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Abstract4

While machine learning theory and theoretical computer science are both based on a solid mathemat-5

ical foundation, the two research communities have a smaller overlap than what the proximity of the6

fields warrant. In this invited abstract, I will argue that traditional theoretical computer scientists7

have much to offer the learning theory community and vice versa. I will make this argument by8

telling a personal story of how I broadened my research focus to encompass learning theory, and9

how my TCS background has been extremely useful in doing so. It is my hope that this personal10

account may inspire more TCS researchers to tackle the many elegant and important theoretical11

questions that learning theory has to offer.12
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1 A Personal Story18

My goal with this invited abstract, is to inspire more theoretical computer science (TCS)19

researchers to engage in topics in machine learning theory. Being a TCS researcher myself, I20

hope that by telling my own personal story - of how I adopted the field of learning theory -21

may provide a unique and more compelling argument than if a core learning theorist was22

to attempt to convince you. Being a personal story, I will focus on some of the research23

results I obtained along the way, and not so much on the broader learning theory and TCS24

literature. The results I present have been chosen because they tell an interesting story and25

showcase how core TCS concepts have proven useful in learning theory. Along the way, I will26

tell some anecdotes on how these research projects started, and I will try to give you an idea27

of some of the thought processes I initially went through when trying to enter a new field.28

I have also tried to sprinkle in some advice for more junior researchers based on my own29

experiences. Finally, I will also formally define some of the learning theory questions I have30

studied, giving you an idea of what such questions may look like. I sincerely hope that you31

find this somewhat unusual abstract refreshing.32

1.1 My TCS Background and Connections Between Fields33

For those who do not know me, let me start by briefly giving you my background, while also34

trying to convince you that many fields of TCS are deeply connected, and that it pays off to35

have a broad interest in TCS.36

I started my Ph.D. studies in 2008 under the supervision of Professor Lars Arge at Aarhus37

University, Denmark. My initial research was on data structures, in particular so-called38

I/O-efficient data structures [2, 5], that take the memory hierarchy of modern hardware39

into account. Ever since I started my studies, I have always been curious and eager to learn40

new areas by interacting with great colleagues in the TCS community. This openness to41

collaborations and sharing of ideas is one of the strongest and most rewarding traits of our42

community.43
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3:2 From TCS to Learning Theory

Initially, my interactions with other researchers were through fellow students at the44

department. I explicitly remember Allan Grønlund coming to my office with one of Mihai45

Pǎtraşcu’s beautiful papers [33] on data structure lower bounds in the cell probe model [35],46

excitedly proclaiming that “this is so cool, we need to do this too!”. At the time, I had never47

had a complexity course or seen a real lower bound proof, and I was immediately hooked.48

This led me on a long research journey trying to understand and develop the techniques for49

proving lower bounds on the efficiency (space, query time, update time) of data structures,50

see e.g. [23, 24, 29] for some highlights.51

While cell probe lower bounds were my main focus for years, I always found research that52

bridges several fields the most exciting. The earliest such example in my own research started53

with a visit by Jeff M. Phillips in our research group. During his visit, Jeff introduced me to54

discrepancy theory while explaining some of his recent work. As discrepancy theory will be55

important later, let me give a rough definition of it here. At its core, discrepancy theory56

studies the following problem: Given a matrix A ∈ Rm×n, compute a coloring x ∈ {−1, 1}n
57

minimizing the discrepancy ∥Ax∥∞. Understanding the best achievable discrepancy for58

various types of matrices is an old and very well-studied topic in TCS [3, 34, 10, 7, 31]. In59

particular, I recall Jeff telling me about a result of Banaszczyk [6] showing that matrices with60

sparse columns always have low discrepancy colorings. While being intellectually intrigued61

by this result, I did not see any immediate applications of it in my own research. However, a62

couple of months later, Elad Verbin, a post doc in our group at the time, suggested to me63

that I should try to prove data structure lower bounds in the group model. Without going64

into details here, it turns out that Banaszczyk’s discrepancy result could be used to directly65

translate decades of research on discrepancy lower bounds into group model data structure66

lower bounds [25]. The connection even improved some of the discrepancy upper bounds67

using data structure upper bounds as well.68

This theme of connecting areas has proven very useful over the years. It for instance69

got me started on streaming algorithms when Jelani Nelson and Huy L. Nguyen asked70

whether we could use cell probe lower bound techniques to prove time lower bounds for71

streaming algorithms [27]. In later work with Jelani [26], we similarly proved optimality of the72

