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Abstract

We prove the first generalization bound for large-margin halfspaces that is asymptotically tight in the tradeoff
between the margin, the fraction of training points with the given margin, the failure probability and the number of
training points.

1 Introduction
Halfspaces are arguably among the simplest and most fundamental classic learning models. Given a normal vector
w ∈ Rd and a bias b ∈ R defining a hyperplane, the corresponding halfspace classifier predicts the label of a data
point x ∈ Rd by returning sign(⟨w, x⟩ + b), corresponding to a +1 label on points inside the halfspace above the
hyperplane, and −1 on points below.

Classic examples of learning algorithms for obtaining a halfspace classifier from a training set of points S =
{(xi, yi)}ni=1 with (xi, yi) ∈ Rd × {−1, 1}, includes the Perceptron Learning Algorithm (PLA) (Mcculloch and Pitts
[1943]) and Support Vector Machines (SVM) (Cortes and Vapnik [1995]). A key intuition underlying SVM, is the
empirical observation that halfspaces with a large margin to the training data tend to generalize well. Ignoring the
bias variable b (which may be handled by adding a special feature) and assuming w ∈ Sd−1 (i.e. w has unit length),
the margin of the halfspace with normal vector w on a labeled point (x, y) is y⟨w, x⟩. Observe that ⟨w, x⟩ gives the
signed distance of x from the hyperplane, and the margin is positive when sign(⟨w, x⟩) correctly predicts the label y.
With this definition, hard-margin SVM computes the normal vector w of the hyperplane with the largest minimum
margin. There are also margin variants of the Perceptron (Freund and Schapire [1999]) that computes a halfspace with
minimum margin approaching the optimal, as in hard-margin SVM.

To handle data that is not linearly separable, and to add robustness to outliers, the soft-margin SVM relaxes the
optimization problem to the following

min
w,ξ
∥w∥22 + λ

∑
i

ξi, s.t. yi⟨w, xi⟩ ≥ 1− ξi, ξi ≥ 0.

Here λ > 0 is a regularization parameter. The soft-margin SVM thus allows for smaller margins on some training
points at the cost of a penalty λξi.

To theoretically justify and explain the empirical success of focusing on large margins, Bartlett and Shawe-Taylor
[1999] proved the first generalization bounds upper bounding the probability LD(w) := P(x,y)∼D[sign(⟨w,x⟩) ̸= y]
of misclassifying the label of a new data point. Concretely they first studied the hard-margin case and proved that for
any distribution D over Bd

2 × {−1, 1} and any 0 < δ < 1, it holds with probability at least 1 − δ over a training set
S ∼ Dn that for every w ∈ Sd−1 and every margin 0 < γ < 1, if y⟨w, x⟩ ≥ γ for all (x, y) ∈ S then

LD(w) ≤ c ·
(
ln2(n)

γ2n
+

ln(e/δ)

n

)
, (1)

for a constant c > 0. The restriction to x ∈ Bd
2 can be relaxed by multiplying the first term by R2 for x ∈ R · Bd

2.
A dependency on the scaling of input points is inevitable as margins scale with ∥x∥2. Throughout the paper, we state
bounds for R = 1 and remark that all bounds generalize to arbitrary R by replacing γ by γ/R.
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Defining Lγ
S(w) as the fraction of data points in a training set S where w has margin at most γ, Bartlett and

Shawe-Taylor [1999] also prove a more general result, saying that with probability 1 − δ over S ∼ Dn, it holds for
every w ∈ Sd−1 that

LD(w) ≤ Lγ
S(w) + c ·

√
ln2(n)

γ2n
+

ln(e/δ)

n
. (2)

This was later improved by Bartlett and Mendelson [2002] using Rademacher complexity arguments, replacing the
ln2(n) term in (2) by 1. Here, and throughout the paper, we refer to Lγ

S(w) as the (empirical) margin loss.

First-Order Bounds. The first work to interpolate between the hard-margin and soft-margin bounds was due to
McAllester [2003], who gave a general tradeoff of

LD(w) ≤ Lγ
S(w) + c ·

(√
Lγ
S(w) ·

lnn

γ2n
+

lnn

γ2n
+

√
lnn+ ln(e/δ)

n

)
. (3)

Notice how the Lγ
S(w) term is multiplied onto lnn/(γ2n) inside the first square-root. Since the hard-margin case

corresponds to this term being 0, this gives a way of interpolating between the cases. Such bounds are often refered
to as first-order bounds. Unfortunately, (3) still has the seemingly superfluous

√
(lnn+ ln(e/δ))/n term even when

Lγ
S(w) = 0 and thus falls short of even matching (1) in the hard-margin case.

The current state-of-the-art generalization bound is due to Grønlund et al. [2020] and states that with probability
1− δ over S ∼ Dn, it holds for every w ∈ Sd−1 that

LD(w) ≤ Lγ
S(w) + c ·

(√
Lγ
S(w) ·

(
lnn

γ2n
+

ln(e/δ)

n

)
+

lnn

γ2n
+

ln(e/δ)

n

)
. (4)

This improves previous hard-margin bounds by a logarithmic factor and gives a cleaner interpolation between the hard-
and soft-margin cases. Furthermore, the bound is close to optimal. Concretely, the dependency on δ is optimal by
tweaking standard results for agnostic PAC learning, see e.g. Devroye et al. [1996] [Chapter 11]. Moreover, Grønlund
et al. [2020] complemented their upper bound by the following lower bound

Theorem 1 (Grønlund et al. [2020]). There is a constant c > 0 such that for any cn−1/2 < γ < c−1, any parameter
0 ≤ τ ≤ 1, and any n ≥ c, there is a distribution D such that it holds with constant probability over S ∼ Dn that
there is a w ∈ Sd−1 such that Lγ

S(w) ≤ τ and

LD(w) ≥ Lγ
S(w) + c ·

(√
τ · ln(e/τ)

γ2n
+

ln(γ2n)

γ2n

)
≥ Lγ

S(w) + c ·

√Lγ
S(w) ·

ln(e/Lγ
S(w))

γ2n
+

ln(γ2n)

γ2n

 .

Notice how the parameter τ allows for showing that the upper bound (4) is nearly tight across the range of Lγ
S(w).

Let us also remark that Grønlund et al. [2020] states their lower bound with a lnn rather than ln(eγ2n), but require
that γ > n−0.499. A careful examination of their proof however reveals the more general lower bound stated here.

Unfortunately there still remains a discrepancy between the lower bound and (4). Concretely there is a gap of√
lnn/ ln(e/Lγ

S(w)). Moreover, for constant Lγ
S(w), the Rademacher complexity based bound in (2) improves over

both of the first-order bounds (3) and (4), and matches the lower bound in Theorem 1. This seem to suggest that a
better upper bound might be possible.

Our Contribution. In this work, we settle the generalization performance of large-margin halfspaces by proving a
new upper bound matching the lower bound in Theorem 1 across the entire tradeoff between γ, Lγ

S(w) and n (and is
also tight in terms of δ). Our result is stated in the following theorem
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Theorem 2. There is a constant c > 0 such that for any distribution D over Bd
2 × {−1, 1}, it holds with probability

at least 1− δ over S ∼ Dn that for every w ∈ Sd−1 and every margin n−1/2 ≤ γ ≤ 1, we have

LD(w) ≤ Lγ
S(w) + c

(√
Lγ
S(w) ·

(
ln(e/Lγ

S(w))

γ2n
+

ln(e/δ)

n

)
+

ln(eγ2n)

γ2n
+

ln(e/δ)

n

)
.

While one might argue that our improvement is small in magnitude, this finally pins down the exact generalization
performance of a classic learning model. Furthermore, our proof of Theorem 2 brings several novel ideas that we hope
may find further applications in generalization bounds.

We next proceed to give an overview of our proof and new ideas in Section 2, before giving the full details of the
proof in Section 3.

2 Proof Overview
In this section, we present the main ideas in our proof of Theorem 2. As our proof builds on, and greatly extends, the
work of Grønlund et al. [2020] establishing the previous state-of-the-art in (4), we first present their overall proof strat-
egy and the barriers we need to overcome to obtain our tight generalization bound. Throughout this proof overview,
we use the notation x ≲ y to denote that there is an absolute constant c > 0 so that x ≤ cy.

2.1 Previous Proof
The proof of Grønlund et al. [2020] follows a framework proposed by Schapire et al. [1998] for proving generalization
of large-margin voting classifiers (i.e. boosting). The main idea is to randomly discretize the infinite hypothesis set
Sd−1 to obtain a finite set G ⊆ Rd → {−1, 1}. If G is small enough, then a standard union bound over all h ∈ G
suffices to bound the difference between the empirical error and the true error LD(h) for every h ∈ G. The key trick
is to exploit large margins to allow for a discretization to a smaller G.

To elaborate on the above, let us first generalize our notation LD(w) and Lγ
S(w) a bit. For a distribution D over

Bd
2×{−1, 1}, let Lγ

D(w) := P(x,y)∼D[y⟨w,x⟩ ≤ γ], that is, Lγ
D(w) is the probability over a fresh sample (x,y) from

D, of w having margin no more than γ on (x,y). For a training set S, we slightly abuse notation and write (x,y) ∼ S
to denote a uniform random sample from S. We thus have

Lγ
S(w) := P(x,y)∼S [y⟨w,x⟩ ≤ γ] =

|{(x, y) ∈ S : y⟨w, x⟩ ≤ γ}|
|S|

.

When writing LD(w) we implicitly mean L0
D(w) and note that this coincides with our previous definition of LD(w) =

P(x,y)∼D[sign(⟨w,x⟩) ̸= y] (defining sign(0) = 0).

Random Discretization. With this notation, the main idea in the proof of Grønlund et al. [2020], is to apply a
Johnson-Lindenstrauss transform (Johnson and Lindenstrauss [1984]), followed by a random snapping to a grid, in
order to map each w ∈ Sd−1 to a point on a grid G of size exp(ck) in Rk, with c > 0 a sufficiently large constant.
In more detail, let A be a k × d matrix with i.i.d. N (0, 1/k) normal distributed entries. Such a matrix is a classic
implementation of the Johnson-Lindenstrauss transform and has the property that |⟨Aw,Ax⟩ − ⟨w, x⟩| is greater
than ε with probability at most exp(−ε2k/c) when ∥w∥2, ∥x∥2 ≤ 1 (Dasgupta and Gupta [2003]). Note that this
also preserves the norm of a vector w by considering x = w and noting ⟨w,w⟩ = ∥w∥22. Secondly, following an
idea of Alon and Klartag [2017] in a lower bound proof for the Johnson-Lindenstrauss transform, Grønlund et al.
[2020] randomly round Aw to a point hA,t(w) with coordinates integer multiples of k−1/2 while guaranteeing that
|⟨hA,t(w),Ax⟩ − ⟨Aw,Ax⟩| is less than ε, except with probability exp(−ε2k/c). Here we use t to denote the
randomness involved in the rounding.

Now choosing ε = γ/4 gives, by the triangle inequality, that |⟨hA,t(w),Ax⟩ − ⟨w, x⟩| ≤ γ/2, except with
probability 2 exp(−γ2k/(16c)). Furthermore, by plugging in x = w and setting ε = 1, we can also deduce that
∥hA,t(w)∥2 ≤ 2 except with probability exp(−k/c). Simple counting arguments show that there are only exp(ck)
many vectors of norm at most 2 with all coordinates integer multiples of k−1/2. That is, except with probability
exp(−k/c), hA,t(w) belongs to a finite set G of exp(ck) many points.
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Framework. With the above random discretization, the proof of Grønlund et al. [2020] now follows the framework
of Schapire et al. [1998] by relating LD(w) to Lγ/2

AD(hA,t(w)) and Lγ
S(w) to Lγ/2

AS (hA,t(w)). Here AD is the distribu-
tion obtained by sampling (x,y) ∼ D and returning (Ax,y). Similarly, AS is the training set obtained by replacing
each (x, y) ∈ S by (Ax, y). The intuition is that the random discretization changes margins by no more than γ/2
for most data points and hence points with margin at most 0 under D often have margin at most γ/2 under AD and
similarly for S and AS. Let us make this more formal. We have for any A, t in the support of A, t that

LD(w) ≤ Lγ/2
AD(hA,t(w)) + P(x,y)∼D[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w), Ax⟩ > γ/2] (5)

Similarly, we have

Lγ
S(w) ≥ L

γ/2
AS (hA,t(w))− P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w), Ax⟩ ≤ γ/2]. (6)

Taking expectation we see that

LD(w)− Lγ
S(w) = EA,t[LD(w)− Lγ

S(w)]

≤ EA,t[Lγ/2
AD(hA,t(w))− Lγ/2

AS (hA,t(w))] (7)
+ EA,t[P(x,y)∼D[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w),Ax⟩ > γ/2]] (8)
+ EA,t[P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ γ/2]]. (9)

To bound (7), we exploit that hA,t(w) belongs to the grid G, except with probability exp(−k/c). Using Bernstein’s
inequality (and a careful partitioning of hypotheses w depending on Lγ

D(w)), it is possible to union bound over the
entire grid and conclude

EA,t[Lγ/2
AD(hA,t(w))− Lγ/2

AS (hA,t(w))] ≤

EA,t[sup
h∈G
Lγ/2
AD(h)− L

γ/2
AS (h)] + PA,t[hA,t(w) /∈ G] ≲√

Lγ
S(w) ·

ln(|HA|/δ)
n

+
ln(|HA|/δ)

n
+ exp(−k/c) ≲√

Lγ
S(w) ·

k + ln(e/δ)

n
+
k + ln(e/δ)

n
+ exp(−k/c). (10)

To bound (9), we use the guarantees of the random discretization to conclude that

EA,t[P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ γ/2]] =
E(x,y)∼S [PA,t[y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ γ/2]] ≤
E(x,y)∼S [PA,t[y⟨hA,t(w),Ax⟩ ≤ γ/2 | y⟨w,x⟩ > γ]] ≤

2 exp(−γ2k/(16c)).

