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Abstract

Multi-distribution or collaborative learning involves learning a single predictor that works well across
multiple data distributions, using samples from each during training. Recent research on multi-distribution
learning, focusing on binary loss and finite VC dimension classes, has shown near-optimal sample complexity
that is achieved with oracle efficient algorithms. That is, these algorithms are computationally efficient
given an efficient ERM for the class. Unlike in classical PAC learning, where the optimal sample complexity
is achieved with deterministic predictors, current multi-distribution learning algorithms output randomized
predictors. This raises the question: can these algorithms be derandomized to produce a deterministic
predictor for multiple distributions? Through a reduction to discrepancy minimization, we show that
derandomizing multi-distribution learning is computationally hard, even when ERM is computationally
efficient. On the positive side, we identify a structural condition enabling an efficient black-box reduction,
converting existing randomized multi-distribution predictors into deterministic ones.

1 Introduction
We consider the problem of multi-distribution learning where there are k unknown data distributions
P = {D1, . . . ,Dk} over X × {−1, 1}, where X is an input domain and {−1, 1} are the possible labels. The
goal is to learn a classifier f : X → {−1, 1} that satisfies

erP(f) := max
i

erDi
(f) ≤ min

h∈H
max

i
erDi

(h) + ε, where erDi
(f) = Pr

(x,y)∼Di

[f(x) ̸= y]. (1)

Here H ⊆ {−1, 1}X is the benchmark hypothesis class of VC-dimension d that the learner competes against,
and minh∈H maxi erDi

(h) is the optimal worst-case error that can be achieved with classifiers from H. The
framework of multi-distribution learning, introduced by Haghtalab et al. [2022], is a natural generalization of
agnostic PAC learning [Vapnik and Chervonenkis, 1974, Valiant, 1984, Blumer et al., 1989], and captures
several important applications such as min-max fairness [Mohri et al., 2019, Shekhar et al., 2021, Rothblum
and Yona, 2021, Diana et al., 2021, Tosh and Hsu, 2022], and group distributionally robust optimization
[Sagawa et al., 2020].

In the realizable setting, where minh∈H erP(h) = 0, there is a learning algorithm using Õ((d + k)/ε)
samples to produce such a deterministic classifier f , see e.g., the works [Blum et al., 2017, Chen et al., 2018,
Nguyen and Zakynthinou, 2018]. Here, and throughout the paper, Õ hides terms that are poly ln(dk/(εδ)).

In the more challenging agnostic setting, where OPT := minh∈H erP(h) is greater than 0, recent works
show that the sample complexity is Õ((d+ k)/ε2) [Haghtalab et al., 2022, Awasthi et al., 2023, Peng, 2023,

∗larsen@cs.au.dk.
†omar.montasser@yale.edu, this work was primarily done while the author was a FODSI-Simons postdoc at UC Berkeley.
‡zhivotovskiy@berkeley.edu.

1



Zhang et al., 2023]. We refer the reader to Table 1 in [Zhang et al., 2023] for a detailed sample complexity
comparison of prior algorithms. Importantly, the guarantee provided by all existing algorithms is slightly
different from the objective (1) above. Concretely, all previous algorithms do not produce a deterministic
classifier f : X → {−1, 1}, but instead output a distribution F over H, such that

max
i

Ef∼F [erDi
(f)] ≤ min

h∈H
max

i
erDi

(h) + ε. (2)

Due to the fact that classical PAC bounds, which involve learning from a single distribution, are achieved
using deterministic predictors it is somewhat unsatisfactory to always output a randomized predictor in the
multi-distribution case. Observe that because, as in (2), we want optimal performance simultaneously for all
distributions, even using a randomized algorithm is somewhat problematic. Indeed, assume that in practice
we want to sample a single f̂ according to F and use it as our predictor. Now, if we seek a guarantee like (1)
for f̂ , then the best we can guarantee from (2) is to use Markov’s inequality and a union bound over all k
distributions to ensure that

erDi(f̂) ≤ 2k

(
min
h∈H

max
i

erDi(h) + ϵ

)
,

with probability at least 1/2, which is, of course, too conservative. Let us also remark that there are examples
of distributions F for which this is basically tight. Consider e.g. an input domain X = x1, . . . , xk and k
hypotheses h1, . . . , hk such that hi(xi) = −1 and hi(xj) = 1 for j ̸= i. Let Di be the distribution that
returns (xi, 1) with probability 1. Then for the uniform distribution F = k−1

∑
i hi over classifiers, we have

maxi Ef∼F [erDi(f)] = 1/k, but for any single f in the support of F , we have erP (f) = maxi erDi(f) = 1.
The example also shows that for every fixed distribution Di, if we sample an f from F , then with probability
1/k, its error exceeds the expectation by a factor k for that distribution Di. There may thus be a large gap
between the guarantees of a deterministic and randomized classifier, i.e. the bounds in (1) and (2) are quite
different.

The main focus of our work, is on replacing the random classifiers in previous works on agnostic
multi-distribution learning by deterministic classifiers and understanding the inherent complexity of doing
so. In particular, we are interested in understanding any inherent statistical or computational gaps in
multi-distribution learning between deterministic classifiers and randomized classifiers.