Johnson-Lindenstrauss (JL) lemma [21] in dimensionality reduction using an encoding-based73

argument. Such arguments were typically used in cell probe data structure lower bounds. As74

it will be important later, let us recall that the JL lemma says that any set of n points in75

Rd can be embedded into O(ε−2 log n) dimensions while preserving all pairwise distances to76

within a factor 1 ± ε.77

Another interesting example was initiated during a visit at MIT in 2017 where Vinod78

Vaikuntanathan was telling me how “data structures and crypto are a match made in heaven”.79

This claim got me curious, and after returning home, I read a bit on data structure in80

cryptography and stumbled on Oblivious RAMs (ORAMs) [17]. An ORAM is basically a81

primitive for obfuscating the memory access pattern of an algorithm, such that the memory82

accesses reveal nothing about the data stored. Checking the references of the papers I was83

reading, it turned out that a crypto Professor sitting just down stairs, Jesper Buus Nielsen,84

had made multiple contributions to ORAMs. After some brief initial discussions, we quickly85

realized that cell probe lower bound techniques could be tweaked to prove strong lower86

bounds for ORAMs [28]. This connection started a whole line of research into lower bounds87

for ORAMs and related primitives in crypto.88

Finally, let me mention one last example outside learning theory. Back in 2017, I was89

attending a communication complexity workshop in Banff, where Mark Braverman was giving90

a talk about some work of his [11] on a conjecture in information theory/network coding [30].91
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The conjecture relates to communication networks, where a network is modeled by a graph92

with capacities on the edges, designating how many bits may be sent across. The conjecture93

then says that for undirected graphs (messages may be sent in both directions), if we are94

given k source-sink pairs that each need to send an r bit message from source to sink, then95

the largest number of bits r we can handle without violating capacity constraints, is equal to96

the multi-commodity flow rate. Intuitively, this means that the best you can do is to simply97

forward your messages as indivisible bits. Mark’s talk was excellent, but at the time, I had98

no immediate applications of his result. However, while spending a semester at the Simons99

Institute in 2018, a coincidental conversation with MohammadTaghi Hajiaghayi led us [15]100

to proving conditional lower bounds for I/O-efficient algorithms using the information theory101

conjecture that Mark presented. Needless to say, it was quite satisfactory to come full circle102

and address the topic that started my Ph.D. studies. In addition to the lower bounds for103

I/O-efficient algorithms, the conjecture also gave a clean conditional Ω(n log n) lower bound104

for constant degree boolean circuits for multiplication [1]. I find it quite fascinating how two105

such seemingly different problems of multiplication and communication in graphs may prove106

to be so intimately connected.107

If there is one message to take away from my own experiences, in particular for junior108

researchers, it must be that many things are deeply connected and you never know when109

results in one branch of TCS may prove useful in another. That is one of its beauties. I110

would thus strongly recommend that you attend talks, seminars, and generally engage in111

discussions with the many brilliant TCS researchers, also in fields outside your own immediate112

interest. Build your expertise in one area, but always be curious and look for connections113

and inspiration from others.114

1.2 Entering Learning Theory115

Now let me get to the promised topic of entering learning theory from a TCS background,116

and how this background proved extremely useful. For me, this journey started around117

2019. As you all know, machine learning was the big hype at the time, and probably still118

is. Like many others, I initially found deep neural networks and what they could do quite119

fascinating. This led me to consider whether I should get into machine learning and work on120

this extremely hot topic. However, after getting a slightly better understanding of the field, I121

quickly found that training a deep neural net and running some experiments on a benchmark122

data set, to be much more engineering and craftsmanship than deep stimulating thoughts.123

And with all the obligations that come with a faculty position, I just did not have the time124

to learn the practical skills that it takes to make efficient and competitive implementations.125