We can bound (8) in a similar fashion (even with slightly better guarantees scaled by LD(w), but this does not help
for (9)). The final generalization error thus becomes

LD(w) ≤ Lγ
S(w) + c′ ·

(√
Lγ
S(w) ·

k + ln(e/δ)

n
+
k + ln(e/δ)

n
+ exp(−γ2k/c′)

)
, (11)

where c′ > 0 is a sufficiently large constant. Comparing this expression with the desired bound from Theorem 2, we
see that we have to choose k large enough that c′ exp(−γ2k/c′) is no larger than√

Lγ
S(w) ·

(
ln(e/Lγ

S(w))

γ2n
+

ln(e/δ)

n

)
+

ln(eγ2n)

γ2n
+

ln(e/δ)

n
.

This basically solves to

k ≳ γ−2 ln

(
γ2n

Lγ
S(w) ln(e/L

γ
S(w))

)
≥ γ−2 ln

(
γ2n

)
.

Inserting this k in (11) recovers the bound by Grønlund et al. [2020] stated in (4).
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Barriers. In light of the above discussion, we identify some key barriers for the previous proof technique. Con-
cretely, if we examine (11), the term

√
Lγ
S(w)k/n requires us to choose k no larger than cγ−2 ln(e/Lγ

S(w)) to match
the optimal bound we get in Theorem 2. Unfortunately, the additive exp(−γ2k/c′) term originating from handling (8)
and (9) then becomes poly(Lγ

S(w)), which is too expensive. In fact, even the additive exp(−k/c) term from han-
dling (7) is too expensive for e.g. constant γ. Nonetheless, we will in fact choose such k and identify a tighter strategy
for analysing LD(w)− Lγ

S(w).

2.2 Our Key Improvements
Our first main observation is that the two upper bounds in (5) and (6) are not completely tight, i.e. they are inequalities,
not equalities. In (5) we for instance ignore points (x, y) that had a margin greater than 0 for w, but where the margin
of (Ax, y) is less than γ/2 for hA,t(w). Taking these into accounts, we get the tighter bounds

LD(w) = Lγ/2
AD(hA,t(w)) + P(x,y)∼D[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w), Ax⟩ > γ/2]

− P(x,y)∼D[y⟨w,x⟩ > 0 ∧ y⟨hA,t(w), Ax⟩ ≤ γ/2],

and

Lγ
S(w) = L

γ/2
AS (hA,t(w))− P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w), Ax⟩ ≤ γ/2]

+ P(x,y)∼S [y⟨w,x⟩ ≤ γ ∧ y⟨hA,t(w), Ax⟩ > γ/2].

With these refined bounds, we can now split LD(w)− Lγ
S(w) into a sum of three terms:

Lγ/2
AD(hA,t(w))− Lγ/2

AS (hA,t(w))

+ PD[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w), Ax⟩ > γ/2]− PS [y⟨w,x⟩ ≤ γ ∧ y⟨hA,t(w), Ax⟩ > γ/2] (12)
+ PS [y⟨w,x⟩ > γ ∧ y⟨hA,t(w), Ax⟩ ≤ γ/2]− PD[y⟨w,x⟩ > 0 ∧ y⟨hA,t(w), Ax⟩ ≤ γ/2]. (13)

The first line is the same as (7) from before, but (12) and (13) improves over (8) and (9) by subtracting off a term.
Intuitively, our more refined bounds allow us to argue that if the randomized rounding creates a big difference between
LD(w) and Lγ/2

D (hA,t(w)), then it creates a comparably large difference between Lγ
S(w) and Lγ/2

S (hA,t(w)), thereby
canceling out. We will carefully exploit this in the following. Let us focus on (12) and remark that (13) is handled
symmetrically. For (12), we see that

P(x,y)∼S [y⟨w,x⟩ ≤ γ ∧ y⟨hA,t(w), Ax⟩ > γ/2] ≥ P(x,y)∼S [y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w), Ax⟩ > γ/2],

and thus (12) is at most

P(x,y)∼D[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w), Ax⟩ > γ/2]− P(x,y)∼S [y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w), Ax⟩ > γ/2].

Now introducing the expectation over the randomized rounding A and t as in the previous proof, and using linearity
of expectation, we want to bound the following expression with probability 1− δ over S ∼ Dn

sup
w∈Sd−1

(
EA,t[P(x,y)∼D[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w),Ax⟩ > γ/2]]−

EA,t[P(x,y)∼S [y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w),Ax⟩ > γ/2]]

)
=

sup
w∈Sd−1

(
E(x,y)∼D[PA,t[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w),Ax⟩ > γ/2]]−

E(x,y)∼S[PA,t[y⟨w,x⟩ ≤ 0 ∧ y⟨hA,t(w),Ax⟩ > γ/2]]

)
. (14)
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This now has a form that looks familiar. Concretely, we have a function

ψw(x, y) = 1{y⟨w, x⟩ ≤ 0} · PA,t[y⟨hA,t(w),Ax⟩ > γ/2] (15)

for each w ∈ Sd−1, and wish to bound supw E(x,y)∼D[ψw(x,y)] − E(x,y)∼S[ψw(x,y)] with high probability over
S ∼ Dn. Rademacher complexity (see e.g. Shalev-Shwartz and Ben-David [2014]) is one key tool for bounding such
differences. In particular, the contraction principle from Ledoux and Talagrand [1991] allows us to bound such a supre-
mum when the functions ψw are composite functions ψw = f ◦gw with f : R→ R having bounded Lipschitz constant.
Indeed margin generalization bounds for halfspaces have previously been proved via Rademacher complexity (Bartlett
and Mendelson [2002]) by composing the two functions gw(x, y) = y⟨w, x⟩ and f(u) = min{1,max{0, γ−u

γ }} be-
ing the ramp loss. Since the ramp loss f is γ−1-Lipschitz, one can thus reduce bounding the Rademacher complexity
of ψw to bounding the Rademacher complexity of the simpler gw(x, y) = y⟨w, x⟩. When using this gw(x, y) and an
L-Lipschitz f , the resulting bound on (14) becomes cL/

√
n, i.e.

√
1/(γ2n) when using the ramp loss.

We wish to take a similar approach for our ψw in (15). We thus want to argue that ψw(x, y) can be written
as a composite function f(y⟨w, x⟩) of the margin of (x, y) on w. Examining (15), we thus need to argue that the
probability over A, t is a function solely of the original margin y⟨w, x⟩. The matrix A was k×d with i.i.d.N (0, 1/k)
entries. Now if we make the assumption that x is unit length (and not just ∥x∥2 ≤ 1), then by the rotational invariance
of Gaussians, the joint distribution of Aw, yAx can be shown to be completely determined from y⟨w, x⟩. Since
the random rounding considers only the vector Aw (and not the original w), it follows that the joint distribution of
hA,t(w), yAx is also completely determined from y⟨w, x⟩. This implies that ψw(x, y) indeed can be written as a
function f of y⟨w, x⟩ alone.

We thus proceed to bound the Lipschitz constant of the function f in (15). To avoid discontinuities, we have to alter
ψw(x, y) somewhat to not include the discontinuous indicator function (similarly to using the ramp loss in previous
works), and we eventually bound the Lipschitz constant L by roughly

L ≲ γ−1PA,t[y⟨hA,t(w),Ax⟩ > γ/2 | y⟨w, x⟩ = 0].

With a slight abuse of notation, we write PA,t[y⟨hA,t(w),Ax⟩ > γ/2 | y⟨w, x⟩ = 0] to denote the probability
PA,t[y⟨hA,t(w),Ax⟩ > γ/2] for an arbitrary x,w ∈ Sd−1 and y ∈ {−1, 1} with y⟨w, x⟩ = 0 as y⟨w, x⟩ completely
determines this probability as argued above.

Since our randomized rounding preserves inner products to within γ/2 except with probability exp(−γ2k/c), we
get L ≲ γ−1 exp(−γ2k/c). This finally bounds (14) by

c ·

√
exp(−γ2k/c)

γ2n
.

This should be compared to proof by Grønlund et al. [2020] that got a bound of c exp(−γ2k/c). This improvement
is precisely enough to derive our tight Theorem 2. Indeed, as mentioned in (10), we can bound Lγ/2

AD(hA,t(w)) −
Lγ/2
AS (hA,t(w)) by √

Lγ
S(w) ·

k + ln(e/δ)

n
+
k + ln(e/δ)

n
+ exp(−k/c).

If we ignore the exp(−k/c) term and set k = c′γ−2 ln(e/Lγ
S(w)), this gives the tight bound in Theorem 2.

Unfortunately, we cannot afford to ignore the exp(−k/c) term and we need additional ideas for dealing with it.
Recall that in the previous proof by Grønlund et al. [2020], it originates from bounding

EA,t[Lγ/2
AD(hA,t(w))− Lγ/2

AS (hA,t(w))] ≤ EA,t[sup
h∈G
Lγ/2
AD(h)− L

γ/2
AS (h)] + PA,t[hA,t(w) /∈ G],

and upper bounding PA,t[hA,t(w) /∈ G] by exp(−k/c). Here we instead consider an infinite sequence of discretiza-
tions/grids G0,G1, . . . , and argue that the random rounding A, t and training set S is simultaneously good (for some
appropriate definition) for all grids with high probability. Here the grids Gi correspond to increasingly large norms of
hA,t(w), i.e. Gi contains all vectors of norm at most 2i+1Bd

2 and all coordinates integer multiples of k−1/2. Multiple
careful applications of Cauchy-Schwartz, Jensen’s inequality and upper bounds on the probability that hA,t(w) /∈ Gi
allows us to finally get rid of the exp(−k/c) factor.
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3 Main Proof
We now set out to prove Theorem 2 following the proof outline sketched in Section 2. We start by a series of reductions
that allow us to focus on a simpler task of establishing Theorem 2 only for a small range of γ and Lγ

S(w). We describe
these reductions in Section 3.1 and then proceed to the main arguments in Section 3.2.

3.1 Setup
When eventually bounding the Lipschitz constant, as discussed in Section 2, the task turns out to be simpler if ∥x∥2 = 1
(and not just ∥x∥2 ≤ 1) for all x in the support of D and if |⟨w, x⟩| is sufficiently smaller than 1 for all hypotheses w
and data points (x, y) in the support of D. We thus start by reducing to this case.

Consider the following distribution D′ obtained by sampling an (x,y) ∼ D and replacing x by x′ = (cγx) ×
{
√

1− c2γ∥x∥22} ∈ Sd for a sufficiently small constant 0 < cγ < 1. That is, scale down all coordinates of x by

cγ and append a (d + 1)’st coordinate taking the value
√
1− c2γ∥x∥22. Then the norm of the resulting point x′ is√

c2γ∥x∥22 + 1− c2γ∥x∥22 = 1. Similarly, for any w ∈ Sd−1, consider instead the hypothesis w′ = w × {0}. We
observe that for any x,w, we have that ⟨w′, x′⟩ = ⟨w, cγx⟩ = cγ⟨w, x⟩ and thus lies in the range [−cγ , cγ ] by Cauchy-
Schwartz. This also implies that sign(⟨w′, x′⟩) = sign(⟨w, x⟩) and thus the generalization error of w′ under D′ and w
under D are the same.

With this in mind, we defineH := Sd−1×{0} and X as the set of all vectors x in Sd where the norm of x without
its (d+ 1)’st coordinate is at most cγ .

From hereon, we let D be an arbitrary distribution over X × {−1, 1}, and set out to prove that there is a constant
c > 1, such that with probability at least 1 − δ over S ∼ Dn, it holds for all margins γ ∈ (n−1/2, cγ ] and all w ∈ H
that

LD(w) ≤ Lγ
S(w) + c

(√
Lγ
S(w) ·

(
ln(e/Lγ

S(w))

γ2n
+

ln(e/δ)

n

)
+

ln(eγ2n)

γ2n
+

ln(e/δ)

n

)
. (16)

Note that Theorem 2 follows as an immediate corollary since margins change by a cγ factor in our transformation
of the input distribution. Since cγ is a constant, this disappears in the constant factor c in Theorem 2 (note that for
margins γ ∈ [n−1/2, c−1

γ n−1/2) in Theorem 2, we cannot use the reduction, but here Theorem 2 follows trivially as
c ln(eγ2n)/(γ2n) > 1 for sufficiently large c).

Smaller Tasks. We now break the task of establishing (16) into smaller tasks, where we consider margins γ in a
small range (γi, γi+1] and only vectors w ∈ H with L(3/4)γi

D (w) in a small range (ℓj , ℓj+1]. The purpose here is, that
for one sub-task, we can treat margins and margin losses as the same to within constant factors. A union bound over
all the sub-tasks then suffices to establish (16).

