
Commitment Schemes and Zero-Knowledge

Protocols (2008)

Ivan Damg̊ard and Jesper Buus Nielsen
Aarhus University, BRICS

Abstract

This article is an introduction to two fundamental primitives in
cryptographic protocol theory: commitment schemes and zero-knowledge
protocols, and a survey of some new and old results on their existence
and the connection between them.

1 What’s in this article?

This article contains an introduction to two fundamental primitives in cryp-
tographic protocol theory: commitment schemes and zero-knowledge proto-
cols. We also survey some new and old results on their existence and the
connection between them. Finally, some open research problems are pointed
out.

Each of the two main sections (on commitments, resp. zero-knowledge)
contain its own introduction. These can be read independently of each other.
But you are well advised to study the technical sections on commitment
schemes before going beyond the introduction to zero-knowledge.

The reader is assumed to have some basic knowledge about cryptography
and mathematics, in particular public key cryptography and the algebra
underlying the RSA and discrete log based public key systems.

2 Commitment Schemes

2.1 Introduction

The notion of commitment is at the heart of almost any construction of
modern cryptographic protocols. In this context, making a commitment
simply means that a player in a protocol is able to choose a value from some

1

(finite) set and commit to his choice such that he can no longer change his
mind. He does not however, have to reveal his choice - although he may
choose to do so at some later time.

As an informal example, consider the following game between two players
P and V :

1. P wants to commit to a bit b. To do so, he writes down b on a piece
of paper, puts it in a box, and locks it using a padlock.

2. P gives the box to V

3. If P wants to, he can later open the commitment by giving V the key
to the padlock.

There are two basic properties of this game, which are essential to any
commitment scheme:

• Having given away the box, P cannot anymore change what is inside.
Hence, when the box is opened, we know that what is revealed really
was the choice that P committed to originally. This is usually called
the binding property.

• When V receives the box, he cannot tell what is inside before P decides
to give him the key. This is usually called the hiding property

There are many ways of realizing this basic functionality, some are based
on physical processes, e.g. noisy channels or quantum mechanics, while oth-
ers are based on distributing information between many players connected
by a network. We will say a bit more about this later, but for now we
will concentrate on the scenario that seems to be the most obvious one for
computer communication: commitments that can be realized using digital
communication between two players.

As a very simple example of this kind of commitments, consider the case
where P has a pair of RSA keys, where V (like anyone else) knows the public
key with modulus n and public exponent e. To commit to a bit b, P can
build a number xb, which is randomly chosen modulo n, such that its least
significant bit is b. Then he sends the encryption C = xe

b mod n to V . We
do not prove anything formal about this scheme here, although that is in
fact possible. But it should be intuitively clear that P is stuck with his
choice of b since the encryption C determines all of xb uniquely, and that V
will have a hard time figuring out what b is, if he cannot break RSA. Thus,
at least intuitively, the binding and hiding requirements are satisfied.

2

Why should we be interested in building such commitment schemes? Pri-
marily because this simple functionality enables the construction of secure
protocols that accomplish surprisingly complicated, even seemingly impossi-
ble tasks. We will see some examples of this in the section on zero-knowledge.
But we can already now give an example of a simple problem that seems
intractable without commitment schemes, namely coin flipping by telephone.

The following story was introduced by Manuel Blum: suppose our old
friends Alice and Bob are getting a divorce. They are at the point where they
cannot even stand facing each other, so they have to discuss over the phone
how to split the furniture, the kids, etc. But one problem remains: who
gets the car? Since they cannot agree, they decide to flip a coin. However,
they quickly realize that this is easier said than done in this situation where
of course they don’t trust each other at all. Bob would not be very happy
about a protocol where he announces HEADS, only to hear Alice reply on
the phone: “Here goes...I’m flipping the coin....You lost!”. How can we solve
this? Well, certainly not by asking Alice to flip the coin and announce the
result to Bob before he has chosen heads or tails; Alice would be just as
unhappy as Bob was before. We seem to be in a deadlock - neither party
wants to go first in announcing their choice. However, this deadlock can be
broken: using a commitment scheme, we get the following simple protocol:

1. Alice commits to a random bit bA, and sends the resulting commitment
C to Bob (you can think of C as being a locked box or an encryption,
as you wish).

2. Bob chooses a random bit bB and sends it to Alice.

3. Alice opens C to let Bob learn bA, and both parties compute the result,
which is b = bA ⊕ bB.

It is not hard to argue intuitively that if the commitment is binding and
hiding, then if at least one of Alice and Bob play honestly and chooses a bit
randomly, then the result is random, no matter how the other party plays.
A formal proof requires a more precise definition of commitments, which we
will get to in the next section.

2.2 (In)distinguishability of Probability Distributions

Before we can define formally the security of commitment schemes, we need
to define some auxiliary concepts.

The first concept is: what does it mean for an entity, typically a prob-
ability, to be negligible – “too small to matter”? There are different ways

3

in which one can define what negligible means, from the point of view of a
practical application, one might want to say that anything occurring with
probability below a concrete bound, such as 2−50, is negligible. In complex-
ity based cryptography, one usually prefers an asymptotic definition:

Definition 1 ε(l) is negligible in l if for any polynomial p, ε(l) ≤ 1/p(l) for
all large enough l. ut

One motivation for this is that if we perform repeatedly an experiment in
which a particular event occurs with negligible probability ε(l), then the
expected number of repetitions before seeing an occurrence is 1/ε(l) which
is super-polynomial in l. In this sense we can say that events that occur
with negligible probability occur so seldom that polynomial time algorithms
will never see them happening.

The next concept is that of Indistinguishability. Consider first a proba-
bilistic algorithm U . If we run U on input string x, we cannot be sure that
one particular string is output since U makes random choices underway.
What we have is instead a probability distribution: for every possible string
y there some probability that y is output when x was the input. We will call
this probability Ux(y), and Ux will stand for the probability distribution
of U ’s output, on input x. Note that we do not require U to be polyno-
mial time, but we will require throughout that the length of U ’s output is
polynomial in the input length.

Next, consider two probabilistic algorithms U, V . Say we do the following
experiment: we run both U and V on the same input x, and we choose
one of the outputs produced, call it y. We then give x and y to a third
party D which we call the distinguisher, and ask him to guess which of
the two algorithms we used to produce y. Informally, we say that U, V are
indistinguishable if D has, in some sense, a hard time.

It is not hard to see why such a concept is relevant in cryptography:
suppose the input x is a public encryption key, and U encrypts a message
m1 while V encrypts a message m2. Now, indistinguishability of U and V
exactly means that it is difficult to guess whether a ciphertext contains m1

or m2, and this is the same as standard definition of security for public-key
systems, known as semantic security.

It should be clear from the above that all that matters when we ask
whether U, V are indistinguishable, are the output distributions Ux, Vx gen-
erated for each input. Therefore, whether we think of U, V as probabilistic
algorithms or as families of probability distributions makes no difference,
and we will use both terminologies in the following. However, to use the

4

indistinguishability concept we have to be more precise, in particular, we
need:

Definition 2 Given two probability distributions P,Q, the statistical dis-
tance between them is defined to be SD(P,Q) =

∑
y |P (y) − Q(y)|, where

P (y) (or Q(y)) is the probability P (or Q) assigns to y. ut

Using this, we have

Definition 3 Given two probabilistic algorithms (or families of distribu-
tions) U, V , we say that

• U, V are perfectly indistinguishable, written U ∼p V , if Ux = Vx for
every x.

• U, V are statistically indistinguishable, written U ∼s V , if SD(Ux, Vx)
is negligible in the length of the string x.

• U, V are computationally indistinguishable, written U ∼c V , if the
following holds for every probabilistic polynomial time algorithm D:
let pU,D(x) be the probability that D outputs “U” as its guess, when
D’s input comes from U , and similarly pV,D(x) be the probability that
D outputs “U” as its guess, when D’s input comes from V . Then
|pU,D(x) − pV,D(x)| is negligible in the length of x. An alternative
equivalent definition: Let D(U) be the algorithm that first runs U on
input x to get result y, and then runs D on input y and x. Define
D(V) similarly. Then U ∼c V if and only if D(U) ∼s D(V) for every
probabilistic polynomial time algorithm D 1.

Sometimes we do not want to consider how U, V behave on arbitrary input
x, but only when x is in some language L. We then say, e.g. U ∼c V on
input x ∈ L. ut

Some remarks on the meaning of this definition: if U ∼p V , D has no
chance of distinguishing at all, no matter how much computing power it has.
It might as well flip a coin to decide who produced the result it is given. If
U ∼s V , D may have a small advantage over a random guess, but it will
remain negligible, no matter how much computing power D has. Finally,
if U ∼c V , the distributions Ux, Vx may be totally different, but it requires
a lot of computing power to tell the difference, so D’s chances of success
remain small if it is limited to polynomial time.