Our contributions
Our first contribution is a strong negative result towards derandomizing previous classifiers. Recall that the
complexity class BPP denotes bounded-error probabilistic polynomial time1. That is, problems that have
polynomial time randomized algorithms that are correct with probability at least 2/3 on every input. It is
conjectured that P = BPP and thus most likely BPP ̸= NP. Recall that a set of n points is shattered if each
of the 2n possible labelings of the points can be realized by some h ∈ H. Our negative result is then the
following.

Theorem 1. If BPP ≠ NP, then as n = min{d, k, 1/ε} tends to infinity, for every hypothesis class H of
VC-dimension d for which one can find n points shattered by H in polynomial time, any multi-distribution
learning algorithm for H that on the set of k input distributions P = {D1, . . . ,Dk} with probability at least
2/3 produces a deterministic classifier f : X → {−1, 1} with erP(f) ≤ minh∈H erP(h) + ε, must have either
nω(1) (i.e. super-polynomial) training time, or f has nω(1) evaluation time.

We remark that this computational hardness result holds even when the class H admits efficient Empirical
Risk Minimization (ERM), and even when the distributions are known to the learning algorithm. This
highlights that the hardness stems not from the need to sample from the underlying distributions nor from
the hardness of ERM, but from the computational problem of deciding which label to assign the points of the
input domain.

1We refer to the monograph [Sipser, 1996] as a standard reference discussing computational complexity classes.
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Note that the assumption in Theorem 1 that one can find a set of n shattered points in polynomial time is
not restrictive. Finding such points is trivial for many H, i.e., simply choose 0, e1, . . . , ed−1 ∈ Rd−1 = X for
linear classifiers with VC-dimension d. More generally, the standard result on the class of classifiers induced
by positive halfspaces in Rd shows that this class has VC dimension d, and for any set of points such that
at most d of its points are contained on a single hyperplane, any subset of size d of this set is shattered.
Similar properties are also known for the classes induced by balls in Rp and positive sets in the plane defined
by polynomials of degree at most p− 1. See [Floyd and Warmuth, 1995] for a detailed exposition of these
examples.

While this might have been the end of the story, our NP-hardness proof fortunately highlights a path
to circumventing the lower bound. In particular, the proof carefully uses data distributions D1, . . . ,Dk for
which Di(y | x) varies between the distributions. Here Di(y | x) denotes the conditional distribution of the
label y of a sample (x, y) given x ∈ X . We thus consider the following restricted version of collaborative
learning in which Di(y | x) = Dj(y | x) for all x, i, j. That is, the k different distributions may vary arbitrarily
over X , but the label y of any x ∈ X follows the same distribution for all Di. As a particular model of
label consistent learning, one may think of a deterministic labeling setup where it is assumed that there is
f⋆ : X → {1,−1} such that across all distributions y = f⋆(x), while no assumption is made that f⋆ belongs
to H. Remarkably, in terms of sample complexity, in the case of a single distribution, the case of deterministic
labeling is almost as hard as the general agnostic case as shown in [Ben-David and Urner, 2014]. Thus, we
believe our label-consistent multi-distribution learning setup is quite natural and interesting.

Furthermore, this restriction turns out to be sufficient for derandomizing multi-distribution learning
algorithms. In particular, we give a new algorithm, Algorithm 1, that uses a randomized (i.e., an algorithm
that outputs a randomized predictor given the training data) multi-distribution learning algorithm (like (2))
as a black-box, and produces from it a deterministic classifier, as in (1).

Theorem 2. For any finite domain X , if the data distributions D1, . . . ,Dk are label-consistent, then given a
multi-distribution learning algorithm A that uses m(k, d,OPT, ε, δ) samples and t(k, d,OPT, ε, δ) training
time to produce, with probability 1−δ, a distribution F over classifiers from H satisfying maxi Ef∼F [erDi

(f)] ≤
OPT+ ε, Algorithm 1 produces with probability 1− δ a classifier f : X → {−1, 1} with erP(f) ≤ OPT+ ε
with the sample complexity

m(k, d,OPT, ε/2, δ/2) +O(k ln2(k/(εδ))/ε2).

Using the additional ideas in Section 3.1, the training time of Algorithm 1 is

t(k, d,OPT, ε/2, δ/2) + Õ(k/ε2 + ln(|X |/δ)).

If the evaluation time of hypotheses in H is bounded by s, then the evaluation time of the classifier f is
bounded by

O(s|F |) + Õ(ln(k/δ) ln(|X |/ε)).

Note that several of the previous randomized multi-distribution learning algorithms are indeed compu-
tationally efficient as long as ERM is efficient over H. This includes the algorithm in [Zhang et al., 2023]
that has a near-optimal sample complexity of m(k, d,OPT, ε, δ) = Õ((d + k)/ε2) with t(k, d,OPT, ε, δ) =
poly(k, d, ε−1, ln(1/δ))tERM and |F | = poly(k, d, ε−1, ln(1/δ)), where tERM denotes the time complexity of
ERM over H. Plugging this into Theorem 2 gives a polynomial time deterministic multi-distribution learning
algorithm.

We view the restriction to finite domains X in Theorem 2 as rather mild, as any realistic implementation
of a learning algorithm requires an input representation that can be stored on a computer. Moreover, our
running time dependency on |X | is only logarithmic. Even so, in Section 3.2 we give some initially promising
directions for extending our algorithm to infinite X .

