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A classical problem in combinatorics seeks colorings of low discrepancy. More concretely, the goal is to color

the elements of a set system so that the number of appearances of any color among the elements in each set is

as balanced as possible. We present a new lower bound for multi-color discrepancy, showing that there is a set

system with 𝑛 subsets over a set of elements in which any 𝑘-coloring of the elements has discrepancy at least

Ω
(√︃

𝑛
ln𝑘

)
. This result improves the previously best-known lower bound of Ω

(√︃
𝑛
𝑘

)
of Doerr and Srivastav

[2003] and may have several applications. Here, we explore its implications on the feasibility of fair division

concepts for instances with 𝑛 agents having valuations for a set of indivisible items. The first such concept is

known as consensus 1/𝑘-division up to 𝑑 items (CD𝑑) and aims to allocate the items into 𝑘 bundles so that

no matter which bundle each agent is assigned to, the allocation is envy-free up to 𝑑 items. The above lower

bound implies that CD𝑑 can be infeasible for 𝑑 ∈ Ω
(√︃

𝑛
ln𝑘

)
. We furthermore extend our proof technique to

show that there exist instances of the problem of allocating indivisible items to 𝑘 groups of 𝑛 agents in total so

that envy-freeness and proportionality up to 𝑑 items are infeasible for 𝑑 ∈ Ω
(√︃

𝑛
𝑘 ln𝑘

)
and 𝑑 ∈ Ω

(√︃
𝑛

𝑘3
ln𝑘

)
,

respectively. The lower bounds for fair division improve the currently best-known ones by Manurangsi and

Suksompong [2022].

1 Introduction
Allocating indivisible items to agents with valuations for them has been a key problem in fair
division. The notion of envy-freeness up to one item (EF1), introduced by Budish [2011] is a well-

established fairness notion today. An allocation of items to agents is EF1 if every agent (weakly)

prefers the bundle of items allocated to her to the bundle of items allocated to any other agent

after removing one item from the latter. In contrast to the notion of envy-freeness, which is very

demanding for indivisible items, EF1 can always be achieved in a number of different ways: via the

envy-cycle elimination algorithm of Lipton et al. [2004], the folklore round-robin algorithm, while

it is compatible with Pareto-optimality [Caragiannis et al., 2019].

A natural generalization of the standard fair division setting with indivisible items assumes that

agents with different valuations for a set of items are partitioned into groups. In this setting, an

allocation has one bundle per group, and the agent gets value for the items in the bundle allocated

to her group. Unfortunately, EF1 allocations may not exist in this setting [Kyropoulou et al., 2020].

Actually, even the further relaxed notion of envy-freeness up to 𝑑 items (EF𝑑) may be infeasible

even when 𝑑 is a function of the number of agents and the number of groups. Manurangsi and

Suksompong [2022] show that even envy-freeness up to Ω
(√
𝑛/𝑘2

)
items can be infeasible for

instances with 𝑛 agents partitioned into 𝑘 groups. Non-trivial positive results are also known; EF𝑑

allocations do exist for 𝑑 ∈ 𝑂
(√
𝑛
)
in all instances with 𝑛 agents. Notice that this bound does not

depend on the number of groups.

Other fairness properties that have been considered for groups of agents include relaxations of

proportionality. An allocation of items to agents partitioned into 𝑘 groups is proportional up to

𝑑 items (PROP𝑑) if the value that each agent has for the bundle of items allocated to her group

together with the 𝑑 most valuable items not allocated to her group is at least 1/𝑘 times her total

value for all items. The simplest version of PROP1 was introduced by Conitzer et al. [2017] and is

considered for groups of agents by Manurangsi and Suksompong [2022], who prove similar bounds
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on 𝑑 for the feasibility of PROP𝑑 allocations with those for EF𝑑 mentioned above. Another relevant

fairness notion is known as consensus 1/𝑘-division up to 𝑑 items (CD𝑑). Here, a partition of the

items to 𝑘 bundles is CD𝑑 for a set of 𝑛 agents with valuations for the items if the values an agent

has for any pair of items differ by at most 𝑑 . Manurangsi and Suksompong [2022] prove that CD𝑑

partitions always exist for 𝑑 ∈ 𝑂
(√
𝑛
)
and may not exist for 𝑑 ∈ Ω

(√︁
𝑛/𝑘

)
.

In their proofs, Manurangsi and Suksompong [2022] exploit several problems and statements

from discrepancy theory. For example, their lower bound for CD𝑑 follows after establishing a

connection between 𝑘-allocations and 𝑘-colorings of set systems. Given a set system consisting

of a universe of elements and a collection of 𝑛 element subsets, a 𝑘-coloring of the elements has

a discrepancy 𝑑 if the number of elements colored with any color in each subset 𝑆 is between

|𝑆 |/𝑘 − 𝑑 and |𝑆 |/𝑘 + 𝑑 . Intuitively, we may think of the elements of a set system as the items of a

corresponding fair division instance. Each set corresponds to a distinct agent with valuation 1 for

each item corresponding to an element in her set and valuation 0 for any other item. A 𝑘-coloring

of the elements directly defines an allocation of the items into 𝑘 bundles. Now, the relation between

the minimum discrepancy among all 𝑘-colorings of the set system and the minimum value of 𝑑 for

which a CD𝑑 allocation exists in the corresponding fair division instance should be clear. The lower

bound of Manurangsi and Suksompong [2022] on CD𝑑 exploits such a relation and follows directly

by a lower bound on multi-color discrepancy due to Doerr and Srivastav [2003]. Other notions,

such as the weighted discrepancy of 2-colorings, are used by Manurangsi and Suksompong [2022]

to get upper and lower bounds on EF𝑑 and PROP𝑑 .

1.1 Our contribution
In this paper, we improve the bounds on 𝑑 for which CD𝑑 partitions and EF𝑑 and PROP𝑑 allocations

may not exist. Our new bounds are Ω
(√︁

𝑛
ln𝑘

)
, Ω

(√︁
𝑛

𝑘 ln𝑘

)
, and Ω

(√︃
𝑛

𝑘3
ln𝑘

)
and apply even to

instances with binary agent valuations. For instances with 𝑛ℎ agents in group ℎ ∈ [𝑘], we also

have another lower bound of 𝑑 ∈ Ω

(√︃
min{𝑛1,𝑛2,...,𝑛𝑘 }

ln𝑘

)
for PROP𝑑 . For CD𝑑 , we exploit the relation

of CD𝑑 partitions on instances with binary valuations with 𝑘-colorings in set systems that have

discrepancy 𝑑 . So, our new lower bound for CD𝑑 follows directly by a new lower bound of Ω
(√︁

𝑛
ln𝑘

)
on multi-color discrepancy. This improves the twenty-year-old bound of Ω

(√︁
𝑛/𝑘

)
by Doerr and

Srivastav [2003] and may have applications to other areas as well. In our proof, we define a

probability distribution over set systems with 𝑛 subsets over an appropriately defined collection of

elements and show that the probability that no 𝑘-coloring has discrepancy at most 𝑑 in all sets of

the set system returned by the distribution is less than 1. This probabilistic argument implies that

there exists a set system (one of those in the support of the distribution) for which any 𝑘-coloring

has discrepancy more than 𝑑 .

In contrast to the approach of Manurangsi and Suksompong [2022], our lower bounds for EF𝑑

and PROP𝑑 do not follow by applying bounds from discrepancy theory as black boxes. Instead,

adapting our construction and proof for our multi-color discrepancy lower bound, we prove that

there exist instances with 𝑛 agents partitioned into 𝑘 groups and having binary valuations for a set

of items, so that any allocation of the items to the 𝑘 groups is not EF𝑑 or PROP𝑑 for the values of 𝑑

claimed above.

1.2 Further related work
Existing work on fair division concepts for groups of agents has focused on relaxations of envy-

freeness. The results of Manurangsi and Suksompong [2022] on EF𝑑 improve considerably previous
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ones by Kyropoulou et al. [2020] and Segal-Halevi and Suksompong [2019]. Manurangsi and Suk-

sompong [2017] study EF𝑑 for groups of agents, assuming that the values are drawn independently

from a common probability distribution. Consensus 1/𝑘-division up to 𝑑 items generalizes and

relaxes the consensus halving problem (e.g., see Alon [1987], Simmons and Su [2003]) from two

groups and divisible items to multiple groups and indivisible items. Different fairness notions that

involve groups of agents in their definitions are studied by Conitzer et al. [2019] and Aziz and Rey

[2020].

The rich literature on discrepancy theory is the topic of several books, e.g., see [Chazelle, 2000,

Chen et al., 2014, Matousek, 1999]. Classical bounds on the discrepancy of 2-colorings of set systems

follow by the seminal work of Alon and Spencer [2000] and Spencer [1985]. Extensions to multi-

colorings are considered by Doerr and Srivastav [2003]. The problem is equivalent to coloring

the nodes of a hypergraph so that all colors are used approximately the same number of times in

each hyperedge. In the discrepancy theory literature, bounds on 2- or multi-color discrepancy are

expressed in terms of the number of nodes, the number of hyperedges, and the number of colors.