1In the standard definition from the literature D is allowed to be a non-uniform al-
gorithm, i.e., specified by a polynomial size family of circuits. However, this makes no
difference for the purpose of this note

5

2.3 Defining Commitment Schemes

We now come back to commitment schemes. Two things are essential in the
RSA example:

• The RSA key used does not come falling from the sky. There has to
be an algorithm for generating it: some procedure that takes as input
the length of modulus to generate, and then chooses randomly n and
e, suitable for use as an RSA public key. In the example this algorithm
would be run by P initially, and P must have some confidence that
keys generated by this algorithm cannot be easily broken by V .

• When committing, it is essential that P makes random choices. The
scheme above (in fact any scheme) would be completely insecure, if
this was not the case (see Exercise 4). Thus the commitment sent
to V must be a function of both the bit committed to, and of some
random choices made by P .

Keeping this in mind, we can abstract the following general definition. It is
somewhat simplified in that it does not cover all commitment schemes, but
it covers the examples we will look at, and is enough to get a feeling for how
such definitions work.

We will think of a commitment scheme as being defined by a a proba-
bilistic polynomial time algorithm G called a generator. It takes as input
1l where l is a security parameter and corresponds to e.g. the length of
RSA modulus we want. It outputs a string pk, the public key of the com-
mitment scheme. The scheme defines for every public key pk a function
commitpk : {0, 1}l×{0, 1} → {0, 1}l. where the idea is that a 0/1-values can
be committed to. We stick to bit-commitments here for simplicity 2.

To use the scheme in practice, one first executes a set-up phase (once
and for all) where either P or V runs G, and sends the public key pk to
the other party. In some schemes it is necessary in addition to convince the
other party that pk was correctly chosen, in case this is not easy to verify
directly. Thus, one of the parties may reject in the set-up phase, meaning
that it refuses to use the public key it received.

Assuming that the public key was accepted, to commit to a bit b, P
chooses r at random from {0, 1}l and computes the commitment C ←
commitpk(r, b). To open a commitment, r, b are revealed, and V checks
that indeed C = commitpk(r, b).

2Also for simplicity, this description insists that for security parameter l, one uses l
bits of random input to commit, and commitments will have length l bits. In general, one
can allow any polynomial in l here without problems.

6

To define precisely the two essential properties of hiding and binding for
this kind of commitment, we have to distinguish two flavors of commitment
schemes:

Unconditional binding and Computational hiding For this type of scheme,
P will run the key generator and send the public key to V , who verifies
the key and either accepts or rejects.

unconditional binding: Means that even with infinite computing
power, P cannot change his mind after committing. We require
that if pk is correctly generated, then b is uniquely determined
from commitpk(r, b), i.e., for any c, there exists at most one pair
(r, b) such that c = commitpk(r, b). Furthermore, an honest V
accepts an incorrectly generated pk with probability negligible in
l.

computational hiding: Means that a polynomially bounded V will
have a hard time guessing what is inside a commitment. We
require that (pk, commitpk(r, 0)) ∼c (pk, commitpk(s, 1)).

Computational binding and Unconditional Hiding For this type of
scheme, V will run the key generator and send the public key to P ,
who verifies the key and either accepts or rejects.

computational binding: Means that unless you have “very large”
computing resources, then you chances of being able to change
your mind are very small. More precisely: take any probabilis-
tic polynomial time algorithm P ∗ which takes as input a public
key produced by the generator G on input 1l. Let ε(l) be the
probability (over the random choices of G and P ∗) with which
the algorithm outputs a commitment and two valid openings re-
vealing distinct values. That is, it outputs C, b, r, b′, r′ such that
b 6= b′ and commitpk(r, b) = C = commitpk(r′, b′). Then ε(l) is
negligible in l.

unconditional hiding: Means that a commitment to b reveals (al-
most) no information about b, even to an infinitely powerful V .
We require that if we restrict to correctly generated pk’s, then
commitpk(r, 0) ∼s commitpk(s, 1) (for random independent r, s).
Furthermore an honest P should accept an incorrectly generated
pk with at most negligible probability. In the best possible case,
we have commitpk(r, 0) ∼p commitpk(s, 1) and P never accepts

7

a bad pk, i.e. commitments reveal no information whatsoever
about the committed values. We then speak of perfectly hiding
commitments.

Before we continue, a word of warning about the definitions of the com-
putational flavours of hiding and binding: They are based on the asymptotic
behaviour of an adversary as we increase the value of the security param-
eter. This is mathematically convenient when doing proofs, and has nice
connections to standard complexity theory - but one should take care when
evaluating the meaning in practice of results according to such a definition:
it implicitly classifies everything that can be solved in probabilistic poly-
nomial time as being “easy” and anything else as being “hard”, and this
distinction is not always accurate in real life. Even if a problem (such as
breaking a commitment scheme) is asymptotically hard, it might still be
easy in practice for those input sizes we want in a particular application.
This does not at all mean that asymptotic security results are worthless,
only that usage of a scheme in real life should always be supplemented with
an analysis of practical state of the art of solutions to the (supposedly) hard
problem we base ourselves on.

It is evident that an unconditional guarantee is better than a computa-
tional one, so why don’t we try to build commitments that are both uncon-
ditionally binding and hiding? Well, unfortunately this is impossible!

Imagine we had such a scheme. Then, when P sends a commitment
to e.g. 0 C = commitpk(r, 0), there must exist an r′, such that C =
commitpk(r′, 1). If not, V could conclude that the committed value could
not be 1, violating unconditional hiding. He could come to this conclusion
by simply trying all possibilities for r′. This may a long time, but this is
irrelevant when we talk about unconditional security. But then, if P has
unlimited computing power, he can find r′ and change his mind from 0 to
1, violating unconditional binding. This reasoning does not depend on the
particular definition we have presented of commitment schemes. It extends
to any protocol whatsoever for committing to a value in a two-player game.
The basic reason for this is that the scenario by definition ensures that each
player sees everything the other player sends.

There are several scenarios, however, where this reasoning does not ap-
ply. In a distributed scenario with many players, or in a two-party case
where communication is noisy, it is no longer true that V sees exactly what
P sends and vice versa. And in such cases, unconditional binding and hid-
ing can in fact be obtained simultaneously. For commitment schemes in
such scenarios, see e.g. [10, 3, 14, 9]. Note, however, that despite the fact

8

that the reasoning does not apply to quantum communication either, bit
commitment with unconditional security is not possible with quantum com-
munication alone. 3

Exercise 1 [negligible] Call a function f : N → R polynomial in l if there
exist polynomial p and constant l0 such that f(l) ≤ p(l) for all l > l0. Recall
that a function ε : N→ R negligible in l if for all polynomials p there exists
a constant lp such that ε(l) ≤ 1/p(l) for all l > lc.

1. Prove that if ε and δ are negligible in l, then ε+ δ is negligible in l.

2. Prove that if ε is negligible in l and f is polynomial in l, then f · ε is
negligible in l.

Exercise 2 [statistical distance] Consider algorithms U, V,W . Show that if
U ∼s V and V ∼s W , then U ∼s W .

Exercise 3 Show that if U ∼c V and V ∼c W , then U ∼c W . Hint: use
the previous exercise and the alternative definition of ∼c.

Exercise 4 [commitments must be randomised] This exercise concerns the
necessity to make commitment schemes randomised (in the sense that the
output of commitpk(r,m) depends on r and not just m).

1. Prove that a commitment scheme which is perfectly binding, but does
not depend on the random input r, cannot be hiding in any flavor.

2. Say that a commitment scheme is g-randomised if it only depends on
the g first bits of r. If a commitment scheme is perfectly binding
andlog l-randomized, can it be computationally hiding? What if we
replace log l by c log l for a constant c? or by (log l)c?

2.4 Examples of Commitment Schemes

Many examples of commitment schemes have been suggested in the litera-
ture, see e.g. [4] for some basic ones or [11] for some later and more efficient
examples.

Above, we have seen an example based on RSA with unconditional bind-
ing. This scheme also satisfies computational hiding, assuming that the RSA

3By quantum communication, we mean a scenario where information is sent encoded
in the state of very small physical systems, such as single elementary particles.

9

encryption function is hard to invert, although this is quite technically com-
plicated to prove. It does not follow immediately, since a priori it might
well be the case that the least significant bit of x is easy to compute from
xe mod n, even though all of x is hard to find. However in [1] it was proved
that this is not the case: any algorithm that guesses the least significant bit
of x with probability slightly better than 1/2 can, by a randomised poly-
nomial time reduction, be turned into one that inverts the RSA encryption
function.

Of course, any secure public key encryption scheme, where validity of
the public key can be checked efficiently, can also be used as a commitment
scheme.

