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Lecture 0
Preliminaries: The Data Stream Model

Scribe: Amit Chakrabarti

0.1 The Basic Setup

In this course, we shall concerned with algorithms that compute some function of a massively long input stream σ .
In the most basic model (which we shall call the vanilla streaming model), this is formalized as a sequence σ =
〈a1, a2, . . . , am〉, where the elements of the sequence (called tokens) are drawn from the universe [n] := {1, 2, . . . , n}.
Note the two important size parameters: the stream length, m, and the universe size, n. If you read the literature in the
area, you will notice that some authors interchange these two symbols. In this course, we shall consistently use m and
n as we have just defined them.

Our central goal will be to process the input stream using a small amount of space s, i.e., to use s bits of random-
access working memory. Since m and n are to be thought of as “huge,” we want to make s much smaller than these;
specifically, we want s to be sublinear in both m and n. In symbols, we want

s = o (min{m, n}) .

The holy grail is to achieve
s = O(log m + log n) ,

because this amount of space is what we need to store a constant number of tokens from the stream and a constant
number of counters that can count up to the length of the stream. Sometimes we can only come close and achieve
a space bound of the form s = polylog(min{m, n}), where f (n) = polylog(g(n)) means that there exists a constant
c > 0 such that f (n) = O((log g(n))c).

The reason for calling the input a stream is that we are only allowed to access the input in “streaming fashion,”
i.e., we do not have random access to the tokens. We can only scan the sequence in the given order. We do consider
algorithms that make p passes over the stream, for some “small” integer p, keeping in mind that the holy grail is to
achieve p = 1. As we shall see, in our first few algorithms, we will be able to do quite a bit in just one pass.

0.2 The Quality of an Algorithm’s Answer

The function we wish to compute — φ(σ), say — will usually be real-valued. We shall typically seek to compute only
an estimate or approximation of the true value of φ(σ), because many basic functions can provably not be computed
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exactly using sublinear space. For the same reason, we shall often allow randomized algorithms than may err with
some small, but controllable, probability. This motivates the following basic definition.

Definition 0.2.1. Let A(σ ) denote the output of a randomized streaming algorithm A on input σ ; note that this is a
random variable. Let φ be the function that A is supposed to compute. We say that the algorithm (ε, δ)-approximates
φ if we have

Pr
[∣∣∣∣A(σ )

φ(σ )
− 1

∣∣∣∣ > ε

]
≤ δ .

Notice that the above definition insists on a multiplicative approximation. This is sometimes too strong a condition
when the value of φ(σ) can be close to, or equal to, zero. Therefore, for some problems, we might instead seek an
additive approximation, as defined below.

Definition 0.2.2. In the above setup, the algorithm A is said to (ε, δ)-additively-approximate φ if we have

Pr [|A(σ )− φ(σ)| > ε] ≤ δ .

We have mentioned that certain things are provably impossible in sublinear space. Later in the course, we shall
study how to prove such impossibility results. Such impossibility results, also called lower bounds, are a rich field of
study in their own right.

0.3 Variations of the Basic Setup

Quite often, the function we are interested in computing is some statistical property of the multiset of items in the input
stream σ . This multiset can be represented by a frequency vector f = ( f1, f2, . . . , fn), where

f j = |{i : ai = j}| = number of occurrences of j in σ .

In other words, σ implicitly defines this vector f, and we are then interested in computing some function of the form
8(f). While processing the stream, when we scan a token j ∈ [n], the effect is to increment the frequency f j . Thus,
σ can be thought of as a sequence of update instructions, updating the vector f.

With this in mind, it is interesting to consider more general updates to f: for instance, what if items could both
“arrive” and “depart” from our multiset, i.e., if the frequencies f j could be both incremented and decremented, and
by variable amounts? This leads us to the turnstile model, in which the tokens in σ belong to [n] × {−L , . . . , L},
interpreted as follows:

Upon receiving token ai = ( j, c) , update f j ← f j + c .

Naturally, the vector f is assumed to start out at 0. In this generalized model, it is natural to change the role of the
parameter m: instead of the stream’s length, it will denote the maximum number of items in the multiset at any point
of time. More formally, we require that, at all times, we have

‖f‖1 = | f1| + · · · + | fn| ≤ m .