Here, we aim to bound the minimum multi-color discrepancy using only the number of sets (i.e.,

hyperedges) and colors as parameters. Manurangsi and Suksompong [2022] explain how existing

discrepancy theory results can be expressed under this terminology, yielding the currently best

upper and lower bounds of 𝑂 (
√
𝑛) and Ω

(√︁
𝑛/𝑘

)
, respectively.

1.3 Roadmap
The rest of the paper is structured as follows. We present formal definitions of the notions we

study in Section 2. The lower bound for multi-color discrepancy and its implication to consensus

1/𝑘-division up to 𝑑 items is presented in Section 3. The lower bounds for EF𝑑 and PROP𝑑 are

presented in Section 4. We conclude in Section 5.

2 Preliminaries
We consider fair division settings with a set of 𝑛 agents with (additive) valuations for𝑚 indivisible

items. Using the notation [𝑡] = {1, 2, ..., 𝑡} for integer 𝑡 ≥ 1, we identify both agents and items as

positive integers in [𝑛] and [𝑚], respectively. Each agent 𝑖 ∈ [𝑛] has a non-negative valuation
𝑣𝑖 ( 𝑗) for item 𝑗 ∈ [𝑚]. The valuation of an agent for a set of items 𝑆 ⊆ [𝑚] is then simply

𝑣𝑖 (𝑆) =
∑

𝑗∈𝑆 𝑣𝑖 ( 𝑗).
Given an integer 𝑘 ≥ 2, a 𝑘-allocation 𝐴 = (𝐴1, 𝐴2, ..., 𝐴𝑘 ), is simply an ordered partition of the

items into 𝑘 bundles. We consider three fairness notions. The first one, called consensus 1/𝑘-division
up to 𝑑 items, is defined as follows.

Definition 1 (consensus 1/𝑘-division up to 𝑑 items). Given a set of 𝑛 agents with valuations
for a set of items and an integer 𝑘 ≥ 2, a 𝑘-allocation 𝐴 = (𝐴1, ..., 𝐴𝑘 ) of the items to 𝑘 bundles is a
consensus 1/𝑘-division up to 𝑑 items (or CD𝑑 , for short) if for every agent 𝑖 ∈ [𝑛] and every pair of
integers ℎ and ℓ from [𝑘], there is a set 𝐵 of at most 𝑑 items from bundle𝐴ℓ so that 𝑣𝑖 (𝐴ℎ) ≥ 𝑣𝑖 (𝐴ℓ \𝐵).
We are interested in the minimum value of 𝑑 so that CD𝑑 𝑘-allocations exist for all instances

with 𝑛 agents.

Definition 2. Given parameters 𝑛 and 𝑘 , we denote by CD(𝑛, 𝑘) the minimum value of 𝑑 so that
for any instances with 𝑛 agents having valuations for a set of items, there is a CD𝑑 𝑘-allocation.

Our next two fairness notions extend well-known relaxations of envy-freeness and proportional-

ity to groups of agents. We consider settings in which 𝑛 agents are partitioned into 𝑘 groups. Again,

we identify the groups by positive integers in [𝑘]. We will denote by 𝑛ℎ the number of agents in

group ℎ ∈ [𝑘] and by 𝑔(𝑖) the group to which agent 𝑖 ∈ [𝑛] belongs.
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Definition 3 (envy-freeness up to 𝑑 items). Given a set of 𝑛 agents partitioned into 𝑘 groups, a
𝑘-allocation is envy-free up to 𝑑 items (or EF𝑑 for short) if for every agent 𝑖 and group ℎ ∈ [𝑘], there
is a set 𝐵 of at most 𝑑 items so that 𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≥ 𝑣𝑖 (𝐴ℎ \ 𝐵).
Definition 4 (proportionality up to 𝑑 items). Given a set of 𝑛 agents partitioned into 𝑘

groups, a 𝑘-allocation is proportional up to 𝑑 items (or PROP𝑑 , for short) if for every agent 𝑖 , there
is a set 𝐵 of at most 𝑑 items not allocated to group 𝑔(𝑖) (i.e., 𝐵 ⊆ [𝑚] \ 𝐴𝑔 (𝑖 ) ) so that 𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≥
1

𝑘
· ∑𝑔∈[𝑚] 𝑣𝑖 (𝑔) − 𝑣𝑖 (𝐵).
Again, we are interested in the minimum value of 𝑑 so that EF𝑑 and PROP𝑑 𝑘-allocations exist

for all instances with 𝑛 agents partitioned into 𝑘 groups.

Definition 5. Given 𝑘 ≥ 2 positive integer parameters 𝑛1, 𝑛2, ..., 𝑛𝑘 , we denote by EF(𝑛1, ..., 𝑛𝑘 )
(respectively, PROP(𝑛1, ..., 𝑛𝑘 )) the minimum value of 𝑑 so that, for any instances with 𝑛ℎ agents in
group ℎ ∈ [𝑘] with valuations for a set of items, there exist an EF𝑑 (respectively, PROP𝑑) 𝑘-allocation.

The notion of CD𝑑 is strongly related to a notion from discrepancy theory. In the multi-color

discrepancy problem, we are given a set system (𝑈 ,S) consisting of a universe of elements𝑈 and

a collection S with 𝑛 subsets 𝑆1, 𝑆2, ..., 𝑆𝑛 of𝑈 . A 𝑘-coloring 𝜒 of the set system (𝑈 ,S) is simply

an assignment of colors from [𝑘] to the elements of 𝑈 , with 𝜒 (𝑠) denoting the color given to the

element 𝑠 ∈ 𝑈 by 𝜒 . Given a 𝑘-coloring 𝜒 for the elements of a universe𝑈 and a color ℎ ∈ [𝑘], we
denote by 𝜒−1 (ℎ) the set of elements that are colored with ℎ under 𝜒 . We are interested in studying

the discrepancy of 𝑘-colorings defined as follows.

Definition 6 (multi-color discrepancy). A 𝑘-coloring of a set system (𝑈 ,S) with a universe of
elements𝑈 and a collection S of 𝑛 sets has discrepancy 𝑑 if

max

ℎ∈[𝑘 ]
max

𝑖∈[𝑛]

����|𝜒−1 (ℎ) | − |𝑆𝑖 |
𝑘

���� ≤ 𝑑.

Similarly to the fairness notions above, we are interested in the minimum value of 𝑑 for which

𝑘-colorings of discrepancy 𝑑 always exist.

Definition 7. Given integers 𝑘 ≥ 2 and 𝑛, we denote by DISC(𝑛, 𝑘) the minimum value of 𝑑 so
that all set systems with a collection consisting of 𝑛 element subsets have a 𝑘-coloring of discrepancy 𝑑 .

In the next two sections, we present new lower bounds for the quantities DISC(𝑛, 𝑘), CD(𝑛, 𝑘),
EF(𝑛1, ..., 𝑛𝑘 ), and PROP(𝑛1, ..., 𝑛𝑘 ) defined above. Our results are summarized in Table 1, together

with a comparison with the previous best-known lower bounds from the literature.

In our proofs, we use extensively an anti-concentration bound for the binomial probability

distribution B(𝑡, 1/2) with 𝑡 trials with a success probability of 1/2 per trial. In other words, we

focus on random variables defined as the sum

∑𝑡
𝑗=1𝑋𝑖 of 𝑡 independent and identically distributed

Bernoulli random variables 𝑋1, 𝑋2, ..., 𝑋𝑡 with Pr[𝑋𝑖 = 1] = 1/2 for 𝑖 ∈ [𝑡]. The following lemma

has been proved by Klein and Young [2015] and bounds from below the probability that the random

variable is considerably smaller or considerably larger than its expectation 𝑡/2.
Lemma 1 (Reverse Chernoff bound, e.g., see [Klein and Young, 2015]). Let 𝑋 ∼ B(𝑡, 1/2).