We now look at a general way to make commitment schemes with un-
conditional hiding. We consider first a construction based on RSA as an
example Consider any algorithm for generating on input 1l a secure RSA
l-bit modulus n. We can extend this by choosing also a prime q > n, and
finally defining f(x) = xq mod n. Assuming that RSA with modulus n and
public exponent q is secure, f is a one-way function, i.e., given f(x), it is
hard to compute x. Moreover, f is a homomorphism, i.e., f(1) = 1 and
f(xy) = f(x)f(y), Finally q, being a prime larger than n, must be prime to
φ(n) and so q is a valid RSA exponent which means that one can directly
check from n, q that f is a 1-1 mapping on Z∗

n. The algorithm for selecting
n, q will be called H, and our basic assumption is the following:

RSA assumption: Suppose we run H on input 1l to get n, q, choose x at
random in Z∗

n, and run any probabilistic polynomial time algorithm A on
input n, q, f(x). Then the probability that A outputs x is negligible in l.

We now build an unconditionally hiding commitment scheme as follows.

• Set-up Phase: the key generator G for the commitment scheme is
defined based on H as follows: it runs H on input 1l. It then chooses a
random element x ∈ Z∗

n and outputs as public key n, q and y = f(x) =
xq mod n. In the set-up phase, V runs G and sends the output n, q, y
to P , who checks that y ∈ Im(f) = Z∗

n (i.e. check that gcd(y, n) = 1).

• Commit function: is defined as a mapping from Z∗
n × {0, 1} to G.

Concretely, commitpk(r, b) = ybf(r) mod n.

• Hiding Property: is unconditionally satisfied, since P can verify
without error that q is a valid exponent and that y ∈ Im(f), and in
this case a commitment to b will have distribution independent of b,
namely the uniform distribution over Z∗

n. This is because P chooses

10

r uniformly in Z∗
n, f is a 1-1 mapping and hence f(x) is also uniform

in Z∗
n. Finally, multiplication by the constant y is also a one-to-one

mapping in the group Z∗
n, so yf(x) mod n is uniform as well. Thus

these commitments are in fact perfectly hiding.

• Binding Property: Follows from the following fact: say we are given
an algorithm A that breaks the binding property of this scheme with
success probability ε in time TA. Then there exists an algorithm A′

that breaks RSA encryption as generated by H with success proba-
bility ε as well and in time TA plus the time needed for one inversion
and one multiplication in Z∗

n. Thus existence of such an A implies
existence of an algorithm A′ that contradicts our assumption on H.

This is easy to show: say we are given n, q and want to find the
plaintext for ciphertext y ∈ Z∗

n. We run A on input n, q, y pretending
this is the public key of a commitment scheme instance. A outputs in
time TA a commitment c and openings r0, 0 and r1, 1. We now output
x = r0r

−1
1 mod n. We leave it to the reader to show that if indeed

r0, 0 and r1, 1 are valid openings of c, then f(x) = y.

There are several things to notice about this scheme and its proof:

• Actually, the only essential thing we need from our function f is the
fact that it is a one-way function and a homomorphism. Therefore,
the idea of the construction is not limited to being based on RSA.
There are many other possibilities. For instance, we can also base
ourselves on the discrete log problem. In this case, f would be of the
form f(x) = gx mod p for a large prime p (see Exercise 6).

• In the set-up phase, it is essential that P is convinced that y ∈ Im(f).
It would be devastating if V could get away with selecting y 6∈ Im(f),
which might be the case if f is not surjective (see Exercise 5). For
our RSA example, this was not a problem: P can check for himself
that f is surjective which implies that y ∈ Im(f). In other cases, the
set-up phase must be more elaborate in that V must convince P that
the public key was correctly selected. This can be done using a zero-
knowledge protocol (see Section 3). In particular it is always possible
given any homomorphism f for V to convince P in zero-knowledge
that y ∈ Im(f), which is in fact enough for the scheme to be secure.

• The proof of the binding property is an example of so called proof by
black-box reduction: we want to show that existence of cryptographic

11

primitive P1 implies existence of primitive P2. In our case P1 = se-
cure RSA encryption and P2 = unconditionally binding commitments
schemes.

To do this, we first make a construction that takes an instance of P1
and builds an instance of P2. We then show that any algorithm that
can break P2 can be used to build an algorithm that breaks P1 “just
as efficiently”. This is done by a reduction that treats the algorithm
attacking P2 as a black-box: it doesn’t care how the algorithm man-
ages to break P2, it just uses the fact that it succeeds in doing so.
We conclude that if the security properties of P2 are violated, so are
those of P1, and conversely, if secure instances of P1 exist so do secure
instances of P2.

This black-box paradigm has proven extremely productive in many
areas of cryptography.

• The black-box reduction we built to show the binding property is ac-
tually much stronger than needed for the definitions: for that, it would
have been enough if we had shown that the running time of A′ was
polynomial in TA, and that the success probability of A′ was a polyno-
mial function of ε. Still, what we have done is far from being overkill:
what we want, in practice as well as in theory, is basically to say that
“breaking the commitment scheme is just as hard as it is to invert the
homomorphism”. And of course we can make this claim in a stronger
sense, the more efficient a reduction we have. Hence if we want re-
sults that are meaningful not only in theory, but also in practice, it is
important to try to obtain as efficient a reduction as possible in any
proof of this type.

• Group homomorphisms can also be used to build unconditionally bind-
ing commitments, and to build schemes where one can commit to many
bits in the same commitment. For details on this, see [11].

Exercise 5 [group-homomorphism commitments] This exercise deals with
the the unconditionally hiding commitment scheme based on RSA.

1. Finish the proof of the binding property.

2. Here you will show that we have to force V to choose q as a valid
RSA exponent. For instance, q = 2 would be a disaster. In this case
f(x) = x2 mod n is a 4 to 1 mapping, i.e., every element in Im(f) has
4 preimages (you may assume this without proof).

12

Show that if y 6∈ Im(f) then yf(r) mod n 6∈ Im(f) for any r. Further-
more it is a known fact (which you may assume) that if you are given
the factorization of n, it is easy to tell if a given number is in Im(f)
or not. Use this to show that if q = 2 is allowed, then V can generate
a public key for which he can easily compute b from commitpk(r, b).

Exercise 6 [discrete logarithm commitments] Recall that for a prime p, a
generator g of the multiplicative group Z∗

p is an element with the property
that any a ∈ Z∗

p can be written as a power of g, a = gi mod p doe some i.
Note that the function f : Zp−1 → Z∗

p, x 7→ gx mod p is a group homo-
morphism, namely f(x + y mod p − 1) = f(x)f(y) mod p. It is generally
believed that f is one-way for a large random prime p. Use this assumption
to construct an unconditionally hiding and computationally binding com-
mitment scheme — use the RSA construction as inspiration, and write down
the commitment function explicitly. Argue that if one can efficiently break
the binding property, one can also efficiently solve the discrete log problem
mod p, i.e., invert f .

Exercise 7 [string-commitments, group-homomorphism commitments] This
exercise considers a generalisation of the unconditionally hiding bit-commitment
scheme based on a one-way group homomorphism, to allow to commit to
several bits.

Above we defined a bit-commitment scheme. In a string-commitment
scheme (or multi-bit commitment) a public key generated by G on 1l defines a
function commitpk : {0, 1}o×{0, 1}n → {0, 1}∗, where o and n are polynomial
in l and commitpk(r,m) is a commitment to m ∈ {0, 1}n using randomness
r ∈ {0, 1}o. The computational binding of a string-commitment scheme is
defined as for bit-commitment scheme: for any probabilistic polynomial time
algorithm A, let εA(l) be the probability that A on a random public key pk,
generated by G, outputs C,m, r,m′, r′ such that m,m′ ∈ {0, 1}o, m 6= m′,
C = commitpk(r,m) and C = commitpk(r′,m′). Then εA(l) is negligible.

Assume now that we have a group homomorphism f : G → H where it
holds that all elements of Im(f) (except 1) have some known prime order q.
Consider then the commitment scheme where V picks y ∈ Im(f) \ {1} and
where P commits to m ∈ {0, 1, . . . , q − 1} by commitpk(r,m) = ymf(r).4

1. Prove that the generalised commitment scheme is still unconditionally
4To fit the above definition we should actually restrict the message space to {0, 1}o for

some o such that 2o ≤ q, consider m ∈ {0, 1}o as a number m ∈ {0, 1, . . . , 2o − 1} and
then commit to m as specified.

13

hiding in the sense that commitments to all messages have the same
distribution.

2. Prove that the generalised commitment scheme is still computationally
binding. [Hint: You will need to realize and use that all non-zero
numbers have a multiplicative inverse modulo the order of y.]

2.5 Theoretical Results of Existence of Commitment Schemes

It is easy to see that if any commitment scheme in the two-player model
exists, then a one-way function must also exist. For example, in our defini-
tion, it is clear that the function commitpk must be one-way in order for the
commitment scheme to be secure.

Hence, the optimal result is to show existence of commitment schemes
based only on the existence of one-way functions. Such results are known,
and for one type of commitment scheme, it follows from a result of Naor [29]
(actually, Naor’s result is the last in a long chain of results linking one-way
functions with commitments through other primitives such a pseudorandom
generators, for references on this, see [29]):

Theorem 2.1 If one-way functions exist, then commitment schemes with
unconditional binding and computational hiding exist.