And probably was not that interested in it after all. I almost abandoned machine learning,126

had it not been for a student of mine, Alexander Mathiasen. Alexander was very independent127

and eager to get into machine learning. He had realized that I was more interested in theory128

questions and had on his own discovered the great source of open problems in learning theory129

that are published with the COLT proceedings. The open problem Alexander had found130

was related to a technique called boosting. Let me start by introducing the general idea in131

boosting and the setup for binary classification in supervised learning.132

Supervised Learning and Boosting133

In supervised learning, a binary classification problem is specified by an input domain X , an134

unknown target function f : X → {−1, 1} and an unknown data distribution D over X . A135

learning algorithm receives as input a training data set of n i.i.d. samples (xi, f(xi)) with136
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each xi ∼ D. The goal of the learning algorithm is to output a classifier h : X → {−1, 1}137

minimizing the probability of misprediction the label of a new sample from D, i.e. where138

erD(h) := Prx∼D[h(x) ̸= f(x)] is as small as possible. To have an example in mind, think139

of X as the set of all images of a particular size and f as the hard-to-specify function that140

maps every image of a mammal to −1 and every other image to 1. The learning problem is141

thus to train a classifier that can detect whether an image contains a mammal or not.142

Boosting is then a powerful and elegant idea that allows one to combine multiple inaccurate143

classifiers into a highly accurate voting classifier. Boosting algorithms such as AdaBoost [16]144

work by iteratively running a base learning algorithm on reweighed versions of the training145

data to produce a sequence of classifiers h1, . . . , ht. After obtaining hi, the weighting of the146

training data is updated to put larger weights on samples misclassified by hi, and smaller147

weights on samples classified correctly. This effectively forces the next training iteration to148

focus on points with which the previous classifiers struggle. After sufficiently many rounds,149

the classifiers h1, . . . , ht are finally combined by taking a (weighted) majority vote among150

their predictions. This idea also goes under the name of multiplicative weight updates and151

has many applications in TCS.152

Boosting works exceptionally well in practice and much theoretical work has gone into153

explaining its huge success. One important line of work in this direction is based on the154

notion of margins [8]. A voting classifier g may be written as g(x) = sign(
∑t

i=1 αih(x)) with155

αi ∈ R. If we normalize the weights so that
∑

i |αi| = 1, then
∑t

i=1 αihi(x) ∈ [−1, 1]. The156

margin of g on a sample (x, y) ∈ X × {−1, 1} is then defined as y
∑t

i=1 αihi(x). The margin157

is thus a number in [−1, 1] and can be thought of as a confidence in the prediction. If the158

margin is 1, then all classifiers combined by g agree and are correct. If the margin is 0, then159

we have a (weighted) 50-50 split between the two possible predictions −1/1, and so on. It160

has then been proved that voting classifiers g with large margins on all training samples161

(xi, yi) have a small erD(g) [8].162

Boosting and Discrepancy Theory163

Now let me return to the open problem Alexander approached me with. Since voting classifiers164

with large margins have a small erD(g), it seems natural to develop boosting algorithms that165

obtain large margins by combining few base classifiers, i.e. with a small t. This leads to faster166

predictions and possibly also faster training. The question now is as follows: If the best167

possible margin on all training samples is γ⋆ when one is allowed to combine arbitrarily many168

base classifiers hi, then how large margins can we obtain by combining t base classifiers?169

The best known algorithm obtained margins of γ⋆ − O(
√

log(n)/t) with n training samples,170

and the best known lower bound showed that this is tight whenever t ≤ n1/2. The conjecture171

stated that this remains tight for t ≤ n log n.172

In my first learning theory paper [32], we observed an interesting connection between173

this question and discrepancy theory. In more detail, we considered the matrix A obtained174

by forming a row for each training sample (xi, yi) and a column for each hi in a voting175

classifier g(x) = sign(
∑t

j=1 αjhj(x)). The entry corresponding to (xi, yi) and hj stores the176

value yiαjhj(x). Notice that the sum of the entries in the i’th row is precisely the margin of177

g on (xi, yi). Next, if we can find a coloring x ∈ {−1, 1}t such that ∥Ax∥∞ ≈ 0, then this178

means that for every single row of A, the sum over the columns j where xj = 1 is almost179

exactly the same as the sum over columns where xj = −1. Thus if we replace g by a new180

voting classifier where we set all αj to 0 when xj equals the majority of −1/1’s in x, and to181

