
ar
X

iv
:2

50
1.

18
38

8v
1

 [
cs

.L
G

]
 3

0
Ja

n
20

25

Improved Replicable Boosting with Majority-of-Majorities

Kasper Green Larsen Markus Engelund Mathiasen Clement Svendsen

Aarhus University

Abstract

We introduce a new replicable boosting algorithm which significantly improves the sample complexity compared to

previous algorithms. The algorithm works by doing two layers of majority voting, using an improved version of the

replicable boosting algorithm introduced by Impagliazzo et al. [2022] in the bottom layer.

1 Introduction

Replicability of an algorithm is a property introduced as a reaction to what is called the reproducibility crisis. Multiple

Nature articles have pointed out the issue of researchers not being able to replicate findings [Baker, 2016, Ball, 2023].

As a supplement to implementing better research practices in order to ensure replicability, Impagliazzo et al. [2022]

introduced the concept of replicability as a property of algorithms themselves. Informally, an algorithm is replicable if

it, with high probability, outputs the same result when run with different input data drawn from the same distribution.

Definition 1.1 (Replicability [Impagliazzo et al., 2022]). Let A be a randomized algorithm. Then, A is said to be

ρ-replicable if there is an n ∈ N such that for all distributionsD on some space X , it holds that

PS1,S2,r [A(S1; r) = A(S2; r)] ≥ 1− ρ

where S1, S2 ∼ D
n are independent, and r denotes the internal randomness used by A.

As is evident from the definition, we require the algorithm to use the same internal randomness r in both runs. This

turns out to be crucial - if we remove this requirement, we cannot solve simple tasks such as estimating the mean of a

distribution replicably [Dixon et al., 2024]. Researchers who use replicable algorithms may then publish the random

seed used in their run of the algorithm which lets other researchers use the same seed to replicate the results with high

probability, assuming that the data they use comes from the same underlying distribution.

In this work, we consider replicability in the weak-to-strong learning setting. Specifically we improve the best

known sample complexity of ρ-replicable boosting algorithms. Let X be an input domain, and let f : X → {−1, 1}
be the function we are trying to predict. An algorithm W is said to be a γ-weak learner for γ ∈ (0, 1/2) if there

exists an m ∈ N such that for any distributionD on X and any sequence of m labelled samples S = {(xi, f(xi))}
m
i=1

drawn i.i.d. from D, it holds that h := W(S) : X → {−1, 1} satisfies Px∼D[h(x) 6= f(x)] ≤ 1/2 − γ. We call γ
the advantage ofW and m the sample complexity ofW . A strong learner on the other hand, is a learning algorithm

such that for any distribution D on X , failure probability δ > 0 and error ε > 0, there is an m = m(ε, δ) ∈ N such

that when applied to an i.i.d. sample S ∼ Dm, the algorithm outputs a classifier which has error at most ε overD with

probability at least 1 − δ. We denote the error of a hypothesis h : X → {−1, 1} with respect to a distribution D by

ErD(h) = Px∼D[h(x) 6= f(x)].
Boosting algorithms were originally introduced to answer the following theoretical question posed by Kearns

[1988], Kearns and Valiant [1994]: Is it possible to combine hypotheses produced by a weak learning algorithm into

a strong learner? As shown by Schapire [1990], this turned out to be the case, and one of the most famous algorithms

that solves this problem is the AdaBoost algorithm [Freund and Schapire, 1995]. In short, boosting works by running

a number of iterations. In each iteration t, we update a distribution Dt on the samples and run the weak learner with

this new distribution. After a sufficient number of iterations, we take a weighed majority vote among all the produced

weak hypotheses.

1

http://arxiv.org/abs/2501.18388v1

1.1 Our contribution

Our main contribution is a replicable boosting algorithm called rMetaBoost which is inspired by an existing replicable

boosting algorithm, rBoost [Impagliazzo et al., 2022] and the SmoothBoost algorithm [Servedio, 2001]. First, fix a

distributionD onX and letW denote a replicable weak learner and for ρ ∈ (0, 1) let mW(ρ) be the sample complexity

ofW when run with replicability parameter ρ. Our main result is the following:

Theorem 1.2 (rMetaBoost). For any ρ, ε ∈ (0, 1) and Θ̃(ργ2)-replicable weak learner W with advantage γ,

rMetaBoost is ρ-replicable, makes O(ln(1/ε)γ2) calls toW , and with probability at least 1− ρ outputs a hypothesis H

with ErD(H) ≤ ε. Furthermore, its sample complexity is

Õ

(
mW(Θ̃(ργ2))

εγ2
+

1

ρ2εγ3

)
.

Our algorithm significantly improves on the sample complexity of Impagliazzo et al. [2022] which is

Õ
(

m
W(Θ(ρεγ2))

ε2γ2 + 1
ρ2ε5γ6

)
. Note that this sample complexity is not what is stated in their paper, but is in fact the

correct sample complexity of their algorithm.1 We improve the first term by a factor 1/ε and also remove a factor ε
in the replicability parameter to the weak learner. Since the sample complexity of most replicable algorithms has a

quadratic dependence on their replicability parameter, this will amount to an extra 1/ε2 improvement in this term. In

the second term we shave off a factor 1/(ε4γ3). All improvements are up to logarithmic factors.