For unconditionally hiding schemes, the corresponding result is proved
in [32]:

Theorem 2.2 If one-way functions exist, then commitment schemes with
unconditional hiding and computational binding exist.

If we assume that the function we are given is not only one-way but is
bijective, one can even get perfect hiding [30]. In [31], with generalisations
to multi-bit commitments in [18], the following is proved:

Theorem 2.3 If collision-intractable hash functions exist, then there exists
commitment schemes with unconditional hiding and computational binding.

Loosely speaking, a collision intractable hash function is a function h :
{0, 1}k → {0, 1}l such that l < k, h is easy to compute, but it is hard to
find x 6= y such that h(x) = h(y) (although such values must of course exist
– for a precise definition, see [15]).

Since a collision intractable hash function is always one-way, this third
result is weaker the the second, but it is still of interest from a practical

14

point of view: whereas the first two results involve very complex reductions
and therefore lead to very inefficient commitment schemes, the third one
can lead to very practical schemes.

3 Zero-Knowledge Protocols

3.1 Introduction

In order for a modern computer network to offer services related to security,
it is a basic necessity that its users have access to private information, in the
form of e.g. passwords, PIN codes, keys to cryptosystems, keys to signature
systems etc. If I know every bit of information that you know, it will be
impossible for the rest of the system to tell us apart.

This introduces a basic problem when implementing such services: of
course I want my private information to stay private, but as soon as I start
using it as input when computing the messages I send to other parties on
the net, this introduces the risk of leaking private information, in particular
if the parties I interact with do not follow the protocols, but instead do their
best to maliciously trick me into revealing my secrets. This dilemma can be
solved if we use protocols on the net for which we can control exactly how
much sensitive information is being released, even in presence of adversarial
behaviour. The concept of zero-knowledge, first introduced by Goldwasser,
Micali and Rackoff [26], is one approach to the design of such protocols.

As an easy example, consider the classical user identification problem:
we have a host computer that would like to verify the identity of users that
try to log on. The classical solution is to assign a private password to each
user. When logging on, the user types his user name and password, this is
sent to the host, who checks it against a stored list.

The security problems with this are many and well known. Let us con-
centrate here on the obvious problem that if an adversary eavesdrops the
line, he can pick up the password, and then impersonate the user. When
trying to solve this, the immediate reaction might be to propose that we
transport instead the password in a protected way. Perhaps we should just
encrypt it?

But then we would be barking up the wrong tree. We have to ask
ourselves first what the purpose of the protocol is. Is it to send the password
from the user to the host? No! - we are trying to identify the user. What we
have done initially is to assign a secret (the password) to each user, so when
someone types his user name, say xxx, this is equivalent to claiming that a

15

certain statement is true, in this case “I know the secret corresponding to
user name xxx”.

The only thing the host needs to know here is 1 bit of information, namely
whether this statement is true or not. The real purpose of the protocol is to
communicate this piece of knowledge to the host. Sending the secret of the
user in clear is just one way, and not even a very intelligent way to do it.

In general, we could have the user and host conduct an interactive proto-
col, where at the end, the host can compute a one-bit answer saying whether
the user was successful in proving himself or not. Here of course we have to
design the protocol such that if the user really knows the right secret, he will
be successful, whereas the answer will be no, if the user is cheating and does
not know the secret. If this is satisfied, we can say that the protocol really
does communicate this 1 bit of knowledge saying whether the claim is true
or not. But moreover, if we design the protocol correctly, we can actually
obtain that it communicates nothing more than this. Which would mean
that for example an eavesdropper listening to the communication would be
just as far away from guessing the user’s secret after seeing the conversation
as he was before.

This leads to our first very loose definition of zero-knowledge: a pro-
tocol is zero-knowledge if it communicates exactly the knowledge that was
intended, and no (zero) extra knowledge.

3.2 A Simple Example

One way to realize the scenario where each user has his own secret is to use
a public key cryptosystem. So suppose each user A has a private key SA

known only to him, whereas everyone, including the host, knows the public
key PA.

Now, if the cryptosystem is any good, it must be the case that decrypting
a ciphertext C = PA(M) is hard unless you know the private key. Hence,
if you meet someone who is able to decrypt a ciphertext you send him, it
is reasonable to conclude that he knows SA, at least if you make sure that
the message you encrypt is randomly chosen from a large set, such that the
probability of guessing your choice is negligible. This suggests the following
simple protocol, where we rename the players so that the description fits
better with the definitions to follow: the user, who is the one wanting to
convince the other about the truth of some claim will be called the Prover
(P), and the host, who is interested in checking that the claim is true, will
be called the verifier (V).

16

1. If the prover claims to be A, the verifier chooses a random message
M , and sends the ciphertext C = PA(M) to the prover.

2. The prover decrypts C using SA and sends the resultM ′ to the verifier.

3. The verifier accepts the identity of the prover if and only if M ′ = M .

Let us look at this protocol from the point of view of both parties. Should
the verifier be happy about this protocol? the answer is yes if the public
key system used is secure: while the owner of SA can always conduct the
protocol successfully, an adversary who knows only the public key and a
ciphertext should not be able to find the plaintext essentially better than
by guessing at random.

Now what about security from the (honest) prover’s point of view - is
any unnecessary knowledge being communicated to the verifier here? At
first sight, it may seem that everything is OK: if we consider the situation of
the verifier just after sending C, then we might argue that since the verifier
has just chosen the message M itself, it already knows what the prover will
say; therefore it learns no information it didn’t know before, and so the
protocol is zero-knowledge.

But this reasoning is WRONG! It assumes that the verifier follows the
protocol, in particular that C is generated as prescribed. This is of course
unreasonable because nothing in the protocol allows the prover to check
that the verifier is behaving honestly. This is more than a formal problem:
assume that an adversary takes control of the verifier, and sends instead of
a correctly generated C some ciphertext C ′ intended for the correct prover,
that the adversary has eavesdropped elsewhere. And now, following the
protocol, the unsuspecting prover will kindly decrypt C ′ for the adversary!

This is certainly not the kind of knowledge we wanted to communicate,
and hence this protocol is definitely not zero-knowledge. How can we repair
this protocol? The basic problem we saw is that when the verifier sends C,
we are not sure if it really knows the corresponding plaintext M . If it did,
we would be fine. However, the verifier will of course not be willing to reveal
M immediately, since from its point of view, the purpose of the protocol is
to test if the prover can compute M based only on C. And for the reasons
we saw above, the prover will not be willing to go first in revealing M either.
So we have a sort of deadlock situation similar to the one in the coin-flipping
by telephone problem from the former section. Like that problem, this one
can be solved using commitments.

Assume we have a commitment scheme that lets the prover commit
to any message that can be encrypted by the public key system. Let

17

commitpk(r,M) denote a commitment to message M (using random choice r
- we can always commit bit by bit if no more efficient methods are available).
Then consider the following:

1. If the prover claims to be A, the verifier chooses a random message
M , and sends the ciphertext C = PA(M) to the prover.

2. The prover decrypts C using SA and sends a commitment to the result
commitpk(r,M ′) to the verifier.

3. The verifier sends M to the prover.

4. The prover checks if M = M ′. If not he stops the protocol. Otherwise
he opens the commitment, i.e. he sends r,M ′ to the verifier.

5. The verifier accepts the identity of the prover if and only if M ′ = M
and the pair r,M ′ correctly opens the commitment.

Proving formally that this repair works turns out to be surprisingly com-
plicated, but possible. The necessary techniques can be found e.g. in [5, 24].
Here, however, we are only interested in arguing informally why such a solu-
tion should have a chance of working: first, the protocol demonstrates that
the prover can decrypt C based on C alone, since when the verifier finds the
right plaintext inside the commitment, this shows that the prover knew it
already in step 2, by the binding property of the commitment scheme. As
for zero-knowledge, either the verifier knows M or not. If yes, then it can
send the correct M in step 3, but then it already knows what it will find
inside the commitment in step 5 and so learns nothing new. If not, then it
cannot send the right value in step 3, the prover will stop the protocol, and
the verifier will be left with an unopened commitment which by the hiding
property is a useless piece of information that might represent any value
whatsoever.

If nothing else, this example demonstrates first the fundamental role that
commitments often play in protocol design, and second that we should not
argue security of protocols based on what players should be doing accord-
ing to the protocol, we must take any adversarial behaviour into account.
Finally, it also demonstrates one basic design principle for zero-knowledge
protocols that continue to appear in all sorts of incarnations: have the prover
demonstrate something the verifier already knows. The problem with this
is, in the above protocol as in all protocols of this type, to ensure that the
verifier does indeed know in advance what the prover will say. For other
examples of this kind, see e.g. the graph non-isomorphism protocol from
[25].

18

3.3 Definitions

3.3.1 Interactive Proof Systems and Proofs of Knowledge

The protocols to follow will take place as interactions between two Interac-
tive Turing Machines, i.e. ordinary probabilistic Turing machines that are
in addition equipped with communication tapes allowing a machine to send
and receive messages from the other one. A formal definition can be found
in [26].