For a given distribution D, partition the range of values of the margin γ ∈ (n−1/2, cγ ] into intervals Γi =
(2i−1n−1/2, 2in−1/2] for i = 1, . . . , lg2(cγn

1/2). Similarly, partition the possible values of Lγ
D(w) ∈ [0, 1] into

intervals L0 = [0, n−1] and Li = (2i−1n−1, 2in−1] with i = 1, . . . lg2 n.
For a pair (Γi, Lj) with Γi = (γi, γi+1], define

H(Γi, Lj) = {w ∈ H : L(3/4)γi

D (w) ∈ Lj}.

For each pair (Γi, Lj) we now prove an equivalent of (16), but tailored to the sub-task. The result is stated in the
following lemma

Lemma 3. There is a constant c > 1, such that for any 0 < δ < 1 and any pair (Γi, Lj) = ((γi, γi+1], (ℓj , ℓj+1]), it
holds with probability at least 1− δ over a random sample S ∼ Dn that

sup
w∈H(Γi,Lj)

γ∈Γi

|LD(w)− Lγ
S(w)| ≤ c

(√
ℓj+1

(
ln(e/ℓj+1)

γ2i+1n
+

ln(e/δ)

n

)
+

ln(e/ℓj+1)

γ2i+1n
+

ln(e/δ)

n

)
(17)
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Observe that while (16) depends on γ and (17) depends on γi+1, this is fine since γ ≤ γi+1 for all γ ∈ Γi.
However, recall that H(Γi, Lj) refers to w ∈ H with L(3/4)γi

D (w) ∈ Lj = (ℓj , ℓj+1]. But the ℓj+1 terms in (17) need
to be replaced by Lγ

S(w) to obtain (16). Thus we relate the two via the following lemma

Lemma 4. There is a constant c > 1, such that for any 0 < δ < 1 and any Γi = (γi, γi+1], it holds with probability
at least 1− δ over a random sample S ∼ Dn that

∀w ∈ H : Lγi

S (w) ≥
L(3/4)γi

D (w)

4
− c

(
ln(eγ2i+1n)

γ2i+1n
− ln(e/δ)

n

)
. (18)

We combine the sub-tasks and conclude

Claim 1. For any 0 < δ < 1, it holds with probability 1− δ over S ∼ Dn that (17) and (18) simultaneously hold for
all (Γi, Lj) and Γi, with slightly different constants c.

Since Claim 1 follows by a simple union bound, exploiting that for different values of ℓj+1 and γi+1, we can afford
to use different δi,j ≈ δ exp(−γ2i+1 ln(e/ℓj+1)) and δi ≈ δ exp(−γ−2

i+1 ln(eγ
2
i+1n)), we have deferred the proof to

Appendix A.
A simple combination of (17) and (18) now gives

Claim 2. For any 0 < δ < 1 and training set S, if (17) and (18) hold simultaneously for all (Γi, Lj) and Γi, then (16)
holds for all γ ∈ (n−1/2, cγ ] and all w ∈ H for large enough constant c > 1 in (16).

Claim 2 follows by using that γ ≤ γi+1 for γ ∈ Γi, and by using Lemma 4 to relate all occurrences of ℓj+1 in (17)
to Lγ

S(w). As this is rather straight forward calculations, we have deferred the proof to Appendix A.
What remains is thus to establish Lemma 3 and Lemma 4, where we may now focus on a small range of γ and

L(3/4)γi

D (w). While both require substantial work and non-trivial arguments, the proof of Lemma 4 follows mostly the
previous work by Grønlund et al. [2020] and has thus been deferred to Section 6.

3.2 Random Discretization
We now set out to prove Lemma 3. So let 0 < δ < 1, and fix a pair (Γi, Lj). Following the proof outline in Section 2,
we now consider the following random discretization of hypotheses in H(Γi, Lj): Let k = k(i, j) be an integer
parameter to be determined. Sample a random k × d matrix A with each entry N (0, 1/k) distributed as well as k
random offsets t = (t1, . . . , tk) all independent and uniformly distributed in [0, 1].

Let G be the set of all vectors in Rk with coordinates in

{(1/2)(10
√
k)−1 + z(10

√
k)−1 | z ∈ Z}.

For w ∈ H and an outcome (A, t) of (A, t), define hA,t(w) ∈ G as the vector obtained as follows: Consider each
coordinate (Aw)i and let zi denote the integer such that

(1/2)(10
√
k)−1 + zi(10

√
k)−1 ≤ (Aw)i < (1/2)(10

√
k)−1 + (zi + 1)(10

√
k)−1.

Let (hA,t(w))i equal (1/2)(10
√
k)−1 + zi(10

√
k)−1 if ti ≤ p(zi) ((Aw)i rounded down) and otherwise let it equal

(1/2)(10
√
k)−1 + (zi + 1)(10

√
k)−1. We choose p(zi) ∈ [0, 1] such that

(Aw)i = p(zi)

(
1

2 · 10
√
k
+

zi

10
√
k

)
+ (1− p(zi))

(
1

2 · 10
√
k
+
zi + 1

10
√
k

)
(19)

i.e. for fixed A, the expected value of the coordinates satisfy Et[(hA,t(w))i] = (Aw)i.

Remark 5. The value p(zi) satisfying (19) has p(zi) ∈ [0, 1].

We thus have that p(zi) is a well-defined probability. We prove Remark 5 in Appendix A. The random discretiza-
tion has the desirable property that it approximately preserves margins/inner products as stated in the following
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Lemma 6. There is a constant c > 0, such that for any integer k ≥ 1, w ∈ H, x ∈ X and any γ ∈ (0, 1], it holds that
PA,t[|⟨hA,t(w),Ax⟩ − ⟨w, x⟩| > γ] < c exp(−γ2k/c).

The proof of Lemma 6 follows the work by Alon and Klartag [2017] in their work on lower bounds for the
Johnson-Lindenstrauss transform, and has thus been deferred to Appendix A. We now observe that

LD(w) = Lγi/2
AD (hA,t(w)) + P(x,y)∼D[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ 0]

− P(x,y)∼D[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > 0].

Similarly, we have for γ ∈ Γi and any training set S that

Lγ
S(w) = L

γi/2
AS (hA,t(w)) + P(x,y)∼S [y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γ]

− P(x,y)∼S [y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γ].

We now have for any γ ∈ Γi that

sup
w∈H(Γi,Lj)

LD(w)− Lγ
S(w) =

sup
w∈H(Γi,Lj)

(
EA,t[Lγi/2

AD (hA,t(w))− Lγi/2
AS (hA,t(w))]+

EA,t[PD[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ 0]− PS [y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γ]]+
EA,t[PS [y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γ]− PD[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > 0]]

)
. (20)

A critical observation is that the distribution of y⟨hA,t(w),Ax⟩ depends only on y⟨w, x⟩.

Claim 3. For any (x, y) ∈ X ×{−1, 1} and any w ∈ H, the distribution of y⟨hA,t(w),Ax⟩ is completely determined
from y⟨w, x⟩.

We prove Claim 3 in Section 4.1 by exploiting that the entries of A are i.i.d. N (0, 1/k) distributed and using the
rotational invariance of the Gaussian distribution.

As outlined in the proof overview in Section 2, we can now use Claim 3 together with the contraction inequality of
Rademacher complexity to bound several of the terms in (20). Similarly to the introduction of the ramp loss in classic
proofs of generalization for large-margin halfspaces, we need to introduce a continuous function upper bounding the
probabilities above. With this in mind, we now define the following functions ϕ and ρ:

ϕ(α) =


PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = α] if − cγ ≤ α ≤ 0
(γi−α)

γi
PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = 0] if 0 < α ≤ γi

0 if γi < α ≤ cγ

ρ(α) =


PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = α] if γi < α ≤ cγ
α
γi
PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = γi] if 0 < α ≤ γi

0 if − cγ ≤ α ≤ 0

Here we slightly abuse notation and write PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = α] to denote the probability
PA,t[y⟨hA,t(w),Ax⟩ > γi/2] for an arbitrary w ∈ H, (x, y) ∈ X × {−1, 1} with y⟨w, x⟩ = α and remark that this
probability is the same for all such w, x, y by Claim 3.

We now observe that ϕ and ρ upper and lower bounds the terms in (20)

Remark 7. For any training set S and distribution D over X × {−1, 1}, we have

EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ 0]] ≤ E(x,y)∼D[ϕ(y⟨w,x⟩)]
EA,t[P(x,y)∼S [y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γ]] ≥ E(x,y)∼S [ϕ(y⟨w,x⟩)]
EA,t[P(x,y)∼S [y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γ]] ≤ E(x,y)∼S [ρ(y⟨w,x⟩)]
EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > 0]] ≥ E(x,y)∼D[ρ(y⟨w,x⟩)].
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The proof of Remark 7 follows from the definition of ϕ and ρ, along with monotonicity of PA,t[y⟨hA,t(w),Ax⟩ >
γi | y⟨w, x⟩ = α] as a function of α. The proofs have been deferred to Appendix A. Continuing from (20) using
Remark 7, linearity of expectation and the triangle inequality, we have for any γ ∈ Γi that

sup
w∈H(Γi,Lj)

LD(w)− Lγ
S(w) ≤ sup

w∈H(Γi,Lj)

∣∣∣EA,t[Lγi/2
D (hA,t(w))− Lγi/2

S (hA,t(w))]
∣∣∣ (21)

+ sup
w∈H(Γi,Lj)

∣∣E(x,y)∼D[ϕ(y⟨w,x⟩)]− E(x,y)∼S [ϕ(y⟨w,x⟩)]
∣∣ (22)

+ sup
w∈H(Γi,Lj)

∣∣E(x,y)∼D[ρ(y⟨w,x⟩)]− E(x,y)∼S [ρ(y⟨w,x⟩)]
∣∣ . (23)

In Section 5, we carefully use Bernstein’s plus a (highly non-trivial) union bound over infinitely many grids of increas-
ing size to bound (21) as follows

Lemma 8. There is a constant c > 0 such that with probability at least 1− δ over S ∼ Dn we have

(21) ≤ c

√ (ℓj+1 + exp(−γ2i+1k/c))(k + ln(e/δ))

n
+

(k + ln(e/δ))

n

 .

In Section 4, we then use Rademacher complexity and a bound on the Lipschitz constants of ϕ and ρ to bound (22)
and (23) as follows

Lemma 9. There are constants c, c′ > 0 such that with probability at least 1− δ over S ∼ Dn we have

max{(22), (23)} ≤ c exp(−γ2i+1k/c) ·
√
(k + γ−2

i+1 + ln(e/δ))/n.

provided that k ≥ c′γ−2
i+1.

To balance the expressions in Lemma 8 and Lemma 9, we now set k = cγ−2
i+1 ln(e/ℓj+1) for a sufficiently large

constant c > 0 so that exp(−γ2i+1k/c) ≤ ℓj+1/e and k ≥ c′γ−2
i+1. Combining Lemma 8 and Lemma 9 via a union

bound with δ′ = δ/2 and inserting into (21), (22) and (23) gives

sup
w∈H(Γi,Lj)

LD(w)− Lγ
S(w) ≤

c

√ℓj+1(γ
−2
i+1 ln(e/ℓj+1) + ln(e/δ))

n
+
γ−2
i+1 ln(e/ℓj+1) + ln(e/δ)

n

+

c

(
ℓj+1

√
(γ−2

i+1 ln(e/ℓj+1) + ln(e/δ))/n

)
,

for a constant c > 0. This completes the proof of Lemma 3, which together with Lemma 4 completes the proof of our
main result, Theorem 2.

4 Rademacher Bounds
In this section, we use Rademacher complexity and the contraction inequality to prove Lemma 9. We focus on
bounding (22) and note that (23) is handled symmetrically.

For a training set S ∈ (X × {−1, 1})n, consider the empirical Rademacher complexity (for σ = (σ1, . . . , σn) a
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vector of independent and uniform variables in {−1, 1}):

R̂ϕ,H(Γi,Lj)(S) =
1

n
· Eσ

 sup
w∈H(Γi,Lj)

∑
(xi,yi)∈S

σiϕ(yi⟨w, xi⟩)


≤ 1

n
· Eσ

 sup
w∈H

∑
(xi,yi)∈S

σiϕ(yi⟨w, xi⟩)


If ϕ is Lϕ-Lipschitz, then the contraction inequality from Ledoux and Talagrand [1991] gives that

R̂ϕ,H(S) ≤ Lϕ

n
· Eσ

 sup
w∈H

∑
(xi,yi)∈S

σiyi⟨w, xi⟩

 .
Using Cauchy-Schwartz, this is bounded by

R̂ϕ,H(S) ≤Lϕ

n
· Eσ

 sup
w∈H

〈
w,

∑
(xi,yi)∈S

σiyixi

〉
≤Lϕ

n
·
(
sup
w∈H
∥w∥2

)
· Eσ

∥∥∥∥∥∥
∑

(xi,yi)∈S

σiyixi

∥∥∥∥∥∥
2



≤Lϕ

n
·

√√√√√√Eσ


∥∥∥∥∥∥
∑

(xi,yi)∈S

σiyixi

∥∥∥∥∥∥
2

2


=
Lϕ√
n
·
√ ∑

(xi,yi)∈S

∑
(xj ,yj)∈S

Eσ[σiσj ]yiyj⟨xi, xj⟩

=
Lϕ√
n
.