Discussion of implications. Prior work has shown that in agnostic multi-distribution learning, a sample
complexity of Ω(dk/ϵ2), which is worse than the optimal Õ((d+ k)/ϵ2) sample complexity, is unavoidable
with proper learning algorithms, which are algorithms restricted to outputting a classifier in the class H
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[Zhang et al., 2023, Theorem 18]. In contrast, our negative result in Theorem 1 implies that there is
no sample-efficient and oracle-efficient multi-distribution learning algorithm that aggregates multiple ERM
predictors in polynomial time. For example, our result rules out the simple majority-vote aggregation approach
(which is feasible in the realizable setting when OPT = 0). Note, however, that this does not rule out the
existence of computationally inefficient aggregation approaches to construct deterministic predictors. That is,
putting computational efficiency aside, it is still an open question whether there exists a sample-efficient and
oracle-efficient multi-distribution learning algorithm that outputs a deterministic predictor, and we know
from the lower bound of Zhang et al. [2023, Theorem 18] that this predictor must be improper.

2 Hardness of derandomization
In this section, we prove that it is NP-hard to derandomize multi-distribution learning in the most general
setup of input distributions Di over X × {−1, 1}. In particular, the hardness proof carefully exploits that
different data distributions may assign different labels to the same x ∈ X .

Our NP-hardness proof goes via a reduction from Discrepancy Minimization. In Discrepancy Minimization,
we are given as input an n× n matrix with 0-1 entries. The goal is to find a “coloring” z ∈ {−1, 1}n such
that every entry of Az is as small as possible in absolute value. Formally, we seek to minimize ∥Az∥∞. The
seminal work by Charikar et al. [2011] showed NP-hardness of computing the best coloring. In full details,
their results are as follows.

Theorem 3 ([Charikar et al., 2011]). There is a constant c > 0 such that it is NP-hard to distinguish whether
an input matrix A ∈ {0, 1}n×n has ∥Az∥2 ≥ cn for all z ∈ {−1, 1}n, or whether there exists z ∈ {−1, 1}n
with Az = 0.

Since ∥Az∥∞ ≥ ∥Az∥2/
√
n, this similarly implies that it is NP-hard to distinguish whether all z have

∥Az∥∞ ≥ c
√
n, or there is a z with Az = 0.

Let us now use Theorem 3 to prove our hardness result, Theorem 1. We remark that NP-hardness is
formally defined in a uniform model of computation where a Turing Machine takes an encoded input on
a tape and decides language membership. As we believe our reduction is clear without going into such
formalities, we have deferred a discussion of how to formalize multi-distribution learning in a uniform model
of computation to Appendix A.

Proof. Let n = min{d, k/2, c2/(4ε2)} and let H be an arbitrary hypothesis set of VC-dimension d for which
we can find a set of n points that are shattered by H in nO(1) time. This is possible due to our assumption.

Let A denote an arbitrary deterministic multi-distribution algorithm. Given a matrix A ∈ {0, 1}n×n such
that either ∥Az∥∞ ≥ c

√
n for all z ∈ {−1, 1}n, or there exists a z ∈ {−1, 1}n with Az = 0, we will now use

A to correctly distinguish these two cases with probability at least 2/3, thus concluding that the running
time of A is super-polynomial unless BPP = NP.

Start by computing an arbitrary set x1, . . . , xn of n points that are shattered by H. Now define 2n
distributions D+

1 ,D
−
1 , . . . ,D+

n ,D−
n . Distribution D+

i and D−
i are both defined from the i-th row of A. If mi

denotes the number of ones in the i-th row of A, we let D+
i return the sample (xj , 1) with probability 1/mi

for each j with ai,j = 1. The distribution D−
i similarly returns (xj ,−1) with probability 1/mi for each j

with ai,j = 1. Observe that these distributions can be described using n bits each.
Now consider running the multi-distribution learning algorithm A on distributions D+

1 ,D
−
1 , . . . ,D+

n ,D−
n

to obtain a deterministic classifier f : X → {−1, 1}. Evaluate f on x1, . . . , xn and compute erP(f). This
can be done trivially in polynomial time using the definitions of the distributions. If erP(f) < 1/2 + ε, then
output that there exists z ∈ {−1, 1}n such that Az = 0. Otherwise, output that no such z exists. Clearly
this runs in polynomial time. It thus remains to argue correctness.

Consider first the case where there exists z ∈ {−1, 1}n with Az = 0. Since z has inner product 0 with
every row of A, it follows that it assigns 1 to precisely half of the non-zero entries of the i-th row and −1
to the remaining half. The labeling z of x1, . . . , xn thus has erD+

i
(z) = erD−

i
(z) = 1/2 and erP(z) = 1/2.

4



Furthermore, since x1, . . . , xn are shattered by H, it follows that minh∈H erP(h) ≤ 1/2. By correctness of A,
it must hold with probability at least 2/3 that we correctly output that there exists z with Az = 0.

Consider next the case that every z ∈ {−1, 1}n has ∥Az∥∞ ≥ c
√
n. It follows that there is a row ai such

that the vector v = (f(x1), . . . , f(xn)) has |vTai| ≥ c
√
n. Let σ = sign(vTai). Then

erD−σ
i

(f) =
1

mi

∑
j:ai,j=1

1{f(xj) = σ} =
1

mi

∑
j:ai,j=1

(1/2)(f(xj)σ + 1)

= 1/2 +
1

2mi

∑
j:ai,j=1

f(xj)σ = 1/2 +
σvTai
2mi

= 1/2 +
|vTai|
2mi

≥ 1/2 + c/(2
√
n).