Then, for every 𝜀 ∈ (0, 1/2] so that 𝜀2𝑡 ≥ 6, it holds

Pr

[
𝑋 ≤ 𝑡

2

· (1 − 𝜀)
]
≥ exp

(
−9𝜀2𝑡

2

)
and

Pr

[
𝑋 ≥ 𝑡

2

· (1 + 𝜀)
]
≥ exp

(
−9𝜀2𝑡

2

)
.
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quantity our bound previous bound reference

DISC(𝑛, 𝑘) Ω
(√︃

𝑛
ln𝑘

)
Ω

(√︃
𝑛
𝑘

)
[Doerr and Srivastav, 2003]

CD(𝑛, 𝑘) Ω
(√︃

𝑛
ln𝑘

)
Ω

(√︃
𝑛
𝑘

)
[Manurangsi and Suksompong, 2022]

EF(𝑛1, ..., 𝑛𝑘 ) Ω
(√︃

𝑛
𝑘 ln𝑘

)
Ω

(√︃
max{𝑛1,...,𝑛𝑘 }

𝑘3

)
[Manurangsi and Suksompong, 2022]

PROP(𝑛1, ..., 𝑛𝑘 )
Ω

(√︃
𝑛

𝑘3
ln𝑘

)
Ω

(√︃
min{𝑛1,𝑛2,...,𝑛𝑘 }

ln𝑘

) Ω

(√︃
max{𝑛1,...,𝑛𝑘 }

𝑘3

)
[Manurangsi and Suksompong, 2022]

Table 1. Our lower bounds compared to previous work. For DISC, 𝑛 and 𝑘 denote the number of sets and
colors, respectively. For the remaining quantities, 𝑛 and 𝑘 denote the number of agents and groups/bundles,
respectively. For EF and PROP, 𝑛ℎ denotes the number of agents in the ℎ-th group; it is 𝑛 = 𝑛1 + ... + 𝑛𝑘 .
Notice that max{𝑛1, ..., 𝑛𝑘 } can be as low as 𝑛/𝑘 . So, the previous lower bounds for EF and PROP can be as
low as Ω

(√
𝑛/𝑘2

)
. Also, min{𝑛1, 𝑛2, ..., 𝑛𝑘 } can be as high as 𝑛/𝑘 , so our second lower bound for PROP can be

as high as Ω
(√︃

𝑛
𝑘 ln𝑘

)
.

3 A lower bound for multi-color discrepancy
We devote this section to proving our lower bound for DISC(𝑛, 𝑘).

Theorem 1. Let 𝑘 ≥ 3 + 6𝑒48 and 𝑛 ≥ 1 + 147 · 𝑒48 ln𝑘 be integers. There exists a set system with 𝑛
sets over a set of elements, so that any 𝑘-coloring of its elements has discrepancy at least Ω

(√︁
𝑛
ln𝑘

)
.

We will prove Theorem 1 using a probabilistic argument. For appropriate parameters𝑚 and 𝑑 ,

we will define a random set system consisting of 𝑛 subsets of𝑚 elements,
1
such that the probability

that there is some 𝑘-coloring with discrepancy at most 𝑑 is strictly smaller than 1. This will imply

that there exists a set system for which any 𝑘-coloring of the elements has discrepancy higher than

𝑑 , proving the desired lower bound.

Proof. We will use the construction below with𝑚 =

⌊
(𝑛−1)𝑘
3𝑒48 ln𝑘

⌋
and 𝑑 =

√︁
𝑚
𝑘
. Together with the

restriction 𝑛 ≥ 1 + 147 · 𝑒48 ln𝑘 , these definitions imply that 𝑑 ∈ Ω
(√︁

𝑛
ln𝑘

)
. Furthermore, notice that√︁

𝑚/𝑘 =

√︂
1

𝑘

⌊
(𝑛−1)𝑘
3𝑒48 ln𝑘

⌋
≥

√︃
1

𝑘
⌊49𝑘⌋ = 7 and, thus, 𝑑 ≤ 𝑚

7𝑘
; this property will be useful later in the

proof.

The construction is as follows. There is a set 𝑆0 that includes all elements and 𝑛 − 1 sets 𝑆1, 𝑆2, ...,

𝑆𝑛−1 defined in the following way: for 𝑖 ∈ [𝑛 − 1] and 𝑗 ∈ [𝑚], element 𝑗 is included in set 𝑆𝑖 with

probability 1/2. All random events are independent.

We denote by 𝑋 the set of 𝑘-colorings 𝜒 satisfying

𝑚

𝑘
− 𝑑 ≤

��𝜒−1 (ℎ)
�� ≤ 𝑚

𝑘
+ 𝑑 (1)

1
We remark that, in our proof, we select the number of elements so that our lower bound on 𝑑 as a function of 𝑛 and 𝑘 is

as high as possible. If we are further constrained by the number of elements𝑚, we can slightly modify our proof to get a

discrepancy lower bound of Ω

(√︃
𝑚
𝑘
ln

𝑛𝑘
𝑚 ln𝑘

)
.
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for every ℎ ∈ [𝑘]. Clearly, a 𝑘-coloring that does not belong to 𝑋 has discrepancy higher than 𝑑 for

some color and set 𝑆0, since it must be������𝜒−1 (ℎ) ∩ 𝑆0
�� − |𝑆0 |

𝑘

���� = �����𝜒−1 (ℎ)
�� − 𝑚

𝑘

��� > 𝑑

for some color ℎ ∈ [𝑘].
Consider a 𝑘-coloring 𝜒 ∈ 𝑋 . We will show that the probability that 𝜒 has discrepancy at most 𝑑

for the random set system above is less than 𝑘−𝑚
. As there are at most 𝑘𝑚 different colorings, this

implies that the probability that none of them has discrepancy 𝑑 is positive. This is sufficient to

prove that a set system with no 𝑘-coloring of discrepancy at most 𝑑 exists, completing the proof of

the theorem.

For 𝑖 ∈ [𝑛 − 1] and ℎ ∈ {1, 2, ..., ⌊𝑘/2⌋} denote by E𝑖,ℎ the event defined as��𝜒−1 (ℎ) ∩ 𝑆𝑖
�� < 𝑚

2𝑘
− 𝑑.

Similarly, for 𝑖 ∈ [𝑛 − 1] and ℎ ∈ {⌊𝑘/2⌋ + 1, ..., 𝑘}, denote by E𝑖,ℎ the event defined as��𝜒−1 (ℎ) ∩ 𝑆𝑖
�� > 𝑚

2𝑘
+ 𝑑.

The next lemma provides a sufficient condition so that combinations of events E𝑖,ℎ yield high

discrepancy for coloring 𝜒 .

Lemma 2. If there exists 𝑖 ∈ [𝑛 − 1], ℎ1 ∈ {1, 2, ..., ⌊𝑘/2⌋}, and ℎ2 ∈ {⌊𝑘/2⌋ + 1, ..., 𝑘} such that
both events E𝑖,ℎ1

and E𝑖,ℎ2
are true, the discrepancy of coloring 𝜒 is greater than 𝑑 .

Proof. Notice that if the events E𝑖,ℎ1
and E𝑖,ℎ2

are true, we have

��𝜒−1 (ℎ1) ∩ 𝑆𝑖
�� < 𝑚

2𝑘
− 𝑑 and��𝜒−1 (ℎ2) ∩ 𝑆𝑖

�� > 𝑚
2𝑘

+ 𝑑 , respectively. Now, if |𝑆𝑖 |
𝑘

> 𝑚
2𝑘
, we have������𝜒−1 (ℎ1)

�� − |𝑆𝑖 |
𝑘

���� = |𝑆𝑖 |
𝑘

−
��𝜒−1 (ℎ1)

�� > 𝑑.

Otherwise, if
|𝑆𝑖 |
𝑘

≤ 𝑚
2𝑘
, we have������𝜒−1 (ℎ2)

�� − |𝑆𝑖 |
𝑘

���� = ��𝜒−1 (ℎ2)
�� − |𝑆𝑖 |

𝑘
> 𝑑.

Both cases imply a discrepancy higher than 𝑑 for coloring 𝜒 . □

We now bound the probabilities of the events defined above. Specifically, we prove the following

lemma.

Lemma 3. For every 𝑖 ∈ [𝑛 − 1], ℎ ∈ [𝑘] it holds

Pr

[
E𝑖,ℎ1

]
< exp(− exp(−48)) .

Proof. Notice that the random variable

��𝜒−1 (ℎ) ∪ 𝑆𝑖
��
follows the binomial probability distribu-

tion B(|𝜒−1 (ℎ) |, 1/2) with |𝜒−1 (ℎ) | trials and success probability 1/2 per trial. For 𝑖 ∈ [𝑛 − 1] and
ℎ ∈ {1, 2, ..., ⌊𝑘/2⌋}, we have

Pr[E𝑖,ℎ] = Pr

[��𝜒−1 (ℎ) ∪ 𝑆𝑖
�� < 𝑚

2𝑘
− 𝑑

]
≥ Pr

[��𝜒−1 (ℎ) ∪ 𝑆𝑖
�� < ��𝜒−1 (ℎ)

��
2

− 3𝑑

2

]
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≥ exp

(
−81

2

· 𝑑2

|𝜒−1 (ℎ) |

)
. (2)

For 𝑖 ∈ [𝑛 − 1] and ℎ ∈ {⌊𝑘/2⌋ + 1, ..., 𝑘}, we have

Pr[E𝑖,ℎ] = Pr

[��𝜒−1 (ℎ) ∪ 𝑆𝑖
�� > 𝑚

2𝑘
+ 𝑑

]
≥ Pr

[��𝜒−1 (ℎ) ∪ 𝑆𝑖
�� > ��𝜒−1 (ℎ)

��
2

− 3𝑑

2

]
≥ exp

(
−81

2

· 𝑑2

|𝜒−1 (ℎ) |

)
. (3)

The first inequality in the derivations of (2) and (3) follow by the right and left inequality in (1)

respectively. The second inequality follows by applying the reverse Chernoff bound (Lemma 1)

with 𝑡 = |𝜒−1 (ℎ) | and 𝜀 = 3𝑑
|𝜒−1 (ℎ) | . The next claim justifies that we can indeed do so.