Since this inequality holds for all S with each (x, y) ∈ S satisfying ∥x∥2 = 1, we have for the distribution D that the
Rademacher complexity

RD,ϕ,H(n) = ES∼Dn [R̂ϕ,H(S)]

satisfiesRD,ϕ,H(n) ≤ Lϕ/
√
n. By Lemma 6 and γi = γi+1/2, we have that ϕ is bounded by

0 ≤ ϕ(α) ≤ max
−cγ≤α≤0

PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = α] ≤ c exp(−kγ2i+1/c),

for a constant c > 0. We conclude from standard results on Rademacher complexity (see e.g. Shalev-Shwartz and
Ben-David [2014]), that with probability 1− δ over a sample S ∼ Dn it holds that

sup
w∈H(Γi,Lj)

∣∣E(x,y)∼D[ϕ(y⟨w,x⟩)]− E(x,y)∼S[ϕ(y⟨w,x⟩)]
∣∣ ≤

2RD,ϕ,H(n) + cR

(
c exp(−kγ2i+1/c)

√
ln(1/δ)

n

)
≤

2Lϕ√
n

+ cR

(
c exp(−kγ2i+1/c)

√
ln(1/δ)

n

)
.

where cR > 0 is a constant. Symmetric arguments bounds ρ by the same, with the Lipschitz constant Lρ of ρ in place
of Lϕ.

We now use the following bound on the Lipschitz constants of ϕ and ρ
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Lemma 10. There are constants cL, c > 0 such that the Lipschitz constants Lϕ and Lρ of ϕ and ρ are bounded by

cL exp(−γ2i+1k/cL) ·
(√

k + γ−1
i+1

)
,

when k ≥ cγ−2
i+1.

We prove this lemma in the next section. We thus conclude that with probability at least 1 − δ over S ∼ Dn, we
have

sup
w∈H(Γi,Lj)

∣∣E(x,y)∼D[ϕ(y⟨w,x⟩)]− E(x,y)∼S[ϕ(y⟨w,x⟩)]
∣∣ ≤

2 ·
cL exp(−γ2i+1k/cL)

(√
k + γ−1

i+1

)
√
n

+ cR

(
c exp(−kγ2i+1/c)

√
ln(1/δ)

n

)
.

The same bound holds for ρ via Lemma 10, which completes the proof of Lemma 9.

4.1 Bounding the Lipschitz Constants
In this section, we proceed to bound the Lipschitz constants of ϕ and ρ and thereby prove Lemma 10. We split it into
two tasks depending on the value of α. The simplest case is the following

Lemma 11. There is a constant c > 0 such that the Lipschitz constants of ϕ and ρ, when 0 < α ≤ γi, are less than:

c exp(−kγ2i+1/c)

γi+1
.

Proof. Since ϕ is linear when 0 < α ≤ γi, its Lipschitz constant equals the slope of the line, i.e.

1

γi
· PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = 0].

By Lemma 6 and using γi = γi+1/2, this is bounded by

c exp(−γ2i+1k/c)

γi+1
,

for a constant c > 0. The same arguments applies immediately to ρ.

The trickier case is when α ∈ [−cγ , 0] for ϕ and when α ∈ (γi, cγ ] for ρ. If we set cγ ≤ 1/
√
2, then we have

Lemma 12. There is a constant c > 0 such that the Lipschitz constant of ϕ when α ∈ [−1/
√
2, 0] and ρ when

α ∈
(
γi, 1/

√
2
]

is less than
c exp

(
−γ2i+1k/c

)√
k,

for k ≥ cγ−2
i+1.

Combining this result with Lemma 11 completes the proof of Lemma 10.
To prove Lemma 12, we need to bound the Lipschitz constants of ϕ when α ∈ [−1/

√
2, 0] and ρ when α ∈(

γi, 1
√
2
]
. We will go through the details for ϕ, and comment how the argument for ρ differs along the way.

First recall the following claim

Restatement of Claim 3. For any (x, y) ∈ X × {−1, 1} and any w ∈ H, the distribution of y⟨hA,t(w),Ax⟩ is
completely determined from y⟨w, x⟩.

As we need to understand the distribution of the random variable y⟨hA,t(w),Ax⟩ to bound the Lipschitz constants
of ϕ and ρ, we proceed to give the proof of Claim 3 while introducing convenient notation for establishing Lemma 12.
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Proof. Firstly, write hA,t(w) = Aw + v with v = (hA,t(w) − Aw). Then observe that (Aw)i = ⟨ai, w⟩ ∼
N (0, ∥w∥2/k) d

=N (0, 1/k) where ai denotes the i’th row of A. Here d
= denotes equality in distribution. Now write

x = ⟨w, x⟩w + u where ⟨u,w⟩ = 0 and ∥u∥2 = ∥x∥2 − ⟨w, x⟩2 = 1− ⟨w, x⟩2 (i.e. a Gram-Schmidt step). We have
(Ax)i = ⟨ai, w⟩⟨w, x⟩+ ⟨ai, u⟩. By rotational invariance of the Gaussian distribution and orthogonality of w and u,
we have that ⟨ai, u⟩ ∼ N (0, (1−⟨w, x⟩2)/k) and that this is independent of ⟨ai, w⟩. Using the independence, we also
conclude that if we condition on any fixed outcome of ci = (Aw)i, we have that ci⟨ai, u⟩ isN (0, c2i (1− ⟨w, x⟩2)/k)
distributed.

We now argue that we can sample from the distribution of y⟨hA,t(w),Ax⟩ = ⟨hA,t(w), yAx⟩ knowing only
y⟨w, x⟩ as follows: Sample independent N (0, 1/k) distributed random variables X1, . . . ,Xk. Next sample indepen-
dentN (0, (1−y2⟨w, x⟩2)/k) distributed random variables Y1, . . . ,Yk and let Zi = y⟨w, x⟩Xi+Yi

d
= y⟨w, x⟩Xi+

yYi, where the last step follows from independence of Xi and Yi and symmetry in the distribution of Yi. Let X be
the vector with the Xi’s as entries and Z similarly. Then the joint distribution of (X,Z) is equal to the joint distribution
of (Aw, yAx). Finally draw offsets t′1, . . . , t

′
k uniformly and independently in [0, 1] and round Xi to a number of

the form (1/2)(10
√
k)−1 + z(10

√
k)−1 for z ∈ Z as in the definition of hA,t. The resulting variables X′

i satisfy that

y⟨hA,t(w),Ax⟩
d
= ⟨X′,Z⟩.

With Claim 3 established, we will use the notation in the proof as we proceed with bounding the Lipschitz constants
of ϕ and ρ.

Let α = y⟨w, x⟩ for some w ∈ H and (x, y) ∈ X × {−1, 1} and α ∈ [−1/
√
2, 0] (for ρ, let α ∈ (γi, 1/

√
2]).

Let Xi ∼ N (0, 1/k), Yi ∼ N (0, (1− α2)/k) and let X′
i be the random rounding of Xi. We argued, in the proof of

Claim 3, that y⟨hA,t(w),Ax⟩
d
= ⟨X′, αX+Y⟩. Let additionally Ei be the event that X′

i is rounded up. For notational
convenience, let Mi =

√
kXi and observe that Mi ∼ N (0, 1). With this notation, we have that X′

i has the form

X′
i =

1

10
√
k

(⌊
10Mi −

1

2
√
k10

⌋
+ 1{Ei}+

1

2

)
.

Hence,
y⟨hA,t(w),Ax⟩

d
= ⟨X′, αX+Y⟩ = α√

k
⟨X′,M⟩+ ⟨X′,Y⟩.

Recall that the variables ti and Mi determine Xi, Ei and thus also X′
i. If we condition on an outcome ti = ti and

Mi =Mi, only Yi remains random. We may thus write

P[y⟨hA,t(w),Ax⟩ > γi/2] =

P
[
α√
k
⟨X′,M⟩+ ⟨X′,Y⟩ > γi/2

]
=∫

Rk×[0,1]k
fM,t(M, t)P

[
α√
k
⟨X′,M⟩+ ⟨X′,Y⟩ > γi/2

∣∣∣∣Mi =Mi, ti = ti

]
d(M, t) =∫

Rk×[0,1]k
P
[
α√
k
⟨X ′,M⟩+ ⟨X ′,Y⟩ > γi/2

]
d(M, t),

where fM,t(M, t) is the joint probability density function of M and t.

Let us now define Ni such that Yi =
√

1−α2

k Ni and let N = (N1, . . . ,Nk). Then Ni ∼ N (0, 1) and the event

α√
k
⟨X ′,M⟩+ ⟨X ′,Y⟩ > γi/2,

13



may be rewritten as

α√
k
⟨X ′,M⟩+ ⟨X ′,Y⟩ > γi/2⇐⇒ ⟨X ′,Y⟩ > γi/2−

α√
k
⟨X ′,M⟩ ⇐⇒√

1− α2

k
⟨X ′,N⟩ > γi/2−

α√
k
⟨X ′,M⟩ ⇐⇒√

1− α2

k
∥X ′∥2⟨X ′/∥X ′∥2,N⟩ > γi/2−

α√
k
⟨X ′,M⟩ ⇐⇒

⟨X ′/∥X ′∥2,N⟩ >
√
kγi/2− α⟨X ′,M⟩√

1− α2∥X ′∥2
.

Observe that ⟨X ′/∥X ′∥2,N⟩ ∼ N (0, 1). If we let Φ denote the cumulative density function of a standard normal
distribution, then we have established

P[y⟨hA,t(w),Ax⟩ > γi/2] =

∫
Rk×[0,1]k

fM,t(M, t)

(
1− Φ

(√
kγi/2− α⟨X ′,M⟩√

1− α2∥X ′∥2

))
d(M, t)

=

∫
Rk×[0,1]k

fM(M)

(
1− Φ

(√
kγi/2− α⟨X ′,M⟩√

1− α2∥X ′∥2

))
d(M, t). (24)

In the last equality, we use that M and t are independent and that the probability density function of t is 1 since each
ti is uniform in [0, 1]. This reduces fM,t(M, t) to the probability density function fM(M) of M alone.

The same arguments for ρ also gives the integral (24), with the small difference that (1−Φ(·)) is replaced by Φ(·).
This difference is irrelevant, since to bound the Lipschitz constant, we will differentiate and bound the differential’s
absolute value.

Let g(M, t, α) be the integrant above, we want to differentiate
∫
Rk×[0,1]k

g(M, t, α) d(M, t) by differentiating
under the integral. Standard measure theory results (Theorem 6.28, Klenke [2020]) allows us to do this if we satisfy
three conditions. These conditions are, in this case, equivalent to the following

i) for all constant α , the integral
∫
Rk×[0,1]k

g(M, t, α) d(M, t) is finite.

ii) for all constant M, t, the partial differential of g(M, t, α) with respect to α exists.

iii) There exists a function h(M, t), where
∫
Rk×[0,1]k

h(M, t) d(M, t) is finite and such that | ∂∂αg(M, t, α)| ≤
h(M, t) for all α.

The first two conditions are straightforward: The integral is equal to a probability, which is finite. And g is a combi-
nation of differentiable functions making it differentiable itself. The last condition is more cumbersome, but the goal
of this proof is to upperbound the integral by a constant, which clearly dosn’t depend on α. Hence the last condition
will be satisfied during the proof.

Hence we can continue with our differentiation by differentiating under the integral.∣∣∣∣ ∂∂αP[y⟨hA,t(w),Ax⟩ > γi/2]

∣∣∣∣ =∣∣∣∣∣
∫
Rk×[0,1]k

∂

∂α
fM(M)

(
1− Φ

(√
kγi/2− α⟨X ′,M⟩√

1− α2∥X ′∥2

))
d(M, t)

∣∣∣∣∣ =
1

2π

∣∣∣∣∣∣
∫
Rk×[0,1]k

fM(M) exp

−1

2

(√
kγi/2− α⟨X ′,M⟩√

1− α2∥X ′∥2

)2
( α

√
kγi

2 − ⟨X ′,M⟩
(1− α2)3/2∥X ′∥2

)
d(M, t)

∣∣∣∣∣∣ ≤
1

2π

∫
Rk×[0,1]k

fM(M) exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2(1− α2)∥X ′∥22

)∣∣∣∣∣ α
√
kγi

2 − ⟨X ′,M⟩
(1− α2)3/2∥X ′∥2

∣∣∣∣∣ d(M, t).
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For both α ∈ [−1/
√
2, 0] and α ∈

(
γi, 1/

√
2
]
, we have that 1 ≥ (1−α2) ≥ 1/2 and thus, for both ϕ and ρ, the above

is upper bounded by

23/2

2π
·
∫
Rk×[0,1]k

fM(M) exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2∥X ′∥22

) √
kγi + |⟨X ′,M⟩|
∥X ′∥2

d(M, t)

≤
∫
Rk×[0,1]k

fM(M) exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2∥X ′∥22

)( √
kγi

∥X ′∥2
+ ∥M∥2

)
d(M, t).

We now use that |X ′
i| ≥ (1/2)(10

√
k)−1 for all i. This implies ∥X ′∥2 ≥

√
k(1/4)(10

√
k)−2 = 1/20. We may thus

further upper bound the above by

20 ·
∫
Rk×[0,1]k

fM(M) exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2∥X ′∥22

)(√
kγi + ∥M∥2

)
d(M, t). (25)

We will bound (25), by splitting it into 3 cases:

i) ∥M∥22 ≤
9

10
k ii)

9

10
k ≤ ∥M∥22 ≤

4

3
k iii) ∥M∥22 ≥

4

3
k.