As a secondary contribution, we introduce an algorithm rThreshold for performing a replicable threshold check.

This algorithm replicably checks if the expected value of a function ϕ is above a certain threshold z, and is used as a

subroutine in rMetaBoost. We state the guarantees of the algorithm below.

Lemma 1.3 (rThreshold). Let z, ρ ∈ (0, 1), δ ∈ (0, ρ/8], let ϕ : X → [0, 1] and let S = (x1, . . . , xm) be samples

drawn i.i.d. from distribution D. Then there exists a constant c such that if m ≥ c ln(1/δ)ρ2z , rThreshold(S, z, ϕ) is

ρ-replicable and returns a bit b such that with probability at least 1− δ:

• If Ex∼D[ϕ(x)] ≤ z/2, then b = 0.

• If Ex∼D[ϕ(x)] ≥ 2z, then b = 1.

We believe this algorithm is also of independent interest and can be applied in many scenarios as an alternative

to statistical queries which were previously used for such applications. This is because our algorithm achieves a

dependence of 1/z in the sample complexity, while using statistical queries for the same purpose comes with a factor

1/z2 in the sample complexity (Thm. 2.3, Impagliazzo et al. [2022]). While our approach to threshold checks is not

neccesarily novel, it seems to have been overlooked in the context of replicable algorithms.

1.2 Related work

In recent years, replicable algorithms have been developed in a variety of settings. This includes e.g. learning half spaces,

clustering, reinforcement learning and online learning [Kalavasis et al., 2024, Esfandiari et al., 2024, Eaton et al., 2024,

Ahmadi et al., 2024].

There are also important connections to the field of differential privacy. Intuitively, a replicable algorithm does

not depend heavily on the specific sample given to the algorithm. This is similar to the requirement in differential

privacy where we demand that when the algorithm is run on two samples differing in only a single point, then the two

distributions on the outputs are close in the sense of max divergence. Bun et al. [2023, Thm. 3.1] show that there is a

reduction "without substantial blowup in runtime or sample complexity" from differential privacy to replicability. On

the other hand, they also show that no computationally efficient transformation of differentially private algorithms to

replicable ones can exist under standard cryptographic assumptions. However, if one does not care about computational

efficiency, they do give a reduction from differential privacy to replicability with only a quadratic blowup in sample

complexity. This means it would be possible to take an existing differentially private boosting algorithm and make it

1We have personally contacted the authors to make them aware, and they have acknowledged this error.

2

replicable. One example of a differentially private boosting algorithm is BoostingForPeople [Dwork et al., 2010].

However, using the reduction on this algorithm would incur a 1/γ8 and 1/ε2 dependence in the sample complexity.

Moving away from differential privacy, another candidate algorithm to be made replicable is the SmoothBoost

algorithm [Servedio, 2001]. This algorithm differs from e.g. the well-knownAdaBoost [Freund and Schapire, 1995] in

that it maintains a smoothness across the distributionsDt over the data in every iteration t. Formally, this means that the

distribution Dt satisfies maxxDt(x) ≤ 1/(εm) for some ε > 0 where m is the number of samples. This smoothness

property ensures that no single example has too much influence on the distributions which is why smoothness is a

desirable property when designing replicable boosting algorithms. In fact, the boosting algorithm by Impagliazzo et al.

[2022] can be seen as a translation of SmoothBoost into the replicable setting.

The downside of using SmoothBoost is that it requires O(1
εγ2) invocations of the weak learnerW . We call this

the round complexity of the algorithm. This should be compared to AdaBoost which has round complexityO(ln(1/ε)γ2).
In the replicable setting, we draw new samples for each invocation ofW , so the round complexity directly affects the

number of samples used. This motivates looking at smooth boosting algorithms with fewer invocations of W such

as the one presented by Barak et al. [2009]. This algorithm uses Bregman projections to maintain the smoothness

property, and it matches the round complexity of AdaBoost. However, converting the algorithm to the replicable

setting would require us to make replicable approximations of these Bregman projections which turns out to use more

samples than we obtain in Theorem 1.2.

1.3 High-Level Ideas

We will now explain the very high-level idea behind our new boosting algorithm rMetaBoost. The first step towards

constructing this improved replicable boosting algorithm is to make slight modifications to the algorithm rBoost of

Impagliazzo et al. [2022] to improve its sample complexity. We will refer to this modified version as rBoost
∗ which

can be found in Algorithm 1. Remark that the functions gt, µt are functions over the entire domain X and not just the

samples that we see. This means that we cannot afford to update these functions explicitly for every point, so instead

we update the description of the functions. To distinguish this from normal assignments in the pseudocode, we use the
def
= operator for assignments to these functions and the← operator for normal assignments.

In this algorithm µt : X → [0, 1] is a function which determines the reweighing of the data distribution D in

iteration t. The reweighed distribution is then Dµt
(x) = µt(x)D(x)/d(µt) where d(µt) = Ex∼D[µt(x)] is the

normalization factor which we call the density of µ. The subroutine RejectionSampler then lets us sample from the

distribution Dµt
when given access to µt and samples from D (see Lemma 2.1 for formal guarantee). We also note

without proof that large density of µt actually implies smoothness of the reweighed distributionDµt
with respect to the

original distribution D. More precisely, if d(µt) ≥ ε, for some ε > 0, then Dµt
(x) ≤ D(x)/ε for all x ∈ X . These

samples fromDµt
are then given to the replicable weak learner. We will not go into further detail with how or why the

original rBoost works but instead refer to Impagliazzo et al. [2022], Servedio [2001].

