Empirical Risk
Minimization (ERM), that simply outputs an arbitrary hypothesis hS ∈ H that achieves erS(hS) = 0. Here,
and throughout the paper, we let erS(h) for a set of samples S denote PrS [h(x) ̸= y], and when we subscript
a probability by S, we let (x,y) be a uniform random sample from S. Note that a hypothesis hS with
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erS(hS) = 0 is guaranteed to exist since h⋆
D is one such hypothesis. Classic work [28, 26, 6] shows that

ERM guarantees, with probability 1 − δ over S ∼ Dn, that erD(hS) = O((d ln(n/d) + ln(1/δ))/n). Here
d denotes the VC-dimension [29] of H and is defined as the largest number of points x1, . . . , xd ∈ X for
which H can generate all 2d possible labelings of x1, . . . , xd. This sample complexity is known [17, 5, 24, 8]
to be optimal for any proper learning algorithm, i.e. there exists an input domain X , hypothesis set H
of VC-dimension d and a data distribution D, such that any A that outputs a hypothesis hS from H
must have erD(hS) = Ω((d ln(n/d) + ln(1/δ))/n) with probability at least δ. Determining the optimal
sample complexity for improper learning algorithms, i.e., algorithms that are allowed to output an arbitrary
hypothesis hS : X → {−1, 1}, and not only hypotheses from H, was a major open problem for decades.
Finally, in work by Hanneke [14], building on ideas of Simon [24], an optimal learning algorithm guaranteeing
erD(hS) = O((d + ln(1/δ))/n) with probability 1 − δ was finally developed. This matches previous lower
bounds [6, 12] and thus settled the complexity of realizable PAC learning. Over the past few years, there
have been several works proving optimality of other and arguably simpler learning algorithms, including for
the practical heuristic bagging [19, 10], a variant of the one-inclusion graph learning algorithm [1, 17], and
most recently for a simple majority vote among three ERM classifiers [2].

Agnostic setting. ERM is also a very natural learning algorithm in the agnostic setting. Instead of
outputting a hypothesis hS with erS(hS) = 0 (which might not exist), ERM instead outputs the hypothesis
h⋆
S = argminh∈H erS(h) achieving the best performance on the training data (breaking ties arbitrarily). This

strategy is well understood and is known [16] to guarantee erD(hS) = erD(h
⋆
D)+O(

√
(d+ ln(1/δ))/n). Note

that always use h⋆
D to denote the hypothesis argminh erD(h). Unlike the realizable setting, there is a matching

lower bound [3] (Theorem 5.2) even for improper learning algorithms. Thus in contrast to the realizable
setting, simple ERM is provably optimal. While this might seem the end of the story, the picture is however
more complicated. In particular, one would expect there to be some form of transition between the agnostic
and realizable setting, i.e. for sufficiently small τ = erD(h

⋆
D), ERM must become sub-optimal. The bounds

with the explicit dependence on τ are quite standard in the literature and are sometimes called the first-
order bounds, especially in the contexts of online learning and optimization. For the state-of-the-art upper
and lower bounds in the agnostic PAC learning setup, we refer to [7, Corollary 5.3] and the corresponding
lower bounds in [11, Chapter 14] and in [4]. Since we revisit ERM and state its sample complexity also as a
function of τ , we start with the following upper bounds (with 0 ln(1/0) = 0):

Theorem 1 (ERM Theorem, derived from [20]). For any input domain X , hypothesis set H of VC-dimension
d, number of samples n, distribution D over X ×{−1, 1} and any 0 < δ < 1, it holds with probability at least
1− δ over a sample S ∼ Dn that every hypothesis h ∈ H satisfies

| erD(h)− erS(h)| = O

(√
erD(h)(d ln(1/ erD(h)) + ln(1/δ))

n
+

d ln(n/d) + ln(1/δ)

n

)
.

In particular, this implies that running ERM returns a hypothesis hS ∈ H satisfying

erD(hS) = τ +O

(√
τ(d ln(1/τ) + ln(1/δ))

n
+

d ln(n/d) + ln(1/δ)

n

)
,

where τ = erD(h
⋆
D).

Observe the
√
τ ln(1/τ) dependency in erD(hS) that smoothly interpolates between the agnostic and

realizable setting. By the lower bounds in [11, Chapter 14], we have that any learning algorithm A produces
with probability at least δ a hypothesis hS with

erD(hS) = τ +Ω

(√
τ(d+ ln(1/δ))

n
+

d+ ln(1/δ)

n

)
.
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Thus there is a
√
ln(1/τ) gap between ERM and the lower bound. Furthermore, and unlike the realizable

setting, there are no known algorithms that bridge this gap and we have no proof that optimal algorithms
need to be improper (except when τ = 0).

Our Contributions. In this work, we close this gap for almost the full range of τ . First, we prove that
any proper learning algorithm must incur this

√
ln(1/τ) factor in its sample complexity:

Theorem 2. There is a constant C > 0 such that for any VC-dimension d, number of samples n and τ
satisfying Cd ln(n/d)/n ≤ τ ≤ 1/C, there is an input domain X and hypothesis set H of VC-dimension d,
satisfying that for every proper learning algorithm A, there is a distribution D over X × {−1, 1} such that:

1. There is a hypothesis h ∈ H with erD(h) = τ .

2. With probability at least 1/16 over a sample S ∼ Dn, it holds that the hypothesis hS ∈ H produced by
A on S has erD(hS) = τ +Ω(

√
τd ln(1/τ)/n).

Motivated by this lower bound, we design a new improper learning algorithm that avoids this
√
ln(1/τ)

penalty and achieves an optimal sample complexity except for very small values of τ :

Theorem 3. For any input domain X , hypothesis set H of VC-dimension d, number of samples n, distribu-
tion D over X × {−1, 1} and any 0 < δ < 1, there is an algorithm, DisagreeingExperts, that when given
samples S ∼ Dn and failure probability δ, returns with probability at least 1−δ a hypothesis hS : X → {−1, 1}
satisfying

erD(hS) = τ +O

(√
τ(d+ ln(1/δ))

n
+

ln5(n/d)(d+ ln(1/δ))

n

)
,

where τ = erD(h
⋆
D).

This is the first known learning algorithm to provably outperform ERM in the agnostic setting. Fur-
thermore, we stress that despite the recent progress on realizable PAC learning, none of the ideas in those
works seem to generalize easily to the agnostic setting. Instead, our algorithm is based on a new paradigm
of recursively training pairs of nearly optimal classifiers that disagree in many of their predictions. We
elaborate on this new approach in Section 1.1 and hope it may find further applications in learning theory.

1.1 Proof Overview

In this section, we present the high level ideas of both our new agnostic PAC learning algorithm, Dis-
agreeingExperts, as well as our lower bound for proper learners. We begin with the upper bound.

New algorithm. Our improved algorithm relies on several new insights regarding Empirical Risk Mini-
mization. To set the stage for describing these ideas, consider a data distribution D over X × {−1, 1} and
let τ = erD(h

⋆
D). If we run ERM on a data set S ∼ Dn of size n, then by the ERM Theorem (Theo-

rem 1), this ensures that for sufficiently large constant c > 0, ERM will not return a hypothesis h with
erD(h) > τ + c

√
τd ln(1/τ)/n (let us ignore δ and the additive d ln(n/d)/n term in the ERM Theorem for

simplicity). This is, of course, a
√
ln(1/τ) factor worse than what we are aiming for. To improve this bound,

we show that there is always a win-win situation we may exploit to shave the
√

ln(1/τ) factor.
To understand this win-win scenario, consider the set H̄ ⊆ H of near-optimal hypotheses h with erD(h) ≤

τ + c
√

τd ln(1/τ)/n, i.e., the hypotheses that might be returned by a typical execution of ERM. These are
what we think of as experts in our algorithm name DisagreeingExperts. In the proof of the ERM
Theorem, the basic idea is to union bound over all h ∈ H̄ (with a chaining argument), to show that
| erD(h) − erS(h)| = O(

√
τd ln(1/τ)/n) for all h ∈ H̄ simultaneously and thus returning the hypothesis

h⋆
S with smallest error on S is a good strategy. Our first new insight is, that if the hypotheses in H̄ are

sufficiently similar, then this union bound improves for H̄. Concretely, assume that all pairs of hypotheses
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h1, h2 ∈ H̄ have PrD[h1(x) ̸= h2(x)] = O(τ/ ln(1/τ)). We argue that this implies that all hypotheses in
H̄ satisfy the stronger guarantee that | erS(h) − erD(h)| = O(

√
τd/n) rather than just O(

√
τd ln(1/τ)/n),

hence improving the accuracy obtained from ERM. The intuitive reason for this improvement is, that when
all the hypotheses in H̄ are very similar, it suffices to bound | erS(h)− erD(h)| for one h ∈ H̄ and to bound
|(erS(h′) − erS(h)) − (erD(h

′) − erD(h))| for all other h′ ∈ H̄. Since | erD(h′) − erD(h)| = O(PrD[h(x) ̸=
h′(x)]) = O(τ/ ln(1/τ)), we get stronger concentration on |(erS(h′)− erS(h))− (erD(h

′)− erD(h))| than each
individual | erS(h′)− erD(h

′)|.
Unfortunately, we have no guarantee that all pairs of hypotheses h1, h2 ∈ H̄ have PrD[h1(x) ̸= h2(x)] =

O(τ/ ln(1/τ)). Our next contribution is thus to find a way of exploiting the existence of two near-optimal
hypotheses h1, h2 with PrD[h1(x) ̸= h2(x)] = Ω(τ/ ln(1/τ)) (i.e., a pair of disagreeing experts). Here we
show that the conditional distribution of a sample (x,y) from D with h1(x) = h2(x) is ”easier”1 than
the distribution D. In more detail, we know that erD(hj) = τ + O(

√
τd ln(1/τ)/n) for j = 1, 2. Since

precisely one of them errs whenever h1(x) ̸= h2(x), and both or none err when h1(x) = h2(x), we have
that erD(h1) + erD(h2) = PrD[h1(x) ̸= h2(x)] + 2PrD[h1(x) ̸= y ∧ h1(x) = h2(x)]. Since they are both
near-optimal, this implies PrD[h1(x) ̸= y∧h1(x) = h2(x)] = τ +O(

√
τd ln(1/τ)/n)−Ω(τ/ ln(1/τ)). This is

τ − Ω(τ/ ln(1/τ)) for τ sufficiently large (this assumption is one of the causes of the additive ln5(n/d)(d +
ln(1/δ))/n term in our upper bounds). Rewriting this also gives PrD[h1(x) ̸= y | h1(x) = h2(x)] =
PrD[h1(x) = h2(x)]

−1(τ −Ω(τ/ ln(1/τ))). Recalling that precisely one of h1 and h2 errs when they disagree,
and that they are both near-optimal implies PrD[h1(x) = h2(x)] ≥ 1 − O(τ) and thus PrD[h1(x) ̸= y |
h1(x) = h2(x)] = (1 + O(τ))(τ − Ω(τ/ ln(1/τ))) = τ − Ω(τ/ ln(1/τ)). What we have just argued is, that
under the conditional distribution D= of a sample (x,y) ∼ D with h1(x) = h2(x), there is a hypothesis
h⋆
D=
∈ H with erD=(h

⋆
D=

) = τ − Ω(τ/ ln(1/τ)) (in particular, both h1 and h2 have this property). The
distribution D= is thus somewhat easier than D since the optimal error under D is τ .