Since we chose n = min{d, k/2, c2/(4ε2)}, we have c/(2
√
n) ≥ ε and thus we return with probability 1 that

all z ∈ {−1, 1}n have ∥Az∥∞ ≥ c
√
n.

Let us end by observing that the distributions used in the above hardness result have OPT ≥ 1/2. The
proof can be modified to prove lower bounds for smaller OPT by adding a dummy point x0 and letting
all distributions return (x0, 1) with probability 1 − 2OPT′ and the points in the above distributions with
probability 2OPT′/mi. This reduces the value of OPT to around OPT′. However, we also need to reduce n
to min{d, k/2, (c ·OPT′/ε)2}. This agrees well with the fact that for realizable multi-distribution learning,
i.e., OPT = 0, it is in fact possible to compute a deterministic classifier in polynomial time.

3 Deterministic multi-distribution learner
In this section, we give our algorithm for derandomizing multi-distribution learners for label-consistent
distributions, i.e., we assume Di(y | x) = Dj(y | x) for all i, j, x.

We start by presenting the high level ideas of our algorithm. Recall that we defined OPT = minh∈H erP(h),
where P = {D1, . . . ,Dk}. First, consider running any of the previous randomized multi-distribution learners,
producing a distribution F over hypotheses in H satisfying maxi Ef∼F [erDi

(f)] ≤ OPT + ε/2. Consider
randomly rounding this distribution to a deterministic classifier f̂ as follows: For every x ∈ X independently
(recall that we focus on finite domains), sample an f ∼ F and let f̂(x) = f(x). For any distribution Di,
we clearly have Ef̂ [erDi

(f̂)] = Ef∼F [erDi
(f)] ≤ OPT+ ε/2. However, as also discussed in the introduction,

it is not clear that we can union bound over all k distributions and argue that erDi
(f̂) ≤ OPT + ε for

all of them simultaneously. Notice however that the independent choice of f̂(x) for each x gets us most
of the way. Indeed, if we let Zx be a random variable (determined by f̂(x)) giving Pry∼D(y|x)[f̂(x) ̸= y],
then erDi

(f̂) =
∑

x∈X Di(x)Zx, where Di(x) denotes the probability of x under Di and Di(y | x) gives the
conditional distribution of the label y given x. Now notice that Di(x)Zx is a random variable taking values
in {(1/2− |βx|)Di(x), (1/2 + |βx|)Di(x)} where βx = Pry∼D1(y|x)[y = 1]− 1/2 denotes the bias of the label of
x. Furthermore, these random variables are independent. We also have E[erDi

(f̂)] = Ef∼F [erDi
(f)]. Thus by

Hoeffding’s inequality

Pr[| erDi
(f)− Ef∼F [erDi

(f)]| > ε/2] < 2 exp

(
− ε2

2 ·
∑

x∈X(2βxDi(x))2

)
.

Examining this expression closely, we observe that this probability is small if βxDi(x) is small for all x ∈ X .
Using this observation, our algorithm then starts by drawing Õ(ε−2) samples from each distribution

Di and collecting all x for which the fraction of 1’s and −1’s is so biased towards either 1 or −1, that the
majority label almost certainly equals sign(βx). We then let f̂(x) equal this majority label for all such x, and
put these x into a set T .
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Algorithm 1: DeterministicLearner(P, ε, δ,A)
Input: Distributions P = {D1, . . . ,Dk}. Precision ε > 0, failure probability δ > 0, randomized

multi-distribution learner A.
Result: Classifier f̂ : X → {−1, 1}.

1 Let C > 0 be a large enough constant.
2 Let γ = Ck/(εδ).
3 Let T = ∅.
4 Run A with P = {D1, . . . ,Dk} and H as input, precision ε/2 and failure probability δ/2 to obtain a

distribution F over classifiers in H.
5 for i = 1, . . . , k do
6 Draw m = C ln2(γ)/ε2 samples {(xj , yj)}mj=1 from Di.
7 For every x ∈ X \ T such that ni,x := |{j : xj = x}| > 0, let

ρi,x = (|{j : xj = x ∧ yj = 1}| − |{j : xj = x ∧ yj = −1}|)/ni,x.
8 For every x ∈ X \ T such that ni,x > 0, if |ρi,x| >

√
ln(γ)/ni,x, add x to T and let

f̂(x) = sign(ρi,x).
9 For every x ∈ X \ T , independently draw an f ∼ F and let f̂(x) = f(x).

10 return f̂

What remains is all x /∈ T . Here we show that these x have so little bias, i.e., βxDi(x) is so small, that
the random rounding strategy above suffices. The full algorithm is shown as Algorithm 1.

Before giving the formal analysis of the algorithm, note that storing the classifier f̂ is quite expensive, as
we need to remember the random choice of f̂(x) for every x ∈ X \ T . This is one place where we use the
assumption that X is finite. Note however that even for finite X , storing |X | random choices to represent the
classifier might be infeasible. Furthermore, the sampling of f̂(x) for every x also adds |X | to the running time,
which is again too expensive. We propose a method for reducing the storage and running time requirement
later in this section. For now, we analyse Algorithm 1 without worrying about |X |.