2 when xj is the minority, then the new g′ has almost exactly the same margins as before182

but uses only half as many base classifiers. Recursively finding a low discrepancy coloring183
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x using the celebrated Spencer’s six standard deviations suffice result [34], we were able to184

refute the conjecture on the tradeoff between t and the achievable margin while establishing185

yet an interesting connection between discrepancy theory and other areas.186

Support Vector Machines, Sketching and Teaching187

Around the same time as our first learning theory results, I had voluntarily started teaching188

the Machine Learning undergraduate course at Aarhus University. Never having followed189

such a course myself, this was a great way of forcing myself to learn the basics. But beyond190

learning the basics, teaching also led to new research questions. After having completed191

the first project on boosting, we naturally started reading up on the references proving that192

large margins lead to small erD(g). Such results are referred to as generalization bounds193

and are a cornerstone of learning theory. Studying the classic proofs of generalization for194

large margin voting classifiers [8], there seemed to be an underlying idea of sketching or195

compressing the voting classifier g while exploiting that it has large margins. Intuitively, if196

there is a small-bit representation of g, then there are only few choices for g. A union bound197

over all these choices shows that it is unlikely that there is even a single g that performs198

great on the training data (has large margins) and poor on new data (has large erD(g)).199

Around the same time, I had just taught Support Vector Machines (SVMs) [14]. SVMs200

are another type of learning algorithm where the input domain X is Rd. In the simplest201

setup, when given a training set of n samples (xi, yi) ∈ Rd × {−1, 1} with ∥xi∥ ≤ 1 for all202

i, SVM searches for the separating hyperplane with the largest margin to the data. In the203

context of SVMs, if we assume for simplicity that a hyperplane passes through the origin and204

has unit length normal vector w ∈ Rd, then we predict the label of a new point x ∈ Rd by205

returning sign(wT x). The margin of the hyperplane on a labeled point (x, y) is then defined206

as yxT w. The margin is positive if the hyperplane correctly predicts the label of (x, y) and207

the absolute value of the margin measures how far the point is from the hyperplane itself.208

Similarly to the case for boosting, there were known generalization bounds [9] stating209

that if a hyperplane h has large margins, then erD(h) is small. However, these bounds were210

proved in a completely different way than the boosting bounds and seemed to be sub-optimal.211

In our work [18], we improved these generalization bounds by observing a connection to212

the Johnson-Lindenstrauss (JL) lemma [21] that I previously worked on [26]. Shortly after213

the lower bound for JL by Jelani and I, Noga Alon and Bo’az Klartag [4] presented an214

alternative proof that at its core gives a randomized sketch for representing a set of n unit215

length vectors in Rd using O(ε−2 log n) bits for each vector, while preserving their pairwise216

inner products up to additive ε. Our idea was then to apply this sketch to w and the training217

data. Since wT x changes by only additive ε, the sketched hyperplane w̃ remains correct (i.e.218

sign(w̃T x) = sign(wT x) = y) if the margin was larger than ε before sketching. In this way,219

we get a compression whose size depends on the margin. Combining this with the union220

bound idea mentioned earlier led to improved generalization bounds for SVMs.221

Replicable Learning and Sketching222

Let me give another example where the JL lemma proved useful in learning theory. In a223

very exciting line of work, starting with [20], core TCS researchers introduced the notion224

of replicable learning as an attempt at addressing issues with reproducibility of results in225

machine learning. Here the basic setup is that you want to develop learning algorithms A,226

such that if A is run on two sets S and S′ of n i.i.d. samples from the same distribution D,227

then we should get the same output with high probability. The intuition is thus, if you rerun228
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3:6 From TCS to Learning Theory

someones replicable algorithm on your own data set, you will get the same results as they229

did on their data set, provided that the data set is sampled from the same distribution. To230

help you in this seemingly difficult task, the two executions of A share a random seed. This231

may be justified in practice by publishing the seed of a pseudorandom generator along with232

your machine learning paper and experimental results. There is naturally a ton of problems233

to revisit in replicable learning and some strong connections with differential privacy have234

already been established [12].235

In a recent result [22], we considered SVMs in the replicable setting. Here we are236

promised that there exists a hyperplane with all margins at least γ on the support of the237

data distribution D, and must replicably compute a hyperplane h with small erD(h). The238

key idea in our work is quite simple: partition the training data into t chunks and run SVM239

on each to obtain hyperplanes with normal vectors w1, . . . , wt. Average these normal vectors240

w = t−1 ∑
i wi and apply the sketching technique by Alon and Klartag [4] to w. The first241

main observation is that computing the average w reduces variance compared to each wi.242