A special case of the turnstile model, that is sometimes important to consider, is the strict turnstile model, in which
we assume that f ≥ 0 at all times. A further special case is the cash register model, where we only allow positive
updates: i.e., we require that every update ( j, c) have c > 0.
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Lecture 1
Finding Frequent Items Deterministically

Scribe: Amit Chakrabarti

1.1 The Problem

We are in the vanilla streaming model. We have a stream σ = 〈a1, . . . , an〉, with each ai ∈ [n], and this implicitly
defines a frequency vector f = ( f1, . . . , fn). Note that f1 + · · · + fn = m.

In the MAJORITY problem, our task is as follows: if ∃ j : f j > m/2, then output j , otherwise, output “⊥”.

This can be generalized to the FREQUENT problem, with parameter k, as follows: output the set { j : f j > m/k}.

In this lecture, we shall limit ourselves to deterministic algorithms for this problem. If we further limit ourselves
to one-pass algorithms, even the simpler problem, MAJORITY, provably requires �(min{m, n}) space. However, we
shall soon give a one-pass algorithm — the Misra-Gries Algorithm [MG82] — that solves the related problem of
estimating the frequencies f j . As we shall see,

1. the properties of Misra-Gries are interesting in and of themselves, and

2. it is easy to extend Misra-Gries, using a second pass, to then solve the FREQUENT problem.

Thus, we now turn to the FREQUENCY-ESTIMATION problem. The task is to process σ to produce a data structure
that can provide an estimate f̂a for the frequency fa of a given token a ∈ [n]. Note that a is given to us only after we
have processed σ .

1.2 The Misra-Gries Algorithm

As with all one-pass data stream algorithms, we shall have an initialization section, executed before we see the stream,
a processing section, executed each time we see a token, and an output section, where we answer question(s) about
the stream, perhaps in response to a given query.

This algorithm uses a parameter k that controls the quality of the answers it gives. (Note: to solve the FREQUENT
problem with parameter k, we shall run the Misra-Gries algorithm with parameter k.) It maintains an associative array,
A, whose keys are tokens seen in the stream, and whose values are counters associated with these tokens. We keep at
most k − 1 counters at any time.
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Initialize : A← (empty associative array) ;

Process j :
if j ∈ keys(A) then1

A[ j]← A[ j]+ 1 ;2

else if |keys(A)| < k − 1 then3

A[ j]← 1 ;4

else5

foreach ` ∈ keys(A) do6

A[`]← A[`]− 1 ;7

if A[`] = 0 then remove ` from A ;8

Output : On query a, if a ∈ keys(A), then report f̂a = A[a], else report f̂a = 0 ;

1.3 Analysis of the Algorithm

To process each token quickly, we could maintain the associative array A using a balanced binary search tree. Each
key requires dlog ne bits to store and each value requires at most dlog me bits. Since there are at most k − 1 key/value
pairs in A at any time, the total space required is O(k(log m + log n)).

Now consider the quality of the algorithm’s output. Let us pretend that A consists of n key/value pairs, with
A[ j] = 0 whenever j is not actually stored in A by the algorithm. Notice that the counter A[ j] is incremented only
when we process an occurrence of j in the stream. Thus, f̂ j ≤ f j . On the other hand, whenever A[ j] is decremented
(in lines 7-8, we pretend that A[ j] is incremented from 0 to 1, and then immediately decremented back to 0), we
also decrement k − 1 other counters, corresponding to distinct tokens in the stream. Thus, each decrement of A[ j] is
“witnessed” by a collection of k distinct tokens (one of which is a j itself) from the stream. Since the stream consists
of m tokens, there can be at most m/k such decrements. Therefore, f̂ j ≥ f j − m/k. Putting these together we have
the following theorem.

Theorem 1.3.1. The Misra-Gries algorithm with parameter k uses one pass and O(k(log m + log n)) bits of space,
and provides, for any token j , an estimate f̂ j satisfying

f j −
m
k
≤ f̂ j ≤ f j .

Using this algorithm, we can now easily solve the FREQUENT problem in one additional pass. By the above
theorem, if some token j has f j > m/k, then its corresponding counter A[ j] will be positive at the end of the Misra-
Gries pass over the stream, i.e., j will be in keys(A). Thus, we can make a second pass over the input stream, counting
exactly the frequencies f j for all j ∈ keys(A), and then output the desired set of items.
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Lecture 2
Estimating the Number of Distinct Elements

Scribe: Amit Chakrabarti

2.1 The Problem

As in the last lecture, we are in the vanilla streaming model. We have a stream σ = 〈a1, . . . , an〉, with each ai ∈ [n],
and this implicitly defines a frequency vector f = ( f1, . . . , fn). Let d = |{ j : f j > 0}| be the number of distinct
elements that appear in σ .