Analysis. In our analysis, we separately handle x ∈ T and x /∈ T . The two technical results we need are
stated next. First, define the bias βx of an x ∈ X as Pry∼D1(y|x)[y = 1]− 1/2. We say that an x is heavily
biased if

β2
xDi(x) >

ε2

8 · ln(4k/δ)
for at least one i, and lightly biased otherwise. Intuitively, our algorithm ensures that T contains all heavily
biased x and that all predictions made on x ∈ T are correct. This is stated in the following

Lemma 4. It holds with probability at least 1− δ/4 that every heavily biased x is in T , and furthermore, for
every x ∈ T , we have f̂(x) = sign(βx).

Next, we also show that random rounding outside T suffices.

Lemma 5. Assume every heavily biased x is in T after the for-loop. Then with probability at least 1− δ/4

over the random choice of f̂(x) with x ∈ X \ T , it holds for all i that∣∣∣Ef∼F [E(x,y)∼Di
[1{x /∈ T ∧ f(x) ̸= y}]]− E(x,y)∼Di

[1{x /∈ T ∧ f̂(x) ̸= y}]
∣∣∣ ≤ ε/2.

Before giving the proof of Lemma 4 and Lemma 5, let us use these two results to complete the proof of
Theorem 2.

Proof of Theorem 2. From a union bound and Lemma 4 and Lemma 5, we have with probability 1− δ, that
all of the following hold
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• The invocation of A in step 1 of Algorithm 1 returns a distribution F with maxi Ef∼F [erDi(f)] ≤
OPT+ ε/2.

• For every x ∈ T , we have f̂(x) = sign(βx).

• For every distribution Di,∣∣∣Ef∼F [E(x,y)∼Di
[1{x /∈ T ∧ f(x) ̸= y}]]− E(x,y)∼Di

[1{x /∈ T ∧ f̂(x) ̸= y}]
∣∣∣ ≤ ε/2.

Assume now that all of the above hold. We rewrite erP(f̂) by splitting the contributions to the error into
x ∈ T and x /∈ T ,

erP(f̂) = max
i

erDi
(f̂)

= max
i

(
E(x,y)∼Di

[1{x ∈ T ∧ f̂(x) ̸= y}] + E(x,y)∼Di
[1{x /∈ T ∧ f̂(x) ̸= y}]

)
.

Using that f̂(x) = sign(βx) for x ∈ T , we have E(x,y)∼Di
[1{x ∈ T ∧ f̂(x) ̸= y}] = minz∈{−1,1}T [EDi

[1{x ∈
T ∧ z(x) ̸= y}]. Thus the above is bounded by

max
i

(
min

z∈{−1,1}T
[EDi [1{x ∈ T ∧ z(x) ̸= y}] + Ef∼F [EDi [1{x /∈ T ∧ f(x) ̸= y}]]

)
+ ε/2.

Since every f in the support of F is a deterministic classifier, we have

min
z∈{−1,1}T

[EDi
[1{x ∈ T ∧ z(x) ̸= y}] ≤ Ef∼F [EDi

[1{x ∈ T ∧ f(x) ̸= y}].

We therefore have

erP(f̂) ≤ max
i

(Ef∼F [EDi
[1{x ∈ T ∧ f(x) ̸= y}]] + Ef∼F [EDi

[1{x /∈ T ∧ f(x) ̸= y}]]) + ε/2

= max
i

Ef∼F [erDi
(f)] + ε/2

≤ OPT+ ε.

This completes the proof of Theorem 2.

Proof of Lemma 4. We first define the two types of failures that may occur:

• For every i and every x with β2
xDi(x) > ε2/(8 ln(4k/δ)), let E1

i,x denote the event that ni,x <

(C/2)β−2
x ln γ.

• For every i, let E2
i denote the event that there is an x with ni,x > 0 and |βx−ρi,x/2| >

√
ln(γ)/(16ni,x).

Assume first that none of the events occur. Consider a heavily biased x. Then there is an i for which
β2
xDi(x) > ε2/(8 ln(4k/δ)). Since E1

i,x does not occur, we have ni,x ≥ (C/2)β−2
x ln γ. Since E2

i does
not occur, we also have |βx − ρi,x/2| ≤

√
ln(γ)/(16ni,x). Hence |ρi,x| ≥ 2|βx| − 2

√
ln(γ)/(16ni,x). But

|βx| ≥
√

(C/2) ln(γ)/ni,x and thus |ρi,x| ≥ (
√
2C − 1/2)

√
ln(γ)/ni,x. For C large enough, this is at least√

ln(γ)/ni,x, which puts x in T during step 8 of Algorithm 1. Thus every heavily biased x is in T . Secondly,
note that when an x is added to T in iteration i of the for-loop, we have |ρi,x| >

√
ln(γ)/ni,x. Since E2

i does
not occur, we have |βx − ρi,x/2| ≤

√
ln(γ)/(16ni,x). But this implies βx ∈ [ρi,x/2−

√
ln(γ)/(16ni,x), ρi,x/2 +√

ln(γ)/(16ni,x)]. Since |ρi,x| >
√
ln(γ)/ni,x, every number in this interval has the same sign as ρi,x, i.e.