Our next idea is to repeat the above argument recursively in order to drive erD=
(h⋆

D=
) further down.

More formally, if we can again find a pair of disagreeing experts h1, h2 for the distribution D= and re-
peat this t times, then we end up with a list of pairs (h1

1, h
1
2), . . . , (h

t
1, h

t
2) such that under the distribution

D= of a sample (x,y) ∼ D conditioned on ∀i : hi
1(x) = hi

2(x), we have erD=(h
⋆
D=

) ≤ τ(1 − 1/ ln(1/τ))t.
After t = O(ln(1/τ) ln ln(1/τ)) iterations, we have ensured erD=(h

⋆
D=

) ≤ τ/ ln(1/τ). Empirical Risk Mini-

mization on samples S= with ∀i : hi
1(x) = hi

2(x) then gives a hypothesis with erD=
(h⋆

S=
) = erD=

(h⋆
D=

) +

O(
√

(τ/ ln(1/τ))d ln(ln(1/τ)/τ)/n) = erD=
(h⋆

D=
) +O(

√
τd/n).

What remains is to handle samples with hi
1(x) ̸= hi

2(x) for some i. We let D̸= denote the distribution D
conditioned on such a sample. Our key observation is that we can control the probability of receiving such
a sample. Concretely, we show that PrD[∃i : hi

1(x) ̸= hi
2(x)] = Θ(τ). We thus expect to see Θ(τn) samples,

denoted S̸=, from D̸= in a training set S ∼ Dn. A completely naive invocation of the ERM Theorem, only

assuming τ = O(1), shows that we find a hypothesis h⋆
S̸=

with erD̸=
(h⋆

S̸=
) = erD̸=

(h⋆
D̸=

) + O(
√

d/|S̸=|) =

erD̸=
(h⋆

D̸=
) + O(

√
d/(τn)). Note that the dependency on τ is very bad for this hypothesis, i.e., a

√
1/τ

rather than
√
τ . However, since samples with hi

1(x) ̸= hi
2(x) are so rare, this turns out to be sufficient.

We now have all the ingredients for our algorithm. If we have obtained the pairs of disagreeing experts
(h1

1, h
1
2), . . . , (h

t
1, h

t
2) and the two hypotheses h⋆

S=
and h⋆

S̸=
, our final classifier does as follows on a new point

x ∈ X without a label: First, it checks whether there is a pair with hi
1(x) ̸= hi

2(x). If so, it returns h
⋆
S̸=

(x).

Otherwise, it returns h⋆
S=

(x). If p denotes PrD[∃i : hi
1(x) ̸= hi

2(x)], then p = O(τ) and our final classifier hS

1A similar argument was used in [9, 22] in the context of classification with an abstention option. The authors also use the
disagreement sets of what we call the experts — candidates for being an output of a typical ERM. However, the authors of
[9, 22] focus on either abstaining or learning the labels of the set of disagreements of pairs of experts, while in this work we use
the fact that the conditional distribution of the set where two experts agree is ”easier”.
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satisfies

erD(hS) = p erD̸=
(h⋆

S̸=
) + (1− p) erD=

(h⋆
S=

)

= p erD̸=
(h⋆

D̸=
) +O(p

√
d/(τn)) + (1− p) erD=

(h⋆
D=

) +O(
√

τd/n)

= p erD̸=
(h⋆

D) + (1− p) erD=(h
⋆
D) +O(

√
τd/n)

= erD(h
⋆
D) +O(

√
τd/n).

This completes the high level description of the key ideas in our new algorithm. Let us finally remark that
we clearly do not have t training sets of size n each for training hi

1, h
i
2 for i = 1, . . . , t. Instead, we allocate

around n/t samples for each iteration. This of course reduces the performance of any estimates based on
ERM. However, we can show that this only matters for very small values of τ and thus is a second source of
the additive ln5(n/d)(d+ ln(1/δ))/n term.

Lower bound for proper learners. Our lower bound proof is quite simple. Assume we wish to prove
a lower bound on the error of a proper learner when the hypothesis set has VC-dimension d, we have n
samples and erD(h

⋆
D) = τ for some τ . We construct an instance where the input domain X is the discrete set

x1, . . . , xu with u ≈ d/τ . We let the hypothesis set H consist of all hypotheses returning −1 on precisely d of
the u points. Finally, the unknown concept we are trying to learn is the all-1 concept. This hypothesis class
is routinely used in the existing lower bounds, and in fact corresponds to the hardest case under Massart’s
noise condition [21, 23, 15, 30]. Note that H does not contain the all-1 concept; thus, we cannot simply
choose the proper learner that always outputs this concept.

Assume we have some proper learning algorithm A for this hypothesis set and input domain X . We
now consider a number of different data distributions D1,D2, . . . , and argue that there is at least one
of the distributions Di under which A often (with constant probability) produces a hypothesis hS with
erDi

(hS) = τ +Ω(
√

τ ln(1/τ)d/n) when S ∼ Dn
i .

The distributions we consider each corresponds to a hypothesis h ∈ H. The distribution Dh returns each
point x ∈ X such that h(x) = −1 with probability 1/u−α. For the remaining points, the distribution returns
them with probability 1/u + f(α, d, u) such that we get a probability distribution (thus f(α, d, u) < α for
u ≥ 2d). Since the unknown concept/true labeling function is the all-1 function, we have that any hypothesis
h ∈ H errs precisely when it returns −1. Thus in particular, the best hypothesis under Dh is h and that
hypothesis has erDh

(h) = d(1/u− α). This is the value we set to τ by choosing u and α appropriately.
Now consider choosing one of the distributions Dh uniformly at random and running A on S ∼ Dn

h . Since
A is proper, it has to return a hypothesis inH. This means that is has to choose d points xi on which to return
−1. Now crucially, if a constant fraction of those are chosen such that h(xi) = 1, then erDh

(hS) = τ+Ω(dα).
Intuitively, since the points with h(xi) = −1 receive the least probability mass under Dh, and A does not
know the distribution Dh, the best strategy for A is to output the hypothesis hS returning −1 on the d points
xi from which there are fewest copies in the sample S. We expect to see n(1/u+ f(α)) ≤ n/u+αn copies of
each xi with h(xi) = 1 and we expect to see n(1/u−α) = n/u−αn copies of each point with h(xi) = −1. A
simple application of Chebyshev’s inequality implies that with constant probability, it holds for at least half
the points xi with h(xi) = −1 that we see ni ≥ n/u−αn−O(

√
n/u) copies of it in S. Now for the points xi

with h(xi) = 1, by anti-concentration, we see no more than ni = n/u+ αn− Ω(
√

n ln(u/d)/u) copies with

probability roughly d/u. We thus expect to see Ω(d) such points with ni = n/u+αn−Ω(
√

n ln(u/d)/u). If√
n ln(u/d)/u > cαn for a large enough c > 0, this implies we have fewer copies of these points and A will

return −1 on at least d/2 of them. We can thus choose α = Θ(
√

ln(u/d)/(un)) = Θ(
√

τ ln(1/τ)/(dn)) and

conclude erDh
(hS) = τ +Ω(dα) = τ +Ω(

√
τd ln(1/τ)/n) as claimed.

2 Near-Optimal Agnostic PAC Learner

In this section, we present our new agnostic PAC learner, DisagreeingExperts (Algorithm 1), with an
optimal error bound except for very small values of τ = infh∈H erD(h). The guarantees of Algorithm 1 are
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stated in our main upper bound result, Theorem 3. To simplify the analysis, DisagreeingExperts ensures
that we may focus on analysing a subroutine CoreDisagreeingExperts (Algorithm 2) under the following
simplifying assumptions:

1. n ≥ cn ln
3.5(n/d)(d+ ln(1/δ)) for large enough constant cn > 0.

2. cτ ln
9(n/d)(d+ ln(1/δ))/n ≤ τ ≤ 1/cτ for large enough constant cτ > 0.

3. We have an estimate τ̃ ∈ [τ/2, 2τ ] available.

Under these assumptions, we show that the subroutine CoreDisagreeingExperts (Algorithm 2) with
probability at least 1 − δ over a training set S ∼ Dn, returns a hypothesis hS with erD(hS) ≤ τ +
O(
√

τ(d+ ln(1/δ))/n).
We start by justifying these assumptions before delving into the details of the analysis. Crucially, our full

algorithm DisagreeingExperts needs none of these assumption, they are merely to ease the presentation
and analysis of the main part of our algorithm, CoreDisagreeingExperts.

Simplifying assumptions. For assumption 1., notice that our claimed upper bound in Theorem 3 on the
error of hS exceeds 1 for smaller n and thus is trivially true. The algorithm DisagreeingExperts, shown
as Algorithm 1, takes care of assumptions 2. and 3.

Algorithm 1: DisagreeingExperts(S,H, d, δ)
Input: Training set S of n samples {(xi, yi)}ni=1 with (xi, yi) ∈ X × {−1, 1}, hypothesis set H of

VC-dimension d, failure parameter δ > 0.
Result: Classifier hS : X → {−1, 1}.

1 Partition S into three sets S1, S2, S3 of n/3 samples each.
2 Let τ̃ ← erS1

(h⋆
S1
).

3 Run CoreDisagreeingExperts(S2,H, d, δ, τ̃) to obtain hypothesis h1.
4 Run ERM on S2 to obtain hypothesis h2.
5 return hS ∈ {h1, h2} with smallest erS3(hS).

Given a training set S ∼ Dn, DisagreeingExperts first splits the training set into 3 sets S1,S2,S3

of n/3 samples each. It then computes the error τ̃ of the best hypothesis h⋆
S1

in H on S1. By the ERM
Theorem (Theorem 1) and assumption 1. (that we already justified), the estimate τ̃ satisfies τ̃ ∈ [τ/2, 2τ ]
with probability 1− δ.

It then invokes CoreDisagreeingExperts on S2 using this estimate τ̃ to obtain a hypothesis h1. This
justifies assumption 3. (by rescaling δ by a constant factor).

It also runs ERM on S2 to obtain a hypothesis h2. Finally, it uses S3 as a validation set to estimate
erD(h1) and erD(h2) to within additive (by Chernoff):

| erS3
(hi)− erD(hi)| = O(

√
erD(hi) ln(1/δ)/n+ ln(1/δ)/n).

Returning the hypothesis among h1,h2 with the least erS3
(hi) ensures that the final hypothesis hS has error

at most
min
i

erD(hi) +O(
√

erD(hi) ln(1/δ)/n+ ln(1/δ)/n).