In the DISTINCT-ELEMENTS problem, our task is to output an (ε, δ)-approximation (as in Definition 0.2.1) to d.

It is provably impossible to solve this problem in sublinear space if one is restricted to either deterministic algo-
rithms (i.e., δ = 0), or exact algorithms (i.e., ε = 0). Thus, we shall seek a randomized approximation algorithm. In
this lecture, we give a simple algorithm for this problem that has interesting, but not optimal, quality guarantees. The
idea behind the algorithm is originally due to Flajolet and Martin [FM85], and we give a slightly modified presentation,
due to Alon, Matias and Szegedy [AMS99].

2.2 The Algorithm

For an integer p > 0, let zeros(p) denote the number of zeros that the binary representation of p ends with. Formally,

zeros(p) = max{i : 2i divides p} .

We use the following very simple algorithm.

Initialize :
Choose a random hash function h : [n]→ [n] from a 2-universal family ;1

z← 0 ;2

Process j :
if zeros(h( j)) > z then z← zeros(h( j)) ;3

Output : 2z+ 1
2

8
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The basic intuition here is that we expect 1 out of the d distinct tokens to hit zeros(h( j)) ≥ log d, and we don’t
expect any tokens to hit zeros(h( j)) � log d . Thus, the maximum value of zeros(h( j)) over the stream — which is
what we maintain in z — should give us a good approximation to log d. We now analyze this.

2.3 The Quality of the Algorithm’s Estimate

Formally, for each j ∈ [n] and each integer r ≥ 0, let Xr, j be an indicator random variable for the event “zeros(h( j)) ≥
r ,” and let Yr =

∑
j : f j >0 Xr, j . Let t denote the value of z when the algorithm finishes processing the stream. Clearly,

Yr > 0 ⇐⇒ t ≥ r . (2.1)

We can restate the above fact as follows (this will be useful later):

Yr = 0 ⇐⇒ t ≤ r − 1 . (2.2)

Since h( j) is uniformly distributed over the (log n)-bit strings, we have

E[Xr, j ] = Pr[zeros(h( j)) ≥ r ] = Pr[2r divides h( j)] =
1
2r .

We now estimate the expectation and variance of Yr as follows. The first step of Eq. (2.3) below uses the pairwise
independence of the random variables Yr , which follows from the 2-universality of the hash family from which h is
drawn.

E[Yr ] =
∑

j : f j >0

E[Xr, j ] =
d
2r .

Var[Yr ] =
∑

j : f j >0

Var[Xr, j ] ≤
∑

j : f j >0

E[X2
r, j ] =

∑
j : f j >0

E[Xr, j ] =
d
2r . (2.3)

Thus, using Markov’s and Chebyshev’s inequalities respectively, we have

Pr[Yr > 0] = Pr[Yr ≥ 1] ≤
E[Yr ]

1
=

d
2r , and (2.4)

Pr[Yr = 0] = Pr
[
|Yr − E[Yr ]| ≥ d/2r ]

≤
Var[Yr ]
(d/2r )2 ≤

2r

d
. (2.5)

Let d̂ be the estimate of d that the algorithm outputs. Then d̂ = 2t+ 1
2 . Let a be the smallest integer such that

2a+ 1
2 ≥ 3d . Using Eqs. (2.1) and (2.4), we have

Pr
[
d̂ ≥ 3d

]
= Pr[t ≥ a] = Pr[Ya > 0] ≤

d
2a ≤

√
2

3
.

Similarly, let b be the largest integer such that 2b+ 1
2 ≤ d/3. Using Eqs. (2.2) and (2.5), we have

Pr
[
d̂ ≤ d/3

]
= Pr[t ≤ b] = Pr[Yb+1 = 0] ≤

2b+1

d
≤

√
2

3
.

These guarantees are weak in two ways. Firstly, the estimate d̂ is only of the “same order of magnitude” as d, and
is not an arbitrarily good approximation. Secondly, these failure probabilities above are only bounded by the rather
large

√
2/3 ≈ 47%. Of course, we could make the probabilities smaller by replacing the constant “3” above with

a larger constant. But a better idea, that does not further degrade the quality of the estimate d̂, is to use a standard
“median trick” which will come up again and again.
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2.4 The Median Trick

Imagine running k copies of this algorithm in parallel, using mutually independent random hash functions, and out-
putting the median of the k answers. If this median exceeds 3d, then at least k/2 of the individual answers must exceed
3d , whereas we only expect k

√
2/3 of them to exceed 3d. By a standard Chernoff bound, this is event has probability

2−�(k). Similarly, the probability that the median is below d/3 is also 2−�(k).