The arguments for cases i) and iii) do not depend on α, and hence are identical for ρ and ϕ. In those cases, we simply
exploit that ∥M∥22 ∼ χ2

k and thus these cases are very unlikely. This implies that the integral over fM (M) is so small
that we can afford to upper bound the exponential term in (25) by 1. For case ii), we can use the assumptions on ∥M∥22
to show that the exponential term is no more than c exp(−γ2i k/c) for a constant c > 0. We proceed to the three cases.

case i). We simply upper bound the exponential term in (25) by 1 and use the assumption that ∥M∥22 ≤ 9
10k to

conclude

exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2∥X ′∥22

)(√
kγi + ∥M∥2

)
≤ 2
√
k.

Now since M is multivariate standard normal, ∥M∥22 is χ2
k distributed. Let Z ∼ χ2

k with probability density function
fZ(z). Then the integral in (25) in is bounded by:

40
√
k

∫
(
√

9k/10)Bk
2

fM(M) dM = 40
√
k

∫ 9k/10

0

fZ(z) dz = 40
√
k · P[Z < 9k/10],

which by Theorem 17 is less than
80
√
k exp

(
−kγ2i /800

)
.

case ii). We use the assumption that 9
10k ≤ ∥M∥

2
2 ≤ 4

3k together with the following observations

Remark 13. If ∥X∥22 ≤ 4/3, then ∥X ′∥22 < 2.

Remark 14. If ∥X∥22 ≥ 9/10, then (8/9)∥X∥22 ≤ ⟨X,X ′⟩ ≤ (10/9)∥X∥22.

We prove Remark 13 and Remark 14 in Appendix A. Since
√
kX = M , Remark 14 gives ⟨X ′,M⟩ ≥ (8/10)

√
k

and hence

α > γi =⇒
√
kγi
2
− α⟨X ′,M⟩ ≤ −3

√
kγi
10

≤ 0 =⇒ −

(√
kγi
2
− α⟨X ′,M⟩

)2

≤ −9kγ2i
100

α < 0 =⇒
√
kγi
2
− α⟨X ′,M⟩ ≥

√
kγi
2
≥ 0 =⇒ −

(√
kγi
2
− α⟨X ′,M⟩

)2

≤ −kγ
2
i

4
.
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Hence for both ϕ and ρ, the last two factors of the integral in (25) are bounded by:

exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2∥X ′∥22

)(√
kγi + ∥M∥2

)
≤ 5

2

√
k exp

(
− 9kγ2i
100 · 4

)
.

Which gives the following:

50
√
k exp

(
−kγ

2
i

50

)∫
(
√

9k/10·Bk
2 )

C∩(
√

4k/3·Bk
2 )

fM(M) dM ≤ 50
√
k exp

(
−kγ

2
i

50

)
.

case iii). We bound the last two factors of the integral (25) under the assumption that ∥M∥22 ≥ 4
3k. Here we simply

upper bound the exponential by 1 and get

exp

(
− (
√
kγi/2− α⟨X ′,M⟩)2

2∥X ′∥22

)(√
kγi + ∥M∥2

)
≤ 2∥M∥2,

hence the integral (25) is bounded by:

40

∫
(
√

4k/3·Bk
2 )

C

fM(M)∥M∥2 dM. (26)

Recall that ∥M∥22 ∼ χ2
k and let Z ∼ χ2

k with probability density function fZ(z). Then the integral (26) is equal to

40

∫ ∞

4k/3

fZ(z)
√
z dz.

Let also Li =
[
4
3k · 2

i, 43k · 2
i+1
)

for i ∈ Z≥0. By definition, the Li’s partition
[
4
3k,∞

)
, and we upper bound with:

40

∞∑
i=0

∫
Li

fZ(z)

√
4

3
k · 2i+1 dz ≤ 70

√
k

∞∑
i=0

P[Z ∈ Li]2
i/2 ≤ 70

√
k

∞∑
i=0

P
[
Z ≥ 4

3
k · 2i

]
2i/2.

Using the following remark:

Remark 15 (Laurent and Massart [2000], equation 4.3, page 1326).
Let Z ∼ χ2

k, y > 0 then:
P[Z ≥ 2

√
ky + 2y + k] ≤ exp(−y).

With y = c 43k, where c = 1
82 2

i. We have:

2
√
ky + 2y + k =

(√
c
4√
3
+ c

8

3
+ 1

)
k ≤

(
4
√
3

24
+

1

24
+ 1

)
k · 2i ≤ 4

3
k · 2i.

Hence we can finish the bound for this case, using the assumption that k ≥ γ−2
i 72 ln(2)

70
√
k

∞∑
i=0

P
[
Z ≥ 4

3
k · 2i

]
2i/2 ≤ 70

√
k

∞∑
i=0

exp

(
− 1

48
k · 2i

)
2i/2

≤ 70
√
k exp

(
− 1

48
k

) ∞∑
i=0

exp

(
− 1

48
k

)i

2i/2

≤ 140
√
k exp

(
− 1

48
kγ2i

)
.
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Collecting the three cases. Hence in total | ∂∂αϕ| for α ∈ [−1/
√
2, 0] and | ∂∂αρ| for α ∈

(
γi, 1
√
2
]

are bounded by:

80
√
k exp

(
−kγ2i /800

)
+ 50
√
k exp

(
−kγ

2
i

50

)
+ 140

√
k exp

(
− 1

48
kγ2i

)
≤ 140 exp

(
−kγ2i /800

)
.

Using that γi+1 = 2γi, this completes the proof of Lemma 12.

5 Meet in the Middle Bound
The goal of this section is to prove the following

Restatement of Lemma 8. There is a constant c > 0 such that with probability at least 1− δ over S ∼ Dn we have

sup
w∈H(Γi,Lj)

∣∣∣EA,t[Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))]
∣∣∣ ≤

c

√ (ℓj+1 + exp(−γ2i+1k/c))(k + ln(e/δ))

n
+

(k + ln(e/δ))

n

 .

Notice here that the two losses Lγi/2
AD (hA,t(w)) and Lγi/2

AS (hA,t(w)) refer to the same margin γi/2 and hA,t(w)

has been discretized to have all coordinates of the form (1/2)(10
√
k)−1 + z(10

√
k)−1 for integer z. Intuitively,

we will try to exploit this discretization to union bound over a grid of finitely many hypotheses. Unfortunately, the
random matrix A may increase the norm of w arbitrarily much, and thus a single grid is insufficient. Instead, we
need an infinite sequence of grids. For this, let G0 denote the set of all vectors in 4Bk

2 whose coordinates are of the
form (1/2)(10

√
k)−1 + z(10

√
k)−1 for integer z. More generally, let Gi for i > 0 denote the set of all vectors in

(2i · 4Bk
2) whose coordinates are of this form. Since ∥x∥1 ≤

√
k∥x∥2 for any x ∈ Rk, we have that Gi ⊂ (2i · 4Bk

2) ⊆√
k(2i · 4Bk

1). For a vector x ∈ Gi, let i(x) = (i1, . . . , ik) denote the integers so that x = (10
√
k)−1i(x) +

(1/2)(10
√
k)−11 with 1 ∈ Rk the all-1’s vector. Then by the triangle inequality, we have (10

√
k)−1∥i(x)∥2 ≤

∥x∥2 + (1/2)(10
√
k)−1∥1∥2 ≤ 2i · 4 + 1/20. This implies ∥i(x)∥1 ≤ (10

√
k)
√
k(2i · 4 + 1/20) ≤ (5 · 2i+3 + 1)k.

Since each coordinate of i(x) is an integer, there are thus at most 2k choices for the signs and
∑(5·2i+3+1)k

t=0

(
k+t−1

t

)
choices for the absolute values of the integers. That is, we have

|Gi| ≤ 2k ·
(5·2i+3+1)k∑

t=0

(
k + t− 1

t

)
≤ 2(5·2

i+3+3)k ≤ 22
i+7k. (27)

We now start by considering a fixed outcome A of the random matrix A. For such a fixed A, the training set S
behaves well in the sense that Lγ

AD(w) and Lγ
AS(w) are close with high probability for any w. This is formalized in

the following remark

Remark 16. For any distribution D over X × {−1, 1}, fixed w ∈ H, margin γ and any A ∈ Rk×d, it holds with
probability at least 1− δ over S ∼ Dn that

|Lγ
AD(w)− L

γ
AS(w)| ≤

√
8Lγ

AD(w) ln(1/δ)

n
+

2 ln(1/δ)

n
.

The proof of Remark 16 is a simple application of Bernstein’s and can be found in Appendix A.
In Lemma 8, the matrix A is not fixed but random. Thus we need to find a formal property of the training set S

under which Lγi/2
AD (hA,t(w)) and Lγi/2

AS (hA,t(w)) are close in expectation over the random choice of A. With this

17



goal in mind, we now say that a matrix A in the support of A and a training set S has distortion at least β, if there is a
grid Ga and a vector w ∈ Ga such that

|Lγi/2
AD (w)− Lγi/2

AS (w)| > β ·

√8Lγi/2
AD (w)(2a+7k + ln(1/δ))

n
+

2(2a+7k + ln(1/δ))

n

 .

For a training set S, we use Dβ(S) to denote the set of matrices A with distortion at least β for S.
We observe that for a fixed matrix A, grid Ga and β > 1, we have by Remark 16 with δ′a = (δ/22

a+7k)β and a
union bound over all w ∈ Ga, that with probability at least 1− |Ga|δ′a, it holds for all w ∈ Ga that

|Lγi/2
AD (w)− Lγi/2

AS (w)| ≤

√
8Lγi/2

AD (w) ln(1/δ′a)

n
+

2 ln(1/δ′a)

n

=

√
8Lγi/2

AD (w)(β2a+7k + β ln(1/δ))

n
+

2(β2a+7k + β ln(1/δ))

n

≤ β ·

√8Lγi/2
AD (w)(2a+7k + ln(1/δ))

n
+

2(2a+7k + ln(1/δ))

n

 .

Thus for β ≥ 2, we have

PS[A ∈ Dβ(S)] ≤
∞∑
a=0

|Ga|δ′a

≤
∞∑
a=0

δβ · 2−(β−1)2a+7k

≤ 2 · δβ · 2−(β−1)27k.

By Markov’s inequality, we have

PS[PA[A ∈ Dβ(S)] > 2 · δβ/2 · 2−(β−1)·26k] ≤ ES[PA[A ∈ Dβ(S)]

2 · δβ/2 · 2−(β−1)·26k

=
EA[PS[A ∈ Dβ(S)]

2 · δβ/2 · 2−(β−1)·26k

≤ δβ/2 · 2−(β−1)26k.

Now call a training set S representative if it holds for every β = 2h with integer h ≥ 1 that

PA[A ∈ Dβ(S)] ≤ 2 · δβ/2 · 2−(β−1)·26k.

A union bound implies that S is representative with probability at least

1−
∞∑
h=1

2 · δ2
h−1

· 2−(2h−1)26k ≥ 1− δ

226k−2
≥ 1− δ.

Now define for integer h ≥ 1 the set

Kh(S) = D2h(S) \
(
∪∞b=h+1D2b(S)

)
.

Let K0(S) be defined as
K0(S) = supp(A) \ (∪∞b=1D2b(S)) .
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For any w ∈ H, we may use the triangle inequality to conclude∣∣∣EA,t[Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))]
∣∣∣ ≤

∞∑
h=0

EA,t

[∣∣∣Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))
∣∣∣ | A ∈ Kh(S)

]
PA[A ∈ Kh(S)].

Now consider an A ∈ Kh(S). Then A has distortion no more than 2h+1 by definition of Kh(S). This implies that if
hA,t(w) is in Ga but not Gb for b < a, then ∥hA,t(w)∥2 ≥ 2a+1 by definition of Gb and we get

|Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))| ≤

2h+1 ·

√8Lγi/2
AD (w)(2a+7k + ln(1/δ))

n
+

2(2a+7k + ln(1/δ))

n

 ≤
2h+8∥hA,t(w)∥2 ·

√8Lγi/2
AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

 .

Using Cauchy-Schwartz, we thus get for any w ∈ H that ∣∣∣EA,t[Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))]
∣∣∣ ≤

∞∑
h=0

2h+8EA,t

[
∥hA,t(w)∥2 ·

(√
8Lγi/2

AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

)
| A ∈ Kh(S)

]
PA[A ∈ Kh(S)] ≤

∞∑
h=0

2h+8
√

EA,t [∥hA,t(w)∥22 | A ∈ Kh(S)] ·√√√√√√EA,t



√

8Lγi/2
AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

2

| A ∈ Kh(S)

PA[A ∈ Kh(S)].

By Cauchy-Schwartz, this is at most √√√√ ∞∑
h=0

22h+16EA,t[∥hA,t(w)∥22 | A ∈ Kh(S)]PA[A ∈ Kh(S)] ·√√√√√√ ∞∑
h=0

EA,t



√

8Lγi/2
AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

2

| A ∈ Kh(S)

PA[A ∈ Kh(S)].
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Using Cauchy-Schwartz again and Jensen’s inequality, the first sum is bounded by

∞∑
h=0

22h+16EA,t[∥hA,t(w)∥22 | A ∈ Kh(S)]PA[A ∈ Kh(S)] ≤√√√√ ∞∑
h=0

24h+64PA[A ∈ Kh(S)] ·

√√√√ ∞∑
h=0

EA,t[∥hA,t(w)∥22 | A ∈ Kh(S)]2PA[A ∈ Kh(S)] ≤√√√√ ∞∑
h=0

24h+64PA[A ∈ D2h(S)] ·

√√√√ ∞∑
h=0

EA,t[∥hA,t(w)∥42 | A ∈ Kh(S)]PA[A ∈ Kh(S)] ≤√√√√ ∞∑
h=0

24h+642(δ/227k+1)(2h−1)/2 ·
√
EA,t[∥hA,t(w)∥42] ≤

233 ·
√

EA,t[∥hA,t(w)∥42].