By the guarantee claimed above for Algorithm 2, this is at most τ+O(
√

τ(d+ ln(1/δ))/n) when cτ ln
9(n/d)(d+

ln(1/δ))/n ≤ τ ≤ 1/cτ (i.e. under assumption 2.). For smaller τ , the ERM Theorem (Theorem 1) guarantees
that h2 has an error of at most

τ +O

(√
τ(d ln(n/d) + ln(1/δ))

n
+

d ln(n/d) + ln(1/δ)

n

)
= τ +O

(
ln5(n/d)(d+ ln(1/δ))

n

)
.
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Note that we have upper bounded τ ln(1/τ) in the first term by τ ln(n/d) since the second term dominates
for τ ≪ d/n. Similarly, for τ > 1/cτ , the ERM Theorem guarantees that h2 has an error of at most

τ +O
(√

(d+ ln(1/δ))/n
)
= τ +O

(√
τ(d+ ln(1/δ))/n

)
.

This completes the justifications for assumptions 1., 2., and 3. We now proceed to analyzing the main part
of our new algorithm, denoted CoreDisagreeingExperts, under these assumptions.

2.1 Core algorithm

Our algorithm CoreDisagreeingExperts is shown as Algorithm 2, where we define

α(n, d, δ, β) := cα

(√
β(d ln(1/β) + ln(1/δ))

n
+

d ln(n/d) + ln(1/δ)

n

)

with cα a sufficiently large constant. In Algorithm 2, the two parameters ct, cZ are also sufficiently large
constants (in particular, cZ is sufficiently larger than cα + ct and cα is sufficiently larger than the constant
hiding in the O(·)-notation of the ERM Theorem (Theorem 1)).

Algorithm 2: CoreDisagreeingExperts(S,H, d, δ, τ̃)
Input: Training set S of 2n samples {(xi, yi)}2ni=1 with (xi, yi) ∈ X × {−1, 1}, hypothesis set H of

VC-dimension d, failure parameter δ > 0, estimate τ̃ ∈ [τ/2, 2τ ].
Result: Classifier hS : X → {−1, 1}.

1 Partition S into two sets B,C of n samples each.
2 Let t← ct ln(1/τ̃) ln ln(1/τ̃).

3 Let Zt ← cZ · t ln2(n/d) (d ln(n/d) + ln(1/δ)) /n.
4 Partition B into t sets B1, . . . , Bt of n/t samples each.
5 r ← 0
6 for i = 1, . . . , t do

7 Let T i ⊆ Bi be the samples in Bi with hj
1(x) = hj

2(x) for all j < i.
8 Run ERM on T i to obtain a hypothesis h⋆

T i .
9 Let γi ← erT i(h⋆

T i).
10 if γi ≤ Zt then
11 break
12 Let Hi ⊆ H be the hypotheses h ∈ H with erT i(h) ≤ γi + α(n/t, d, δ, γi).
13 if there is no pair h1, h2 ∈ Hi with PrT i [h1(x) ̸= h2(x)] ≥ γi/ ln(1/γi) then
14 break
15 else
16 Let hi

1 ← h1 and hi
2 ← h2 for a pair h1, h2 ∈ Hi with PrT i [h1(x) ̸= h2(x)] ≥ γi/ ln(1/γi).

17 r ← i

18 Partition C into two sets C= and C̸= where C= contains all x with hi
1(x) = hi

2(x) for all i = 1, . . . , r
and C ̸= contains the remaining.

19 Run ERM on C= to obtain a hypothesis h⋆
C=

.

20 Run ERM on C ̸= to obtain a hypothesis h⋆
C ̸=

.

21 Let hS be the classifier that on an input x checks whether hi
1(x) = hi

2(x) for all i = 1, . . . , r. If so,
hS returns h⋆

C=
(x) and otherwise it returns h⋆

C̸=
(x).

22 return hS.

Recall that our goal is to show that under assumptions 1., 2. and 3., it holds with probability at
least 1 − δ over a training set S ∼ D2n, that Algorithm 2 returns a hypothesis hS with erD(hS) ≤
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τ + O(
√
τ(d+ ln(1/δ))/n). We note that the algorithm is presented as if given a training set of size 2n,

not n. This is merely to make the constants simpler and only affects the generalization error by a constant
factor after rescaling n with n/2.

Brief overview. Before giving the details of the analysis, let us briefly discuss the steps of Algorithm 2,
introduce some notation and give the high level ideas in the analysis. Assume we run Algorithm 2 on a data
set S ∼ D2n. The data set is first split into two pieces B,C of size n each.

We start by partitioning B into t pieces B1, . . . ,Bt of n/t samples each and execute the for-loop in steps
6-17. The goal of these steps is to obtain hypotheses hi

1 and hi
2 that are both close to optimal and yet disagree

a lot in their predictions, i.e., disagreeing experts. In each step of the loop, we gather the set Ti of samples
(x,y) ∈ Bi for which hj

1(x) = hj
2(x) for all j < i, i.e., none of the previous pairs disagree on x (for i = 1,

we have T1 = B1). Now consider any fixed outcome B1, . . . , Bi−1 of B1, . . . ,Bi−1 and h1
1, h

1
2, . . . , h

i−1
1 , hi−1

2

of h1
1,h

1
2, . . . ,h

i−1
1 ,hi−1

2 . The samples in Ti are i.i.d. from D conditioned on hj
1(x) = hj

2(x) for all j < i.
Denote this conditional distribution by Di. Steps 8-9 estimate the best possible error erDi(h⋆

Di) achievable
under Di. If this error is sufficiently small, we exit the for-loop in step 11.

If not, we gather the subset of hypotheses Hi that are near-optimal on the data set Ti (step 12). Among
these, we look for a pair h1, h2 that disagree on many predictions in Ti. If there is no such pair, we exit the
for-loop in step 14. Finally, if there is, we let hi

1 and hi
2 be an arbitrary such pair.

Once the for-loop has completed, we use the obtained pairs hi
1,h

i
2 to partition the samples in C into two

sets C= and C ̸=, where C ̸= contains the samples (x, y) ∈ C where at least one i has hi
1(x) ̸= hi

2(x) and C=

contains the remaining. We finally run ERM on each of the two sets to obtain hypotheses h⋆
C=

and h⋆
C̸=

.
The intuition for why the above works was also discussed in Section 1.1. We repeat the main ideas here

in context of the full algorithm description. First, if we exit the for-loop before having completed all t steps,
then either it was possible to obtain a very small error on Ti (step 10-11) or there was no pair hi

1, h
i
2 that

disagree on many predictions (step 13-14). In the former case, ERM on C= ensures that h⋆
C=

makes few

mistakes on samples from D where hi
1(x) = hi

2(x) for all i. Denote the distribution of such a sample by
D=. In the latter case, since all hypotheses that are near-optimal on Ti make almost the same predictions,
the ERM bounds improve for C=. If we complete all t iterations of the for-loop, then we will show that
each step decreases erDi(h⋆

Di) enough that erD=
(h⋆

D=
) ≤ τ/ ln(1/τ). With this reduced error, the additive

mistakes resulting from ERM is down-scaled sufficiently to cancel out the
√

ln(1/τ) factor of sub-optimality.
Finally, for the set C̸=, we will show that PrD[∃i : hi

1(x) ̸= hi
2(x)] ≤ O(τ). Thus, when we run ERM

on C̸=, we can afford to merely upper bound the error of h⋆
C̸=

by erD ̸=(h
⋆
D ̸=

) + O(
√

(d+ ln(1/δ))/(τn)).

This is because we only see such a sample with probability O(τ) and thus the additive error contributes
only O(τ

√
(d+ ln(1/δ))/(τn)) = O(

√
τ(d+ ln(1/δ))/n). Here D ̸= denotes the conditional distribution of a

sample (x,y) from D conditioned on there being at least one i for which hi
1(x) ̸= hi

2(x).

Analysis. We are now ready for the formal correctness proof. Let S ∼ D2n denote a random training set
of 2n samples and let B and C be the respective sets of size n constructed by Algorithm 2.

We first argue that once the for-loop in steps 6-17 of Algorithm 2 terminates, the two distributions D=

and D̸= have the following desirable properties:

Lemma 1. It holds with probability at least 1− δ/2 over B ∼ Dn, that upon termination of the for-loop, we
have PrD[∃i : hi

1(x) ̸= hi
2(x)] ≤ 8τ and:

• For any m ≥ n/2, it holds with probability at least 1 − δ/8 over a set C= ∼ Dm
= that erD=(h

⋆
C=

) =

erD=(h
⋆
D=

) +O(
√

τ(d+ ln(1/δ))/n).

Before proving Lemma 1, we show that it suffices to establish our claim on erD(hS) and thus completes
the proof of Theorem 3.

Fix an arbitrary outcome B of B for which the properties in Lemma 1 are satisfied upon termination.
This also fixed hi

1,h
i
2 to some hi

1, h
i
2 and D= and D̸= to some D= and D̸=. The set C still consists of i.i.d.

samples from D as C is not used in the for-loop.
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Define p := PrD[∃i : hi
1(x) ̸= hi

2(x)]. We start by showing properties of h⋆
C ̸=

when p ≥ cp ln(1/δ)/n

for a large enough constant cp. Under this assumption on p, by Chernoff, we have |C ̸=| ≥ (p/2)n except
with probability 1− δ/8. In this case, it follows from the ERM Theorem (Theorem 1) that with probability
1− δ/8, h⋆

C̸=
has

erD̸=
(h⋆

C̸=
) = erD̸=

(h⋆
D̸=

) +O(
√
(d+ ln(1/δ))/(pn)).

Next, we show properties of h⋆
C=

. Since we assume τ ≤ 1/cτ for a big enough constant cτ , we must have
(1 − p) ≥ 1 − 8τ ≥ 3/4. Since n is assumed sufficiently large, this implies that with probability at least
1− δ/8, we have |C=| ≥ n/2. Conditioned on this, by the properties in Lemma 1, we have with probability
at least 1− δ/8 that

erD=(h
⋆
C=

) = erD=(h
⋆
D=

) +O

(√
τ(d+ ln(1/δ))

n

)
.

The returned hypothesis hS thus satisfies

erD(hS) = p erD̸=
(h⋆

C̸=
) + (1− p) erD=

(h⋆
C=

).

If p < cp ln(1/δ)/n (and by assumption that τ ≥ cτ ln
9(n/d)(d+ ln(1/δ))/n), this gives

erD(hS) ≤ p+ (1− p) erD=
(h⋆

C=
)

= p+ (1− p) erD=
(h⋆

D=
) +O

(√
τ(d+ ln(1/δ))

n

)

= (1− p) erD=(h
⋆
D) +O

(√
τ(d+ ln(1/δ))

n

)

= erD(h
⋆
D) +O

(√
τ(d+ ln(1/δ))

n

)
.