Choosing k = 2(log(1/δ)), we can make the sum of these two probabilities work out to at most δ. This gives us
an (O(1), δ)-approximation to d . Later, we shall give a different algorithm that will provide an (ε, δ)-approximation
with ε→ 0.

The original algorithm requires O(log n) bits to store (and compute) a suitable hash function, and O(log log n)
more bits to store z. Therefore, the space used by this final algorithm is O(log(1/δ) · log n). When we reattack this
problem with a new algorithm, we will also improve this space bound.

10



Lecture 3
Finding Frequent Items via Sketching

Scribe: Radhika Bhasin

3.1 The Problem

We return to the FREQUENCY-ESTIMATION problem that we saw in Lecture 1. We give two randomized one-pass
algorithms for this problem that work in the more general turnstile model. Thus, we have an input stream σ =
〈a1, a2, . . .〉, where ai = ( ji , ci ) ∈ [n] × {−L , . . . , L}. As usual, this implicitly defines a frequency vector f =
( f1, . . . , fn) where

f j =
∑

i : ji= j

ci .

We want to maintain a “sketch” of the stream, which is a data structure based on which we can, at any time, quickly
compute an estimate f̂ j of f j , for any given j ∈ [n].

We shall give two different solutions to this problem, with incomparable quality guarantees. Both solutions main-
tain certain counters who size is bounded not by the length of the stream, but by the maximum possible frequency.
Thus, we let m denote the maximum possible value attained by any | f j | as we process the stream. Whenever we refer
to counters in our algorithms, they are assumed to be O(log m)-bits long.

3.2 The Count-Min Sketch Algorithm

This sketch was introduced by Cormode and Muthukrishnan [CM05]. A Count-Min (CM) sketch with parameters
(ε, δ) provides guarantees akin to an (ε, δ)-approximation, but not quite! The parameter ε is used in a different way,
though δ still represents the probability of error. Read on.

The CM sketch consists of a two-dimensional t × k array of counters, plus t independent hash functions, each
chosen uniformly at random from a 2-universal family. Each time we read a token, resulting in an update of f j , we
update certain counters in the array based on the hash values of j (the “count” portion of the sketch). When we wish
to compute an estimate f̂ j , we report the minimum (the “min” portion) of these counters. The values of t and k are
set, based on ε and δ, as shown below.
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Initialize :
t ← log(1/δ) ;1

k ← 2/ε ;2

C[1 . . . t][1 . . . k]← E0 ;3

Pick t independent hash functions h1, h2, . . . , ht : [n]→ [k], each from a 2-universal family ;4

Process ( j, c):
for i = 1 to t do5

C[i][hi ( j)]← C[i][hi ( j)]+ c ;6

Output : On query a, report f̂a = min1≤i≤t C[i][hi (a)]

3.2.1 The Quality of the Algorithm’s Estimate

We focus on the case when each token ( j, c) in the stream satisfies c > 0, i.e., the cash register model. Clearly, in this
case, every counter C[i][hi (a)], corresponding to a token a, is an overestimate of f j . Thus, we always have

f j ≤ f̂ j .

For a fixed a, we now analyze the excess in one such counter, say in C[i][hi (a)]. Let the random variable X i denote
this excess. For j ∈ [n] \ {a}, let Yi, j denote the contribution of j to this excess. Notice that j makes a contribution
iff it collides with a under the i th hash function, i.e., iff hi ( j) = hi (a). And when it does contribute, it causes f j to
be added to this counter. Thus,

Yi, j =

{
f j , if hi ( j) = hi (a), which happens with probability 1/k ,

0 , otherwise.

Notice that the probability above is 1/k because hi is 2-universal. Anyway, we now see that E[Yi, j ] = f j/k. By
linearity of expectation,

E[X i ] = E

 n∑
j=1
j 6=a

Yi, j

 = n∑
j=1
j 6=a

E[Yi, j ] =
n∑

j=1
j 6=a

f j

k
=
‖f‖1 − fa

k
.