Claim 4. For 𝜀 = 3𝑑
|𝜒−1 (ℎ) | and 𝑡 = |𝜒−1 (ℎ) |, it holds that 𝜀 ≤ 1/2 and 𝜀2 · |𝜒−1 (ℎ) | ≥ 6.

Proof. By the fact that𝑑 ≤ 𝑚
7𝑘

and the left inequality in (1), we have 6𝑑 ≤ 𝑚
𝑘
−𝑑 ≤ |𝜒−1 (ℎ) |, which

implies that 𝜀 = 3𝑑
|𝜒−1 (ℎ) | ≤

1

2
. Now, notice that the facts 𝑑 =

√︁
𝑚
𝑘
and 𝑑 ≤ 𝑚

7𝑘
imply that 𝑑 ≤ 𝑑2

7
≤ 𝑑2

2
.

Using this observation and the right inequality in (1), we get |𝜒−1 (ℎ) | ≤ 𝑚
𝑘
− 𝑑 = 𝑑2 + 𝑑 ≤ 3𝑑2

2
.

Hence, 𝜀2𝑡 = 9𝑑2

|𝜒−1 (ℎ) | ≥ 6. The claim follows. □

Now, using the left inequality in (1), equations (2) and (3) yield

Pr[E𝑖,ℎ] ≥ exp

(
−81

2

· 𝑑2

𝑚
𝑘
− 𝑑

)
≥ exp

(
−81

2

· 7𝑑
2𝑘

6𝑚

)
> exp(−48).

Finally, by the inequality 1 − 𝑧 ≤ 𝑒−𝑧 for every real 𝑧, we get

Pr

[
E𝑖,ℎ

]
= 1 − Pr

[
E𝑖,ℎ

]
< 1 − exp(−48) ≤ exp(− exp(−48)),

as desired. □

We are now ready to complete the proof of Theorem 1. Denote by D the event that coloring

𝜒 ∈ 𝑋 has discrepancy at most 𝑑 for the random set system. By Lemma 2, we have

D ⊆
∨

𝑖∈[𝑛−1]

©­«©­«
∨

ℎ1∈{1,...,⌊𝑘/2⌋ }
E𝑖,ℎ1

ª®¬ ∧ ©­«
∨

ℎ2∈{⌊𝑘/2⌋+1,...,𝑘 }
E𝑖,ℎ2

ª®¬ª®¬
=

∧
𝑖∈[𝑛−1]

©­­«
©­«

∨
ℎ1∈{1,...,⌊𝑘/2⌋ }

E𝑖,ℎ1

ª®¬ ∧ ©­«
∨

ℎ2∈{⌊𝑘/2⌋+1,...,𝑘 }
E𝑖,ℎ2

ª®¬
ª®®¬

=
∧

𝑖∈[𝑛−1]

©­«©­«
∨

ℎ1∈{1,...,⌊𝑘/2⌋ }
E𝑖,ℎ1

ª®¬ ∨ ©­«
∨

ℎ2∈{⌊𝑘/2⌋+1,...,𝑘 }
E𝑖,ℎ2

ª®¬ª®¬
=

∧
𝑖∈[𝑛−1]

©­«©­«
∧

ℎ1∈{1,...,⌊𝑘/2⌋ }
E𝑖,ℎ1

ª®¬ ∨ ©­«
∧

ℎ2∈{⌊𝑘/2⌋+1,...,𝑘 }
E𝑖,ℎ2

ª®¬ª®¬ (4)
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Using equation (4) and Lemma 2, we obtain

Pr[D] ≤ Pr


∧

𝑖∈[𝑛−1]

©­«©­«
∧

ℎ1∈{1,...,⌊𝑘/2⌋ }
E𝑖,ℎ1

ª®¬ ∨ ©­«
∧

ℎ2∈{⌊𝑘/2⌋+1,...,𝑘 }
E𝑖,ℎ2

ª®¬ª®¬


=
∏

𝑖∈[𝑛−1]
Pr

©­«©­«
∧

ℎ1∈{1,...,⌊𝑘/2⌋ }
E𝑖,ℎ1

ª®¬ ∨ ©­«
∧

ℎ2∈{⌊𝑘/2⌋+1,...,𝑘 }
E𝑖,ℎ2

ª®¬ª®¬


≤
∏

𝑖∈[𝑛−1]

©­«Pr


∧
ℎ1∈{1,...,⌊𝑘/2⌋ }

E𝑖,ℎ1

 + Pr


∧

ℎ2∈{⌊𝑘/2⌋+1,...,𝑘 }
E𝑖,ℎ2

ª®¬
=

∏
𝑖∈[𝑛−1]

©­«
∏

ℎ1∈{1,...,⌊𝑘/2⌋ }
Pr

[
E𝑖,ℎ1

]
+

∏
ℎ2∈{⌊𝑘/2⌋+1,...,𝑘 }

Pr

[
E𝑖,ℎ2

]ª®¬. (5)

The second inequality follows by applying the union bound. The last equality follows since

for a given 𝑖 ∈ [𝑛 − 1], the events in

{
E𝑖,ℎ : ℎ ∈ {1, ..., ⌊𝑘/2⌋}

}
(and, respectively, the events{

E𝑖,ℎ : ℎ ∈ {⌊𝑘/2⌋ + 1, ..., 𝑘}
}
) are mutually independent. Using the upper bound for Pr

[
E𝑖,ℎ

]
from

Lemma 3, we finally get

Pr[D] <
(
2 · exp

(
−𝑘 − 1

2

· exp(−48)
))𝑛−1

≤ exp

(
(𝑛 − 1) ·

(
−𝑘 − 1

2

· exp(−48) + 1

))
≤ exp

(
−(𝑛 − 1) · 𝑘

3

· exp(−48)
)

≤ exp(−𝑚 ln𝑘) = 𝑘−𝑚,

as desired. The first inequality follows by equation (5) after observing that each of the sets

{1, ..., ⌊𝑘/2⌋} and {⌊𝑘/2⌋ + 1, ..., 𝑘} have at least 𝑘−1
2

elements. The second inequality is obvious,

the third one follows by the condition 𝑘 ≥ 3 + 6𝑒48, and the fourth one by the definition of𝑚. □

Using a result of Manurangsi and Suksompong [2022, Theorem 3.1] which lower-bounds CD(𝑛, 𝑘)
by DISC(𝑛, 𝑘), we obtain the following corollary.

Theorem 2. Let 𝑘 ≥ 3 + 6𝑒48 and 𝑛 ≥ 1 + 147 · 𝑒48 ln𝑘 be integers. Then, there is a set of 𝑛 agents
with valuations for a set of items so that no 𝑘-allocation of the items is CD𝑑 for some 𝑑 ∈ Ω

(√︁
𝑛
ln𝑘

)
.

4 Lower bounds for envy-freeness and proportionality
In this section, we prove our lower bounds for EF(𝑛1, ..., 𝑛𝑘 ) (Theorem 3) and PROP(𝑛1, ..., 𝑛𝑘 )
(Theorem 4 and Theorem 5).

Theorem 3. Let 𝑘 ≥ 2 be an integer and 𝑛 ≥ 𝑘 + 242 · 𝑒124𝑘 ln𝑘 . Then, for every set of 𝑛 agents,
partitioned into 𝑘 non-empty groups, there is a set of items and valuations of the agents for these items
so that no allocation is EF𝑑 for some 𝑑 ∈ Ω

(√︁
𝑛

𝑘 ln𝑘

)
.

Theorem 4. Let 𝑘 ≥ 2 be an integer and 𝑛 ≥ 𝑘 + 162 · 𝑒77𝑘 ln𝑘 . Then, for every set of 𝑛 agents,
partitioned into 𝑘 non-empty groups, there is a set of items and valuations of the agents for these items

so that no allocation is PROP𝑑 for some 𝑑 ∈ Ω
(√︃

𝑛
𝑘3

ln𝑘

)
.
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Theorem 5. For every set of agents partitioned into 𝑘 ≥ 4 groups so that the number of agents in
each group is at least 1 + 32𝑒96𝑘2 ln𝑘 , there is a set of items and valuations of the agents for these

items so that no allocation is PROP𝑑 for some 𝑑 ∈ Ω

(√︃
min(𝑛1,𝑛2,...,𝑛𝑘 )

ln𝑘

)
.

We prove Theorems 3, 4 and 5 using a probabilistic argument that adapts the one we used for

multi-color discrepancy in Section 3. For appropriate parameters𝑚 and 𝑑 , we will define a valuation

profile in which the agent valuations for𝑚 items are random and will show that the probability that

there exists an allocation that is envy-free/proportional up to 𝑑 items is strictly smaller than 1. This

implies that there exists an instance that does not admit an allocation that is envy-free/proportional

up to 𝑑 items.