Thus for two independent but identically distributed training data sets S and S′, the resulting243

w and w′ will be close. The key property of the sketching technique of Alon and Klartag is244

that such close vectors are very likely to be “rounded” to the same hyperplane/sketch if we245

share a carefully chosen random seed.246

Multi-Distribution Learning, Discrepancy Theory and NP-Hardness247

Let me conclude with one last example of TCS techniques playing a key role in learning248

theory results. A recent line of work in learning theory has studied learning in a setup with249

multiple data distributions. Formally, we have k distributions D1, . . . , Dk over X × {−1, 1}250

and the goal is to train a classifier that performs well on all k distributions simultaneously.251

For this purpose, we are given a hypothesis set H containing hypotheses h : X → {−1, 1}.252

As an example, think of H as all hyperplanes in Rd. If we let τ = minh∈H maxi erDi(h)253

denote the best achievable max-error of any h ∈ H, then the goal is produce a classifier254

f : X → {−1, 1} with maxi erDi
(f) ≤ τ + ε using as few training samples as possible.255

It is known that for a single distribution D, this task requires Θ(d/ε2) samples and it is256

straight forward to generalize the algorithm to O(dk/ε2) samples for k distributions. Very257

surprisingly, it turns out that this can be improved to essentially O((d + k)/ε2) samples using258

boosting ideas [19]. However, the upper bounds achieving this number of samples are cheating259

a little. Concretely, they do not output a single hypothesis f with maxi erDi
(f) ≤ τ + ε.260

Instead, they output a distribution Df over hypotheses such that maxi Ef∼Df
[erDi(f)] ≤ τ +ε.261

Attempting to derandomize this does not seem to work as we only have Markov’s inequality262

to argue that with constant probability, a random f ∼ Df has maxi erDi
(f) = O(k(τ + ε)).263

In a current manuscript, we show that there is a good reason why this is the case. Concretely,264

we prove via a reduction from discrepancy minimization that it is NP-hard to compute an265

f : X → {−1, 1} with maxi erDi(f) ≤ τ + ε. Here we use a result of Charikar et al. [13]266

stating that it is NP-hard to distinguish whether, for a given a 0/1 matrix A, there exists267

an x ∈ {−1, 1}n with Ax = 0, or whether all x ∈ {−1, 1}n have ∥Ax∥∞ = Ω(
√

n). In our268

reduction, we think of the columns as the input domain X and we form a distribution for each269

row of A. The key idea is to show that if a learning algorithm computes an f : X → {−1, 1}270

with maxi erDi
(f) ≤ τ + ε, then the predictions made by f on the columns must give a low271

discrepancy coloring that can distinguish the two cases.272

While showing NP-hardness is by now completely standard in TCS, let me add that my273

two coauthors are both from Statistics. They had heard NP-hardness mentioned before, but274

never used it, and found quite some joy in getting to apply it on a relevant problem. I guess275
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the experience shows that what may be common tools in one discipline may be highly novel276

in another.277

1.3 Conclusion and Thoughts278

To summarize my research journey into learning theory, I hope that I convinced you that279

many techniques and tricks from TCS are extremely useful. Not only do they help in280

addressing learning theory questions, but they also bring an interesting new direction to the281

field, such as e.g. arguing computational hardness of training a classifier. Furthermore, this282

transfer of techniques is not isolated to learning theory, but has been a guiding principle in283

all my research since the early days of my Ph.D. studies. Keep your eyes open for surprising284

connections between seemingly disjoint topics - they are often hiding just below the surface.285

To me, the questions studied in learning theory are as clean, elegant, beautiful and286

well-defined as any TCS topic, and are very well fit for anyone with a TCS background.287

What has worked well for me, has been to start in some corner (coincidentally boosting288

for me) and get to know the literature and related questions. Then as you have a better289

understanding and overview, you can start approaching neighboring questions and growing290

your focus. I suppose this is not much different from starting your Ph.D. studies by working291

on a narrow topic and broadening out as you mature. Finally, do not underestimate the292

value of talking to peers and attending talks for inspiration. As a newcomer, it is sometimes293

hard to ask the right question, and calibrating with an expert is very useful. Also, the COLT294

open problems have been a good source of inspiration as you at least know that some experts295

in the field find the question interesting.296

I strongly hope that this abstract may inspire some of you to work on learning theory, or297

give you the courage to enter a new field that you find intriguing, knowing that your TCS298

skills are useful in many surprising places.299
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