If p ≥ cp ln(1/δ)/n, we have from Lemma 1 that p ≤ 8τ and thus

erD(hS) = p erD̸=
(h⋆

D̸=
) + (1− p) erD=

(h⋆
D=

) + p ·O

(√
d+ ln(1/δ)

pn

)
+O

(√
τ(d+ ln(1/δ))

n

)

= p erD̸=
(h⋆

D) + (1− p) erD=
(h⋆

D) +O

(√
p(d+ ln(1/δ))

n

)
+O

(√
τ(d+ ln(1/δ))

n

)

= erD(h
⋆
D) +O

(√
τ(d+ ln(1/δ))

n

)
.

This completes the proof of Theorem 3. What remains is thus to establish Lemma 1, which is the focus of
the next subsection.

2.2 Progress on termination (proof of Lemma 1)

In this section, we prove Lemma 1. Intuitively, termination of the for-loop results in the properties claimed
in Lemma 1 provided that the estimates based on performance on the Ti’s are sufficiently accurate. To
formalize this, we define a number of natural failure events relating to the accuracy of these.
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Failure events. We define a number of bad events that we argue rarely occur. Let Di be the random
variable giving the distribution of a sample (x,y) ∼ D conditioned on ∀j < i : hj

1(x) = hj
2(x). Note that

this random variable is determined from B1, . . . ,Bi−1. The samples Ti are then i.i.d. from Di. We define
two failure events relating to how well Ti represents Di:

1. Let Ei,0 be the event that Algorithm 2 reaches iteration i, none of the events Ej,0, Ej,1 occurred for i < j
and there is a hypothesis h ∈ H with | erDi(h)− erTi(h)| > (1/32)α(n/t, d, δ,min{erDi(h), erTi(h)}).

2. Let Ei,1 be the event that Algorithm 2 reaches iteration i, none of the events Ej,0, Ej,1 occurred for
i < j and there is a pair of hypotheses h1, h2 with |PrDi [h1(x) ̸= h2(x)] − PrTi [h1(x) ̸= h2(x)]| >
(1/32)α(n/t, d, δ,min{PrDi [h1(x) ̸= h2(x)],PrTi [h1(x) ̸= h2(x)]}).

We will show that these events are unlikely:

Lemma 2. For all i, we have Pr[Ei,0] ≤ δ/(4t) and Pr[Ei,1] ≤ δ/(4t).

We also show that when none of the events occur, the hypotheses and execution of Algorithm 2 satisfies
the following:

Observation 1. Assume none of the events Ej,0 and Ej,1 occur for j ≤ i and that Algorithm 2 does not
terminate before iteration i. Then if γi = erTi(h⋆

Ti) ≤ Zt, it holds that erDi(h⋆
Di) ≤ 2Zt. If γi > Zt, then

each of the following hold:

• γi ≤ erDi(h⋆
Di) + erDi(h⋆

Di)/ ln(1/ erDi(h⋆
Di)) ≤ 2 erDi(h⋆

Di).

• Every hypothesis h in Hi satisfies erDi(h) ≤ erDi(h⋆
Di) + (1/8) erDi(h⋆

Di)/ ln(1/ erDi(h⋆
Di)).

• Every hypothesis h ∈ H with erDi
(h) ≤ erDi(h⋆

Di) + (1/8)α(n/t, d, δ, erDi(h⋆
Di)) is in Hi.

• Every pair of hypotheses h1, h2 with PrTi [h1(x) ̸= h2(x)] ≥ γi/ ln(1/γi) satisfy PrDi [h1(x) ̸= h2(x)] ≥
(1/2) erDi(h⋆

Di)/ ln(1/ erDi(h⋆
Di)).

• Every pair of hypotheses h1, h2 with PrTi [h1(x) ̸= h2(x)] < γi/ ln(1/γi) satisfies PrDi [h1(x) ̸= h2(x)] ≤
4 erDi(h⋆

Di)/ ln(1/ erDi(h⋆
Di)).

The proof of Lemma 2 mostly uses standard concentration results for classes with bounded VC-dimension
and has thus been deferred to Appendix A.1. Similarly, the proof of Observation 1 merely uses the definition
of α and Zt and has thus been deferred to Appendix A.2.

More interestingly, we show that if none of the events Ei,j occur, then the for-loop makes progress towards
reducing erDi(h⋆

Di) in each iteration:

Lemma 3. For any integer 1 ≤ i ≤ t + 1, assume none of the events Ej,0 and Ej,1 occurred for j < i and
that Algorithm 2 did not terminate with r < i− 1. Then erDi(h⋆

Di) ≤ erD(h
⋆
D)(1− 1/(32 ln(1/ erD(h

⋆
D))))

i−1

and PrD[∃j ≤ i : hj
1(x) ̸= hj

2(x)] ≤ 8
(
erD(h

⋆
D)− erDi(h⋆

Di)
)
.

We prove Lemma 3 in the next subsection and for now focus on completing the proof of Lemma 1 from
Lemma 2, Observation 1 and Lemma 3. We have restated it here for convenience:

Restatement of Lemma 1. It holds with probability at least 1− δ/2 over B ∼ Dn, that upon termination
of the for-loop, we have PrD[∃i : hi

1(x) ̸= hi
2(x)] ≤ 8τ and:

• For any m ≥ n/2, it holds with probability at least 1 − δ/8 over a set C= ∼ Dm
= that erD=

(h⋆
C=

) =

erD=
(h⋆

D=
) +O(

√
τ(d+ ln(1/δ))/n).

Proof of Lemma 1. From Lemma 2 and a union bound, we conclude that with probability at least 1− δ/2,
none of the events Ei,j occur. We show that conditioned on this, the properties claimed in Lemma 1 hold.
So fix an outcome B of B where the events did not occur. This also fixes hi

1,h
i
2, T

i, Hi, Di, D= and
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D̸= to some hi
1, h

i
2, T

i, Hi, Di, D= and D̸=. Let r denote the value of the variable r in Algorithm 2 upon
termination.

First, recall that upon termination, we have D= ≃ Dr+1. Since none of the events Ei,j occurred for

any i ≤ t, we have from Lemma 3 (with i = r + 1) that PrD[∃j ≤ r : hj
1(x) ̸= hj

2(x)] ≤ 8(erD(h
⋆
D) −

erDr+1(h⋆
Dr+1)) ≤ 8τ . This establishes the first claim in Lemma 1.

For the second claim, we split the proof in several cases depending on how the for-loop in Algorithm 2
terminates on B. The main observations, which we will expand upon below, are: 1. if we terminate in step
11, then erD=(h

⋆
D=

) = O(Zt) = O(
√
τ(d+ ln(1/δ))/n), 2. if we terminate by completing all iterations of

the for-loop, then erD=(h
⋆
D=

) ≤ τ/ ln(1/τ). Both of these are sufficient to show that the ERM Theorem
(Theorem 1) on C̸= is good enough. Finally, if we terminate in step 14, we carefully exploit that all near-
optimal hypotheses agree on most samples. This allows for a better guarantee on ERM than invoking the
ERM Theorem.

The easiest cases are termination in step 11 and completion of the for-loop, so we argue for those first.

Termination in Step 11. Since we terminate in step 11, we must have γr+1 ≤ Zt. By Observation 1,
this implies erD=

(h⋆
D=

) = erDr+1(h⋆
Dr+1) ≤ 2Zt.

Since τ̃ ∈ [τ/2, 2τ ], we have t = O(ln(1/τ) ln ln(1/τ)) and since we assume τ > d/n, we have Zt =
O(ln(n/d) ln ln(n/d) ln3(n/d)(d + ln(1/δ))/n). By the ERM Theorem (Theorem 1) and since we assume
n sufficiently large, we have that for any m ≥ n/2, it holds with probability at least 1 − δ/8 over a set
C= ∼ Dm

= that erD=
(h⋆

C=
) ≤ 4Zt. Since we assume τ ≥ cτ ln

9(n/d)(d + ln(1/δ))/n for large enough cτ , we

have
√
τ(d+ ln(1/δ))/n ≥ 4Zt and thus erD=

(h⋆
C=

) ≤
√

τ(d+ ln(1/δ))/n with probability at least 1− δ/8
over C=.

Termination by completion. Since none of the events Ei,j occurred and we terminate upon completing
the for-loop, we have r ← t and we get from Lemma 3 (with i = t + 1 = r + 1) that erD=

(h⋆
D=

) =
erDr+1(h⋆

cDi+1) ≤ τ(1 − 1/(32 ln(1/τ)))t. This is at most τ exp(−t/(32 ln(1/τ))). Since τ̃ ≥ τ/2 we have
t ≥ 32 ln(1/τ) ln ln(1/τ) for ct large enough. Thus erD=(h

⋆
D=

) ≤ τ/ ln(1/τ). The ERM Theorem (Theorem 1)
now implies that with probability at least 1− δ/8 over a set C= ∼ Dm

= with m ≥ n/2, we have

erD=
(h⋆

C=
) = erD=

(h⋆
D=

) +O


√

erD=
(h⋆

D=
)(d ln( 1

erD= (h⋆
D=

) ) + ln(1/δ))

n
+

d ln(n/d) + ln(1/δ)

n

 .

For erD=(h
⋆
D=

) ≤ τ/ ln(1/τ), we have erD=(h
⋆
D=

) ln(1/ erD=(h
⋆
D=

)) = O(τ) and thus since we assume τ ≥
cτ ln

9(n/d)(d+ ln(1/δ)), we conclude

erD=
(h⋆

C=
) = erD=

(h⋆
D=

) +O

(√
τ(d+ ln(1/δ))

n

)
.

Termination in Step 14. Assume we terminate in step 14 of some iteration i and let r ← i − 1. Then
by definition of Algorithm 2, there is no pair h1, h2 ∈ Hi with PrT i [h1(x) ̸= h2(x)] ≥ γi/ ln(1/γi) with
γi = erT i(h⋆

T i).
Now define H̄i ⊆ H as the set of all hypotheses h ∈ H with erDi(h) ≤ erDi(h⋆

Di)+(1/8)α(n/t, d, δ, erDi(h⋆
Di)).

By Observation 1, all pairs h1, h2 ∈ H̄i are in Hi and thus have PrTi
[h1(x) ̸= h2(x)] < γi/ ln(1/γi). From

Observation 1, this further implies that PrDi [h1(x) ̸= h2(x)] ≤ 4 erDi(h⋆
Di)/ ln(1/ erDi(h⋆

Di)).
Consider now a set C= ∼ Dm

= for an m ≥ n/2 and recall D= ≃ Di when we terminate in iteration i of
the for-loop. By the ERM Theorem (Theorem 1) and for the constant cα in the definition of α large enough,
we have that with probability at least 1 − δ/24, all hypotheses h ∈ H \ H̄i have erC=

(h) ≥ erD=
(h⋆

D=
) +

(1/16)α(n/t, d, δ, erDi(h⋆
Di)).