For each group ℎ ∈ [𝑘], we select a specific agent to be the leader of the group. We denote by 𝐿

the set of agents who are group leaders and by 𝐹 the remaining agents. The instance has a set𝑀

of𝑚 items. For each item 𝑗 ∈ 𝑀 , the group leader 𝑖 ∈ 𝐿 has valuation 𝑣𝑖 ( 𝑗) = 1 for the item. The

valuation 𝑣𝑖 ( 𝑗) of an agent 𝑖 ∈ 𝐹 for item 𝑗 ∈ 𝑀 is decided by tossing a fair coin; it is equal to 1 on

heads (this happens with probability 1/2) and equal to 0 on tails. All coin tosses are independent.

4.1 Proof of Theorem 3
We prove Theorem 3 using the above construction with𝑚 =

⌊
𝑛−𝑘

2𝑒124 ln𝑘

⌋
and set 𝑑 =

√︁
𝑚
𝑘
. Together

with the restriction 𝑛 ≥ 𝑘 +242 ·𝑒124𝑘 ln𝑘 , these definitions imply that 𝑑 ∈ Ω
(√︁

𝑛
𝑘 ln𝑘

)
. Furthermore,

notice that

√︁
𝑚/𝑘 ≥ 11 and𝑚 ≥ 11𝑘𝑑 ; these observations will be useful later.

Denote by A the set of allocations 𝐴 = (𝐴1, 𝐴2, ..., 𝐴𝑘 ) of the items in𝑀 to 𝑘 bundles so that

𝑚

𝑘
− 𝑑 ≤ |𝐴ℎ | ≤

𝑚

𝑘
+ 𝑑 (6)

for every ℎ ∈ [𝑘]. Clearly, an allocation that does not belong to A is not envy-free up to 𝑑 ; the

condition for EF𝑑 would be violated for some agent in 𝐿. We will show that the random valuation

profile is envy-free up to 𝑑 for an allocation 𝐴 ∈ A is less than 𝑘−𝑚
. Since there are at most 𝑘𝑚

allocations in A, the probability that some of them is envy-free up to 𝑑 will be strictly less than 1,

completing the proof of Theorem 3.

For an agent 𝑖 ∈ 𝐹 and allocation 𝐴 ∈ A, we denote by E𝑖 (𝐴) the event defined as

𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≥ 𝑣𝑖 (𝐴ℎ) − 𝑑 (7)

for every ℎ ∈ [𝑘]. The following lemma provides the main argument in our proof.

Lemma 5. Consider an allocation 𝐴 ∈ A and agent 𝑖 ∈ 𝐹 . Then,

Pr[E𝑖 (𝐴)] < exp

(
−1

2

· exp(−124)
)
.

Proof. We will focus on two additional events E1

𝑖 (𝐴) and E2

𝑖 (𝐴). Let ℎ∗ be an arbitrary group

in [𝑘] \ {𝑔(𝑖)}. Event E1

𝑖 (𝐴) is true if and only if

𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≤
|𝐴ℎ∗ |
2

− 3𝑑

2

. (8)

Event E2

𝑖 (𝐴) is true if and only if

𝑣𝑖 (𝐴ℎ∗ ) ≥ |𝐴ℎ∗ |
2

. (9)
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Set 𝜀 = 5𝑑
|𝐴𝑔 (𝑖 ) | and notice that

Pr

[
E1

𝑖 (𝐴)
]
= Pr

[
𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≤

|𝐴ℎ∗ |
2

− 3𝑑

2

]
≥ Pr

[
𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≤

|𝐴𝑔 (𝑖 ) |
2

− 5𝑑

2

]
= Pr

[
𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≤

|𝐴𝑔 (𝑖 ) |
2

(1 − 𝜀)
]
. (10)

The inequality follows by equations (6), which imply that |𝐴ℎ∗ | ≥ |𝐴𝑔 (𝑖 ) | − 2𝑑 .

Now, notice that the random variable 𝑣𝑖 (𝐴𝑔 (𝑖 ) ) follows the binomial probability distribution

B(|𝐴𝑔 (𝑖 ) |, 1/2) with |𝐴𝑔 (𝑖 ) | trials (one for each item in bundle 𝐴𝑔 (𝑖 ) ) and success probability 1/2 per
trial. We will bound the RHS of inequality (10) by applying the reverse Chernoff bound (Lemma 1)

with 𝜀 = 5𝑑
|𝐴𝑔 (𝑖 ) | and 𝑡 = |𝐴𝑔 (𝑖 ) |. The next claim justifies that we can indeed do so.

Claim 6. For 𝜀 = 5𝑑
|𝐴𝑔 (𝑖 ) | , it holds 𝜀 ≤ 1/2 and 𝜀2 · |𝐴𝑔 (𝑖 ) | ≥ 6.

Proof. Recall that𝑚 ≥ 11𝑑𝑘 and 𝑑 =
√︁
𝑚/𝑘 . Thus, by the left part of equation (6), we have

|𝐴𝑔 (𝑖 ) | ≥ 𝑚
𝑘
−𝑑 ≥ 10𝑑 and 𝜀 = 5𝑑

|𝐴𝑔 (𝑖 ) | ≤ 1/2. Furthermore, by the right part of equation (6), we have

|𝐴𝑔 (𝑖 ) | ≤ 𝑚
𝑘
+ 𝑑 ≤ 12𝑚/𝑘

11
and 𝜀2 |𝐴𝑔 (𝑖 ) | = 25𝑚

𝑘 |𝐴𝑔 (𝑖 ) | ≥ 275/12 > 6. □

Thus, by applying Lemma 1, inequality (10) yields

Pr

[
E1

𝑖 (𝐴)
]
≥ exp

(
−
9𝜀2 |𝐴𝑔 (𝑖 ) |

2

)
= exp

(
− 225𝑑2

2|𝐴𝑔 (𝑖 ) |

)
≥ exp

(
− 225𝑑2

2(𝑚/𝑘 − 𝑑)

)
= exp

(
−

225

√︁
𝑚/𝑘

2(
√︁
𝑚/𝑘 − 1)

)
≥ exp

(
−2375

20

)
> exp(−124). (11)

The first inequality follows by the left part of equation (6) and the second one follows by the fact√︁
𝑚/𝑘 ≥ 11.

The random variable 𝑣𝑖 (𝐴ℎ∗ ) follows the binomial probability distribution B(|𝐴ℎ∗ |, 1/2) with
|𝐴ℎ∗ | trials and success probability 1/2 per trial. Thus,

Pr

[
E2

𝑖 (𝐴)
]
≥ 1/2. (12)

Clearly, since the bundles 𝐴𝑔 (𝑖 ) and 𝐴ℎ∗ are disjoint, the valuations of agent 𝑖 for the two bundles

are independent. Thus, by inequalities (11) and (12), we get

Pr

[
E1

𝑖 (𝐴) ∧ E2

𝑖 (𝐴)
]
>

1

2

· exp(−124). (13)

Now, observe that event E𝑖 (𝐴) is true only if some of events E1

𝑖 (𝐴) and E2

𝑖 (𝐴) is false. Hence,

Pr[E𝑖 (𝐴)] ≤ 1 − Pr

[
E1

𝑖 (𝐴) ∧ E2

𝑖 (𝐴)
]
< 1 − 1

2

· exp(−124) ≤ exp

(
−1

2

· exp(−124)
)

using inequality (13) and the property 1 − 𝑥 ≤ 𝑒−𝑥 for every real 𝑥 . □

Now, allocation𝐴 ∈ A is envy-free up to 𝑑 if the event E𝑖 (𝐴) is true for every agent 𝑖 ∈ 𝐹 . These

events are independent as each of them depends on the random valuations of a different agent in 𝐹 .

Thus, by Lemma 5 and since |𝐹 | = 𝑛 − 𝑘 , we have

Pr

[∧
𝑖∈𝐹

E𝑖 (𝐴)
]
< exp

(
−𝑛 − 𝑘

2

· exp(−124)
)
≤ exp(−𝑚 ln𝑘) = 𝑘−𝑚,

as desired. The second inequality follows by the definition of𝑚.
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4.2 Proof of Theorem 4
To prove Theorem 4, we use our construction above with 𝑚 =

⌊
𝑛−𝑘

2𝑒77 ln𝑘

⌋
and set 𝑑 =

√︃
𝑚
𝑘3
. To-

gether with the restriction 𝑛 ≥ 𝑘 + 162𝑒77𝑘 ln𝑘 , these definitions imply that 𝑑 ∈ Ω
(√︃

𝑛
𝑘3

ln𝑘

)
and,

furthermore,𝑚 ≥ 9𝑘2𝑑 (this fact will be useful later).