To define interactive proof systems, we assume that one machine, called
the prover (P) has infinite computing power, and the other called the verifier
(V) is polynomial time bounded. The machines get a common input string
(usually called x). Running the machines on some input x results in V
outputting accept or reject after which the machines halt. We say that
the pair (P, V) accepts or rejects x accordingly. Finally a binary language
L ⊂ {0, 1}∗ is given.

In the previous section, we talked about the intuitive model where the
prover claims that “a certain statement is true”. We now specialise to the
concrete case where the prover claims that a certain logical statement is true,
namely that x ∈ L. This can be compared in the real world to convincing
someone that a certain theorem is true. Concretely, we have the following
definition [26]:

Definition 4 The pair (P, V) is an interactive proof system for L if it sat-
isfies the following two conditions:

Completeness: If x ∈ L, then the probability that (P, V) rejects x is neg-
ligible in the length of x.

Soundness: If x 6∈ L then for any prover P ∗, the probability that (P ∗, V)
accepts x is negligible in the length of x.

What these conditions say is that first, the honest prover can always con-
vince the verifier about a true statement, but that there is no strategy that
convinces him about something false. Both conditions are required to hold
except with negligible probability, and are in fact rather strong: even if
the honest prover can convince the verifier using only polynomial comput-
ing time, there must be no way to cheat the verifier, even using infinite
computing power.

There are two features that make this definition interesting, namely that
interaction and error probabilities are allowed. It is easy to see that if the
prover is only allowed to send a single message to the verifier, who should

19

then be able to check without error that the input x is in L, we would only
be redefining the class NP . But with these two features, the model becomes
much more powerful in terms of the class of statements that can be proved,
as we shall see.

There is a variant of this, known as Proofs of Knowledge, where the
prover’s claim has a different flavour: he claims to know a certain piece of
information (such as a secret key corresponding to a given public one). Such
proof systems can be defined in a similar model, where however the com-
pleteness and soundness properties are replaced by knowledge completeness
and knowledge soundness. The first property simply says that if the prover
knows the claimed information and follows the protocol, he can almost al-
ways convince the verifier. The second, loosely speaking, says that if some
prover can, using whatever strategy, convince the verifier with substantial
probability, then the prover knows the information in question. By “know-
ing the information” we mean that the prover can compute it, and that the
time he needs to do so is roughly inversely proportional to the probability
with which the verifier gets convinced. A precise definition can be found in
[2].

3.3.2 Interactive Arguments

Another variant of Interactive proof systems is known as Interactive Argu-
ments and has perhaps more direct relations to practical protocols. In this
type of protocol, we want the prover to be polynomial time, but on the
other hand are only concerned about polynomial time provers cheating the
verifier. This can be said to be a complexity theorist’s way of modelling the
situation where only realistic computing power is available to prover and
verifier.

The simplest way to define an interactive argument for a language L, is
to say that it is an interactive proof system, but with two changes:

• The honest prover is required to be probabilistic polynomial time, and
its only advantage over the verifier is that it has a private auxiliary
input. The completeness condition says that for every x ∈ L, there
is an auxiliary input that allows the prover to convince the verifier
almost always5.

• The soundness condition says “for any probabilistic polynomial time
prover”, in stead of “for any prover”.

5In order for the protocol to be interesting at all, the prover must have some advantage
- otherwise the verifier might as well go and solve the problem on his own.

20

It turns out that this simplistic definition of soundness is not quite ad-
equate in all cases, but it will do for us here. For a more complete set of
definitions and a discussion of this, see [17].

3.3.3 Zero-Knowledge

Zero-Knowledge can be seen as an extra property that an interactive proof
system, a proof of knowledge or an interactive argument may have. Here, we
want to express the requirement that whatever strategy the verifier follows,
and whatever a priori knowledge he may have, he learns nothing except for
the truth of the prover’s claim. We do this by requiring that assuming the
prover’s claim is true, the interaction between the prover and verifier can be
efficiently simulated without interacting with the prover.

A verifier that tries to cheat the prover can be modelled by an arbitrary
probabilistic polynomial time machine V ∗ that gets an auxiliary input δ of
length at most some fixed polynomial in the length of the common input
x. This represents a priori information that V ∗ could have e.g. from earlier
executions of the protocol, which it may now use to trick the prover into
revealing more information. By a conversation between P and any verifier
we mean the ordered concatenation of all messages sent in an execution of
the protocol. In this way, we can consider the pair (P, V ∗) as a machine
that gets input x and δ (only to V ∗) and outputs a conversation. We now
have the following [26]:

Definition 5 An interactive proof system or argument (P, V) for language
L is zero-knowledge if for every probabilistic polynomial time verifier V ∗,
there is a simulator MV ∗ running in expected probabilistic polynomial time,
such that we have MV ∗ ∼c (P, V) on input x ∈ L and arbitrary δ (as input
to V ∗ only).

For some protocols, we can obtain that MV ∗ ∼p (P, V), or MV ∗ ∼s

(P, V) in this case we speak of perfect zero-knowledge respectively statisti-
cal zero-knowledge. Clearly, perfect zero-knowledge implies statistical zero-
knowledge, which in turn implies computational zero-knowledge as defined
above.

At first sight, the zero-knowledge definition may seem intuitively to con-
tradict the proof system definition: first we say that the verifier should be
convinced by talking to the prover. But then we require that the whole con-
versation can be efficiently simulated without talking to the prover – doesn’t
this mean that having a conversation with the prover cannot be convincing?

21

Fortunately, this is not the case. The explanation is that a simulator
has some degrees of freedom that the prover doesn’t have when executing
the real protocol. In particular, the simulator can generate messages of a
conversation in any order it wants - it can start with the last message first,
and then try to find earlier messages that match. A real prover is forced
by the verifier to proceed in the protocol with the correct time ordering of
messages. And this is why it can be possible that even an infinite prover
cannot cheat the verifier, and still a simulator with no special knowledge or
computing power can simulate the conversation. For concreteness, see the
example below.

3.4 An Example

We describe here a simple example taken from [25], namely a perfect zero-
knowledge proof system for the graph isomorphism problem: the common
input in this case is a pair of graphs G0, G1 each on n nodes, and the prover
claims the graphs are isomorphic: there is a permutation π (an isomorphism)
such that by permuting the nodes of G0 according to π (and connecting two
resulting nodes iff their preimages were connected in G0), one obtains the
graph G1. We say that π(G0) = G1.

Note that no general probabilistic poly-time algorithm is known for de-
ciding if two graphs are isomorphic. We will use n as a measure of the length
of the input. In the protocol, we actually do not need P to be infinitely pow-
erful, although the definition of proof systems allows this; it is enough that
he knows an isomorphism π. The protocol works by repeating sequentially
the following steps n times:

1. P chooses a random permutation φ on n points and sends H = φ(G0)
to V .

2. V chooses at random a bit b, and sends it to P .

3. If b = 0, P sets ψ = φ−1. Else he sets ψ = πφ−1. He sends ψ to V ,
who checks that ψ(H) = Gb, and rejects immediately if not.

The verifier accepts, only if all n iterations were completed successfully.
First, let us check that this is a proof system. Completeness is obvious:

if indeed π(G0) = G1 and ψ(G0) = H, then it follows trivially that V ’s check
will be satisfied for both values of b. Soundness can be argued as follows:
observe that we must prove something here assuming that the prover’s claim
is wrong, which in this case means that G0 is not isomorphic to G1. Now

22

assume that in one of the n iterations, P can answer both values of b with a
permutations that satisfy V ’s check. Let ψ0, ψ1 be the permutations sent as
response to b = 0, 1. Since V ’s checks are satisfied, we know that ψ0(H) =
G0 and ψ1(H) = G1. It follows that G0 is isomorphic to G1 under the
isomorphism ψ1ψ

−1
0 , a contradiction. Consequently, it must be the case

that in all n iterations, the prover is able to answer at most one of the 2
possible values of b. Hence the probability of acceptance is at most 2−n,
which is certainly negligible in n.

Finally, let us show that the protocol is perfect zero-knowledge. To this
end, we must build a simulator. The easiest way to think of a simulator
usually is to think of it as an algorithm that tries to complete the protocol,
playing the role of the prover, but of course without any special knowledge
or computing power. Thus, a non-trivial trick is needed. In our case, we
cannot just execute the protocol: we saw in the argument for soundness that
knowing how to answer both of V ’s challenges at the same time implies we
can compute an isomorphism between G0 and G1, and no efficient algorithm
is known for this. However it is possible to prepare in such a way that one
of the challenges can be answered. This is used in the following algorithm
for a simulator M :

1. Start the machine V ∗, which means giving it inputs G0, G1 (plus pos-
sibly some auxiliary input δ) and supplying random input bits for V ∗.
These are needed since V ∗ is allowed to be a probabilistic algorithm;
we choose the random bits here and keep them fixed for the rest of the
simulation.

2. To simulate one iteration, execute the following loop:

(a) Choose a bit c and a permutation ψ at random. SetH = ψ−1(Gc)
and send H to V ∗.