11



Finally, for the hypotheses in H̄i, we have by definition that any h ∈ H̄i has PrD= [h(x) ̸= h⋆
D=

(x)] ≤
4 erD=(h

⋆
D=

)/ ln(1/ erD=(h
⋆
D=

)). We now invoke the following improved version of the ERM Theorem for
hypothesis sets with such properties:

Lemma 4. Let D be a distribution over X and H ⊂ X → {−1, 1} a hypothesis set of VC-dimension d.
Assume there is a hypothesis h0 ∈ H such that for all h ∈ H, we have PrD[h(x) ̸= h0(x)] ≤ p. Then for any
0 < δ < 1, it holds with probability 1− δ over a set S of n i.i.d. samples from D that

sup
h∈H
|erS(h)− erD(h)| = |erS(h0)− erD(h0)|+O

(√
p(ln(1/p)d+ ln(1/δ))

n
+

d ln(n/d) + ln(1/δ)

n

)
.

Applying Lemma 4 on H̄i with p = 4 erD=
(h⋆

D=
)/ ln(1/ erD=

(h⋆
D=

)) and h0 = h⋆
D=

gives with probability
at least 1− δ/24 over C= that

sup
h∈H̄i

|erC=
(h)− erD=

(h)| =∣∣erC=(h
⋆
D=

)− erD=(h
⋆
D=

)
∣∣+O

(√
erD=(h

⋆
D=

)(d+ ln(1/δ))/n+ (d ln(n/d) + ln(1/δ))/n
)
.

At the same time, for the fixed hypothesis h⋆
D=

, we have with probability at least 1 − δ/24 (by Chernoff)
that ∣∣erC=

(h⋆
D=

)− erD=
(h⋆

D=
)
∣∣ = O

(√
erD=

(h⋆
D=

) ln(1/δ)/n+ ln(1/δ)/n
)
.

It follows that ERM on C= will return a hypothesis h⋆
C=

from H̄i and that hypothesis has

erC=
(h⋆

C=
) = erD=

(h⋆
D=

) +O
(√

erD=
(h⋆

D=
)(d+ ln(1/δ))/n+ (d ln(n/d) + ln(1/δ))/n

)
. (1)

Finally, from Lemma 3, we have PrD[∃j ≤ r : hj
1(x) ̸= hj

2(x)] ≤ 8τ . Since τ ≤ 1/cτ for large enough cτ , this

implies PrD[∀j ≤ r : hj
1(x) = hj

2(x)] ≥ 1/2 and thus it must be the case that erD=
(h⋆

D=
) ≤ 2τ . Inserting this

in (1) and using the assumption τ ≥ cτ ln
9(n/d)(d+ ln(1/δ))/n yields

erC=
(h⋆

C=
) = erD=

(h⋆
D=

) +O
(√

τ(d+ ln(1/δ))/n
)
.

This completes the proof of Lemma 1 subject to proving Lemma 2, Observation 1, Lemma 3 and Lemma 4.
As mentioned earlier, we prove Lemma 2 and Observation 1 in Appendix A.1 and Appendix A.2. We prove
Lemma 3 in Section 2.3 and Lemma 4 in Section 2.4.

2.3 Progress in For-Loop (proof of Lemma 3)

In this section, we prove Lemma 3 stating that each iteration of the for-loop reduces erDi(h⋆
Di) while only

increasing PrD[∃j ≤ i : hj
1(x) ̸= hj

2(x)] slightly. We have restated Lemma 3 here for convenience:

Restatement of Lemma 3. For any integer 1 ≤ i ≤ t + 1, assume none of the events Ej,0 and Ej,1

occurred for j < i and that Algorithm 2 did not terminate with r < i − 1. Then erDi(h⋆
Di) ≤ erD(h

⋆
D)(1 −

1/(32 ln(1/ erD(h
⋆
D))))

i−1 and PrD[∃j ≤ i : hj
1(x) ̸= hj

2(x)] ≤ 8
(
erD(h

⋆
D)− erDi(h⋆

Di)
)
.

The main idea behind the proof is to consider the pair of hypotheses hi−1
1 and hi−1

2 . These two hypotheses
have a near-optimal error under Di−1 and yet disagree on the classification of many points. Since one of
them is incorrect when they disagree, this intuitively implies that they have to err significantly less when
they agree. Observing that Di is the distribution D conditioned on hj

1(x) = hj
2(x) for all j < i, this implies

that erDi(h⋆
Di) is smaller than erDi−1(h⋆

Di−1) and thus we have made progress. We formalize this intuition
in the following proof.
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Proof of Lemma 3. We prove the lemma by induction in i. In the base case i = 1, we have D1 = D and
erDi(h⋆

Di) = erD(h
⋆
D) = τ and the claim clearly holds.

For the inductive step, consider any fixed outcome B1, . . . , Bi−1 of B1, . . . ,Bi−1 for which the algorithm
did not terminate with r < i− 1 and where none of the events Ej,0, Ej,1 occurred for j < i. This also fixes

an outcome hj
1, h

j
2, T

j , Hj of hj
1,h

j
2,T

j , Hj for j < i and an outcome Dj of Dj for j ≤ i.
Since the algorithm did not terminate with r < i − 1, in iteration i − 1, there was a pair h1, h2 ∈ Hi−1

with PrT i−1 [h1(x) ̸= h2(x)] ≥ γi−1/ ln(1/γi−1) and we have hi−1
1 = h1 and hi−1

2 = h2 for some such pair.
Furthermore, the events Ej,0, Ej,1 did not occur for any j < i. Thus by Observation 1, both h1 and h2

satisfy erDi−1(hj) ≤ erDi−1(h⋆
Di−1)+(1/8) erDi−1(h⋆

Di−1)/ ln(1/ erDi−1(h⋆
Di−1)) ≤ 2 erDi−1(h⋆

Di−1). Also, from
Observation 1, we have

Pr
Di−1

[h1(x) ̸= h2(x)] ≥ (1/2) erDi−1(h⋆
Di−1)/ ln(1/ erDi−1(h

⋆
Di−1)).

We now have

erDi(h⋆
Di) ≤ erDi(h1) = (1/2)(erDi(h1) + erDi(h2)) (2)

as h1 and h2 agree under Di. We see that

2 erDi−1(h⋆
Di−1) + (1/4) erDi−1(h⋆

Di−1)/ ln(1/ erDi−1(h⋆
Di−1)) ≥ erDi−1(h1) + erDi−1(h2).

Using that precisely one of h1 and h2 errs when they disagree, and that the distribution Di−1 conditioned
on h1(x) = h2(x) is the distribution Di we get

erDi−1(h1) + erDi−1(h2)

= Pr
Di−1

[h1(x) = h2(x)](erDi(h1) + erDi(h2)) + Pr
Di−1

[h1(x) ̸= h2(x)].

Hence

erDi(h1) + erDi(h2)

≤ Pr
Di−1

[h1(x) = h2(x)]
−1

(
2 erDi−1(h⋆

Di−1) +
1

4
·

erDi−1(h⋆
Di−1)

ln(1/ erDi−1(h⋆
Di−1))

− Pr
Di−1

[h1(x) ̸= h2(x)]

)
≤ Pr

Di−1
[h1(x) = h2(x)]

−1

(
2 erDi−1(h⋆

Di−1)− Pr
Di−1

[h1(x) ̸= h2(x)]/2

)
.

At the same time, we have, for PrDi−1 [h1(x) ̸= h2(x)] ≤ 1/2, that PrDi−1 [h1(x) = h2(x)]
−1 ≤ 1 +

2PrDi−1 [h1(x) ̸= h2(x)].
To see that PrDi−1 [h1(x) ̸= h2(x)] ≤ 1/2, we first get from the induction hypothesis that PrD[∃j < i−1 :

h1(x) ̸= h2(x)] ≤ 8τ . Hence for τ ≤ 1/cτ for large enough cτ , we have PrD[∀j < i−1 : h1(x) = h2(x)] ≥ 1/2.
This further implies erDi−1(h⋆

Di−1) ≤ 2τ . But then PrDi−1 [h1(x) ̸= h2(x)] ≤ erDi−1(h1) + erDi−1(h2) ≤
4 erDi−1(h⋆

Di−1) ≤ 8τ ≤ 1/2 as claimed.
Again, for erDi−1(h⋆

Di−1) ≤ 2τ < 2/cτ for large enough cτ > 0, we finally conclude

erDi(h1) + erDi(h2)

≤ (1 + 2 Pr
Di−1

[h1(x) ̸= h2(x)])

(
2 erDi−1(h⋆

Di−1)− Pr
Di−1

[h1(x) ̸= h2(x)]/2

)
≤ 2 erDi−1(h⋆

Di−1)− Pr
Di−1

[h1(x) ̸= h2(x)]/4.

It follows from the above and (2) that

erDi(h⋆
Di) ≤ (1/2)(erDi(h1) + erDi(h2)) ≤ erDi−1(h⋆

Di−1)− Pr
Di−1

[h1(x) ̸= h2(x)]/8. (3)

13



This is at most

erDi−1(h⋆
Di−1)− Pr

Di−1
[h1(x) ̸= h2(x)]/8

≤ erDi−1(h⋆
Di−1)− (1/16) erDi−1(h⋆

Di−1)/ ln(1/ erDi−1(h⋆
Di−1))

≤ (1− 1/(16 ln(1/ erDi−1(h⋆
Di−1)))) erDi−1(h⋆

Di−1).

We now have two cases. If we already have erDi−1(h⋆
Di−1) ≤ τ2, then for τ ≤ 1/cτ (and using t =

O(ln(1/τ) ln ln(1/τ))), we conclude erDi(h⋆
Di) ≤ τ(1−1/(32 ln(1/τ)))i−1 as claimed. If instead erDi−1(h⋆

Di−1) >
τ2, we have

(1− 1/(16 ln(1/ erDi−1(h⋆
Di−1)))) ≤ (1− 1/(32 ln(1/τ)))

It finally follows from the induction hypothesis that

erDi(h⋆
Di) ≤ τ(1− 1/(32 ln(1/τ)))i−1

From (3), it also follows that:

Pr
D
[∃j ≤ i : hj

1(x) ̸= hj
2(x)]− Pr

D
[∃j ≤ i− 1 : hj

1(x) ̸= hj
2(x)]

= Pr
D
[hi

1(x) ̸= hi
2(x) | ∀j < i : hj

1(x) = hj
2(x)] PrD

[∀j < i : hj
1(x) = hj

2(x)]

≤ Pr
D
[hi

1(x) ̸= hi
2(x) | ∀j < i : hj

1(x) = hj
2(x)]

= Pr
Di−1

[hi
1(x) ̸= hi

2(x)]

≤ 8 (erDi−1(h⋆
Di−1)− erDi(h⋆

Di)) .