Denote by A the set of allocations 𝐴 = (𝐴1, 𝐴2, ..., 𝐴𝑘 ) of the items in𝑀 to 𝑘 bundles so that

|𝐴ℎ | ≥
𝑚

𝑘
− 𝑑 (14)

for every ℎ ∈ [𝑘]. Clearly, an allocation that does not belong to A is not proportional up to 𝑑

items, as the condition for PROP𝑑 would be violated for some agent in 𝐿. We will show that the

probability that the random valuation profile is proportional up to 𝑑 items for an allocation 𝐴 ∈ A
is at most 𝑘−𝑚

. Since there are fewer than 𝑘𝑚 allocations in A, the probability that some of them is

proportional up to 𝑑 items will be strictly less than 1, completing the proof.

Let 𝐴 ∈ A. For an agent 𝑖 ∈ 𝐹 , we denote by E𝑖 (𝐴) the event defined as

𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≥
1

𝑘
·

∑︁
ℎ∈[𝑘 ]

𝑣𝑖 (𝐴ℎ) − 𝑑. (15)

The following lemma provides the main argument in our proof.

Lemma 7. Consider the allocation 𝐴 ∈ A and agent 𝑖 ∈ 𝐹 . Then,

Pr[E𝑖 (𝐴)] ≤ exp

(
−1

2

· exp(−77)
)
.

Proof. Since the allocation 𝐴 belongs to A, inequality (14) implies

|𝐴𝑔 (𝑖 ) | =𝑚 −
∑︁

ℎ∈[𝑘 ]\{𝑔 (𝑖 ) }
|𝐴ℎ | ≤

𝑚

𝑘
+ (𝑘 − 1)𝑑. (16)

We will argue about two additional events E1

𝑖 (𝐴) and E2

𝑖 (𝐴). Event E1

𝑖 (𝐴) is true if and only if

𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≤
|𝐴𝑔 (𝑖 ) |
2

− 2𝑘𝑑. (17)

Event E2

𝑖 (𝐴) is true if and only if ∑︁
ℎ∈[𝑘 ]\{𝑔 (𝑖 ) }

𝑣𝑖 (𝐴ℎ) ≥
𝑚 − |𝐴𝑔 (𝑖 ) |

2

, (18)

Set 𝜀 = 4𝑘𝑑
|𝐴𝑔 (𝑖 ) | and observe that

Pr[E1

𝑖 (𝐴)] = Pr

[
𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≤

|𝐴𝑔 (𝑖 ) |
2

− 2𝑘𝑑

]
= Pr

[
𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≤

|𝐴𝑔 (𝑖 ) |
2

· (1 − 𝜀)
]
. (19)

Now, notice that, for agent 𝑖 ∈ 𝐹 , the random variable 𝑣𝑖 (𝐴𝑔 (𝑖 ) ) follows the binomial probability

distribution B(|𝐴𝑔 (𝑖 ) |, 1/2) with |𝐴𝑔 (𝑖 ) | trials (one for each item of bundle 𝐴𝑔 (𝑖 ) ) and success proba-

bility 1/2 per trial. We will bound the RHS of equation (19) by applying the reverse Chernoff bound

(Lemma 1) with 𝜀 = 4𝑘𝑑
|𝐴𝑔 (𝑖 ) | and 𝑡 = |𝐴𝑔 (𝑖 ) |. The next claim justifies that we can indeed do so.

Claim 8. For 𝜀 = 4𝑘𝑑
|𝐴𝑔 (𝑖 ) | and 𝑡 = |𝐴𝑔 (𝑖 ) |, it holds that 𝜀 ≤ 1/2 and 𝜀2 |𝐴𝑔 (𝑖 ) | ≥ 6.
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Proof. Recall that𝑚 ≥ 9𝑘2𝑑 and 𝑑 =
√︁
𝑚/𝑘3. Thus, by inequality (14), we have |𝐴𝑔 (𝑖 ) | ≥ 𝑚

𝑘
−𝑑 ≥

8𝑘𝑑 and 𝜀 = 4𝑘𝑑
|𝐴𝑔 (𝑖 ) | ≤ 1/2. Furthermore, by inequality (16), we have |𝐴𝑔 (𝑖 ) | ≤ 𝑚

𝑘
+(𝑘−1)𝑑 ≤ 𝑚

𝑘
+𝑘𝑑 ≤

10𝑚
9𝑘

and 𝜀2𝑡 = 16𝑘2𝑑2

|𝐴𝑔 (𝑖 ) | ≥
72𝑘3𝑑2

5𝑚
≥ 6. □

Using inequality (14) and the facts𝑚 ≥ 9𝑘2𝑑 and 𝑘 ≥ 2, we have

|𝐴𝑔 (𝑖 ) | ≥
𝑚

𝑘
− 𝑑 ≥ 𝑚

𝑘
− 𝑚

9𝑘2
≥ 17𝑚

18𝑘
. (20)

Now, by applying Lemma 1 and using inequality (20), we have

Pr[E1

𝑖 (𝐴)] ≥ exp

(
−
9𝜀2 |𝐴𝑔 (𝑖 ) |

2

)
= exp

(
−72𝑘2𝑑2

|𝐴𝑔 (𝑖 ) |

)
≥ exp

(
−1296𝑘3𝑑2

17𝑚

)
> exp(−77). (21)

Also, the random variable

∑
ℎ∈[𝑘 ]\{𝑔 (𝑖 ) } 𝑣𝑖 (𝐴ℎ) follows the binomial probability distribution

B(𝑚 − |𝐴𝑔 (𝑖 ) |, 1/2) with𝑚 − |𝐴𝑔 (𝑖 ) | trials (one for each item not belonging to bundle 𝐴𝑔 (𝑖 ) ) and
success probability 1/2 per trial. Thus,

Pr[E2

𝑖 (𝐴)] ≥
1

2

. (22)

Notice that the valuations of agent 𝑖 for the items in 𝐴𝑔 (𝑖 ) and ∪ℎ∈[𝑘 ]\{𝑔 (𝑖 ) }𝐴ℎ are selected indepen-

dently and, hence, the events E1

𝑖 (𝐴) and E2

𝑖 (𝐴) are independent. Thus,

Pr[E1

𝑖 (𝐴) ∧ E2

𝑖 (𝐴)] ≥
1

2

exp(−77) . (23)

We now claim that if the events E1

𝑖 (𝐴) and E2

𝑖 (𝐴) are true, then the event E𝑖 (𝐴) is false. Indeed,
using the inequalities (17) and (18), we obtain that∑︁

ℎ∈[𝑘 ]\{𝑔 (𝑖 ) }
𝑣𝑖 (𝐴ℎ) − (𝑘 − 1) · 𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≥

𝑚 − |𝐴𝑔 (𝑖 ) |
2

− (𝑘 − 1) ·
( |𝐴𝑔 (𝑖 ) |

2

− 2𝑘𝑑

)
=
𝑚

2

−
𝑘 · |𝐴𝑔 (𝑖 ) |

2

+ 2𝑘 (𝑘 − 1)𝑑

≥ 𝑚

2

− 𝑘

2

·
(𝑚
𝑘

+ (𝑘 − 1)𝑑
)
+ 2𝑘 (𝑘 − 1)𝑑

=
3𝑘 (𝑘 − 1)

2

𝑑 > 𝑘𝑑. (24)

The second inequality follows by inequality (16) and the third one by the facts 𝑘 ≥ 2 and 𝑑 > 0.

Equivalently, equation (24) yields

𝑣𝑖 (𝐴𝑔 (𝑖 ) ) <
1

𝑘
·

∑︁
ℎ∈[𝑘 ]\{𝑔 (𝑖 ) }

𝑣𝑖 (𝐴ℎ) − 𝑑,

contradicting the definition of event E𝑖 (𝐴) in Equation (15). Thus, event E𝑖 (𝐴) is true only if some

of E1

𝑖 (𝐴) and E2

𝑖 (𝐴) is not true, i.e.,
Pr[E𝑖 (𝐴)] ≤ 1 − Pr[E1

𝑖 (𝐴) ∧ E2

𝑖 (𝐴)]

≤ 1 − 1

2

exp(−77)

≤ exp

(
−1

2

exp(−77)
)
.

The last inequality follows by the property 1 − 𝑥 ≤ 𝑒𝑥 for every real 𝑥 . The proof of the lemma is

complete. □
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Now, allocation 𝐴 ∈ A is proportional up to 𝑑 items if the event E𝑖 (𝐴) is true for every agent

𝑖 ∈ 𝐹 . These events are independent as each of them depends on the random valuations of a different

agent. Thus, by Lemma 7 and since |𝐹 | = 𝑛 − 𝑘 , we have

Pr

[∧
𝑖∈𝐹

E𝑖 (𝐴)
]
< exp

(
−𝑛 − 𝑘

2

exp(−77)
)
≤ exp(−𝑚 ln𝑘) = 𝑘−𝑚,

as desired. The second inequality follows by the definition of𝑚.