(b) Get b from V ∗. If b = c, output H, b, ψ and exit the loop. Else,
reset V ∗ to its state just before the last H was chosen, and go to
step 2a.

If we have completed simulation of all n iterations at this point, then
stop. Else start at Step 2a again.

So in simulating one iteration, the simulator prepares to answer question
c, and hopes that this is the question V ∗ will ask. If this happens, we’re in
business and can complete the simulation of the current iteration. Otherwise
we just pretend the bad case never happened by rewinding V ∗ and then

23

we try again. At first sight, this rewinding technique can seem somewhat
strange. However, it is essentially the same as rebooting your PC when it
crashes: if we reach a configuration we don’t like, we take the machine back
to one we like better; so in this sense rewinding is an everyday experience6.

To show that this simulator works, we need to show two things: M runs
in expected polynomial time, and the distribution output by M is exactly
the same as in a real protocol run.

Observe first, that by definition of zero-knowledge, we always prove cor-
rectness of a simulation assuming that P ’s claim is true, in our case this
means that G0 is isomorphic to G1. Let S be the set of all graphs isomor-
phic to G0 (or G1). It is straightforward to check that the distribution of H
generated in the simulation is the same as in the real protocol, namely the
uniform distribution over S. Note that we need the assumption that G0 is
isomorphic to G1 to conclude this.

In particular, the distribution ofH is independent of c. It follows that the
b chosen by V ∗ must be independent of c as well, and so Prob(c = b) = 1/2.
Hence the expected number of times we do the loop to simulate one iteration
is 2, and so the whole simulation takes expected time 2n times the time to
go though the loop once, which is certainly polynomial in n.

Finally, the output distribution: The simulator produces in every itera-
tion a triple (H, c, ψ), and then V ∗ outputs b, having seen H. First note that
H is uniform over S, as it would be in a real conversation. It follows that the
b sent by V ∗ is also distributed as in the real conversation (since V ∗ chooses
b based only on its input and H). So the simulator can be described as
follows: it keeps producing pairs of form (H, b), all of which are distributed
as in the real protocol, until it happens to be the case that b equals the
corresponding c-value, and then we select this as the pair (H, b) that will
be used in the output. Now, by independency of H and c, the decision to
keep H or rewind and throw it out does not depend on the choice of H.
Hence the pair (H, b) we actually use will also be distributed as in the real
protocol. And finally ψ is a random permutation mapping H to Gb, just as
in the real protocol. Thus the output distribution of M matches the real
protocol exactly.

This example demonstrates another basic design idea for zero-knowledge
protocols: the prover is asked to answer one out of some set of questions.
We set it up such that he can only answer all of them if his claim is true, but
such that one can always prepare for answering any single question properly.

6If your PC never crashes, you should be making a fortune in consultancy instead of
reading this note!

24

For other examples of this type of protocol, see e.g. [11, 12, 13, 21, 27, 33].
The principle behind the simulator for the graph isomorphism protocol

is so general that it is worth while to describe it in general terms, making
it directly usable in other protocols.

Suppose we are given a proof system (P, V) for language L. Suppose
there exists a probabilistic poly-time machine ML with the property that
(P, V) ∼p M on input x ∈ L. Then M is called a perfect honest-verifier
simulator (note that we use V and not an arbitrary V ∗ here).

Observe that what did in the simulation above was actually to exploit
that the graph isomorphism protocol has such an honest-verifier simulator.
Namely, we generate (H, c, ψ) by choosing c, ψ first and then computing H,
and the “conversation” (H, c, ψ) is indeed distributed exactly as conversa-
tions between honest verifier end prover. Then what we did in the actual
simulation could be described as: keep generating “honest-verifier” conver-
sations (H, c, ψ), send H to V ∗, get b back, and continue until it happens
that b = c. Then output (H, b, ψ). This idea works in general:

Lemma 3.1 The rewinding lemma: Let (P, V) be a proof system for lan-
guage L, and let M be a perfect honest-verifier simulator for (P, V). Assume
that conversations have the form (a, b, z), where P sends a, V responds with
a random bit b, and P replies with z. Then (P, V) is perfect zero-knowledge.

Exercise 8 Prove the rewinding lemma. Does the result also hold for sta-
tistical and computational zero-knowledge?

Exercise 9 [zero-knowledge proof of equivalence] Assume that we have a
set S ⊆ {0, 1}∗ and an equivalence relation ∼ on S such that G,H ∈ S
and G ∼ H implies that |G| = |H|. Your job is to construct a perfect zero-
knowledge proof (with a polynomial time prover) where the common input is
G0, G1 ∈ S and the prover proves that G0 ∼ G1. You are allowed to assume
that there exist algorithms A, B and C with the following properties: 1) A
takes three inputs (G,H, φ) and terminates with b ∈ {0, 1} in polynomial
time in |G|; 2) If G 6∼ H, then A(G,H, φ) = 0 for all φ ∈ {0, 1}∗; 3) If
G ∼ H then there exists a unique φ ∈ {0, 1}∗ such that A(G,H, φ) = 1 and
A(H,G, φ) = 1 (we call this φ the witness for G ∼ H); 4) B takes one input
G and terminates with (H,φ) ∈ S × {0, 1}∗ in polynomial time in |G|; 5) If
(H,φ) = B(G), then H is uniformly random in the equivalence class of G
and φ is the witness for G ∼ H; 6) C takes five inputs (G,H, I, φ, ψ) and
terminates with π ∈ {0, 1}∗ in polynomial time in |G|; 7) If φ is the witness
for G ∼ H and ψ is the witness for H ∼ I, then π = C(G,H, I, φ, ψ)) is the
witness for G ∼ I.

25

Exercise 10 [zero-knowledge proof of identical discrete logarithm] Assume
that we have a cyclic group G with prime order q. We can define an equiv-
alence relation ∼ on (G \ {1}) ×G where (g0, h0) ∼ (g1, h1) iff the discrete
logarithm of h0 base g0 is equal to the discrete logarithm of h1 base g1, i.e.
(g0, h0) ∼ (g1, h1) iff there exists x ∈ {0, 1, . . . , q − 1} s.t. h0 = gx

0 and
h1 = gx

1 .

1. Observe that the equivalence class of (g0, h0) is exactly the q− 1 pairs
(g1, h1) = (gπ

0 , h
π
0) for π ∈ {1, . . . , q − 1}. Call π ∈ {1, . . . , q − 1} for

which (g1, h1) = (gπ
0 , h

π
0) a witness for (g0, h0) ∼ (g1, h1).

2. Use 1 to construct a perfect zero-knowledge proof (with a polynomial
time prover) where the common input is (g0, h0), (g1, h1) ∈ (G\{1})×G
and the prover proves that (g0, h0) ∼ (g1, h1) given a witness π for
(g0, h0) ∼ (g1, h1). [Hint: You may appeal to Exercise 9.]

3.5 Known General Results and Open Problems

Having seen a few examples of zero-knowledge proofs, it is natural to ask
some more general questions:

• Which languages have interactive proofs?

• Which languages have (perfect/statistical) zero-knowledge interactive
proofs?

• Can we compose several zero-knowledge protocols and obtain again a
zero-knowledge protocol?

It turns out that the answers depend strongly on whether the prover (and
cheating provers) are allowed infinite computing power, or only polynomial
time, that is, if we are talking about proof systems or arguments.

3.5.1 Results on Interactive Proofs and Arguments

For an unbounded prover, the first question has been answered by Shamir
[34], where we define IP = {L| L has an interactive proof system}:

Theorem 3.2 IP = PSPACE, i.e. the statements that an all powerful
prover can prove to a polynomially bounded verifier, are precisely those that
can be verified using polynomially bounded memory (but possibly unbounded
time).

26

If the prover is polynomially bounded, it is clear that his only possible
advantage over the verifier is that he may have more information than the
verifier. In this case, the best the prover can do to convince the verifier is to
simply send his information, s, say, to the verifier who should then be able
to check the prover’s statement based on s, where some error probability
is allowed. The class of languages allowing such probabilistic verification of
membership given auxiliary knowledge is already well known as NBPP or
MA. So if we define Bounded-ProverIP to be the class of languages that
have interactive arguments, then we have:

Theorem 3.3 Bounded-ProverIP = MA

3.5.2 Results on Zero-Knowledge

We first look at the case of zero-knowledge interactive proofs. Let

ZKIP = {L| L has a zero-knowledge interactive proof system}.

Goldreich, Micali and Wigderson [25] show that any NP ⊂ ZKIP if com-
mitment schemes with unconditional binding exist. This was extended to
all of IP in [6]. This, together with Theorem 2.1 gives:

Theorem 3.4 If one-way functions exist, then ZKIP = IP .