From the induction hypothesis, we conclude

Pr
D
[∃j ≤ i : hj

1(x) ̸= hj
2(x)]

= Pr
D
[∃j ≤ i− 1 : hj

1(x) ̸= hj
2(x)] + (Pr

D
[∃j ≤ i : hj

1(x) ̸= hj
2(x)]− Pr

D
[∃j ≤ i− 1 : hj

1(x) ̸= hj
2(x)])

≤ 8 (erD(h
⋆
D)− erDi−1(h⋆

Di−1)) + 8 (erDi−1(h⋆
Di−1)− erDi(h⋆

Di))

= 8 (erD(h
⋆
D)− erDi(h⋆

Di)) .

The claim follows.

2.4 Tighter ERM for near-identical hypotheses (proof of Lemma 4)

In this section, we prove that Empirical Risk Minimization performs better than the general ERM Theorem
(Theorem 1) when the input distribution satisfies that all hypotheses in a set H rarely disagree. We have
restated Lemma 4 here for convenience:

Restatement of Lemma 4. Let D be a distribution over X and H ⊂ X → {−1, 1} a hypothesis set of VC-
dimension d. Assume there is a hypothesis h0 ∈ H such that for all h ∈ H, we have PrD[h(x) ̸= h0(x)] ≤ p.
Then for any 0 < δ < 1, it holds with probability 1− δ over a set S of n i.i.d. samples from D that

sup
h∈H
|erS(h)− erD(h)|

= |erS(h0)− erD(h0)|+O
(√

p(ln(1/p)d+ ln(1/δ))/n+ (d ln(n/d) + ln(1/δ))/n
)
.

Proof of Lemma 4. We assume that D is a distribution over X × {−1, 1} for which the label y is uniquely
determined from x, i.e. one of PrD[y = 1 | x = x] and PrD[y = −1 | x = x] is 0 for all x ∈ X . This
can be assumed wlog. by replacing each x ∈ X with two point x−1 and x1 and letting the probability
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density function p of D satisfy p((x−1,−1)) = p(x) PrD[y = −1 | x = x], p((x−1, 1)) = 0 and p((x1, 1)) =
p(x) PrD[y = 1 | x = x], p((x1,−1)) = 0. Finally, for each h ∈ H we let h(x−1) = h(x1) = h(x). This leaves
the VC-dimension of H and erD(h) for any h unchanged. Let c : X → {−1, 1} denote the concept giving the
label of each x ∈ X .

Now consider the hypothesis set H= ⊆ X → {−1, 1} containing for each h ∈ H the hypothesis h= taking
the value 1 on x ∈ X with h(x) ̸= h0(x) ∧ h(x) = c(x) and the value −1 otherwise. Also consider the set
H ̸= containing for each h ∈ H the hypothesis h̸= taking the value 1 on x with h(x) ̸= h0(x) ∧ h(x) ̸= c(x),
and −1 otherwise. The VC-dimension of H= and H ̸= are both at most O(d). Furthermore, every h in H=

and H ̸= satisfy PrD[h(x) = 1] ≤ p. Consider now the distribution D′ obtained by sampling (x,y) ∼ D
and replacing y by −1. Then erD′(h) = PrD[h(x) = 1] for any h ∈ H= and h ∈ H ̸=. The ERM Theorem
(Theorem 1) on H= and H̸= with distribution D′ implies that with probability 1− δ over S ∼ Dn, it holds
that

sup
h∈H=∪H̸=

∣∣∣Pr
S
[h(x) = 1]− Pr

D
[h(x) = 1]

∣∣∣ ≤ c0 ·
(√

p(d ln(1/p) + ln(1/δ))/n+ (d ln(n/d) + ln(1/δ))/n
)

for a constant c0 > 0. Letting S(· | h0 ̸= h) denote the uniform distribution over samples (x, y) ∈ S with
h0(x) ̸= h(x), and D(· | h0 ̸= h),S(· | h0 = h),D(· | h0 = h) defined symmetrically, we thus have for any
h ∈ H,

|erS(h)− erD(h)|

=
∣∣∣Pr
S
[h0 ̸= h] erS(·|h0 ̸=h)(h) + Pr

S
[h0 = h] erS(·|h0=h)(h)− Pr

D
[h0 ̸= h] erD(·|h0 ̸=h)(h)− Pr

D
[h0 = h] erD(·|h0=h)(h)

∣∣∣
=
∣∣∣Pr
S
[h̸= = 1] + Pr

S
[h0 = h] erS(·|h0=h)(h)− Pr

D
[h̸= = 1]− Pr

D
[h0 = h] erD(·|h0=h)(h)

∣∣∣
=
∣∣∣Pr
S
[h̸= = 1] + (erS(h0)− Pr

S
[h0 ̸= h] erS(·|h0 ̸=h)(h0))− Pr

D
[h̸= = 1]− (erD(h0)− Pr

D
[h0 ̸= h] erD(·|h0 ̸=h)(h))

∣∣∣
=
∣∣∣Pr
S
[h̸= = 1] + (erS(h0)− Pr

S
[h= = 1])− Pr

D
[h̸= = 1]− (erD(h0)− Pr

D
[h= = 1])

∣∣∣
≤ |erS(h0)− erD(h0)|+

∣∣∣Pr
S
[h̸= = 1]− Pr

D
[h̸= = 1]

∣∣∣+ ∣∣∣Pr
S
[h= = 1]− Pr

D
[h= = 1]

∣∣∣
≤ |erS(h0)− erD(h0)|+ 2c0 ·

(√
p(ln(1/p)d+ ln(1/δ))/n+ (d ln(n/d) + ln(1/δ))/n

)
.

The claim follows.

3 Lower Bound for Proper Agnostic Learning

In this section, we prove a lower bound for proper agnostic PAC learning, stated formally in Theorem 2. So
let C > 0 be a sufficiently large constant, let d be a target VC-dimension, n a number of samples and let τ
satisfy Cd ln(n/d)/n ≤ τ ≤ 1/C. Note that the assumption on τ also implies n ≥ C2d ln(n/d).

We define the input domain X to be the discrete domain X = {x1, . . . , xu} for a u ≥ d to be determined.
The hypothesis set H contains all hypotheses h that predict −1 on precisely d of the points in X . The target
concept c : X → {−1, 1} to learn has c(x) = 1 for all x ∈ X .

Consider now an arbitrary proper learning algorithm A for H and c. Recall that a proper learning
algorithm always returns a hypothesis h ∈ H. Our goal is to show that there is a distribution D over X such
that the hypothesis hS returned by A on a sample S ∼ Dn often satisfies

erD(hS) = τ +Ω(
√

τ ln(1/τ)d/n)

while there is a hypothesis h ∈ H with erD(h) = τ .
For proving this, we consider multiple distributions over X , one for each h ∈ H. For a hypothesis h ∈ H,

the distribution DH returns a uniform point among those xi with h(xi) = −1 with probability (1 − α)d/u
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and it returns a uniform point among the remaining with probability 1 − (1 − α)d/u. Here 0 < α < 1 is a
parameter to be determined. Observe that since α > 0, we have that h achieves the smallest error under Dh

among all h ∈ H. Furthermore

erDh
(h) = (1− α)d/u. (4)

We will later fix α and u such that τ = (1− α)d/u, i.e. erDh
(h) = τ .

To prove a lower bound on the error of A, we now draw a random h ∈ H (unknown to A) and measure
the performance of A under the distribution Dh. For this, we consider the following failure event of A. We
say that A fails on a sample S from Dh if it returns a hypothesis hS ∈ H such that |{i ∈ [u] : hS(xi) =
h(xi) = −1}| ≤ d/2. We first observe

Observation 2. If A fails on a sample S from Dn
h for an h ∈ H, then

erDh
(hS) ≥ τ + αd/(2u).

Proof. Since the target concept c is the all-1 concept, we have that erDh
(hS) = Prx∼D[hS(x) = −1]. Every

i for which h(xi) = −1 has Prx∼D[x = xi] = (1 − α)/u and every i with h(xi) = 1 has Prx∼D[x = xi] =
(1− (1−α)d/u)/(u− d/u) > 1/u. It follows that erDh

(hS) ≥ (d/2)/u+(d/2)(1−α)/u = d/u− (d/2)α/u =
τ + αd/(2u).

The second part of the proof shows that A fails with constant probability over a random choice of h and
sample S ∼ Dn

h.

Lemma 5. There is a universal constant C ′ > 2, such that for any proper learning algorithm A, if α ≤
min{

√
u ln(u/d)/(nC ′), 1/C ′} and u satisfies dC ′ ≤ u ≤ n/C ′, then it holds with probability at least 1/16

over a random h from H and a random sample S ∼ Dn
h that A fails on S.

Before giving the proof of Lemma 5, let us derive our lower bound. Recall that τ satisfies Cd ln(n/d)/n ≤
τ ≤ 1/C for a sufficiently large constant C > 0. Using (4) and τ = erDh

(h), we let

u = (1− α)d/τ.

Also, fix α = min{
√
u ln(u/d)/(nC ′), 1/C ′} where C ′ is the constant from Lemma 5. For C large enough, we

have u = (1−α)d/τ ≥ C(1−α)d ≥ C(1− 1/C ′)d ≥ dC ′. Similarly, we have u = (1−α)d/τ ≤ (1−α)n/C ≤
n/C ≤ n/C ′. Thus u and α satisfy the constraints in Lemma 5. It follows that for any proper learning
algorithm A and a random h from H, A fails with probability at least 1/16 on a sample S ∼ Dn

h. From
Observation 2, we get that in this case, erDh

(hS) ≥ τ + αd/(2u). By our choice of parameters, we have

αd/(2u) = min{
√

ln(u/d)d2/(4C ′nu), d/(2C ′u)}

Since u = (1− α)d/τ ∈ [(1− 1/C ′)d/τ, d/τ ] ⊆ [d/(2τ), d/τ ], this is at least

min{
√
τ ln(1/(2τ))d/(4C ′n), τ/(2C ′)}.

For τ ≥ Cd ln(n/d)/n and C large enough, the former term is the minimum and we conclude:

erDh
(hS) = τ +Ω

(√
τd ln(1/τ)

n

)
.

This concludes the proof of Theorem 2. What remains is thus to establish Lemma 5:

Proof of Lemma 5. It is not hard to see (naive Bayes) that the optimal strategy for any A minimizing the
probability of failure (over h and S) when given a sample S, is to output the hypothesis hS returning −1 on
the d points among x1, . . . , xu from which fewest samples were seen. We thus upper bound the probability
that this set contains more than d/2 samples xi with h(xi) = −1.
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For this, fix an arbitrary outcome h of h, let Uh ⊂ {x1, . . . , xn} denote the set of xi with h(xi) = −1.
We have |Uh| = d. For any xi ∈ Uh, let ni give the number of copies of xi in the sample S ∼ Dn

h . We have
E[ni] = (1 − α)n/u. Since ni is a sum of independent indicator random variables, its variance is at most
its expectation. It follows from Chebyshev’s inequality that Pr[|ni − E[ni]| > 8

√
E[ni]] ≤ 1/64. Markov’s

inequality implies that with probability at least 15/16, there are no more than d/4 indices i ∈ Uh for which
ni < (1− α)n/u− 8

√
(1− α)n/u.