Using Jensen’s inequality on the second sum, we find that

∞∑
h=0

EA,t


√8Lγi/2

AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

2

| A ∈ Kh(S)

PA[A ∈ Kh(S)] =

EA,t



√

8Lγi/2
AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

2
 .

For positive constants c0, c1, c2, we have that the function f(t) = (
√
c0t+ c1 + c2)

2 is concave for t ≥ 0. To see this,
we compute its derivative

f ′(t) = 2(
√
c0t+ c1 + c2) ·

c0
2
√
c0t+ c1

= c0 +
c0c2√
c0t+ c1

,

and its second derivative

f ′′(t) =
−c20c2

2(c0t+ c1)3/2
.

This is a negative function for t ≥ 0. We thus use Jensen’s inequality to conclude

EA,t



√

8Lγi/2
AD (w)(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

2
 ≤


√√√√8EA,t

[
Lγi/2
AD (w)

]
(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n


2

.
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Combining it all, we have thus shown ∣∣∣EA,t[Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))]
∣∣∣ ≤

√
233 ·

√
EA,t[∥hA,t(w)∥42] ·

√√√√√√√

√√√√8EA,t

[
Lγi/2
AD (w)

]
(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n


2

≤

217 · EA,t[∥hA,t(w)∥42]1/4 ·


√√√√8EA,t

[
Lγi/2
AD (w)

]
(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

 .

We now bound EA,t[∥hA,t(w)∥42] as follows

EA,t[∥hA,t(w)∥42] =
EA,t[∥Aw + (hA,t(w)−Aw)∥42] ≤

EA,t[(∥Aw∥2 + ∥hA,t(w)−Aw∥2)4] ≤

EA,t

[(
∥Aw∥2 +

√
k(10
√
k)−2

)4
]
=

EA,t

[
(∥Aw∥2 + 1/10)

4
]
=

4∑
b=0

(
4

b

)
EA,t[∥Aw∥b2]10−(4−b).

Recalling that ∥Aw∥22 ∼ (1/k)χ2
k, we have from the moments of the chi-square distribution that for even k ≥ 4:

EA,t[∥Aw∥b2] ≤ EA,t[∥Aw∥42] = k−2EA,t[(k∥Aw∥22)2] = k−222
(2 + k/2)!

(k/2)!
≤ 4.

Hence

EA,t[∥hA,t(w)∥42] ≤
4∑

b=0

(
4

b

)
4 · 10−(4−b) ≤ (4 + 1/10)4 < 54.

We thus have ∣∣∣EA,t[Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))]
∣∣∣ ≤

220 ·


√√√√8EA,t

[
Lγi/2
AD (w)

]
(k + ln(1/δ))

n
+

2(k + ln(1/δ))

n

 .

Finally, we exploit that for any w ∈ H(Γi, Lj), we have by definition that L(3/4)γi

D (w) ≤ ℓj+1. Thus for any such w,
we have

EA,t[Lγi/2
AD (w)] = EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ ≤ γi/2]]

= E(x,y)∼D[PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2]]
≤ P(x,y)∼D[y⟨w,x⟩ ≤ (3/4)γi]

+ E(x,y)∼D[PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2] | y⟨w,x⟩ > (3/4)γi]

≤ L(3/4)γi

D (w) + sup
µ>(3/4)γi

[PA,t[⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = µ].
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Using Lemma 6 and that L(3/4)γi

D (w) ∈ Lj by definition of H(Γi, Lj), there is a constant c > 0 such that this is
bounded by

≤ L(3/4)γi

D (w) + c exp(−k(γi/4)2/c)
≤ ℓj+1 + c exp(−kγ2i+1/(16c)).

We have thus reached the conclusion that there is a constant c > 0, such that with probability at least 1 − δ over
S ∼ Dn, it holds that

sup
w∈H(Γi,Lj)

∣∣∣EA,t[Lγi/2
AD (hA,t(w))− Lγi/2

AS (hA,t(w))]
∣∣∣ ≤

c ·

√ (ℓj+1 + exp(−kγ2i+1/c))(k + ln(1/δ))

n
+
k + ln(1/δ)

n

 .

This completes the proof of Lemma 8.

6 Within Constant Factors
In this section we prove

Restatement of Lemma 4. There is a constant c > 1, such that for any 0 < δ < 1 and any Γi = (γi, γi+1], it holds
with probability at least 1− δ over a random sample S ∼ Dn that

∀w ∈ H : Lγi

S (w) ≥
L(3/4)γi

D (w)

4
− c

(
ln(eγ2i+1n)

γ2i+1n
− ln(e/δ)

n

)
.

The proof follows mostly the ideas in Grønlund et al. [2020] that were outlined in the proof overview in Section 2.

Proof. Let k ≥ 1 be a parameter to be determined and consider the random construction of A and t as defined in
Section 3.2. Let Ga be defined as in Section 5, i.e. Ga contains all vectors in 2a · 4Bk

2 . We say that a matrix A in the
support of A and a training set S is α-unusual, if there is a vector w ∈ G0 such that

L(7/8)γi

AS (w) <
L(7/8)γi

AD (w)

2
− 211k + ln(1/α)

n
.

For a fixed matrix A and vector w ∈ W0, we have by Bernstein’s inequality and ES[L(7/8)γi

AS (w)] = L(7/8)γi

AD (w) that

PS

[∣∣∣L(7/8)γi

AS (w)− L(7/8)γi

AD (w)
∣∣∣ > t/n

]
< exp

(
−

1
2 t

2

nL(7/8)γi

AD (w) + 1
3 t

)
.

Setting

t = n ·

(
L(7/8)γi

AD (w)

2
+ Z

)
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with Z = 16 ln(1/α)/n gives

PS

[∣∣∣∣L(7/8)γi

AS (w)− L(7/8)γi

AD (w)

∣∣∣∣ >
(
L(7/8)γi

AD (w)

2
+ Z

)]

< exp

−
n2

2

(
L(7/8)γi

AD (w)

2 + Z

)2

nL(7/8)γi

AD (w) + n
3

(
L(7/8)γi

AD (w)

2 + Z

)


≤ exp

(
−

n2

8 max{L(7/8)γi

AD (w), Z}2

2nmax{L(7/8)γi

AD (w), Z}

)

≤ exp

(
−nZ

16

)
= α.

A union bound over allw ∈ G0 with α′ = α/e2
7k gives that a fixed matrixA is α-unusual for S ∼ Dn with probability

at most
|G0|

α

e27k
< α.

Now call a training set S α-representative if A is α-unusual for S with probability less than 1/4. By Markov’s
inequality, we have

PS[PA[(S,A) is α-unusual] ≥ 1/4] ≤ ES[PA[(S,A) is α-unusual]]
1/4

= 4 · EA[PS[(S,A) is α-unusual]]
≤ 4α.

Thus

PS[S is α-representative] ≥ 1− 4α. (28)

We claim that if the training set S is δ-representative, then it holds for all w ∈ H that

Lγ
S(w) ≥

L(3/4)γi

D (w)

4
− 211k + ln(4/δ)

n
− 30 exp(−kγ2i+1/2

14).

To see this, consider an arbitrary such S and a w ∈ H. Sample A and t as in the previous section. Call A, t good
for w if it satisfies both ∥hA,t(w)∥2 ≤ 4 and L(7/8)γi

AD (hA,t(w)) ≥ L(3/4)γi

D (w) − 25 exp(−kγ2i+1/2
14). For ease of

notation, letGw denote the set of (A, t) that are good for w. Similarly, let US denote the set ofA whereA is δ-unusual
for S.

For all w ∈ H, γ ∈ Γi, A and t, we have that

Lγ
S(w) ≥ L

(7/8)γi

AS (hA,t(w))− P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w), Ax⟩ ≤ (7/8)γi].

Thus

Lγ
S(w) ≥ EA,t[L(7/8)γi

AS (hA,t(w))− P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ (7/8)γi]]

≥ EA,t[L(7/8)γi

AS (hA,t(w)) | (A, t) ∈ Gw ∧A /∈ US ]PA,t[(A, t) ∈ Gw ∧A /∈ US ] (29)
− EA,t[P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ (7/8)γi]]. (30)
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For the term (29), we observe that conditioned on (A, t) ∈ Gw, we have that hA,t(w) ∈ G0 since ∥hA,t(w)∥2 ≤ 4.
Secondly, when A /∈ US , this implies by the definition of δ-unusual that

L(7/8)γi

AS (hA,t(w)) ≥
L(7/8)γi

AD (hA,t(w))

2
− 211k + ln(1/δ)

n
.

Hence

EA,t[L(7/8)γi

AS (hA,t(w)) | (A, t) ∈ Gw ∧A /∈ US ]PA,t[(A, t) ∈ Gw ∧A /∈ US ] ≥

EA,t

[
L(7/8)γi

AD (hA,t(w))

2

∣∣∣∣∣(A, t) ∈ Gw ∧A /∈ US

]
PA,t[(A, t) ∈ Gw ∧A /∈ US ]−

211k + ln(1/δ)

n
. (31)

Using again that (A, t) ∈ Gw, we have that (31) is at least

L(3/4)γi

D (w)

2
PA,t[(A, t) ∈ Gw ∧A /∈ US ]−

211k + ln(1/δ)

n
− 25 exp(−kγ2i+1/2

14). (32)

We now bound P[(A, t) ∈ Gw] and P[A /∈ US ]. For this, we recall that ∥Aw∥22 ∼ (1/k)χk
2 . Thus E[∥Aw∥22] = 1

and by Markov’s, we get P[∥Aw∥22 ≥ 9] ≤ 1/9. Conditioned on ∥Aw∥22 < 9, we have ∥hA,t(w)∥2 ≤ ∥Aw∥2 +

∥hA,t(w)−Aw∥2 ≤
√
9 +

√
k(10
√
k)−2 < 4. Next observe that

L(7/8)γi

AD (hA,t(w)) ≥ L(3/4)γi

D (w)− P(x,y)∼D[y⟨w,x⟩ ≤ (3/4)γi ∧ y⟨hA,t(w),Ax⟩ > (7/8)γi].

We have by Lemma 6 that there is a constant c > 0 so that

EA,t[P(x,y)∼D[y⟨w,x⟩ ≤ (3/4)γi ∧ y⟨hA,t(w),Ax⟩ > (7/8)γi]] =

E(x,y)∼D[PA,t[y⟨w,x⟩ ≤ (3/4)γi ∧ y⟨hA,t(w),Ax⟩ > (7/8)γi]] ≤
sup

x∈X :⟨w,x⟩≤(3/4)γi

PA,t[⟨hA,t(w),Ax⟩ > (7/8)γi] ≤

c exp(−k(γi/8)2/c) ≤
c exp(−kγ2i+1/(2

8c)).

Thus by Markov’s inequality, we conclude

PA,t[L(7/8)γi

AD (hA,t(w)) < L(3/4)γi

D (w)− 5c exp(−kγ2i+1/(2
8c))] ≤

PA,t[P(x,y)∼D[y⟨w,x⟩ ≤ (3/4)γi ∧ y⟨hA,t(w),Ax⟩ > (7/8)γi] > 5c exp(−kγ2i+1/(2
8c))] < 1/5.

Finally, since we assumed S is δ-representative, we have PA[A ∈ US ] ≤ 1/4 by definition of δ-representative. We
conclude by a union bound that

PA,t[(A, t) ∈ Gw ∧A /∈ US ] ≥ 1− 1/9− 1/5− 1/4 ≥ 1/2.

In summary, we have shown that (32) is at least

L(3/4)γi

D (w)

2
· 1
2
− 211k + ln(1/δ)

n
− 5c exp(−kγ2i+1/(2

8c)).

Recalling that (29) ≥ (32) gives

EA,t[L(7/8)γi

AS (hA,t(w)) | (A, t) ∈ Gw ∧A /∈ US ]PA,t[(A, t) ∈ Gw ∧A /∈ US ] ≥

L(3/4)γi

D (w)

4
− 211k + ln(1/δ)

n
− 5c exp(−kγ2i+1/(2

8c)).
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The term (30) can be bounded using Lemma 6 by

EA,t[P(x,y)∼S [y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ (7/8)γi]] =

E(x,y)∼S [PA,t[y⟨w,x⟩ > γ ∧ y⟨hA,t(w),Ax⟩ ≤ (7/8)γi]] ≤
sup

x∈X :⟨w,x⟩>γ

PA,t[⟨hA,t(w),Ax⟩ ≤ (7/8)γi] ≤

c exp(−k(γ − (7/8)γi)
2/c) ≤

c exp(−kγ2i /(64c)) ≤
c exp(−kγ2i+1/(2

8c)).

In summary, we have shown that for (δ/4)-representative S, it holds for all w ∈ H that

Lγ
S(w) ≥

L(3/4)γi

D (w)

4
− 211k + ln(4/δ)

n
− 6c exp(−kγ2i+1/(2

8c)).