Using our choice of k, we have
E[X i ] =

ε

2
(‖f‖1 − fa) ≤

ε

2
· ‖f‖1 .

So, by Markov’s inequality,

Pr[X i ≥ ε‖f‖1] ≤
1
2

.

The above probability is for one counter. We have t such counters, mutually independent. The excess in the output,
f̂a − fa , is the minimum of the excesses X i , over all i ∈ [t]. Thus,

Pr
[

f̂a − fa ≥ ε‖f‖1
]
= Pr [min{X1, . . . , X t } ≥ ε‖f‖1]

= Pr

[
t∧

i=1
(X i ≥ ε‖f‖1)

]

=

t∏
i=1

Pr[X i ≥ ε‖f‖1]

≤
1
2t .

12
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And using our choice of t , this probability is at most δ. Thus, we have shown that, with high probability,

fa ≤ f̂a ≤ fa + ε‖f‖1 ,

where the left inequality always holds, and the right inequality fails with probability at most δ.

3.2.2 Space Usage

The Count-Min algorithm needs to store (1) the k× t array of counters, and (2) representations of the t hash functions.
The array needs space O(kt log m) = O( 1

eps log 1
δ · logm). Assuming, w.l.o.g., that n is a power of 2, we can use

a finite-field-based hash function (as in Homework 1), which will require O(log n) space for each of the t functions.
Thus, the total space usage is at most

O
(

log
1
δ

(
log m

ε
+ log n

))
.

3.3 The Count Sketch Algorithm

Count Sketch Algorithm allows us to the estimate the frequencies of all items in the stream.The algorithm uses two
hash functions,along with a two-dimensional t × k array of counters.The first hash function hi maps input input items
onto k,and secondary hash function gi maps the input items onto {-1,+1}.Each input item j causes gi ( j) to be added
on to the entry C[i][hi ( j)] in row i,for 1 ≤ i ≤ t .For any row i, gi ( j).C[i][hi ( j)] is an unbaised estimator for f j .The
estimate f̂ j , is the median of these estimates over the t rows.The values of t and k are set, based on ε and δ, as shown
below.

Initialize :
t ← log(1/δ) ;1

k ← 3/ε2 ;2

C[1 . . . t][1 . . . k]← E0 ;3

Pick t independent hash functions h1, h2, . . . , ht : [n]→ [k], each from a 2-universal family ;4

Pick t independent secondary hash functions g1, g2, . . . , gt : [n]→ {−1, 1}, each from a 2-universal family ;5

Process ( j, c):
for i = 1 to t do6

C[i][hi ( j)]← C[i][hi ( j)]+ c.gi ( j) ;7

Output : On query a, report f̂a = median1≤i≤t C[i][hi (a)]

gi ( j) is either +1 or −1 and the decision is made at random.For any token a,g1(a) will either add one or subtract
one and is constant among multiple occurences of the token.If another token b collides with token a, descision of gi (b)
will be made independent of gi (a).

Case1: No collison of token a with other tokens

C[i][hi (a)]+ = fa .gi (a)

Case2: In case of Collisons,other tokens will increment or decrement the counter with equal probability.

C[i][hi (a)]+ = fa .gi (a)+ Error due to collision

Without loss of generality,assuming a = 1 and i = 1 ,then a good estimate for C[1][h1(1)] should be equal to
f1.g1(1).
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3.4 Analysis of the Algorithm

For a fixed token a, we now analyze the excess in one such counter, say in C[i][hi (a)]. Let the random variable
X denote this excess. For j ∈ [n] \ {a}, let Y j denote the contribution of j to this excess. Notice that j makes a
contribution iff it collides with a under the i th hash function, i.e., iff hi ( j) = hi (a). And when it does contribute, it
causes f j to be added to this counter. Thus,

Y j =


f j , which happens with probability 1/2k ,

− f j , which happens with probability 1/2k ,

0 , which happens with probability 1− 1/k ,

Notice that the probability above is 1/2k because hi and gi both are 2-universal. And Expectation E[Y j ] = 0.

Writing X as the sum of pairwise independent random variables

X = (Y2 + Y3 + Y4 + . . . , Yn)

Random variables (Y2 + Y3 + Y4 . . . , Yn) are pairwise independent as the hash functions chosen are 2-universal.