We next show that there is a good chance that at least d/2 of the points xi with xi /∈ Uh have ni <
(1−α)n/u−8

√
(1− α)n/u. For this, we require u ≥ 2d. Then for any xi /∈ Uh, we have Prx∼Dh

[x = xi] = q/u
for q ∈ [1, 1 + α]. We now invoke the following anti-concentration result:

Lemma 6. Consider throwing n balls independently into u bins, such that the i’th bin is hit with probability
pi. Let S be a subset of m bins such that each bin in S has pi = p for some 12/n ≤ p ≤ 1/2. Then for every
integer k ≤ m/C for a sufficiently large constant C > 0, it holds with probability at least 1/8 that there are
at least k bins in S containing less than max{pn−

√
pn ln(m/k)/6, pn/2} balls each.

We prove the lemma in Appendix A.3.
By Lemma 6 (setting p = q/u, m = u − d ≥ u/2, k = d/2), with probability at least 1/8 provided

Cd ≤ u ≤ n/C for a large enough constant C > 0, there are at least d/2 points xi with h(xi) = 1 such that
we see no more than

qn/u−min{
√

(qn/u) ln(u/d)/6, qn/(2u)} ≤ (1 + α)n/u−min{
√

(n/u) ln(u/d)/6, n/(2u)}

copies of xi.
We aim to choose α such that min{

√
(n/u) ln(u/d)/6, n/(2u)} ≥ 2αn/u+8

√
n/u, since then the number

of copies we see of these xi is no more than (1− α)n/u− 8
√
n/u.

For this, we first constrain u to satisfy Cd ≤ u ≤ n/C for a big enough constant C > 0 so that

8
√
n/u ≤ max{

√
(n/u) ln(u/d)/12, n/(4u)}.

The constraint on α is now satisfied when

2αn/u ≤ min{
√

(n/u) ln(u/d)/12, n/(4u)}

which is
α ≤ min{

√
u ln(u/d)/(242n), 1/8}.

We conclude that for such α and u, with probability at least 1/8− 1/16 = 1/16 over S and h, we have that
A fails on S.

4 Conclusion and Open Problems

In this work, we established that ERM, and all other proper learning algorithms, are sub-optimal for agnostic
PAC learning when treating τ = erD(h

⋆
D) as a parameter. We then complemented the lower bound with a

new improper learning algorithm that achieves an optimal sample complexity except for very small values of
τ . However, a number of intriguing questions remain. First, can we develop an algorithm that is optimal for
the full range of τ? In particular, our new algorithm implies that it suffices to consider the near-realizable
case of τ = O(ln9(n/d)d/n). Secondly, we know that variants of majority voting (bagging, etc.) are optimal
for realizable PAC learning. The analysis tools used when proving their optimality breaks down for the
agnostic setting. Can we somehow analyse them in a different way and prove that e.g. bagging is optimal
both in the agnostic and realizable setting? If not, can we prove a lower bound for concrete algorithms, such
as bagging or Hanneke’s majority voter, proving that they are sub-optimal in the agnostic case? Thirdly, it
could be the case that there is a higher lower bound for all learning algorithms when τ ≈ d/n. Can we prove
this? Another interesting question is whether we can design an optimal agnostic learning algorithm that
automatically adapts to δ? In more detail, our new algorithm requires knowledge of the failure probability

17



δ and thus works only for a fixed user defined δ. ERM on the other hand automatically works for all values
of δ simultaneously. Next, our algorithm is not necessarily efficient in terms of running time. In particular,
even if ERM over H is efficient, it is unclear how to determine if there are two hypotheses h1, h2 that
are both near-optimal and yet disagree in the classification of many samples. Can we design an efficient
learning algorithm with sample complexity similar to our new algorithm? Finally, the authors find the idea
of recursively training near-optimal, but highly disagreeing classifiers, to be promising. Are there other
applications of this idea in learning theory?
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A Appendix

A.1 Failures are rare (proof of Lemma 2)

In this section, we show that the failure events Ei,0 and Ei,1 are unlikely. Formally, we prove:

Restatement of Lemma 2. For all i, we have Pr[Ei,0] ≤ δ/(4t) and Pr[Ei,1] ≤ δ/(4t).

Proof of Lemma 2. We consider each type of event in turn. Since both of the events only occur when none of
the events Ej,0, Ej,1 occurred for any j < i, we bound the probability of Ei,0 and Ei,1 under this assumption.
So fix an outcome B1, . . . , Bi−1 of B1, . . . ,Bi−1 such that none of the events occurred for j < i. This also
fixes an outcome hj

1, h
j
2 of hj

1,h
j
2 for j < i and Di of Di. Note that Bi is independent of the events Ej,0, Ej,1

for j < i and thus Bi still consists of n/t i.i.d. samples from D.
Observe that by Lemma 3, PrD[∃j < i : hj

1(x) ̸= hj
2(x)] ≤ 8τ . Since τ ≤ 1/cτ for large enough cτ > 0, this

further implies that PrD[∀j < i : hj
1(x) = hj

2(x)] ≥ 1− 8τ ≥ 1/2. We further have |Bi| = n/t > cn ln(t/δ) by
assumptions n ≥ cn ln

3.5(n/d)(d + ln(1/δ)), t = O(ln(1/τ̃) ln ln(1/τ̃)) = O(ln(n/d) ln ln(n/d)), τ̃ ∈ [τ/2, 2τ ]
and τ > d/n. It follows that |Ti| ≥ n/(2t) except with probability δ/(8t). We thus bound the probabilities
under the assumption that Ti consists of m ≥ n/(2t) i.i.d. samples from Di.

Event Ei,0. By the ERM Theorem (Theorem 1) on Ti, we have with probability 1 − δ/(8t) that for all
h ∈ H

| erTi(h)− erDi(h)| = O

(√
t erDi(h)(d ln(n/d) + ln(t/δ))

n
+

t(d ln(n/d) + ln(t/δ))

n

)
. (5)

The ln(t/δ) = ln(t) + ln(1/δ) term may be replaced by ln(1/δ) as ln(t) is dominated by the d ln(n/d) term.
Thus for the constant cα in the definition of α large enough, this implies

| erTi(h)− erDi(h)| ≤ (1/32)α(n/t, d, δ,min{erDi(h), erTi(h)}).

To see that we may insert min{erDi(h), erTi(h)} instead of erDi(h), we consider two cases. First, if erDi(h) >√
cαt(d ln(n/d) + ln(t/δ)) for a sufficiently large constant cα in the definition of α, we have from (5) that

erTi(h) ≥ (1/2) erDi(h) and thus | erTi(h) − erDi(h)| ≤ (1/32)α(n/t, d, δ,min{erDi(h), erTi(h)}). If on the
other hand erDi(h) ≤ √cαt(d ln(n/d) + ln(t/δ)) then we still have (1/32)α(n/t, d, δ, 0) ≥ | erTi(h)− erDi(h)|
by (5) and large enough constant cα.

Event Ei,1. Consider the set of hypotheses H′ = H⊕H consisting of all hypotheses that may be written
as gh1,h2

(x) = h1(x) · h2(x) where · denotes multiplication and h1, h2 ∈ H. Then PrD[gh1,h2
(x) = 1] =

PrD[h1(x) ̸= h2(x)] for any distribution D. Furthermore, the VC-dimension of H′ is O(d).
It follows by the ERM Theorem (Theorem 1) and the constant cα in the definition of α large enough, that

with probability at least 1 − δ/(8t), any pair h1, h2 satisfy |PrDi [h1(x) ̸= h2(x)] − PrTi [h1(x) ̸= h2(x)]| ≤
(1/32)α(n/t, d, δ,min{PrDi [h1(x) ̸= h2(x)],PrTi [h1(x) ̸= h2(x)]}). Here we may insert the min by the same
arguments as above.

A.2 Properties when no failures (proof of Observation 1)

In this section, we show that when the events Ej,0 and Ej,1 do not occur, the hypotheses in Hi and H behave
nicely. Concretely, we prove Observation 1, which we have restated here:

Restatement of Observation 1. Assume none of the events Ej,0 and Ej,1 occur for j ≤ i and that
Algorithm 2 does not terminate before iteration i. Then if γi = erTi(h⋆

Ti) ≤ Zt it holds that erDi(h⋆
Di) ≤ 2Zt.

If γi > Zt, then each of the following hold:

• γi ≤ erDi(h⋆
Di) + erDi(h⋆

Di)/ ln(1/ erDi(h⋆
Di)) ≤ 2 erDi(h⋆

Di).
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• Every hypothesis h in Hi satisfies erDi(h) ≤ erDi(h⋆
Di) + (1/8) erDi(h⋆

Di)/ ln(1/ erDi(h⋆
Di)).

• Every hypothesis h ∈ H with erDi
(h) ≤ erDi(h⋆

Di) + (1/8)α(n/t, d, δ, erDi(h⋆
Di)) is in Hi.

• Every pair of hypotheses h1, h2 with PrTi [h1(x) ̸= h2(x)] ≥ γi/ ln(1/γi) satisfy PrDi [h1(x) ̸= h2(x)] ≥
(1/2) erDi(h⋆

Di)/ ln(1/ erDi(h⋆
Di)).

• Every pair of hypotheses h1, h2 with PrTi [h1(x) ̸= h2(x)] < γi/ ln(1/γi) satisfy PrDi [h1(x) ̸= h2(x)] ≤
4 erDi(h⋆

Di)/ ln(1/ erDi(h⋆
Di)).

Before proving Observation 1, we state and prove an auxiliary result regarding α and Zt:

Observation 3. For x ≥ Zt/2, we have

α(n/t, d, δ, x) ≤ 2cα√
cZ
· x

ln(1/x)
.

Proof of Observation 3. Notice that for any x ≥ Zt/2, we have ln(1/x) ≤ ln(n/d) and thus for x ≥ Zt/2:

α(n/t, d, δ, x) ≤ cα ·

(√
tx(d ln(1/x) + ln(1/δ))

n
+

t(d ln(n/d) + ln(1/δ))

n

)

= cα ·

(√
tx ln2(1/x)(d ln(1/x) + ln(1/δ))

n ln2(1/x)
+

t ln(1/x)(d ln(n/d) + ln(1/δ))

n ln(1/x)

)

≤ cα ·

(√
tx ln2(n/d)(d ln(n/d) + ln(1/δ))

n ln2(1/x)
+

t ln(n/d)(d ln(n/d) + ln(1/δ))

n ln(1/x)

)

≤ cα ·

(√
x2

cZ ln2(1/x)
+

x

cZ ln(1/x)

)

≤ 2cα√
cZ
· x

ln(1/x)
.

Let us also restate the failure events Ei,0 and Ei,1 here for convenience:

1. Let Ei,0 be the event that Algorithm 2 reaches iteration i, none of the events Ej,0, Ej,1 occurred for i < j
and there is a hypothesis h ∈ H with | erDi(h)− erTi(h)| > (1/32)α(n/t, d, δ,min{erDi(h), erTi(h)}).