It is natural to ask also about statistical and perfect zero-knowledge.
Let PZKIP , SZKIP denote the classes of languages with perfect, resp.
statistical zero-knowledge proof systems. Except for the trivial PZKIP ⊂
SZKIP ⊂ ZKIP , very little is known with certainty. We know that a
few languages with nice algebraic properties, such as graph isomorphism
and quadratic residuosity7 are in PZKIP . Also the complements of these
languages are in PZKIP , and this is interesting since a problem such as
graph non-isomorphism is not known to be in NP , and so it seems unlikely
that PZKIP ⊂ NP or SKZIP ⊂ NP . It also seems unlikely that the
converse inclusion holds: Fortnow [20] has proved that if it does, then the
polynomial hierarchy collapses - something believed to be false by many
complexity theorists. In fact this can be seen as evidence that the graph
isomorphism problem is not NP -complete, one of the few real evidences that
have been found.

A nice characterisation of languages in PZKIP or SZKIP is an inter-
esting open problem. We do know, however, some information on complete

7This is the set of pairs of numbers n, a, where a is a square modulo n

27

problems in SZKIP [36], and that a proof system that is statistical zero-
knowledge w.r.t. the honest verifier implies existence of a proof system that
is statistical zero-knowledge in general [23].

Let us mention also a variant of the zero-knowledge concept, known
as non-interactive zero-knowledge. In the non-interactive zero-knowledge
model, an unbounded prover and a polynomial time verifier share access to
a random string α. It is assumed as a part of the model, that α contains
independent random bits. The prover must now convince the verifier that a
common input x is in some language L by sending only 1 message σ (hence
the “non-interactiveness”). The verifier then checks σ against x and α and
accepts or rejects.

This proof system is called sound if whenever x 6∈ L, no prover can make
the verifier accept with non-negligible probability over the choice of α. It is
zero-knowledge if the pair σ, α can be simulated with an indistinguishable
distribution in expected polynomial time.

This model was introduced by Blum, de Santis, Micali and Persiano [7]
to formalise the absolute minimal amount of interaction required to prove
non-trivial statements in zero-knowledge.

To distinguish between all the relevant complexity classes now involved,
we use the following notation: Let NIZK, NIPZK and NISZK denote
the classes of languages with non-interactive computational, perfect and
statistical zero-knowledge proof systems.

Lapidot and Shamir [28] have shown that

Theorem 3.5 If one-to-one surjective one-way functions exist, then NP ⊂
NIZK.

It is an open question whether any one-way function would be sufficient.
The non-interactive model is weaker than the normal interactive model

in that interaction is not allowed, but in another respect stronger because
a random string with correct distribution is assumed to be given “for free”.
It is therefore not immediately clear whether any language that has a non-
interactive zero-knowledge proof system also has an interactive one and vice
versa. In [16], Damg̊ard shows:

Theorem 3.6 We have that NIZK ⊂ ZKIP , NISZK ⊂ SKZIP and
that NIPZK ⊂ PZKIP .

We already know that if one-way functions exist, ZKIP = PSPACE.
This together with the fact that a non-interactive proof uses only a constant

28

number of rounds provides very strong evidence that the first containment
above is proper, since it is extremely unlikely that a constant number of
rounds would be sufficient to prove all of IP . On the other hand, the corre-
sponding questions for the classes where statistical or perfect zero-knowledge
are required seem more open.

For the interactive argument model - which is the most interesting one
in practice - the situation is again quite different. We have already seen that
the only statements we can hope to prove at all are those in the class MA.

So the remaining question is whether we can prove any such statement
in zero-knowledge, or even in perfect zero-knowledge.

In [4], Brassard Chaum and Crépeau show that any MA-language has a
statistical (resp. perfect) zero-knowledge argument, if commitment schemes
with unconditional (resp. perfect) hiding exist. This and the theory results
for commitment schemes imply that

Theorem 3.7 If one-way functions exist, then any language in MA has a
statistical zero-knowledge interactive argument.

Note that there is no conflict between this result and that of Fortnow
mentioned above: Fortnow’s result talks only about interactive proofs (and
not arguments).

The concrete protocol constructions used to prove that all NP problems
have zero-knowledge proof systems and arguments are in fact also proofs of
knowledge. So equally general results on proofs of knowledge follow imme-
diately.

3.5.3 On Composition of Zero-Knowledge Protocols

In general, the sequential composition of two zero-knowledge protocols is
again zero-knowledge. An example of this is the graph isomorphism protocol
shown above – it is in fact the result of repeating sequentially a basic step
several times, where each step is zero-knowledge.

However, if we try doing the repetitions in parallel, then the result-
ing protocol does not seem to be zero-knowledge: we would get a scenario
where P would send many graphs H1, ...,Hn at once, V would send chal-
lenges b1, ...bn and P would reply by ψ1, ..., ψn. The resetting technique for
simulation does not work anymore: we would be forced to try to guess in
advance all the bits b1, ...bn, and it would take us expected exponential time
before the guess was correct. The idea that doing the protocol in parallel
is not zero-knowledge may seem counterintuitive at first sight: why should

29

doing it in parallel tell V more about an isomorphism between G0 and G1?
The answer is that while it might in fact be true that V learns nothing that
could help him to compute such an isomorphism, this is not enough for zero-
knowledge which requires that V learns nothing whatsoever that he could
not compute himself. Indeed if the verifier computes its challenge bits as a
one-way function of the H1, ...,Hn received, then it seems that conversation
itself would be a piece of information that is difficult for V to generate on
his own.

This discussion does not prove that the parallel version of the graph iso-
morphism protocol is not zero-knowledge, only that the resetting technique
will not work for simulating it. However, Goldreich and Krawczyk [24] have
shown that there exist protocols that are zero-knowledge, but where the
parallel composition provably is not zero-knowledge.

A more complicated scenario which has been considered very recently
is that of concurrent zero-knowledge where we allow arbitrary interleaving
of different instances of protocols, i.e. while P is running a protocol with
V1, it starts doing (the same or) a different protocol with V2, etc. There
is no a priori time ordering fixed between messages sent in different pro-
tocols. We can ask whether this entire interaction is simulatable. There
are results about this indicating that many well known protocols fail to be
zero-knowledge in such a scenario, however, there are also ways around this
problem. More information on this can be found in the paper [19] by Dwork
and Sahai, which also contains pointers to more material.

3.6 Applications of Zero-Knowledge

One basic application of zero-knowledge protocols that is important in the-
ory as well as in practice is the usage of zero-knowledge protocols as sub-
protocols in larger constructions, this could be voting schemes, key distri-
bution protocols, or in general any multiparty computation. If we do not
want to assume existence of secure channels, such constructions are usually
not possible in the first place unless one-way functions exist. This means
that in building such protocols we can assume without loss of generality that
NP ⊂ ZKIP . And so whenever a player A sends a message in a protocol
he can convince anybody else in zero-knowledge that he has computed his
message according to the rules in the protocol. This follows since if the
computation A was supposed to do is feasible in the first place, then the
claim that the message is correctly computed can be verified in polynomial
time given all A’s data, and so is an NP -statement.

It follows that we can automatically transform any protocol that is secure

30

assuming players follow the rules into one that is secure even if players
deviate arbitrarily from the protocol. This observation was first made in
[25].

This can be interesting in practice if the involved zero-knowledge proofs
are efficient. However, this is not always the case if we are using the general
theoretical results we have covered. While they show what is in principle
possible, most of the actual protocol constructions occurring in the proofs
of those results are not very attractive in practice.

As an example, we know that a zero-knowledge proof or argument can be
given for any NP language, and this is proved by providing a zero-knowledge
proof for an NP complete problem such as Boolean Circuit satisfiability
(SAT). When we are given a concrete problem instance x ∈ L, where L ∈
NP , then to use the general result, we must first construct from x a Boolean
circuit which is satisfiable precisely if x ∈ L, and then use the protocol for
SAT.

This approach often results in very large circuits, for problem instances
of interest in real life, typically at least 10.000 to 100.000 binary gates. It is
therefore of interest to be able to construct instead an ad hoc zero-knowledge
protocol for the problem in question, such as the graph isomorphism pro-
tocol above. A few problems are “nice” in this sense, in that they allow
construction of particularly efficient protocols. This is often true of prob-
lems derived from number theory, and we mention some examples below.
Still, there are also cases where the only solution we know is to use general
techniques. This can be the case e.g. if P wants to show that for a given bit
string y he knows x such that h(x) = y, where h is some cryptographic hash
function. Since such functions are usually constructed deliberately to have
none of the nice algebraic properties that enable efficient zero-knowledge di-
rectly, we have to resort to the general techniques. SAT is often the natural
NP complete problem to use, so efficient zero-knowledge protocols for SAT
are of particular interest. Results by Cramer and Damg̊ard in this direction
show that one can prove satisfiability of a Boolean circuit while communi-
cating only a number of bit commitments linear in the size of the circuit
[11]. Using preprocessing, one can even reduce the proof to one message
containing 2 bits pr. gate in the circuit [12]. Thus, general techniques can
in fact be practical in some cases.