In total, we have made two modifications in rBoost
∗. The first modification is that we have changed the

termination condition in line 14 to use our rThreshold algorithm instead of the statistical query algorithm they used.

This accomplishes exactly the same thing, but uses a factor 1/ε fewer samples for each call. The second modification

is the introduction of the if-statement in line 12. It turns out that this check only makes the algorithm run for a constant

factor more iterations. However, this allows us to shave off a factor 1/γ in the number of calls to rThreshold. Since

the replicability parameter of rThreshold needs to be ρ divided by the number of calls to rThreshold, this is a

great improvement. This is because the sample complexity of rThreshold is inversely proportional to the square of

its replicability parameter, so it will need a factor 1/γ2 fewer samples for each invocation of rThreshold. Since it is

now only called every 1/γ iteration, we shave off a factor 1/γ3 in total by introducing this check. In Section 3, we will

explain in more detail why these modifications preserve correctness, but for now we will just state the guarantees of

rBoost
∗.

3

Algorithm 1 rBoost
∗
ρ,ε(S,W)

Input: Samples S i.i.d. from D, replicable γ-weak learnerW , replicability ρ, error ε.
Output: Hypothesis H : X → {−1, 1}.

1: g0(x)
def
= 0

2: µ1(x)
def
= 1

3: t← 0
4: while true do

5: t← t+ 1

6: Dµt
(x)

def
= µt(x)D(x)/d(µt)

7: S1 ← Õ(mW(Θ(ρεγ2))/ε) fresh samples from S
8: SW ← RejectionSampler(S1,mW(Θ(ρεγ2)), µt)
9: ht ← RunW(SW) with replicability Θ(ρεγ2)

10: gt(x)
def
= gt−1(x) + ht(x)f(x) − γ/(2 + γ)

11: µt+1(x)
def
=

{
1, if gt(x) ≤ 0

(1− γ)gt(x)/2, if gt(x) > 0

12: if ⌊ 1γ ⌋ divides t then

13: S2 ← Õ
(

1
ρ2ε3γ2

)
fresh samples from S

14: if rThreshold(S2, ε/2, µt) = 0 then

15: Exit while loop

16: Return: H ← sign(
∑

t ht)

Theorem 1.4 (rBoost
∗). For any ρ, ε ∈ (0, 1) and Θ(ρεγ2)-replicable weak learnerW with advantage γ, rBoost

∗ is

ρ-replicable, makes O(1
εγ2) calls toW , and with probability at least 1− ρ outputs a hypothesis H with ErD(H) ≤ ε.

Furthermore, its sample complexity is

mrBoost∗(ρ, ε) = O

(
ln(1

ρεγ2)mW(Θ(ρεγ2))

ε2γ2
+

ln(1
ρεγ)

ρ2ε4γ3

)

= Õ

(
mW(Θ(ρεγ2))

ε2γ2
+

1

ρ2ε4γ3

)
.

Remember that the original version of rBoost had sample complexity Õ(
m

W(Θ(ρεγ2))

ε2γ2 + 1
ρ2ε5γ6). The dependence

on γ has therefore improved greatly. However, we are still not happy with the dependence on ε. The main idea of our

algorithm is therefore to use rBoost
∗ as a subroutine and only call it with constant error parameter ε0 = 1/16. Our

algorithm can be seen as a meta boosting algorithm where in each iteration, we call rBoost
∗ to get a hypothesis with

constant advantage. We then perform exponential weight updates similar to AdaBoost in order to make our algorithm

only run for T = O(ln(1/ε)) iterations. Remark that this entirely removes the problem of rBoost
∗ having a bad

dependence on ε, since we only invoke it with a constant error parameter. This is the main insight needed to understand

how our algorithm works.

2 Our Replicable Boosting Algorithm

In this section, we will present our new ρ-replicable boosting algorithm which can be found in Algorithm 2.

The algorithmruns forT iterations while maintaining functionsNt,Mt, µt. In each iteration the algorithmperforms

rejection sampling to get samples S2 drawn from distribution Dµt
. It then gets a hypothesis ht from rBoost

∗ which

has constant error of at most ε0 with respect to Dµt
. One can interpret Nt(x) as a lower bound for counting how

many of the first t− 1 hypotheses that misclassify element x. However, in order to ensure high density of the updated

reweighing function µt, we check if the points sharing the largest count have a total probability mass of at least ε/16

4

by using rThreshold. If not, we subtract 1 from the largest count which suffices to ensure high density of µt (see

Lemma 2.4). The capped values are stored in Mt, and will be used in subsequent iterations. The value ct can be

interpreted as a bound for the largest allowed count in iteration t, that is ct ≥Mt(x) for all x ∈ X .

Algorithm 2 rMetaBoostρ,ε(S,W)

Input: Samples S i.i.d. from D, replicable γ-weak learnerW , replicability ρ, error ε.
Output: Hypothesis H : X → {−1, 1}.