We finally conclude from (28) that with probability at least 1− δ over S, it holds for all w ∈ H that

Lγ
S(w) ≥

L(3/4)γi

D (w)

4
− 211k + ln(4/δ)

n
− 6c exp(−kγ2i+1/(2

8c)).

Picking k = 28cγ−2
i+1 ln(γ

2
i+1n) finally results in

Lγ
S(w) ≥

L(3/4)γi

D (w)

4
−

220c ln(γ2i+1n)

γ2i+1n
− 2 ln(e/δ)

n
.

This completes the proof.
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A Auxiliary Results
In this section, we prove a number of auxiliary results used throughout the paper. For this, we need the following
concentration inequality:

Theorem 17 (Wainwright [2019], example 2.11). Let Y ∼ χ2
k, then for any x ∈ (0, 1) it holds that

P
[∣∣∣∣Yk − 1

∣∣∣∣ ≥ x] ≤ 2 exp(−kx2/8).

Restatement of Claim 1. For any 0 < δ < 1, it holds with probability 1 − δ over S ∼ Dn that (17) and (18)
simultaneously hold for all (Γi, Lj) and Γi, with slightly different constants c.
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Proof. Let (γi, γi+1] be such that γi+1 := 2in−1/2. Similarly, let (ℓj , ℓj+1] be such that ℓj+1 := 2jn−1. Do a union
bound over all (Γi, Lj) for i = 1, . . . , lg2(cγn

1/2) and j = 0, . . . , lg2 n with δi,j := (δ/e)3 exp(−γ−2
i+1 ln(e/ℓj+1))

in (17). We see that

lg2(cγn
1/2)∑

i=1

lg2 n∑
j=0

δi,j =

lg2(cγn
1/2)∑

i=1

lg2 n∑
j=0

(δ/e)3 exp(−γ−2
i+1 ln(e/ℓj+1))

=

lg2(cγn
1/2)∑

i=1

lg2 n∑
j=0

(δ/e)3 exp(−2−2in ln(en2−j))

=

lg2(cγn
1/2)∑

i=1

lg2 n∑
j=0

(δ/e)3(en2−j)−2−2in

Doing the substitutions j ← lg2 n− j and i← lg2(cγn
1/2) + 1− i, this equals

=

lg2(cγn
1/2)∑

i=1

lg2 n∑
j=0

(δ/e)3(e2j)−22i−2c−2
γ

≤
lg2(cγn

1/2)∑
i=1

lg2 n∑
j=0

(δ/e)3e−22i−2

2−j

≤
lg2(cγn

1/2)∑
i=1

2(δ/e)3e−22i−2

≤ δ/2.

Similarly, do a union bound over all Γi with δi := (δ/e)3 exp(−γ−2
i+1 ln(eγ

2
i+1n)) in (18). We have

lg2(cγn
1/2)∑

i=1

δi =

lg2(cγn
1/2)∑

i=1

(δ/e)3 exp(−γ−2
i+1 ln(eγ

2
i+1n))

≤
lg2(cγn

1/2)∑
i=1

(δ/e)3 exp(− ln(eγ2i+1n))

=

lg2(cγn
1/2)∑

i=1

(δ/e)3
1

eγ2i+1n

=

lg2(cγn
1/2)∑

i=1

(δ/e)3
n

e22in

≤ (δ/e)3

≤ δ/2.
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We thus have that with probability at least 1− δ that for all (Γi, Lj), we have

sup
w∈H(Γi,Lj),γ∈Γi

|LD(w)− Lγ
S(w)| ≤

c

(√
ℓj+1

(
ln(e/ℓj+1)

γ2i+1n
+

ln(e/δi,j)

n

)
+

ln(e/ℓj+1)

γ2i+1n
+

ln(e/δi,j)

n

)
=

c

(√
ℓj+1

(
ln(e/ℓj+1)

γ2i+1n
+

ln(e/δi,j)

n

)
+ 2 · ln(e/ℓj+1)

γ2i+1n
+ 3 · ln(e/δ)

n

)
.

and for all Γi, we have

inf
w∈H
Lγi

S (w) ≥
L(3/4)γi

D (w)

4
− c

(
ln(eγ2i+1n)

γ2i+1n
− ln(e/δi)

n

)
=
L(3/4)γi

D (w)

4
− c

(
2 ·

ln(eγ2i+1n)

γ2i+1n
− 3 · ln(e/δ)

n

)
.

Restatement of Claim 2. For any 0 < δ < 1 and training set S, if (17) and (18) hold simultaneously for all (Γi, Lj)
and Γi, then (16) holds for all γ ∈ (n−1/2, cγ ] and all w ∈ H for large enough constant c > 1 in (16).

Proof. Let 0 < δ < 1 and assume as in the claim that (17) and (18) holds for all (Γi, Lj) and Γi. Now consider an
arbitrary γ ∈ (n−1/2, cγ ] and w ∈ H. Let i and j be such that γ ∈ (γi, γi+1] and L(3/4)γi

D (w) ∈ (ℓj , ℓj+1] with
γi+1 = 2in−1/2 and ℓj+1 = 2jn−1. We consider two cases. Let c4 > 1 be the constant in Lemma 4. First, if

L(3/4)γi

D (w) ≤ 16 · c4 ·
(
ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)
,

then since LD(w) ≤ L(3/4)γi

D (w) and γ ≤ γi+1 (using that ln(eγ2n)/(γ2n) is decreasing in γ for γ ≥ n−1/2), we
have already shown (16) for sufficiently large constant c in (16). So assume this is not the case. Our goal is to show
that ℓj+1 and Lγ

S(w) are within constant factors of each other so that we may replace occurrences of ℓj+1 by Lγ
S(w)

in (17). We first see that our assumption implies

ℓj+1 ≥ L(3/4)γi

D (w) ≥ 16 · c4 ·
(
ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)
≥ 1

γ2i+1n
> n−1. (33)

This also implies j ̸= 0 and hence ℓj+1 = 2ℓj and therefore ℓj+1 ≤ 2L(3/4)γi

D (w). Letting c3 be the constant in
Lemma 3, we get from (17) and (33), that

Lγ
S(w) ≤ LD(w) + c3 ·

(√
ℓj+1

(
ln(e/ℓj+1)

γ2i+1n
+

ln(e/δ)

n

)
+

ln(e/ℓj+1)

γ2i+1n
+

ln(e/δ)

n

)

≤ L(3/4)γi

D (w) + c3 ·

(√
2L(3/4)γi

D (w)

(
ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)
+

ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)

≤ L(3/4)γi

D (w) + c3 ·
(√

2L(3/4)γi

D (w)L(3/4)γi

D (w) + L(3/4)γi

D (w)

)
≤ 3 · c3 · L(3/4)γi

D (w).

We thus also have ℓj+1 ≥ L(3/4)γi

D (w) ≥ (3 · c3)−1Lγ
S(w). Inserting this and (33) in (17) gives

LD(w) ≤ Lγ
S(w) + c3

(√
ℓj+1

(
ln(3ec3/Lγ

S(w))

γ2i+1n
+

ln(e/δ)

n

)
+

ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)
. (34)
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Finally from (18) and γ ≥ γi, we have

Lγ
S(w) ≥ L

γi

S (w)

≥
L(3/4)γi

D (w)

4
− c4

(
ln(eγ2i+1n)

γ2i+1n
− ln(e/δ)

n

)
≥ ℓj+1

8
− c4

(
ln(eγ2i+1n)

γ2i+1n
− ln(e/δ)

n

)
.

From (33), this is at least ℓj+1/16 and thus ℓj+1 ≤ 16Lγ
S(w). Inserting this in (34) finally gives us

LD(w) ≤ Lγ
S(w) + c3

(√
16Lγ

S(w)

(
ln(2ec3/Lγ

S(w))

γ2i+1n
+

ln(e/δ)

n

)
+

ln(eγ2i+1n)

γ2i+1n
+

ln(e/δ)

n

)
.

Since γ ≤ γi+1, this completes the proof of Claim 2 for sufficiently large c > 0 in (16).

Restatement of Lemma 6. There is a constant c > 0, such that for any integer k ≥ 1, w ∈ H, x ∈ X and any
γ ∈ (0, 1], it holds that PA,t[|⟨hA,t(w),Ax⟩ − ⟨w, x⟩| > γ] < c exp(−γ2k/c).

Proof. We start by observing that ∥Aw∥22, ∥Ax∥22 and ∥A(w − x)∥22/∥w − x∥22 are all (1/k)χ2
k distributed. Using

Theorem 17 with x = γ/3, we have with probability at least 1− 6 exp(−kγ2/72) that ∥Aw∥22 ∈ 1± γ/3, ∥Ax∥22 ∈
1± γ/3 and ∥A(w − x)∥22 ∈ ∥w − x∥22(1± γ/3). By the polar identity, this implies

⟨Aw,Aw⟩ = 1

4

(
∥Aw∥22 + ∥Ax∥22 − ∥A(w − x)∥22

)
∈ 1

4

(
∥w∥22 + ∥x∥22 − ∥w − x∥22

)
± γ

12

(
∥w∥22 + ∥x∥22 + ∥w − x∥22

)
⊆ ⟨w, x⟩ ± γ

12
(1 + 1 + 4)

= ⟨w, x⟩ ± γ

2
.

Let us condition on an outcome A of A satisfying the above. We then observe that

⟨hA,t(w), Ax⟩ = ⟨hA,t(w)−Aw,Ax⟩+ ⟨Aw,Ax⟩.

By the randomized rounding procedure, we have that each coordinate i satisfies Eti [(hA,t(w))i] = (Aw)i. Moreover,
these coordinates are independent. Letting ∆i = (hA,t(w))i − (Aw)i, we then have that E[∆i] = 0 and that ∆i lies
in an interval of length (10

√
k)−1. Hoeffding’s inequality implies

Pt[|⟨hA,t(w)−Aw,Ax⟩| > γ/2] = P∆1,...,∆k

[∣∣∣∣∣
k∑

i=1

∆i(Ax)i

∣∣∣∣∣ > γ/2

]

< 2 exp

(
− 2(γ/2)2∑k

i=1(10
√
k)−2(Ax)2i

)

= 2 exp

(
− 50γ2k

∥Ax∥22

)
≤ 2 exp

(
−25γ2k

)
In summary, it holds with probability at least 1− 6 exp(−kγ2/72)− 2 exp(−25γ2k) ≥ 1− 7 exp(−kγ2/72) that

|⟨hA,t(w),Ax⟩ − ⟨w, x⟩| ≤ |⟨hA,t(w),Ax⟩ − ⟨Aw,Ax⟩|+ |⟨Aw,Ax⟩ − ⟨w, x⟩|
≤ |⟨hA,t(w)−Aw,Ax⟩|+ γ/2

< γ.
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Restatement of Remark 5. The value p(zi) satisfying (19) has p(zi) ∈ [0, 1].

Proof. Recall that (19) states that p(zi) satisfies

(Aw)i = p(zi)

(
1

2 · 10
√
k
+

zi

10
√
k

)
+ (1− p(zi))

(
1

2 · 10
√
k
+
zi + 1

10
√
k

)
where zi is such that

(1/2)(10
√
k)−1 + zi(10

√
k)−1 ≤ (Aw)i < (1/2)(10

√
k)−1 + (zi + 1)(10

√
k)−1.

This implies

((1/2)(10
√
k)−1 + zi(10

√
k)−1) + (1− p(zi))(10

√
k)−1 = (Aw)i ⇒

(Aw)i − ((1/2)(10
√
k)−1 + zi(10

√
k)−1) = (1− p(zi))(10

√
k)−1.

By definition of zi, we have that the left hand side is a number in [0, (10
√
k)−1] and thus we conclude

(1− p(zi)) ∈ [0, 1]⇒ p(zi) ∈ [0, 1].

Restatement of Remark 7. For any training set S and distribution D over X × {−1, 1}, we have

EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ 0]] ≤ E(x,y)∼D[ϕ(y⟨w,x⟩)]
EA,t[P(x,y)∼S [y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γ]] ≥ E(x,y)∼S [ϕ(y⟨w,x⟩)]
EA,t[P(x,y)∼S [y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γ]] ≤ E(x,y)∼S [ρ(y⟨w,x⟩)]
EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > 0]] ≥ E(x,y)∼D[ρ(y⟨w,x⟩)].

In the proof, we will need the following monotonicity properties

Claim 4. We have PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = α1] ≤ PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = α2]
for any 0 ≤ α1 ≤ α2 ≤ γi.

Claim 5. We have PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = α2] ≤ PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = α1]
for any 0 < α1 ≤ α2 ≤ γi.

First we will prove Remark 7 using the two claims. Afterward, we will prove Claim 4 and Claim 5.

