
Indexing

• Extracts from: Witten, Moffat, and Bell, Managing Gigabytes, 2nd ed.,

Morgan Kaufmann, 1999.

• Melnik et al., Building a Distributed Full-Text Index for the Web. Proc. 10th

Int. WWW Conf., 2001.

• Arasu et al: Searching the Web. ACM Trans. Internet Technology, 1, 2001.

1



Indexing Documents

Basic task:

Process document collection so docs containing a
query word can be retrieved fast.

Input: document collection.

Output: search structure for collection.

2



Standard Solution

Inverted file + lexicon

• Inverted file = for each word w, list of docs containing w.

• Lexicon = dictionary over all words occuring in doc
collection (key = word, value = pointer to inverted file +
additional info for word, e.g. length of inverted list).

Other traditional solution: signature files (not competitive in web
setting).

3



Lexicon

• Sorted list of occuring words + binary search. How to store
variable length strings?
– Array of fixed records with pointer into concatenated

strings.
– Do. + grouping
– Do. + grouping + front coding

• Hash tables (later).

• Tries, suffix arrays (later)

• External: blocking + lexicon over first string in each block.
Repeat ⇒ prefix B-tree.

4



Inverted File

Simple (one occurence per doc):

w1: DocID, DocID, DocID
w2: DocID, DocID
w3: DocID, DocID, DocID, DocID, DocID, DocID. . .

Detailed (all occurences in docs):

w1: DocID, Position, Position, DocID, Position. . .

Even more detailed:

Position annotated with info (heading, boldface, anchor text,. . . ).
Useful for ranking.

5



Compressing the inverted file

• “Hand coding”
– Store diffs between DocIDs, not absolute DocIDs
– Code this diff efficiently (unary, γ, local Bernoulli).

• Use generic compression tools (gzip,. . . )

• Compress each entire inverted list

• Block the list file, compress each block.

6



Combine inverted list and lexicon

Melnik et al.:

• Use standard (embedded) DB library (e.g. Berkeley DB).

• Sample entries in inverted file evenly (such that parts
between samples can be coded in a page size). Use DB
with (key,value) = (sample, next coded part). Generic
compression can be applied to parts too.

7



Preprocessing

• Find words
– Remove mark-up, scripts,. . .
– Coding scheme? Unicode, latin-1, ascii?
– Lowercase
– Definition of word? (alphanumeric sequence, max 4

digits, max 256 chars).

• Stemming?

• Stop words?

8



Building the index

• Hashing only good within RAM. Normally not relevant for
web.

• I/O-efficient sorting: OK.

Distribution:

• Split on DocID

• Split on WordID

9


	Indexing Documents
	Standard Solution
	Lexicon
	Inverted File
	Compressing the inverted file
	Combine inverted list and lexicon
	Preprocessing
	Building the index