1: N1(x)
def
= 0

2: M1(x)
def
= 0

3: µ1(x)
def
= 1

4: c1 ← 0
5: for t = 1 to T do ⊲ T = O(1/ε)

6: Dµt
(x)

def
= µt(x)D(x)/d(µt)

7: S1 ← Õ(mrBoost∗(ρ0, ε0)/ε) fresh samples from S
⊲ ρ0 = ρ/(6T), ε0 = 1/16

8: S2 ← RejectionSampler(S1,mrBoost∗(ρ0, ε0), µt)
9: ht ← rBoost

∗
ρ0,ε0(S2,W)

10: Nt+1(x)
def
= Mt(x) + 1{ht(x) 6= f(x)}

11: S3 ← Õ(1
ρ2ε) fresh samples from S

12: bt+1 ← rThreshold(S3, ε/16, ϕ)
⊲ ϕ(x) = 1{Nt+1(x) = ct + 1}

13: ct+1 ← ct + bt+1

14: Mt+1(x)
def
= min(Nt+1(x), ct+1)

15: µt+1(x)
def
= exp(Mt+1(x)− ct+1)

16: Return H = sign
(∑T

t=1 ht

)

Now, before going into the analysis of the algorithm, we will present the guarantees of the RejectionSampler

which we use to draw samples from Dµ. The pseudocode and proofs of the below guarantees are described by

Impagliazzo et al. [2022], so we will not repeat those here.

Lemma 2.1 (Rejection Sampling [Impagliazzo et al., 2022]). For any ε ∈ (0, 1], if µ has density d(µ) ≥ ε and

S ∼ Dm where m ≥ 8 ln(1/δ)mtarget/ε, then RejectionSampler(S,mtarget, µ) outputs a sample Sout ∼ D
mtarget

µ

with probability at least 1− δ.

Lemma 2.2 (Composing Replicable Algorithms with Rejection Sampling [Impagliazzo et al., 2022]). Let A(S) be a

ρ-replicable algorithm with sample complexity m. Let µ : X → [0, 1]. Then let B be the algorithm that runs A with

samples drawn from Dµ using rejection sampling. Let q be the failure probability of RejectionSampler. Then B is

(2q + 2ρ)-replicable.

2.1 Analysis of rMetaBoost

We are now ready to analyze rMetaBoost. To make it easier to follow the analysis, we will split it into four parts.

1. Correctness,

2. Replicability,

3. Sample complexity,

4. Failure probability.

We will start with correctness. However, before going into the formal details, we will give an explanation of the

high level ideas in the proof. First, observe that if we did not cap the weights Nt, the multiplicative weight updates

would be very similar to the updates made in AdaBoost. Recall that for any t ∈ [T], Mt(x) is exactly the number

5

of misclassifications of x minus the amount of times we have capped the weight so far. Hence, if we did not cap the

weights by ct each iteration, x would be misclassified by the final hypothesis H only if MT+1(x) ≥ T/2. We will

now take the capping into account. We first show using an argument similar to the standard analysis of AdaBoost that

the probability of drawing an x from D for which MT+1(x) ≥ T/4 is at most ε/2. What remains is to argue that the

probability of drawing an x which is misclassified but simultaneously satisfies MT+1(x) < T/4 is small. The only way

this can happen is if there were at least T/4 iterations in which we capped down the value of Nt+1(x) when calculating

Mt+1(x), since in such iterations we would not increment Mt+1(x) even though ht misclassified x. Observe that due

to the threshold check, the total probability mass (w.r.t. D) of points whose value of Nt+1 were capped in a single

iteration cannot exceed ε/8. Therefore, after T iterations, the total probability mass of points, whose value of Nt+1

were capped T/4 times is at most T (ε/8)/(T/4) = ε/2. So in total, the probability mass of all the misclassified points

is at most ε. We now prove this formally.

Lemma 2.3 (Correctness). Put T ≥ 8 ln(2/ε) and ε0 = 1/16. Assuming that all subroutines of the algorithm succeed

in every iteration, we achieve an error of at most ε over the distribution D, i.e. ErD(H) ≤ ε.

Proof. By definition of MT+1, NT+1 and µT

E[exp(MT+1(X))] ≤ E[exp(NT+1(X))]

= E[exp(MT (X)) exp(1{hT (X) 6= f(X)})]

= ecT E[µT (X) exp(1{hT (X) 6= f(X)})]

= ecT
(
E[µT (X)1{hT (X) = f(X)}]

+ eE[µT (X)1{hT (X) 6= f(X)}]
)
. (1)

Now, since DµT
= µT ·D

d(µT) , we can rewrite the above to an expectation involving Y ∼ DµT
such that (1) is equal to

ecT d(µT)
(
E[1{hT (Y) = f(Y)}]

+ eE[1{hT (Y) 6= f(Y)}]
)

= ecT d(µT)
(
ErDµT

(hT)(e − 1) + 1
)

≤ ecT d(µT) exp
(
(e − 1)ErDµT

(hT)
)

≤ ecT d(µT) exp(2ε0), (2)

where the final inequality follows since ht has error at most ε0 under DµT
by Theorem 1.4. Now, note that

ecT d(µT) = ecT E[µT (X)] = ecT E[exp(MT (X)− cT)]

= E[exp(MT (X))].