f̂(x) = sign(ρi,x) = sign(βx). Thus what remains is to bound the probability of these events.
For E1

i,x, fix an i and x with β2
xDi(x) > ε2/(8 ln(4k/δ)), we have

E[ni,x] = Di(x)m > ε2m/(8β2
x ln(4k/δ)) > Cβ−2

x ln γ.
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For C large enough, we get from a Chernoff bound that Pr[E1
i,x] = Pr[ni,x < (C/2)β−2

x ln γ] < γ−2.
For E2

i , let us first condition on an outcome of the values ni,x for all x. Then for every x, we have that
pi,x := |{j : xj = x ∧ yj = 1}| − |{j : xj = x ∧ yj = −1}| is distributed as the sum of ni,x independent −1/1
random variables taking the value 1 with probability βx+1/2. Hence E[pi,x] = 2βxni,x. Since ρi,x = pi,x/ni,x,
it follows from Hoeffding’s inequality that

Pr

[
|βx − ρi,x/2| >

√
ln(γ)/ni,x

]
= Pr

[
|2βxni,x − pi,x| > 2

√
ln(γ)ni,x

]
< 2 exp

(
−8 ln(γ)ni,x

4ni,x

)
= 2γ−2.

For any fixed values ni,x, there are at most m distinct x with a non-zero ni,x. A union bound over all of
them implies Pr[E2

i | ni,x] ≤ 2mγ−2. Since this upper bound holds for any outcome of the ni,x, we have also
Pr[E2

i ] ≤ 2mγ−2.
We now observe that for every i, there are at most ε−28 ln(4k/δ) distinct x with β2

xDi(x) > ε2/(8 ln(4k/δ)).
Hence Pr[∪xE

1
i,x] ≤ ε−28 ln(4k/δ)γ−2. A union bound over all i finally implies

Pr[(∪i ∪x E1
i,x) ∪ (∪iE

2
i )] ≤ kγ−2

(
ε−28 ln(4k/δ) + 2m

)
Since γ = Ck/(εδ) and m = C ln2(γ)/ε2, we have for large enough C that this probability is bounded by
δ/4.

Proof of Lemma 5. Fix a distribution Di. Observe that for any x ∈ X \ T , we have that the distribution
of f̂(x) is the same as f(x) for f ∼ F . Hence Ef̂ [E(x,y)∼Di

[1{x /∈ T ∧ f̂(x) ̸= y}]] = Ef∼F [E(x,y)∼Di
[1{x /∈

T ∧ f(x) ̸= y}]]. Denote this expectation by µ. If we let Zx be the random variable (as a function of f̂(x))
taking the value Pry∼Di(y|x)[f̂(x) ̸= y], then

E(x,y)∼Di
[1{x /∈ T ∧ f̂(x) ̸= y}] =

∑
x∈X\T

Di(x)Zx.

Observe that Zx is either 1/2 − |βx| or 1/2 + |βx|, depending on whether f̂(x) = sign(βx) or not. Hence
Di(x)Zx ∈ [Di(x)(1/2− |βx|),Di(x)(1/2 + |βx|)] and the Zx are independent. We thus get from Hoeffding’s
inequality and that x /∈ T are lightly biased that

Pr
f̂

 ∑
x∈X\T

Di(x)Zx > µ+ ε/4

 < exp

(
−2(ε/2)2∑

x∈X\T (2|βx|Di(x))2

)

≤ exp

(
−ε2∑

x∈X\T Di(x)ε2/ ln(4k/δ)

)
≤ exp (− ln(4k/δ)) = δ/(4k).

A union bound over all Di completes the proof.

3.1 Reducing storage and time
The above description of Algorithm 1 requires the storage of an independent random choice of f̂(x) for
every x ∈ X . This is infeasible for large X , both in terms of space usage and the time needed for making
these random choices. Instead, we can reduce the storage requirements by using an r-wise independent hash
function q : X → Y for a sufficiently large output domain Y to make the random rounding. Recall that
an r-wise independent hash function hashes any set of up to r distinct keys x1, . . . , xr independently and
uniformly at random into Y. Such a hash function can be implemented in space O(r ln(|X ||Y|)) bits and
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evaluated in time Õ(r ln(|X ||Y|)) by e.g., interpreting an x ∈ X as an index into [|X |] = {0, . . . , |X | − 1} and
letting q(x) =

∑r−1
i=0 αix

i(modp) for a prime p = |Y| > |X | and the αi independent and uniformly random in
[p]. Using fast multiplication algorithms, q(x) can be evaluated in time Õ(r ln(|X ||Y|)), even when ln(|X ||Y|)
bits does not fit in a machine word. The time to sample the hash function is only O(r ln |X ||Y|) (we just
need the random coefficients of the polynomial).

Instead of storing f̂(x) for every x ∈ X \ T explicitly, the learning algorithm instead stores q and
the distribution F . Given this information, we evaluate f̂(x) by computing q(x) and letting f̂(x) = 1
if q(x) ≤ Prf∼F [f(x) = 1]|Y| − 1 and −1 otherwise. Since q(x) is uniform over Y for any x, we have
Pr[f̂(x) = 1] = ⌊Prf∼F [f(x) = 1]|Y|⌋/|Y|. This probability satisfies Prf∼F [f(x) = 1]−1/|Y| ≤ Prf∼F [f(x) =
1] ≤ Prf∼F [f(x) = 1] and is thus almost the same rounding probability as in Algorithm 1. Since previous
multi-distribution learning algorithms also store F , this only adds O(r ln(|X ||Y|)) bits to the storage.