2. Let Ei,1 be the event that Algorithm 2 reaches iteration i, none of the events Ej,0, Ej,1 occurred for
i < j and there is a pair of hypotheses h1, h2 with |PrDi [h1(x) ̸= h2(x)] − PrTi [h1(x) ̸= h2(x)]| >
(1/32)α(n/t, d, δ,min{PrDi [h1(x) ̸= h2(x)],PrTi [h1(x) ̸= h2(x)]}).

We are ready to prove Observation 1.

Proof of Observation 1. Since we only claim something when the events Ej,0 and Ej,1 did not occur for j ≤ i
and that Algorithm 2 did not terminate before iteration i, we assume this. So fix such an outcome B1, . . . , Bi

of B1, . . . ,Bi. This also fixes an outcome hj
1, h

j
2, T

j ,Dj ,Hj of hj
1,h

j
2,T

j ,Dj ,Hj for j ≤ i.
Assume first that erDi(h⋆

Di) > 2Zt. We wish to show γi > Zt. To see this, note that by definition of
Ei,0, we have erT i(h⋆

T i) ≥ 2Zt − (1/32)α(n/t, d, δ, 2Zt). By Observation 3, for large enough cZ , this is at
least 2Zt − Zt/2 > Zt. This proves the part of Observation 1 stating that if γi = erT i(h⋆

T i) ≤ Zt then
erDi(h⋆

Di) ≤ 2Zt.
For the remainder of the proof, assume γi > Zt. We start by proving bounds on erDi(h⋆

Di).
Since the event Ei,0 did not occur, we have

21



• erT i(h⋆
Di) ≥ γi ≥ Zt and thus erDi(h⋆

Di) ≥ Zt − α(n/t, d, δ, erDi(h⋆
Di)). We claim this inequality

implies erDi(h⋆
Di) ≥ Zt/2. To see this, assume for contradiction that erDi(h⋆

Di) < Zt/2, then since α
is increasing in its last argument, we have by Observation 3 that erDi(h⋆

Di) + α(n/t, d, δ, erDi(h⋆
Di)) ≤

Zt/2 + α(n/t, d, δ, Zt/2). For cZ large enough, the right hand side is less than Zt, which contradicts
the inequality erDi(h⋆

Di) ≥ Zt − α(n/t, d, δ, erDi(h⋆
Di)).

In summary, we have

erDi(h⋆
Di) ≥ Zt/2. (6)

Next, we upper bound γi.

• Since Ei,0 did not occur, we have

γi = erT i(h⋆
T i) ≤ erT i(h⋆

Di) ≤ erDi(h⋆
Di) + (1/32)α(n/t, d, δ, erDi(h⋆

Di)).

By Observation 3 for large enough cZ and using (6), this implies

γi ≤ erDi(h⋆
Di) + erDi(h⋆

Di)/ ln(1/ erDi(h⋆
Di)) ≤ 2 erDi(h⋆

Di).

This establishes the first bullet in Observation 1.

• To establish the second bullet of Observation 1, note that by definition of Hi, every hypothesis h in
Hi satisfies erTi(h) ≤ γi + α(n/t, d, δ, γi) and since γi ≤ 2 erDi(h⋆

Di) (by the previous bullet) and
α(n/t, d, δ, 2x) ≤ 2α(n/t, d, δ, x) we have erTi

(h) ≤ γi + 2α(n/t, d, δ, erDi(h⋆
Di)). Also using that

γi ≤ erDi(h⋆
Di) + (1/32)α(n/t, d, δ, erDi(h⋆

Di)) gives erTi
(h) ≤ erDi(h⋆

Di) + 3α(n/t, d, δ, erDi(h⋆
Di)) ≤

6 erDi(h⋆
Di). Finally, since Ei,0 did not occur, we have erDi

(h) ≤ erTi
(h) + (1/32)α(n/t, d, δ, erTi

(h)) ≤
erTi(h)+(1/32)α(n/t, d, δ, 6 erDi(h⋆

Di)) ≤ erDi(h⋆
Di)+(1/5)α(n/t, d, δ, erDi(h⋆

Di)). By (6), it follows by
Observation 3 that α(n/t, d, δ, erDi(h⋆

Di)) ≤ 2cα√
cZ

erDi(h⋆
Di)/ ln(1/ erDi(h⋆

Di)). For cZ large enough, we

thus have erDi
(h) ≤ erDi(h⋆

Di) + (1/8) erDi(h⋆
Di)/ ln(1/ erDi(h⋆

Di)). This establishes the second bullet
of Observation 1.

• For the third bullet, let h be a hypothesis with erDi(h) ≤ erDi(h⋆
Di)+(1/8)α(n/t, d, δ, erDi(h⋆

Di)). Since
Ei,0 did not occur, we have erT i(h) ≤ erDi(h)+(1/32)α(n/t, d, δ, erDi(h)). By Observation 3 and (6), we
have (1/8)α(n/t, d, δ, erDi(h⋆

Di)) ≤ erDi(h⋆
Di) for cZ large enough. Thus we have erDi(h) ≤ 2 erDi(h⋆

Di).
This gives erT i(h) ≤ erDi(h) + (1/16)α(n/t, d, δ, erDi(h⋆

Di)) ≤ erDi(h⋆
Di) + (3/8)α(n/t, d, δ, erDi(h⋆

Di)).
Finally, since Ei,0 did no occur, we have γi ≥ erDi(h⋆

Di) − (1/32)α(n/t, d, δ, erDi(h⋆
Di)), implying

erT i(h) ≤ γi + (1/2)α(n/t, d, δ, erDi(h⋆
Di)). We also have γi ≥ (1/2) erDi(h⋆

Di) by the first bullet.
Hence we conclude erT i(h) ≤ γi + α(n/t, d, δ, γi), which puts h in Hi.

• For the fourth bullet, consider a pair of hypotheses h1, h2 with PrT i [h1(x) ̸= h2(x)] ≥ γi/ ln(1/γi).
Since Ei,1 did not occur, we have

Pr
Di

[h1(x) ̸= h2(x)] ≥ Pr
T i
[h1(x) ̸= h2(x)]− (1/32)α(n/t, d, δ,Pr

T i
[h1(x) ̸= h2(x)]).

Since γi/ ln(1/γi) ≥ Zt/ ln(1/Zt) and the expression x − (1/32)α(n/t, d, δ, x) is increasing in x for
x > Zt/ ln(1/Zt) and cZ large enough, we conclude

Pr
Di

[h1(x) ̸= h2(x)] ≥ γi/ ln(1/γi)− α(n/t, d, δ, γi/ ln(1/γi)) ≥ γi/ ln(1/γi)− α(n/t, d, δ, γi).

Since γi ≥ Zt, it follows from Observation 3 that this is at least (3/4)γi/ ln(1/γi) for cZ large enough.
Finally, since γi ≥ erDi(h⋆

Di)−α(n/t, d, δ, erDi(h⋆
Di)). We have erDi(h⋆

Di) ≥ Zt/2 so by Observation 3,
this is at least erDi(h⋆

Di)(1− ln(1/ erDi(h⋆
Di))). We conclude PrDi [h1(x) ̸= h2(x)] ≥ (3/4)γi/ ln(1/γi) ≥

(1/2) erDi(h⋆
Di)/ ln(1/ erDi(h⋆

Di)).
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• For the fifth bullet, consider a pair h1, h2 with PrDi [h1(x) ̸= h2(x)] > 4 erDi(h⋆
Di)/ ln(1/ erDi(h⋆

Di)).
From the first bullet, this implies PrDi [h1(x) ̸= h2(x)] > 2γi/ ln(2/γi). Since Ei,1 did not occur, this
implies

Pr
T i
[h1(x) ̸= h2(x)] ≥ 2γi/ ln(2/γi)− (1/32)α(n/t, d, δ, 2γi/ ln(2/γi))

≥ 2γi/ ln(2/γi)− (1/16)α(n/t, d, δ, γi).

By definition of α and Zt (using γi ≥ Zt), this is more than γi/ ln(1/γi) and hence not both of h1 and
h2 are in Hi.

A.3 Points with few copies (proof of Lemma 6)

In this section, we give the proof of the following lemma

Restatement of Lemma 6. Consider throwing n balls independently into u bins, such that the i’th bin is hit
with probability pi. Let S be a subset of m bins such that each bin in S has pi = p for some 12/n ≤ p ≤ 1/2.
Then for every integer k ≤ m/C for a sufficiently large constant C > 0, it holds with probability at least 1/8
that there are at least k bins in S containing less than max{pn−

√
pn ln(m/k)/6, pn/2} balls each.

Our proof of Lemma 6 follows previous work by Grønlund, Kamma and Larsen [13]. Let S be a subset
of m bins out of u bins such that each bin in S is hit with probability 12/n ≤ p ≤ 1/2. Now fix a bin b ∈ S
and let X1, . . . ,Xn be indicator random variables, where Xj is 1 if the j’th ball is in b and 0 otherwise. We
now invoke the following lemma

Lemma 7 (Klein and Young [18]). Let X1, . . . ,Xn be independent indicator random variables with success
probability p ≤ 1/2. For every

√
3/(np) < δ < 1/2,

Pr

[∑
i

Xi ≤ (1− δ)np

]
≥ exp(−9npδ2).

Using the requirement m ≥ Ck for a sufficiently large constant C > 0, we have by Lemma 7 with
δ = min{

√
ln(m/k)/(np)/6, 1/2}, that Pr[

∑
i Xi ≤ np−min{

√
np ln(m/k)/6, np/2}] ≥ exp(− ln(m/k)/4) =

(k/m)1/4 = (m/k)3/4 · (k/m) ≥ C3/4(k/m) ≥ 2(k/m). Note that ln(m/k) ≥ ln(C) and thus δ >
√
3/(np)

when C is large enough. We also remark that 1/2 ≥
√
3/(np) since we assume p ≥ 12/n.

Now define indicator random variables Yi for each bin in S, taking the value 1 if the number of balls
in the bin is no more than np − min{

√
np ln(m/k)/6, np/2} = max{np −

√
np ln(m/k)/6, np/2}. By the

argument above (and symmetry of the Yi’s), we have E[Yi] = q for some q ≥ 2(k/m). At the same time,
we have E[(

∑
i Yi)

2] =
∑

i

∑
j E[YiYj ]. Since the random variables Yi are negatively correlated, we have

E[YiYj ] ≤ E[Yi]E[Yj ] = q2 for i ̸= j. For i = j, we have E[Y2
i ] = E[Yi] = q. Hence E[

∑
i Yi] = mq

and E[(
∑

i Yi)
2] ≤ mq +m(m− 1)q2 ≤ mq +m2q2. By Paley-Zygmund, we conclude Pr[

∑
i Yi > mq/2] ≥

(1/4)(mq)2/(mq +m2q2). Since mq ≥ 2k > 1, this is at least 1/8. Since mq/2 ≥ k, the conclusion follows.
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