Plugging this into (2), we recursively get

E[exp(MT+1(X))] ≤ E[exp(MT (X))] exp(2ε0)

≤ · · · ≤ exp(2Tε0)

Now, define the sets A = {x : MT+1(x) ≥ T/4} and B = Ac ∩ {x : H(x) 6= f(x)} and note that

ErD(H) ≤ P(X ∈ A) + P(X ∈ B).

For bounding P(X ∈ A), we have

E [exp(MT+1(X))] ≥ E [exp(MT+1(X))1A(X)]

≥ exp(T/4)P(X ∈ A),

6

and hence

P(X ∈ A) ≤ exp(−T/4)E [exp(MT+1(X))]

≤ exp(T (2ε0 − 1/4))

= exp(−T/8) ≤ ε/2.

Bounding P(X ∈ B):
First, observe that 0 ≤Mt+1(x)−Mt(x) ≤ 1 for all t ∈ [T], x ∈ X . Now, let x ∈ B. Since H is a majority classifier,

we have

T/2 ≤

T∑

t=1

1{ht(x) 6= f(x)}

=

T∑

t=1

1{Nt+1(x) > ct+1}+MT+1(x).

Taking the expectation over the event {X ∈ B} on both ends of the above then yields

TP(X ∈ B)/2 = TE[1{X ∈ B}]/2

≤
T∑

t=1

E[1{Nt+1(X) > ct+1}1{X ∈ B}]

+ E[MT+1(X)1{X ∈ B}]

≤

T∑

t=1

P[Nt+1(X) > ct+1] + E[MT+1(X)1{X ∈ B}]

≤

T∑

t=1

P[Nt+1(X) > ct+1] + TP(X ∈ B)/4.

Due to the threshold check in line 12 and Lemma 1.3, we know that if bt = 0, then we must have P[Nt+1(X) =
ct + 1] ≤ ε/8. Furthermore, in this case ct+1 = ct. Hence,

P[Nt+1(X) > ct+1] = P[Nt+1(X) > ct]

= P[Nt+1(X) = ct + 1] ≤ ε/8.

If instead bt = 1, then

Nt+1(x) ≤Mt(x) + 1 ≤ ct + 1 = ct+1,

which implies

P[Nt+1(X) > ct+1] = 0.

Hence, we get the bound

TP(X ∈ B)/2

≤

T∑

t=1

P[Nt+1(X) > ct+1] + TP(X ∈ B)/4

≤ Tε/8 + TP(X ∈ B)/4.

Rearranging gives P(X ∈ B) ≤ ε/2, meaning we in total have

ErD(H) ≤ P(X ∈ A) + P(X ∈ B) = ε/2 + ε/2 = ε.

7

For the remaining parts, we need the guarantee of Lemma 2.1 that rejection sampling fails with low probability

when µt has large density. Hence, we first show that the density is indeed large.

Lemma 2.4 (High density of µt). Assume that rThreshold succeeds in every iteration in rMetaBoost. Then for any

t ∈ [T], µt has density d(µt) ≥ ε/32.

Proof. Let X ∼ D. Then using the law of total expectation and the definition of µt we have

d(µt) = E[µt(X)]

≥ E[µt(X)|Mt(X) ≥ ct]P[Mt(x) ≥ ct]

= E[exp(Mt(X)− ct)|Mt(X) ≥ ct]P[Mt(x) ≥ ct]

≥ P[Mt(X) ≥ ct].

We now show by induction in t that P[Mt(X) ≥ ct] > ε/32. For t = 1, we have M1(X) = c1 = 0, and hence

P[Mt(X) ≥ ct] = 1. Now, assume the claim holds for t. We will then show that it holds for t+ 1 by case analysis on

bt+1. If bt+1 = 0, we have ct+1 = ct and

P[Mt+1(X) ≥ ct+1] = P[Mt+1(X) ≥ ct]

≥ P[Mt(X) ≥ ct] > ε/32

using the induction hypothesis and the fact that Mt+1(X) ≥ Mt(X). Now assume bt+1 = 1. Then we know by

Lemma 1.3 that P [Nt+1(X) = ct + 1] > ε/32. Since bt+1 = 1, then ct+1 = ct + 1 which then implies that

P[Mt+1(X) ≥ ct+1] = P[Mt+1(X) ≥ ct + 1]

= P[min(Nt+1(X), ct+1) ≥ ct + 1]

= P[Nt+1(X) ≥ ct + 1] > ε/32.

Lemma 2.5 (Replicability). rMetaBoost is ρ-replicable.

Proof. Let S1, S2 be two independent samples with distributionDm for some m = Õ
(

m
W(Θ̃(ργ2))

εγ2 + 1
ρ2εγ3

)
. Assume

that in iterations 1, . . . , t − 1, the algorithm has produced the same objects, i.e. that the reweighing functions and

hypotheses associated with S1 and S2 are the same. Then, for iteration t to be replicable, we need the following:

1. rBoost
∗ outputs the same hypothesis for both samples.

2. rThreshold outputs the same bit for both samples.