What remains is to determine an r and |Y| for which this is sufficient for the guarantees of Algorithm 1.
We will show that r = 2 ln(4k/δ) and |Y| = Θ(ε−3 ln(k/δ)) suffices if we increase the sample complexity of
Algorithm 1 by a logarithmic factor. Observe that the O(r ln(|X | ln(k/δ)/ε)) extra bits is only proportional
to storing O(ln(k/δ)) samples from X , provided that ln(k/δ)/ε is no larger than a polynomial in |X |. The
space overhead is thus very minor.

We only give an outline of how to modify the proof in the previous section to work with r-wise independence
as it follows the previous proof rather uneventfully. First, redefine the threshold for being heavily biased to
β2
xDi(x) > ε2/(C ′ ln2(4k/δ)) for large enough constant C ′.

For the proof of Lemma 4 to still go through, this requires us to increase m by a C ′ ln γ factor, i.e. to
CC ′ ln3(γ)/ε2, and also increase γ by C ′ to CC ′k/(εδ). Then the only change to the proof, is that we have an
event E1

i,x for every i and every x with β2
xDi(x) > ε2/(C ′ ln2(4k/δ)). Otherwise, all conditions in the events

E1
i,x and E2

i remain the same. Thus the proof still goes through if we can argue Pr[E1
i,x] ≤ γ−2. So fix an i

and x with β2
xDi(x) > ε2/(C ′ ln2(4k/δ)). Then E[ni,x] = Di(x)m > ε2m/(C ′β2

x ln
2(4k/δ)) > Cβ−2

x ln γ. This
is the same lower bound on E[ni,x] as the previous proof and thus we can complete the steps. Finally, note
that we finished the proof of Lemma 4 by a union bound. Here we needed kγ−2(ε−28 ln(4k/δ) + 2m) < δ/4.
This is still the case for our new m and γ.

Now for the proof of Lemma 5, we used Hoeffding’s inequality. This requires the random rounding to be
independent for different x. With our modified approach, the roundings are only r-wise independent and
thus we need the following variant of Hoeffding’s inequality for r-wise independent random variables

Theorem 6 ([Schmidt et al., 1995]). Let Z1, . . . , Zn be a sequence of r-wise independent random variables
for r ≥ 2 with |Zi − E[Zi]| ≤ 1 for all outcomes. Let Z =

∑
i Zi with E[Z] = µ and let σ2(Z) =

∑
i σ

2(Zi)
denote the variance of Z. Then the following holds for even r and any Q ≥ max{r, σ2(Z)}:

Pr[|Z − µ| ≥ T ] ≤
(

rQ

e2/3T 2

)r/2

.

If we repeat the proof of Lemma 5, define Zx as the random variable (as a function of the random choice
of q) taking the value Pry∼Di(y|x)[f̂(x) ̸= y]. Note that Zx ∈ {1/2 − |βx|, 1/2 + |βx|}. This also implies
that |Zx − E[Zx]| ≤ 2|βx| for all outcomes of Zx. When all heavily biased x are in T , we have β2

xDi(x) ≤
ε2/(C ′ ln2(4k/δ)) for all x /∈ T . This implies |βx| ≤ ε/(ln(4k/δ)

√
C ′Di(x)). Now let α = 2ε/(ln(4k/δ)

√
C ′).

Then
E(x,y)∼Di

[1{x /∈ T ∧ f̂(x) ̸= y}] =
∑

x∈X\T

Di(x)Zx = α
∑

x∈X\T

Di(x)Zx

α
.

The random variable Di(x)Zx/α thus satisfies |Di(x)Zx/α− E[Di(x)Zx/α]| ≤ 2Di(x)|βx|/α ≤
√

Di(x) ≤ 1
for all outcomes. This also gives us σ2(Di(x)Zx/α) ≤ Di(x) and thus

σ2

 ∑
x∈X\T

Di(x)Zx

α

 ≤
∑

x∈X\T

Di(x) ≤ 1.
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Now consider the expected value (with a± b = [a− b, a+ b])

µ′ = E[
∑

x∈X\T

Di(x)Zx]

=
∑

x∈X\T

Di(x)Eq[ Pr
y∼Di(y|x)

[f̂(x) ̸= y]]

∈
∑

x∈X\T

Di(x)

(
Ef∼F [ Pr

y∼Di(y|x)
[f(x) ̸= y]]± 1/|Y|

)
⊆ Ef∼F [E(x,y)∼Di

[1{x /∈ T ∧ f(x) ̸= y}]]± 1/|Y|.

Letting µ = Ef∼F [E(x,y)∼Di
[1{x /∈ T ∧ f(x) ̸= y}]], we then have by Theorem 6 with Q = r that

Pr

∣∣∣∣∣∣
∑

x∈X\T

Di(x)Zx − µ

∣∣∣∣∣∣ ≥ αT

 ≤ Pr

∣∣∣∣∣∣
∑

x∈X\T

Di(x)Zx − µ′

∣∣∣∣∣∣ ≥ αT − 1/|Y|


= Pr

∣∣∣∣∣∣
∑

x∈X\T

Di(x)Zx

α
− µ′/α

∣∣∣∣∣∣ ≥ T − α/|Y|


≤
(

r2

e2/3(T − α/|Y|)2

)r/2

.

Inserting T = ε/(2α) and using r = 2 ln(4k/δ), |Y| ≥ 4α2/ε gives (T − α/|Y|) ≥ ε/(4α) and thus finally
implies

Pr
[∣∣∣E(x,y)∼Di

[1{x /∈ T ∧ f̂(x) ̸= y}]− Ef∼F [E(x,y)∼Di
[1{x /∈ T ∧ f(x) ̸= y}]]

∣∣∣ ≥ ε/2
]

≤
(
16r2α2

e2/3ε2

)r/2

=

(
64r2

C ′e2/3 ln2(4k/δ)

)r/2

=

(
256

C ′e2/3

)r/2

≤ e−r/2 = δ/(4k).