4.3 Proof of Theorem 5
We prove Theorem 5 using our construction with𝑚 =

⌊
(min{𝑛1,𝑛2,...,𝑛𝑘 }−1)𝑘

2𝑒96 ln𝑘

⌋
and set 𝑑 =

√︁
𝑚/𝑘 .

Together with the assumption min{𝑛1, 𝑛2, ..., 𝑛𝑘 } ≥ 1 + 32𝑒96𝑘2 ln𝑘 , this implies 𝑑 ≤ 𝑚
4𝑘2

(and,

obviously, 𝑑 ≤ 𝑚
4𝑘
); these facts will be useful later in the proof.

Again, denote by A the set of allocations 𝐴 = (𝐴1, 𝐴2, ..., 𝐴𝑘 ) of the items in𝑀 to 𝑘 bundles so

that |𝐴ℎ | ≥ 𝑚/𝑘 − 𝑑 for every ℎ ∈ [𝑘]. As argued in the proof of Theorem 4, no other allocation

can be proportional up to 𝑑 items.

Let 𝐴 ∈ A. For an agent 𝑖 ∈ 𝐹 , we denote by E𝑖 (𝐴) the event defined as

𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≥
1

𝑘
·

∑︁
ℎ∈[𝑘 ]

𝑣𝑖 (𝐴ℎ) − 𝑑. (25)

For ℎ ∈ [𝑘], let 𝜁ℎ ≥ 0 be such that

|𝐴ℎ | =
𝑚

𝑘
+ (𝜁ℎ − 1)𝑑. (26)

Clearly, since

∑
ℎ∈[𝑘 ] |𝐴ℎ | =𝑚, it holds ∑︁

ℎ∈[𝑘 ]
𝜁ℎ = 𝑘. (27)

Hence, 𝜁ℎ ≤ 𝑘 for every ℎ ∈ [𝑘].
The next lemma is crucial for our proof.

Lemma 9. Consider the allocation 𝐴 ∈ A and agent 𝑖 ∈ 𝐹 . Then,

Pr[E𝑖 (𝐴)] < exp

(
−1

2

exp

(
−
6

(
3 + 𝜁𝑔 (𝑖 )

)
2

𝑑2𝑘

𝑚

))
Proof. We will argue about two additional events E1

𝑖 (𝐴) and E2

𝑖 (𝐴). Event E1

𝑖 (𝐴) is true if and
only if

𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≤
𝑚

2𝑘
− 2𝑑, (28)

while event E2

𝑖 (𝐴) is true if and only if∑︁
ℎ∈[𝑘 ]\{𝑔 (𝑖 ) }

𝑣𝑖 (𝐴ℎ) ≥
𝑚(𝑘 − 1)

2𝑘
− (𝑘 − 1)𝑑

2

. (29)

Using the definition of 𝜁𝑔 (𝑖 ) and setting 𝜀 =
(3+𝜁𝑔 (𝑖 ) )𝑑
|𝐴𝑔 (𝑖 ) | , we have

Pr

[
E1

𝑖 (𝐴)
]
= Pr

[
𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≤

𝑚

2𝑘
− 2𝑑

]
= Pr

[
𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≤

|𝐴𝑔 (𝑖 ) |
2

−
3 + 𝜁𝑔 (𝑖 )

2

𝑑

]
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= Pr

[
𝑣𝑖 (𝐴𝑔 (𝑖 ) ) ≤

|𝐴𝑔 (𝑖 ) |
2

(1 − 𝜀)
]
. (30)

Now, notice that, for agent 𝑖 ∈ 𝐹 , the random variable 𝑣𝑖 (𝐴𝑔 (𝑖 ) ) follows the binomial probability

distribution B(|𝐴𝑔 (𝑖 ) |, 1/2) with |𝐴𝑔 (𝑖 ) | trials (one for each item of bundle 𝐴𝑔 (𝑖 ) ) and success proba-

bility 1/2 per trial. We will bound the RHS of equation (30) by applying the reverse Chernoff bound

(Lemma 1) with 𝜀 =
(3+𝜁𝑔 (𝑖 ) )𝑑
|𝐴𝑔 (𝑖 ) | and 𝑡 = |𝐴𝑔 (𝑖 ) |. The next claim justifies that we can indeed do so.

Claim 10. For 𝜀 = (3+𝜁𝑔 (𝑖 ) )𝑑
|𝐴𝑔 (𝑖 ) | and 𝑡 = |𝐴𝑔 (𝑖 ) |, it holds that 𝜀 ≤ 1/2 and 𝜀2𝑡 ≥ 6.

Proof. By the definition of 𝜁𝑔 (𝑖 ) , we have 𝜀 =
(3+𝜁𝑔 (𝑖 ) )𝑑
|𝐴𝑔 (𝑖 ) | =

(3+𝜁𝑔 (𝑖 ) )𝑑
𝑚/𝑘+(𝜁𝑔 (𝑖 )−1)𝑑 , which is non-decreasing

for 𝜁𝑔 (𝑖 ) ∈ [0, 𝑘] since 𝑑 ≤ 𝑚
4𝑘
. Thus, since 𝑘 ≥ 4 and 𝑑 ≤ 𝑚

4𝑘2
, we get 𝜀 ≤ (3+𝑘 )𝑑

𝑚/𝑘+(𝑘−1)𝑑 ≤ 2𝑘2𝑑
𝑚

≤ 1

2
.

Also, by the definition of 𝜁𝑔 (𝑖 ) , we have 𝜀
2𝑡 =

(3+𝜁𝑔 (𝑖 ) )2𝑑2

𝑚
𝑘
+(𝜁𝑔 (𝑖 )−1)𝑑 . The derivative of this expression w.r.t

𝜁𝑔 (𝑖 ) has the same sign as the quantity

2(3 + 𝜁𝑔 (𝑖 ) )
(𝑚
𝑘

+ (𝜁𝑔 (𝑖 ) − 1)𝑑
)
− (3 + 𝜁𝑔 (𝑖 ) )2𝑑

= (3 + 𝜁𝑔 (𝑖 ) )
(
2𝑚

𝑘
+ 𝑑 (𝜁𝑔 (𝑖 ) − 5

)
≥

(
3 + 𝜁𝑔 (𝑖 )

) ( 2𝑚
𝑘

− 5𝑑

)
≥ 0.

Thus, it is minimized for 𝜁𝑔 (𝑖 ) = 0 and, hence, 𝜀2𝑡 ≥ 9𝑑2

𝑚/𝑘−𝑑 ≥ 12𝑑2𝑘
𝑚

≥ 6, as desired. The second

last inequality follows by the fact 𝑑 ≤ 𝑚
4𝑘

and the last inequality follows since 𝑑 =
√︁
𝑚/𝑘 , by

definition. □

We get

Pr

[
E1

𝑖 (𝐴)
]
≥ exp

(
−
9(3 + 𝜁𝑔 (𝑖 ) )2𝑑2

2|𝐴𝑔 (𝑖 ) |

)
= exp

(
−

9(3 + 𝜁𝑔 (𝑖 ) )2𝑑2

2(𝑚/𝑘 + (𝜁𝑔 (𝑖 ) − 1)𝑑

)
≥ exp

(
−
6(3 + 𝜁𝑔 (𝑖 ) )2𝑑2𝑘

𝑚

)
. (31)

Furthermore,

Pr

[
E2

𝑖 (𝐴)
]
= Pr


∑︁

ℎ∈[𝑘 ]\{𝑔 (𝑖 ) }
𝑣𝑖 (𝐴ℎ) ≥

𝑚(𝑘 − 1)
2𝑘

− (𝑘 − 1)𝑑
2


= Pr


∑︁

ℎ∈[𝑘 ]\{𝑔 (𝑖 ) }
𝑣𝑖 (𝐴ℎ) ≥

∑︁
ℎ∈[𝑘 ]\{𝑔 (𝑖 ) }

|𝐴ℎ | − (𝜁ℎ − 1)𝑑
2

− 𝑘 − 1

2

𝑑


≥ Pr


∑︁

ℎ∈[𝑘 ]\{𝑔 (𝑖 ) }
𝑣𝑖 (𝐴ℎ) ≥

1

2

∑︁
ℎ∈[𝑘 ]\{𝑔 (𝑖 ) }

|𝐴ℎ |
 ≥ 1

2

. (32)

The second last inequality follows since 𝜁𝑔 (𝑖 ) ≤ 𝑘 . The last inequality follows since the random

variable

∑
ℎ∈[𝑘 ]\{𝑔 (𝑖 ) } 𝑣𝑖 (𝐴ℎ) follows the binomial probability distributionB

(∑
ℎ∈[𝑘 ]\{𝑔 (𝑖 ) } |𝐴ℎ |, 1/2

)
and the LHS is just the probability that this random variable is at least its mean.
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We now claim that event E𝑖 (𝐴) is false when events E1

𝑖 (𝐴) and E2

𝑖 (𝐴) are true. Indeed, assuming

that inequalities (28) and (29) are true, we obtain

1

𝑘

∑︁
ℎ∈[𝑘 ]

𝑣𝑖 (𝐴ℎ) − 𝑣𝑖 (𝐴𝑔 (𝑖 ) ) =
1

𝑘

∑︁
ℎ∈[𝑘 ]\{𝑔 (𝑖 ) }

𝑣𝑖 (𝐴ℎ) −
𝑘 − 1

𝑘
𝑣𝑖 (𝐴𝑔 (𝑖 ) )

≥ 𝑚(𝑘 − 1)
2𝑘2

− (𝑘 − 1)𝑑
2𝑘

− 𝑚(𝑘 − 1)
2𝑘2

+ 2(𝑘 − 1)
𝑘

𝑑

≥ 3(𝑘 − 1)
2𝑘

𝑑 > 𝑑.