When these conditions hold, the rest of the quantities appearing in the algorithm will be the same for both samples and

hence ensure replicability. We call rBoost
∗ with replicability parameter ρ0 = ρ/(6T) and call RejectionSampler

with at least 8 ln(6T/ρ)/ε samples. Since Lemma 2.4 tells us that the density of µt satisfies d(µt) > ε/32, we can use

Lemmas 2.1 and 2.2 to conclude that rBoost
∗ combined with RejectionSampler is 2ρ/(6T)+ 2ρ/(6T) = 2ρ/(3T)-

replicable. Finally, by Lemma 1.3, rThreshold is ρ/(3T)-replicable. Hence, by a union bound over the conditions,

each iteration is ρ/T -replicable and union bounding over all T iterations, the entire algorithm is ρ-replicable.

Lemma 2.6 (Sample complexity). rMetaBoost uses m = Õ
(

m
W(Θ̃(ργ2))

εγ2 + 1
ρ2εγ3

)
samples.

Proof. For the sample complexity of a single iteration, we simply add up the sample complexities of all the subroutines:

• rBoost
∗: Since we give it parameters ρ0 = ρ/(6T),ε0 = 1/16, we get from Theorem 1.4 that the sample

complexity of rBoost
∗ in a single iteration is

mrBoost∗(ρ0, ε0) = O




ln(T

ργ2)mW(Θ(ργ2

T
))

γ2
+

ln(T
ργ)T

2

ρ2γ3





Remark that the choice of constant ε0 removes all the dependence on ε.

8

• RejectionSampler: To invoke Lemma 2.1 with failure probability ρ/(6T) the number of samples used in each

iteration is

O

(
ln(Tρ)mrBoost∗(ρ0, ε0)

ε

)
.

• rThreshold: To invoke Lemma 1.3 with replicability parameter ρ/(3T) and failure probability ρ/(24T) the

number of samples used in each iteration is

O(
ln(Tρ)T

2

ρ2ε
).

Remembering that the number of iterations is T = O(ln(1/ε)) we get the total sample complexity to be

O

(
T

(
ln(Tρ) ln(

T
ργ2)mW(Θ(ργ2

T
))

εγ2
+

ln(Tρ) ln(
T
ργ)T

2

ρ2εγ3
+

ln(Tρ)T
2

ρ2ε

))

= Õ

(
mW(Θ̃(ργ2))

εγ2
+

1

ρ2εγ3

)

Lemma 2.7 (Failure probability). rMetaBoost fails with probability at most 9ρ/24 ≤ ρ.

Proof. The only sources of failure are the three subroutines. RejectionSampler fails with probability ρ/(6T) in each

iteration. rThreshold fails with probability ρ/(24T) in each iteration. rBoost
∗ fails with probability at most ρ/(6T)

in each iteration. Hence, the total failure probability of the algorithm is at most 9ρ/24.

3 Subroutines

In this section, we will present the replicable subroutines that the boosting algorithm uses. This includes rThreshold

and rBoost
∗. As mentioned earlier, we will not present RejectionSampler as we have made no changes to it, so we

refer to Impagliazzo et al. [2022] for the description of this subroutine. We now move on to describe the two other

subroutines.

3.1 rThreshold

In this section, we will describe rThreshold in more detail. The pseudocodecan be found in Algorithm 3. The purpose

of this algorithm is to make a replicable test to see if E[ϕ(X)] > z for some threshold z ∈ (0, 1) and ϕ : X → [0, 1].
In the original version of rBoost, this is done by replicably simulating a statistical query for estimating E[ϕ(X)], with

an additive error of order z. However, for a threshold check it suffices to have a multiplicative error when estimating

E[ϕ(X)], which means we can do a better analysis by using a Chernoff bound.

Algorithm 3 rThreshold(S, z, ϕ)

Input: Samples S = (x1, . . . , xm) drawn from D, threshold z, function ϕ : X → [0, 1].
Output: Bit b being a guess, whether Ex∼D[ϕ(x)] > z.

1: z0 ←r [34z,
3
2z] ⊲ Chosen uniformly at random

2: ϕ(S)← 1
m

∑m
i=1 ϕ(xi)

3: Return: b = 1

{
ϕ(S) > z0

}

We will now prove the guarantee of rThreshold. For convenience, we restate the guarantee here.

Lemma 1.3 Restated. Let z, ρ ∈ (0, 1), δ ∈ (0, ρ/8], let ϕ : X → [0, 1] and let S = (x1, . . . , xm) be samples drawn

i.i.d. from distributionD. Then there exists a constant c such that if m ≥ c ln(1/δ)ρ2z , rThreshold(S, z, ϕ) is ρ-replicable

and returns a bit b such that with probability at least 1− δ:

9

• If Ex∼D[ϕ(x)] ≤ z/2, then b = 0.

• If Ex∼D[ϕ(x)] ≥ 2z, then b = 1.

Proof. It is sufficient to setm ≥ 700 ln(1/δ)
zρ2 . We will first prove the first bullet point. Hence, assume that Ex∼D[ϕ(x)] ≤

z/2. We then bound the following probability:

P [b = 1] = P

[
ϕ(S) > z0

]
≤ P

[
ϕ(S) >

3

4
z

]

= P

[
m∑

i=1

ϕ(xi) > (1 +
1

2
)m(z/2)

]
.

Since the assumption states that Ex∼D[ϕ(x)] ≤ z/2, we can use a Chernoff bound to bound the above probability by

exp(−mz/24) ≤ exp(− ln(1/δ)/ρ2) = δ1/ρ
2

≤ δ.