Still, the largest potential for practical applications of zero-knowledge
comes from extremely efficient protocols specially designed for particular
problems such as the quadratic residuosity problem [21], the discrete loga-
rithm problem [33], or the RSA root extraction problem[27]. The typical
use here is for the classical user identification problem that we mentioned

31

earlier: each user U gets a solution to a hard problem instance xU , and can
identify himself by proving in zero-knowledge that he knows a solution to
xU . By the zero-knowledge property, none of the proofs conducted by U will
help an adversary to find a solution to xU . Still, by the soundness property,
an adversary can only impersonate U if he can find a solution to xU . So if
he succeeds it means he could find a solution to xU from scratch, and this is
not possible if the underlying problem is hard. Using a secure hash function,
one can also use these (interactive) identification protocols to build (non-
interactive) signature schemes [21]. These can be more efficient than RSA
signatures, but have so far only conjectured security in the sense that we do
not know how to reduce the security to any well established computational
assumption.

The most efficient versions of these protocols yield error probability ex-
ponentially small in the security parameter, even though the communica-
tion required is only linear. Unfortunately, these protocols are only zero-
knowledge against the honest verifier, and hence have no provable security
in real life. Feige and Shamir [22] point out a possible way around this
problem: the identification scenario does not really require the full power
of zero-knowledge. It is enough if the protocol does not help the verifier (or
anyone else) to find the provers secret (while zero-knowledge ensures that the
verifier learns nothing new whatsoever). This is so since we can show that
an adversary needs to know the prover’s secret to impersonate the prover.
Protocols with this weaker property are called Witness Hiding (WH), and
might conceivably be easier to construct. In [13] Cramer, Damg̊ard and
Schoenmakers show that the efficient honest verifier zero-knowledge proto-
cols of [33, 27] can be transformed into WH protocols while preserving the
efficiency.

The results just mentioned and many others in the area of efficient zero-
knowledge and WH protocols revolve around protocols of a particular form
where P sends a message, V sends a random challenge, and P gives an
answer that can be checked by V (this is the form of the basic step in the
graph isomorphism protocol). While such protocols by themselves have only
limited security properties (e.g. they either have large error probability or
are only honest verifier zero-knowledge), it turns out that they can be used
in a modular way in a number of constructions of protocols and signature
schemes with simultaneously high efficiency and provable security. For in-
stance, a prover can show that he knows at least t out of n > t secrets
without revealing which t secrets is involved [13, 35]. This can be impor-
tant, e.g. in protocols where anonymity is desired. For a nice introduction
to this entire area, see [8].

32

References

[1] W.Alexi, B.Chor, O.Goldreich and C.P.Schnorr: RSA and Rabin Func-
tions: Certain parts are as hard as the Whole, SIAM J.Computing,
17(1988), 194-209.

[2] M. Bellare and and O. Goldreich: On Defining Proofs of Knowledge,
Proceedings of Crypto ’92, Springer Verlag LNCS, vol. 740, pp. 390–
420.

[3] M. Ben-Or, S. Goldwasser, A. Wigderson: Completeness theorems
for Non-Cryptographic Fault-Tolerant Distributed Computation, Proc.
ACM STOC ’88, pp. 1–10.

[4] G. Brassard, D. Chaum and C. Crépeau: Minimum Disclosure Proofs
of Knowledge, JCSS, vol.37, pp. 156–189, 1988.

[5] J.Brandt, I.Damgåard, P.Landrock and T.Pedersen: Zero-Knowledge
Authentication Scheme with Secret Key Exchange, J.Cryptology, vol
11(1998), 147-160.

[6] M.Ben-Or, O.Goldreich, S.Goldwasser, J.H̊astad, J.Kilian, S.Micali and
P.Rogaway: Everything Provable is Provable in Zero-Knowledge, Pro-
ceedings of Crypto 88, Springer Verlag LNCS series, 37–56.

[7] Blum, De Santis, Micali and Persiano: Non-Interactive Zero-Know-
ledge, SIAM J.Computing, Vol.20, no.6, 1991.

[8] R.Cramer: Modular Design of Secure, yet Practical Cryptographic Pro-
tocols, PhD Thesis, University of Amsterdam 1996.

[9] C.Crépeau: Efficient Cryptographic Protocols based on Noisy Channels,
Proceedings of EuroCrypt 97, Springer Verlag LNCS series, vol.1233,
p.306-317.

[10] D. Chaum, C. Crépeau, I. Damg̊ard: Multi-Party Unconditionally Se-
cure Protocols, Proc. of ACM STOC ’88, pp. 11–19.

[11] R. Cramer and I. Damg̊ard: Linear Zero-Knowledge, Proc. of STOC
97.

[12] R. Cramer and I. Damg̊ard: Zero-Knowledge Proofs for Finite Field
Arithmetic; or Can Zero-Knowldge be for Free?, Proceedings of Crypto
98, Springer Verlag LNCS series.

33

[13] R. Cramer, I. Damg̊ard and B. Schoenmakers: Proofs of Partial Knowl-
edge and Simplified Design of Witness Hiding Protocols, Proceedings of
Crypto ’94, Springer verlag LNCS, vol. 839, pp. 174–187.

[14] C.Crépeau and J.Kilian:Achieving Oblivious Transfer using Weakened
Security Assumptions, Proc. of FOCS 88, p.42-52.

[15] I.Damg̊ard: Collision Free Hash Functions and Public Key Signature
Schemes, Proc. of EuroCrypt 87, Springer Verlag LNCS series.

[16] I.Damg̊ard: Interactive Hashing can Simplify Zero-Knowledge Proto-
col Design Without Computational Assumptions, Proc. of Crypto 93,
Springer Verlag LNCS series.

[17] I. Damg̊ard and B. Pfitzmann: Sequential Iteration of Interactive Ar-
guments, Proc. of ICALP 98, Springer Verlag LNCS series.

[18] I. Damgåard, B. Pfitzmann and T.Pedersen: Statsitical Secrecy and
Multi-Bit Commitments, IEEE Trans.Info.Theory, vol.44 (1998), 1143-
1151.

[19] C.Dwork and A.Sahai: Concurrent Zero-Knowledge: Reducing the Need
for Timing Constraints, Proc. of Crypto ’98, Springer Verlag LNCS
series.

[20] L.Fortnow: The complexity of Perfect Zero-Knowledge, Adv. in Com-
puting Research, vol.5, 1989, 327–344.

[21] A.Fiat, A.Shamir: How to Prove Yourself, Practical Solutions to Iden-
tification and Signature Problems, proc. of Crypto 86, Springer Verlag
LNCS series.

[22] U. Feige and A. Shamir: Witness Indistinguishable and Witness Hiding
Protocols, Proc. of STOC ’90.

[23] O.Goldreich, A.Sahai, S.Vadhan: Honest-Verifier Statistical Zero-
Knowledge Equals General Statistical Zero-Knowledge, Proc. of STOC
’98.

[24] O. Goldreich and A. Kahan: How to Construct Constant-Round Zero-
Knowledge Proof Systems for NP, Journal of Cryptology, (1996) 9: 167–
189.

34

[25] O. Goldreich, S. Micali and A. Wigderson: Proofs that yield Nothing
but their Validity and a Methodology of Cryptographic Protocol Design,
Proceedings of FOCS ’86, pp. 174–187.

[26] S. Goldwasser, S. Micali and C. Rackoff: The Knowledge Complexity
of Interactive Proof Systems, SIAM J.Computing, Vol. 18, pp. 186-208,
1989.

[27] L.Guillou and J.J.Quisquater: A Practical Zero-Knowledge Protocol
Fitted to Security Microprocessor Minimizing both Transmission and
Memory, Proc. of EuroCrypt 88, Springer Verlag LNCS 330.

[28] Lapidot and Shamir: Publicly Verifiable Non-Interactive Zero-Know-
ledge Proofs, Proc. of Crypto 90, Springer Verlag LNCS series.

[29] M.Naor: Bit Commitment using pseudo-randomness, Proceedings of
Crypto 89, Springer Verlag LNCS series.

[30] M.Naor, R.Ostrovsky, S.Venkatesan, M.Yung: Perfect Zero-Knowledge
Arguments for NP using Any One-Way Permutation, J.Cryptology,
vol.11 (1998), 87-108.

[31] M.Naor, M.Yung: Universal One-Way hash Functions and their Cryp-
tographic Applications, Proc. of STOC ’89, 33-43.

[32] Iftach Haitner and Omer Reingold: Statistically-Hiding Commitment
from Any One-Way Function, the Eprint archive, www.iacr.org.

[33] C. P. Schnorr: Efficient Signature Generation by Smart Cards, Journal
of Cryptology, 4 (3): 161–174, 1991.

[34] A.Shamir: IP=PSPACE, Journal of the ACM, vol.39 (1992), 869-877.

[35] A.De Santis, G.Crescenzo, G.Persiano, M.Yung: On Monotone Formula
Closure of SZK, proc. of FOCS ’94.

[36] A.Sahai and S.Vadhan: A Complete Promise Problem for Statistical
Zero-Knowledge, Proc. of FOCS ’97.

35