Here, the last inequality follows for C ′ large enough. Thus, if we increase the sample complexity to
m(k, d,OPT, ε/2, δ/2) + O(k ln3(k/(εδ))/ε2), then we may sample and store a hash function using only
O(ln(n/δ) ln(|X | ln(k/δ)/ε)) extra bits and O(ln(n/δ) ln(|X | ln(k/δ)/ε)) time.

3.2 Infinite Input Domains
In the above presentation of our algorithm, we have assumed a finite input domain X . While we believe
this is a very reasonable assumption, we here present some initial ideas for how this restrictions might be
circumvented.

Assume that the black-box randomized multi-distribution learner A always outputs a distribution F over
a finite number of classifiers in H. Let m be an upper bound on the size of the support. Then since H has
VC-dimension d, the dual VC-dimension is at most 2d Assouad [1983]. By Sauer-Shelah, this implies that
the number of distinct ways x ∈ X may be labeled by the support of F is bounded

(
m

2d+1

)
, i.e. finite. We

believe that treating just the distinct ways x is labeled by the hypotheses in the support should be sufficient
to recover our results for finite X .
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A Uniform Model of Computation
For a fully formalized NP-hardness proof, we technically need to define an input encoding of a multi-
distribution learning problem and argue that the sampling steps may be simulated by a Turing Machine.
Furthermore, details such as whether the hypothesis set H is part of the input or known to the algorithm
also needs to be formalized. In this section, we discuss various choices one could make. We note that similar
discussions and formalizations of learning in a uniform model of computation has been carefully carried out
in classic learning theory books Kearns and Vazirani [1994].

First, we find it most natural that H is part of the learning problem, i.e. not an input to the algorithm,
but is allowed to be "hard-coded" into the algorithm. This is the best match to standard learning problems,
where e.g. the Support Vector Machine learning algorithm, or Logistic Regression via gradient descent, knows
that we are working with linear models. Similarly, the input domain seems best modeled by letting it be
known to the algorithm. One tweak could be that if the input is d-dimensional vectors, then d could be part
of the input to the algorithm. This again matches how most natural learning algorithms work for arbitrary d
(and our proof needs d to grow for our n to grow).

Now regarding modeling multi-distribution learning, we find that the following uniform computational
model most accurately matches what the community thinks of as multi-distribution learning (here stated for
the input domain being n-dimensional vectors and the hypothesis set being linear models).

A solution to multi-distribution learning with linear models, is a special Turing machine M . M receives
as input a number n on the input tape. In addition to a standard input/output tape and a tape with random
bits, M has a "sample"-tape, a "target distribution"-tape and a special "sample"-state. When M enters the
"sample"-state, the bits on the "target distribution" tape is interpreted as an index in i and the contents of
the "sample"-tape is replaced by a binary description of a fresh sample from a distribution Di (Di is only
accessible through the "sample"-state). A natural assumption here would be that Di is only supported over
points with integer coordinates bounded by n in magnitude. This gives a natural binary representation of
each sample using n log n bits, plus one bit for the label.

M runs until terminating in a special halt state, with the promise that regardless of what n distributions
D1, . . . ,Dn over the input domain that are used for generating samples in the "sample"-state, it holds with
probability at least 2/3 over the samples and the random bits on the tape, that the output tape contains a
binary encoding of a hyperplane with error at most τ + 1/n for every distribution Di. A bit more generally,
we could also let it terminate with an encoding of a Turing machine on its output tape. That Turing machine,
upon receiving the encoding of n and an n-dimensional point on its input tape, outputs a prediction on its
tape. This allows more general hypotheses than just outputting something from H.

The above special states and tapes are introduced to most accurately represent multi-distribution learning.
Now observe that our reduction from discrepancy minimization still goes through. Given such a special
Turing machine M for multi-distribution learning, observe that we can obtain a standard (randomized) Turing
machine M ′ for discrepancy minimization from it. Concretely, in discrepancy minimization, the input is the
integer n and an n× n binary matrix A. As mentioned in our reduction, we can easily compute n shattered
points for linear models, e.g. just the standard basis e1, . . . , en. Now do as in our reduction and interpret each
row of A as two distributions over e1, . . . , en. M ′ can now simulate the "sample"-state, "sample"-tape and
"target distribution" tape of M , as it can itself use its random tape to generate samples from the distributions.
In this way, M ′ can simulate M without the need for special tapes and states, and by the guarantees of M
(as in our reduction), it can distinguish whether A has discrepancy 0 or Ω(

√
n) by using the final output

hypothesis of M and evaluating it on e1, . . . , en and computing the error on each of the (known) distributions
Di obtained from the input matrix A.
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Note that the reduction would also hold if we rephrased multi-distribution learning such that the algorithm
receives some binary encoding of D1, . . . ,Dn as input. This would make the reduction even more straight-
forward, as we need not worry about samples. However, we feel the above definition with a special state and
tapes for sampling more accurately represent multi-distribution learning from a learning theoretic perspective.
We thus prefer a slightly more complicated reduction as above to better model the problem.
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