We move on to the second bullet point. Hence, we now assume Ex∼D[ϕ(x)] ≥ 2z and bound the following probability:

P [b = 0] = P

[
ϕ(S) ≤ z0

]
≤ P

[
ϕ(S) ≤

3

2
z

]

= P

[
m∑

i=1

ϕ(xi) ≤ (1−
1

4
)m(2z)

]
.

Again, since Ex∼D[ϕ(x)] ≥ 2z, we can use a Chernoff bound to bound the above probability by

exp(−mz/16) ≤ exp(− ln(1/δ)/ρ2) = δ1/ρ
2

≤ δ.

We will now show that rThreshold is ρ-replicable by considering two different runs of the algorithm with common

randomness. Let S1, S2 ∼ D
m be the two sequences of samples used in the two runs. Assuming that neither of the

runs fail, they will always output the same bit if Ex∼D[ϕ(x)] /∈ [z/2, 2z], so we can safely assume that this is not the

case. Now, we will bound the probability that ϕ(Si) deviates too much from Ex∼D[ϕ(x)]. So we bound the following

probabilities using Chernoff bounds and the assumption that Ex∼D[ϕ(x)] ∈ [z/2, 2z]:

P

[
ϕ(Si)− Ex∼D[ϕ(x)] ≥ 3zρ/16

]

≤ exp(−3zρ2m/2048) ≤ δ ≤ ρ/8

and

P

[
ϕ(Si)− Ex∼D[ϕ(x)] ≤ −3zρ/16

]

≤ exp(−9zρ2m/4096) ≤ δ ≤ ρ/8.

Using a union bound, we can conclude that

P

[∣∣∣ϕ(Si)− Ex∼D[ϕ(x)]
∣∣∣ ≥ 3zρ/16

]
≤ ρ/4.

We can therefore conclude that with high probability, the two estimates will be close to each other. That is,

P

[∣∣∣ϕ(S1)− ϕ(S2)
∣∣∣ ≥ 3zρ/8

]
≤ ρ/2.

So assume for now, that the two estimates are within 3zρ/8 of each other. Then the two runs will only give different

outputs if the random split z0 is chosen between them. The probability of this happening is at most the distance between

the estimates divided by the total range of z0, which is at most

3zρ/8

3z/2− 3z/4
= ρ/2.

So the probability that the two runs output different bits is at most ρ/2 + ρ/2 = ρ. Therefore, the algorithm is

ρ-replicable.

10

3.2 rBoost
∗

We now move on to discuss in more detail why the modifications in rBoost
∗ preserve correctness. The modified

version can be seen in Algorithm 1. The only two modifications can be found in line 12 and 14. In line 14 we have

substituted a statistical query with our threshold check, and in line 12 we have inserted an if-statement to only do the

threshold check every 1/γ iteration. In this algorithm, the threshold check gives the same guarantees as the statistical

query, and it will therefore not affect correctness. However, the introduction of the if-statement could lead to two kinds

of errors, since we do not check the value of d(µt) in every iteration. First, it could be that RejectionSampler fails,

since it needs d(µt) to be large. Second, it could be that the number of iterations is increased, since the algorithm does

not detect immediately when the density becomes small. To show that these events are not problematic, we first show

that the densities do not decrease too much over 1/γ iterations.

Lemma 3.1. Let T0 denote the number of iterations that rBoost
∗ runs for. Then for all t ∈ [T0] and k ≤

max{⌊1/γ⌋, T0 − t} that d(µt+k) ≥ d(µt)/2.

Proof. Let x ∈ X . Then by the recursive definition of the gt’s, we have µt+1(x) ≥ (1− γ)1/2µt(x). Inductively, we

get

µt+k(x) ≥ µt(x)(1 − γ)k/2 ≥ µt(1 − γ)⌊
1
γ
⌋/2

≥ µt(x)

(
1− γ⌊

1

γ
⌋/2

)
≥

1

2
µt(x),

where we use Bernoulli’s inequality which applies since −γ > −1. Taking the expectation with respect to D on both

sides yields the desired conclusion.

Theorem 1.4 Restated. For any ρ, ε ∈ (0, 1) and Θ(ρεγ2)-replicable weak learnerW with advantage γ, rBoost
∗ is

ρ-replicable, makes O(1
εγ2) calls toW , and with probability at least 1− ρ outputs a hypothesis H with ErD(H) ≤ ε.

Furthermore, its sample complexity is

mrBoost∗(ρ, ε) = O

(
ln(1

ρεγ2)mW(Θ(ρεγ2))

ε2γ2
+

ln(1
ρεγ)

ρ2ε4γ3

)

= Õ

(
mW(Θ(ρεγ2))

ε2γ2
+

1

ρ2ε4γ3

)
.

Proof. First, we argue that the RejectionSampler succeeds with high probability. Observe that due to Lemma 3.1, the

densities are at most halved in rBoost
∗ compared to the original version of rBoost. Due to Lemma 2.1 we therefore

only need to use twice as many samples in the rejection sampler for it to still succeed.

Next, we will argue that the number of iterations remains the same as in rBoost up to constant factors. The number

of iterations is bounded in Servedio [2001] by showing that for any κ > 0, there is some t within the first O(1
κγ2)

iterations such that d(µt) < κ. This result also applies to rBoost
∗. However, we will not repeat the proof here.