Proof of Remark 7. For convenience, let us recall the definitions of ϕ and ρ:

ϕ(α) =


PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = α] if − cγ ≤ α ≤ 0
(γi−α)

γi
PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = 0] if 0 < α ≤ γi

0 if γi < α ≤ cγ

ρ(α) =


PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = α] if γi < α ≤ cγ
α
γi
PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = γi] if 0 < α ≤ γi

0 if − cγ ≤ α ≤ 0

We handle each of the inequalities in turn. First we see that

EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ 0] =

E(x,y)∼D[PA,t[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ 0]] ≤
E(x,y)∼D[ϕ(y⟨w,x⟩)].
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Here the inequality follows from the observations that ϕ(y⟨w, x⟩) ≥ 0 for y⟨w, x⟩ > 0, whereas PA,t[y⟨hA,t(w),Ax⟩ >
γi/2∧y⟨w,x⟩ ≤ 0] = 0 for such y⟨w, x⟩. Similarly for y⟨w, x⟩ = α ≤ 0, we have ϕ(y⟨w, x⟩) = PA,t[y⟨hA,t(w),Ax⟩ >
γi/2 | y⟨w, x⟩ = α] = PA,t[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w, x⟩ ≤ 0 | y⟨w, x⟩ = α].

Similarly, we have

EA,t[P(x,y)∼S [y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γ] =
E(x,y)∼S [PA,t[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γ]] ≥
E(x,y)∼S [PA,t[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w,x⟩ ≤ γi]] ≥

E(x,y)∼S [ϕ(y⟨w,x⟩)].

The last inequality follows by observing that if y⟨w, x⟩ > γi, we have ϕ(y⟨w, x⟩) = 0 and PA,t[y⟨hA,t(w),Ax⟩ >
γi/2 ∧ y⟨w, x⟩ ≤ γi] = 0. For α = y⟨w, x⟩ with 0 < α ≤ γi, we have ϕ(α) = γi−α

γi
PA,t[y⟨hA,t(w),Ax⟩ > γi/2 |

y⟨w, x⟩ = 0] ≤ PA,t[y⟨hA,t(w),Ax⟩ > γi/2 | y⟨w, x⟩ = α] = PA,t[y⟨hA,t(w),Ax⟩ > γi/2 ∧ y⟨w, x⟩ ≤ γi |
y⟨w, x⟩ = α]. This uses the monotonicity in Claim 4. Finally for y⟨w, x⟩ = α ≤ 0, the two coincide as in the above
argument.

Symmetric arguments for ρ gives

EA,t[P(x,y)∼S [y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γ] =

E(x,y)∼S [PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γ] ≤
E(x,y)∼S [PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > γi] ≤

E(x,y)∼S [ρ(y⟨w,x⟩)].

Here the last inequality follows from the following considerations. For y⟨w, x⟩ = α with α ≤ γi, we have that
PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w, x⟩ > γi] = 0 and ρ is always non-negative. For α > γi, we have ρ(α) =
PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = α] = PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w, x⟩ > γi | y⟨w, x⟩ = α] and
the two coincide.

Finally, we have

EA,t[P(x,y)∼D[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > 0] =

E(x,y)∼D[PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w,x⟩ > 0] ≥
E(x,y)∼D[ρ(y⟨w,x⟩)].

Here the inequality follows by observing that for y⟨w, x⟩ = α with α ≤ 0, both ρ(α) and PA,t[y⟨hA,t(w),Ax⟩ ≤
γi/2 ∧ y⟨w, x⟩ > 0] are 0. For 0 ≤ α ≤ γi we have by definition that ρ(α) = α

γi
PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 |

y⟨w, x⟩ = γi] ≤ PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = α] = PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 ∧ y⟨w, x⟩ > 0 |
y⟨w, x⟩ = α], where we used that PA,t[y⟨hA,t(w),Ax⟩ ≤ γi/2 | y⟨w, x⟩ = α] is decreasing in α (as stated in
Claim 5). Finally, for α > γi, the two coincide as above.

Proof of Claim 4. Letw1, x1, y1 be such that α1 := y1⟨w1, x1⟩ and letw2, x2, y2 be such that α2 := y2⟨w2, x2⟩. Con-
sider sampling Xi,Yi ∼ N (0, 1/k) independently. Also sample offsets t′1, . . . , t

′
k uniformly and independently in

[0, 1] and let X′
i be Xi rounded based on t′i as above. Let Z1 = Y = α1X+

√
1− α2

1Y and Z2 = α2X+
√
1− α2

2Y.
Then the marginal distribution of ⟨X′,Zj⟩ equals the distribution of ⟨hA,t(wj), yjAxj⟩ = yj⟨hA,t(wj),Axj⟩.

Consider now an arbitrary outcome X ′, X of X,X′. We have ⟨Zj , X
′⟩ ≥ γi/2 if and only if αj⟨X,X ′⟩ +√

1− α2
j ⟨Y, X ′⟩ ≥ γi/2. We also have that ⟨Y, X ′⟩ ∼ N (0, ∥X ′∥22/k) and thus

P[⟨Z2, X
′⟩ ≥ γi/2]− P[⟨Z1, X

′⟩ ≥ γi/2] =(
1− Φ

(
√
k · γi/2− α2⟨X,X ′⟩√

1− α2
2

))
−

(
1− Φ

(
√
k · γi/2− α1⟨X,X ′⟩√

1− α2
1

))
=

Φ

(
√
k · γi/2− α1⟨X,X ′⟩√

1− α2
1

)
− Φ

(
√
k · γi/2− α2⟨X,X ′⟩√

1− α2
2

)
. (35)
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Here Φ(·) denotes the cumulative density function of the normal distribution with mean 0 and variance 1. Now let

u :=
√
k · γi/2− α1⟨X,X ′⟩√

1− α2
1

.

and

ℓ :=
√
k · γi/2− α2⟨X,X ′⟩√

1− α2
2

Consider now the derivative
∂

∂α

√
k · γi/2− α⟨X,X

′⟩√
1− α2

=
√
k · αγi/2− ⟨X,X

′⟩
(1− α2)3/2

.

Assume first that ∥X∥22 ≥ 9/10. Then ⟨X,X ′⟩ ≥ 8/9 by Remark 14. Now since αγi/2 ≤ γ2i /2 ≤ c2γ/8 ≤ 1/9 for
cγ small enough. Thus the derivative when ∥X∥22 ≥ 9/10 is no more than

√
k · (1/9− 8/9) ≤ −7

√
k/9.

This implies u− ℓ ≥ 7(α2 − α1)
√
k/9 > 0 and therefore

P[⟨Z2, X
′⟩ ≥ γi/2] ≥ P[⟨Z1, X

′⟩ ≥ γi/2].

If we in addition have that ∥X∥22 ≤ 4/3, then we may even show that the difference in probabilities is large as a
function of α2 − α1 as follows

P[⟨Z2, X
′⟩ ≥ γi/2]− P[⟨Z1, X

′⟩ ≥ γi/2] =
1√
2π
·
∫ u

x=ℓ

e−x2/2dx

≥ e−maxa∈[ℓ,u] a
2/2 7
√
k(α2 − α1)

9
√
2π

.

Observing that

max
a∈[ℓ,u]

a2 ≤ k

1− c2γ
·max{γ2i /2, γ2i ⟨X,X ′⟩2}

we use Remark 14 to conclude ⟨X,X ′⟩ ≤ (10/9)∥X∥22 and thus u2 ≤ 2kγ2i (10/9)
2 ≤ 3kγ2i for cγ ≤ 1/

√
2. This

gives us that for any X with 9/10 ≤ ∥X∥22 ≤ 4/3, it holds that

P[⟨Z2, X
′⟩ ≥ γi/2]− P[⟨Z1, X

′⟩ ≥ γi/2] ≥ e−3kγ2
i /2

7
√
k(α2 − α1)

9
√
2π

.

For ∥X∥22 < 9/10, we have ∥X ′∥2 = ∥X ′ −X +X∥2 ≤ ∥X ′ −X∥2 + ∥X∥2 ≤
√
k(10
√
k)−2 +

√
9/10 ≤ 11/10.

It follows by Cauchy-Schwartz that |⟨X,X ′⟩| ≤ ∥X∥2 · ∥X ′∥2 ≤
√

9/10 · 11/10 ≤ 11/10. For 0 ≤ α ≤ γi ≤
cγ/2 ≤ 1/

√
8 for cγ ≤ 1/

√
2, this upper bounds the derivative by

√
k · γ

2
i /2 + 11/10

(1− 1/8)3/2
< 2
√
k.

If u ≥ ℓ, we already have that
P[⟨Z2, X ′⟩ ≥ γi/2]− P[⟨Z1, X ′⟩ ≥ γi/2] ≥ 0

So assume u < ℓ. The bound on the derivative gives us that ℓ− u ≤ 2
√
k(α2 − α1) and we conclude

P[⟨Z2, X ′⟩ ≥ γi/2]− P[⟨Z1, X ′⟩ ≥ γi/2] = −
1√
2π
·
∫ ℓ

x=u

e−x2/2dx

≥ −e−mina∈[u,ℓ] a
2/2 · 2

√
k(α2 − α1)√

2π

≥ −2
√
k(α2 − α1)√

2π
.
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We finally conclude

P[⟨Z2, X ′⟩ ≥ γi/2]− P[⟨Z1, X ′⟩ ≥ γi/2] ≥

P[9/10 ≤ ∥X∥22 ≤ 4/3] · e−3kγ2
i /2 · 7

√
k(α2 − α1)

9
√
2π

− P[∥X∥22 < 9/10] · 2
√
k(α2 − α1)√

2π
. (36)

Using Theorem 17, we get

P[9/10 ≤ ∥X∥22 ≤ 4/3] ≥ 1− 2 exp(−k/800), (37)

and
P[∥X∥22 < 9/10] ≤ 2 exp(−k/800).

For k at least a sufficiently large constant, we have that (37) is at least 1/2 and we get that (36) is at least

e−3kγ2
i /2 · 7

√
k(α2 − α1)

18
√
2π

− e−k/800 · 4
√
k(α2 − α1)√

2π
.

For the constant cγ sufficiently small, this is positive as γi ≤ cγ .

Proof of Claim 5. Similarly to the proof of Claim 4, let w1, x1, y1 by such that α1 = y1⟨w1, x1⟩ and let w2, x2, y2 be
such that α2 = y2⟨w2, x2⟩. Draw X, X′ and Z1,Z2 as above. Consider again an arbitrary outcome X ′, X of X,X′.

We have ⟨Zj , X
′⟩ ≤ γi/2 if and only if αj⟨X,X ′⟩+

√
1− α2

j ⟨Y, X ′⟩ ≤ γi/2. Hence

P[⟨Z1, X
′⟩ ≤ γi/2]− P[⟨Z2, X

′⟩ ≤ γi/2] =

Φ

(
√
k · γi/2− α1⟨X,X ′⟩√

1− α2
1

)
− Φ

(
√
k · γi/2− α2⟨X,X ′⟩√

1− α2
2

)

This has the exact same constraints 0 ≤ α1 ≤ α2 ≤ γi and exact same form as (35). The conclusion thus follows
from the proof of Claim 4.

Restatement of Remark 13. If ∥X∥22 ≤ 4/3, then ∥X ′∥22 < 2.

Proof. By the triangle inequality, and using that all coordinates of X − X ′ are bounded by (10
√
k)−1 in absolute

value, we have

∥X ′∥22 = ∥X ′ −X +X∥22
≤ (∥X ′ −X∥2 + ∥X∥2)

2

≤
(√

k(10
√
k)−2 +

√
4/3

)2

= (1/10 +
√

4/3)2

< 2.

Restatement of Remark 14. If ∥X∥22 ≥ 9/10, then (8/9)∥X∥22 ≤ ⟨X,X ′⟩ ≤ (10/9)∥X∥22

Proof. We have:

⟨X ′, X⟩ = ⟨X ′ −X +X,X⟩
= ⟨X ′ −X,X⟩+ ∥X∥22.
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Since each coordinate of X ′ −X is bounded by (10
√
k)−1 in absolute value, it follows by Cauchy-Schwartz that

|⟨X ′ −X,X⟩| ≤ ∥X ′ −X∥2 · ∥X∥2

≤
√
k(10
√
k)−2 · ∥X∥

2
2

∥X∥2

≤ ∥X∥22
10
√
9/10

≤ ∥X∥22/9.

The conclusion follows.

Restatement of Remark 16. For any distribution D over X × {−1, 1}, fixed w ∈ H, margin γ and any A ∈ Rk×d,
it holds with probability at least 1− δ over S ∼ Dn that

|Lγ
AD(w)− L

γ
AS(w)| ≤

√
8Lγ

AD(w) ln(1/δ)

n
+

2 ln(1/δ)

n
.

Proof. Since Lγ
AS(w) is an average of n i.i.d. 0/1 random variables with mean Lγ

AD(w), we get from Bernstein’s
inequality that

PS∼D

[
|Lγ

AD(w)− L
γ
AS(w)| >

√
8Lγ

AD(w) ln(1/δ)

n
+

2 ln(1/δ)

n

]
≤

exp

− 1
2 ·
(√

8Lγ
AD(w)n ln(1/δ) + 2 ln(1/δ)

)2
nLγ

AD(w) +
1
3 ·
(√

8Lγ
AD(w) ln(1/δ)n+ 2 ln(1/δ)

)
 ≤

exp

(
−

1
2 ·max {8Lγ

AD(w)n, 4 ln(1/δ)} ln(2/δ)
1
8 max{nLγ

AD(w), 4 ln(1/δ)}+
1
3 ·
√
2 ·max{8Lγ

AD(w), 4 ln(1/δ)} · ln(1/δ)

)
.

Using that ln(1/δ) ≤ 1
4 max{8Lγ

AD(w), 4 ln(1/δ)}, this is at most

exp

− 1
2 ln(1/δ)

1
8 + 1

3 ·
√

1
2

 ≤ exp(− ln(1/δ)) = δ.
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