The last inequality follows since 𝑘 ≥ 4.

Now, observe that the events E1

𝑖 (𝐴) and E2

𝑖 (𝐴) are independent as they refer to the valuation of

agent 𝑖 ∈ 𝐹 for disjoint sets of items. Hence, using equations (31) and (32), we get

Pr[E𝑖 (𝐴)] ≤ 1 − Pr

[
E1

𝑖 (𝐴)
]
· Pr

[
E2

𝑖 (𝐴)
]

≤ exp

(
− Pr

[
E1

𝑖 (𝐴)
]
· Pr

[
E2

𝑖 (𝐴)
] )

≤ exp

(
−1

2

exp

(
−
6(3 + 𝜁𝑔 (𝑖 ) )2𝑑2𝑘

𝑚

))
.

This completes the proof of the lemma. □

Let ℓ = min{𝑛1, 𝑛2, ..., 𝑛𝑘 } − 1. For ℎ ∈ [𝑘], denote by 𝐹ℎ a set of ℓ non-leader agents from group

ℎ. Let 𝐹 = ∪ℎ∈[𝑘 ]𝐹ℎ .
Now, observe that allocation 𝐴 ∈ A is proportional up to 𝑑 items only if the event E𝑖 (𝐴) is

true for every agent 𝑖 ∈ 𝐹 . These events are independent as each of them depends on the random

valuations of a different agent. Thus, by Lemma 9, we have

Pr


∧
𝑖∈𝐹

E𝑖 (𝐴)
 <

∏
𝑖∈𝐹

exp

(
−1

2

exp

(
−
6

(
3 + 𝜁𝑔 (𝑖 )

)
2

𝑑2𝑘

𝑚

))
=

∏
ℎ∈[𝑘 ]

∏
𝑖∈𝐹ℎ

exp

(
−1

2

exp

(
−
6

(
3 + 𝜁𝑔 (𝑖 )

)
2

𝑑2𝑘

𝑚

))
=

∏
ℎ∈[𝑘 ]

exp

(
− ℓ

2

exp

(
−6(3 + 𝜁ℎ)2𝑑2𝑘

𝑚

))
= exp

©­«− ℓ

2

∑︁
ℎ∈[𝑘 ]

exp

(
−6(3 + 𝜁ℎ)2𝑑2𝑘

𝑚

)ª®¬ (33)

We can easily verify that the function exp(−𝑐 · (3 + 𝑧)2) is convex in [0, +∞) for 𝑐 ≥ 1/18. Then,
using Jensen’s inequality and equation (27), we have∑︁

ℎ∈[𝑘 ]
exp

(
−𝑐 · (3 + 𝜁ℎ)2

)
≥ exp

©­«−𝑐 · ©­«3 + 1

𝑘

∑︁
ℎ∈[𝑘 ]

𝜁ℎ
ª®¬
2ª®¬ = exp(−16𝑐). (34)

Using equation (34) for 𝑐 = 6𝑑2𝑘
𝑚

= 6, equation (33) yields

Pr


∧
𝑖∈𝐹

E𝑖 (𝐴)
 < exp

(
−𝑘ℓ
2

exp

(
−96𝑑2𝑘

𝑚

))
= exp

(
−𝑘 (min{𝑛1, 𝑛2, ..., 𝑛𝑘 } − 1)

2𝑒96

)
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≤ exp(−𝑚 ln𝑘) = 𝑘−𝑚,

as desired. The first equality follows by the definition of 𝑑 and ℓ and the second inequality follows

by the definition of𝑚.

5 Conclusion
We have presented an improved lower bound on multi-color discrepancy and improved lower

bounds on how much we should relax the fairness notions of consensus division, envy-freeness,

and proportionality when sets of indivisible items have to be allocated in 𝑘 groups of 𝑛 agents in

total. There is still a small gap of Θ
(√

ln𝑘

)
from the currently known upper bounds for multi-color

discrepancy and consensus division, and larger gaps for the other two fair division properties.

Closing these gaps are the obvious open problems that stem from our work. Exploring additional

implications of our multi-color discrepancy lower bound is an interesting task as well. We suspect

that it will find applications to areas completely different than fair division, which has been our

focus here.

Acknowledgements
Ioannis Caragiannis and Sudarshan Shyam were partially supported by the Independent Research

Fund Denmark (DFF) under grant 2032-00185B. Kasper Green Larsen is co-funded by a DFF Sapere

Aude Research Leader Grant No. 9064-00068B by the Independent Research Fund Denmark and

co-funded by the European Union (ERC, TUCLA, 101125203). Views and opinions expressed are

however those of the author(s) only and do not necessarily reflect those of the European Union or

the European Research Council. Neither the European Union nor the granting authority can be

held responsible for them.

References
Noga Alon. 1987. Splitting necklaces. Advances in Mathematics 63, 3 (1987), 247–253.
Noga Alon and Joel H. Spencer. 2000. The Probabilistic Method, Second Edition. John Wiley.

Haris Aziz and Simon Rey. 2020. Almost Group Envy-free Allocation of Indivisible Goods and Chores. In Proceedings of the
29th International Joint Conference on Artificial Intelligence (IJCAI). 39–45.

Eric Budish. 2011. The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes.

Journal of Political Economy 119, 6 (2011), 1061–1103.

Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and Junxing Wang. 2019. The

Unreasonable Fairness of Maximum Nash Welfare. ACM Transactions on Economics and Computation 7, 3 (2019),

12:1–12:32.

Bernard Chazelle. 2000. The Discrepancy Method: Randomness and Complexity. Cambridge University Press.

William W. L. Chen, Anand Srivastav, and Giancarlo Travaglini (Eds.). 2014. A Panorama of Discrepancy Theory. Springer.
Vincent Conitzer, Rupert Freeman, and Nisarg Shah. 2017. Fair Public Decision Making. In Proceedings of the 18th ACM

Conference on Economics and Computation (EC). 629–646.
Vincent Conitzer, Rupert Freeman, Nisarg Shah, and Jennifer Wortman Vaughan. 2019. Group Fairness for the Allocation of

Indivisible Goods. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI). 1853–1860.
Benjamin Doerr and Anand Srivastav. 2003. Multicolour Discrepancies. Combinatorics, Probability & Computing 12, 4 (2003),

365–399.

Philip Klein and Neal E. Young. 2015. On the Number of Iterations for Dantzig–Wolfe Optimization and Packing-Covering

Approximation Algorithms. SIAM J. Comput. 44, 4 (2015), 1154–1172.
Maria Kyropoulou, Warut Suksompong, and Alexandros A. Voudouris. 2020. Almost envy-freeness in group resource

allocation. Theoretical Computer Science 841 (2020), 110–123.
Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. 2004. On approximately fair allocations of

indivisible goods. In Proceedings of the 5th ACM Conference on Electronic Commerce (EC). 125–131.
Pasin Manurangsi and Warut Suksompong. 2017. Asymptotic existence of fair divisions for groups. Mathematical Social

Sciences 89 (2017), 100–108.



Ioannis Caragiannis, Kasper Green Larsen, and Sudarshan Shyam 17

Pasin Manurangsi and Warut Suksompong. 2022. Almost envy-freeness for groups: Improved bounds via discrepancy

theory. Theoretical Computer Science 930 (2022), 179–195.
Jiri Matousek. 1999. Geometric Discrepancy: An illustrated Guide. Springer Berlin Heidelberg.

Erel Segal-Halevi and Warut Suksompong. 2019. Democratic fair allocation of indivisible goods. Artificial Intelligence 277
(2019).

Forest W. Simmons and Francis Edward Su. 2003. Consensus-halving via theorems of Borsuk-Ulam and Tucker. Mathematical
Social Sciences 45, 1 (2003), 15–25.

Joel Spencer. 1985. Six Standard Deviations Suffice. Trans. Amer. Math. Soc. 289, 2 (1985), 679–706.


	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Further related work
	1.3 Roadmap

	2 Preliminaries
	3 A lower bound for multi-color discrepancy
	4 Lower bounds for envy-freeness and proportionality
	4.1 Proof of Theorem 3
	4.2 Proof of Theorem 4
	4.3 Proof of Theorem 5

	5 Conclusion
	References