We can then conclude that d(µt) will fall below ε/8 within the first O(1
εγ2) iterations. Since the threshold check in

line 14 always realizes when d(µt) ≤ ε/4 (see Lemma 1.3), and it takes 1/γ iterations to further decrease the density

from ε/4 to ε/8, rThreshold will always have terminated the loop before reaching density ε/8. Hence, the number

of iterations in rBoost
∗ is still T0 = O(1

εγ2).
We now argue, that replicability is preserved. Since this argument is almost identical to the proof of Lemma 2.5,

we will only describe what differs in this analysis. First, the weak learner is called T0 times, and therefore it needs

replicability parameter ρ/(6T0) = Θ(ρεγ2). Second, rThreshold is called γT0 times and therefore needs replicability

parameter ρ/(6γT0) = ρεγ/6, which it achieves due to Lemma 1.3. Thus, our modifications preserve replicability.

Finally, we calculate the sample complexity. The RejectionSampler uses O(ln(T0

ρ)mW(Θ(ρεγ2))/ε) samples for

each call, and it is called T0 times. Meanwhile, rThreshold uses O(ln(γT0/ρ)
ρ2ε3γ2) samples for each call, and is called

11

γT0 times. Hence, the total sample complexity is

O

(
T0

ln(T0

ρ)mW(Θ(ρεγ2))

ε
+ γT0

ln(γT0

ρ)

ρ2ε3γ2

)

= O

(
ln(1

ρεγ2)mW(Θ(ρεγ2))

ε2γ2
+

ln(1
ρεγ)

ρ2ε4γ3

)

= Õ

(
mW(Θ(ρεγ2))

ε2γ2
+

1

ρ2ε4γ3

)
.

References

S. Ahmadi, S. Bhandari, and A. Blum. Replicable online learning. arXiv preprint arXiv:2411.13730, 2024.

M. Baker. Reproducibility crisis. nature, 533(26):353–66, 2016.

P. Ball. Is ai leading to a reproducibility crisis in science? Nature, 624(7990):22–25, 2023.

B. Barak, M. Hardt, and S. Kale. The uniform hardcore lemma via approximate bregman projections. In Proceedings

of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages 1193–1200. SIAM, 2009.

M. Bun, M. Gaboardi, M. Hopkins, R. Impagliazzo, R. Lei, T. Pitassi, S. Sivakumar, and J. Sorrell. Stabil-

ity is stable: Connections between replicability, privacy, and adaptive generalization. In Proceedings of the

55th Annual ACM Symposium on Theory of Computing, STOC 2023, page 520–527, New York, NY, USA,

2023. Association for Computing Machinery. ISBN 9781450399135. doi: 10.1145/3564246.3585246. URL

https://doi.org/10.1145/3564246.3585246.

P. Dixon, J. Vander Woude, and N. Vinodchandran. List and certificate complexities in replicable learning. Advances

in Neural Information Processing Systems, 36, 2024.

C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy. In 2010 IEEE 51st annual symposium

on foundations of computer science, pages 51–60. IEEE, 2010.

E. Eaton, M. Hussing, M. Kearns, and J. Sorrell. Replicable reinforcement learning. In Proceedings of the 37th

International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran

Associates Inc.

H. Esfandiari, A. Karbasi, V. Mirrokni, G. Velegkas, and F. Zhou. Replicable clustering. In Proceedings of the 37th

International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran

Associates Inc.

Y. Freund and R. E. Schapire. A desicion-theoretic generalization of on-line learning and an application to boosting.

In P. Vitányi, editor, Computational Learning Theory, pages 23–37, Berlin, Heidelberg, 1995. Springer Berlin

Heidelberg. ISBN 978-3-540-49195-8.

R. Impagliazzo, R. Lei, T. Pitassi, and J. Sorrell. Reproducibility in learning. In Proceedings of the 54th annual ACM

SIGACT symposium on theory of computing, pages 818–831, 2022.

A. Kalavasis, A. Karbasi, K. G. Larsen, G. Velegkas, and F. Zhou. Replicable learning of large-

margin halfspaces. In R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, and

F. Berkenkamp, editors, Proceedings of the 41st International Conference on Machine Learning, volume

235 of Proceedings of Machine Learning Research, pages 22861–22878. PMLR, 21–27 Jul 2024. URL

https://proceedings.mlr.press/v235/kalavasis24a.html.

12

https://doi.org/10.1145/3564246.3585246
https://proceedings.mlr.press/v235/kalavasis24a.html

M. Kearns. Learning boolean formulae or finite automata is as hard as factoring. Technical Report TR-14-88 Harvard

University Aikem Computation Laboratory, 1988.

M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae and finite automata. Journal of the

ACM (JACM), 41(1):67–95, 1994.

R. E. Schapire. The strength of weak learnability. Machine learning, 5:197–227, 1990.

R. A. Servedio. Smooth boosting and learning with malicious noise. In D. Helmbold and B. Williamson, editors,

Computational Learning Theory, pages 473–489, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN

978-3-540-44581-4.

13

	Introduction
	Our contribution
	Related work
	High-Level Ideas

	Our Replicable Boosting Algorithm
	Analysis of rMetaBoost

	Subroutines
	rThreshold
	rBoost*