Therefore, by pairwise independence we have

Var[X ] = Var[Y2]+ Var[Y3]+ . . . Var[Yn]

Variance of a random variable Y j is given by

Var[Y j ] = E[Y 2
j ]− E[Y j ]2

Var[Y j ] = E[Y 2
j ]− 0

Var[Y j ] = f 2
j

1
k

Therefore,

Var[X ] =
( f 2

2 + . . . f 2
n )

k
.

Writing in the norm form,we have

Var[X ] =
‖ f ‖22 − f 2

1
k

Defining K =
√
‖ f ‖22 − f 2

1 , then

Var[X ] =
K 2

k

So,Standard Deviation, σ =

√
K 2

k

Using Chebyshev’s Inequality,

Pr [|X | ≥ εK ] = Pr [|X | ≥ ε
√

k
(

K
√

k

)
] ≤

(
1

ε2k

)
≤

1
3
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where t = ε
√

k and σ = K
√

k

Thus,the final guarantee for Count Sketch is

| f̂ j − f j | ≤ ε‖ f ‖2

where the inequality fails with probability at most δ after amplifying the probability of success by taking median of
t = log 1

δ independent instances.(Using chernoff bound)

3.4.1 Space Usage

The Count Sketch algorithm needs to store (1) the t × k array of counters, and (2) representations of the two hash
functions. The array needs space O(kt log m) = O( 1

eps2 log 1
δ · logm).

3.4.2 Comparison of Count Min and Count Sketch Algorithm

Guarantee
Count Min Sketch: Guarantee is in norm-1.

| f̂a − fa | ≤ εKcms ≤ ε‖ f ‖1

where Kcms = ‖ f ‖1 − ‖ fa‖

Count Sketch:Guarantee is in norm-2.

| f̂a − fa | ≤ ε(Kcs) ≤ ε‖ f ‖2

where Kcs =

√
‖ f ‖22 − f 2

a

In general, ‖ f ‖2 ≤ ‖ f ‖1, so CMS gives a better guarantee.It’s a lot better guarantee if the frequency’s are evenly
distributed.

Space Required
Space required is measured by the number of counters as the size of the counters is the same.

CMS:Space = O( 1
ε log 1

δ ) counters

CM :Space = O( 1
ε2 log 1

δ ) counters

Count sketch algorithm uses more space but gives a better guarantee than CMS.
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Lecture 4
Estimating Distinct Items Using Hashing

Scribe: Andrew Cherne

4.1 The Problem

Again we are in the vanilla streaming model. We have a stream σ = 〈a1, a2, a3, . . . , an〉, with each ai ∈ [m], and this
implicitly defines a frequency vector f = ( f1, . . . , fn). Let d = |{ j : f j > 0}| be the number of distinct elements
that appear in σ . In the DISTINCT-ELEMENTS problem, our task is to output an (ε, δ)-approximation (as in Definition
0.2.1) to d . When d is calculated exactly, its value is equal to the zeroth-frequency moment, denoted F0. This is an
important problem with many real world examples. Estimating the number of distinct elements has applications in
databases, network statistics and Internet analysis.

4.2 The BJKST Algorithm

In this section we present the algorithm dubbed BJKST, after the names of the authors: Bar-Yossef, Jayram, Kumar,
Sivakumar and Trevisan [BJK+04]. The original paper in which this algorithm is presented actually gives 3 algorithms,
the third of which we are presenting.

4.3 Analysis of the Algorithm

4.3.1 Space Complexity

Since there are 3 distinct components to the structure of this algorithm, the total space required is the sum of these. First
is the hash function h, which requires O(log m) space. The secondary hash function, g, requires O(log m + log(1/ε))
space. Finally we need the space of the buffer, which, using this clever implementation with the secondary hash
function, g, stores at most 1/ε2 elements, each requiring space of O(log(1/ε)(log log m)). Therefore the overall space
complexity of the algorithm is O(log m + 1/ε2

· (log(1/ε)+ log log m)).
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Initialize : choose a 2-universal hash function h : [m]→ [m] ;
let ht = last t bits of h (0 ≤ t ≤ log m) ;
t ← 0 ;
B ← ∅ ;
choose a secondary 2-universal hash function g : [m]→ [O( log m

ε2 )] ;
Process j :
if ht ( j) = 0t then1

B ← B ∪ {g( j)} ;2

if |B| > c
ε2 then3

t ++ ;4

rehash B ;5

6

Output : |B|2t ;7

4.3.2 Analysis: How Well Does The BJKST Algorithm Do?

Let t? be the final value of t after processing the stream. Then we say that

FAILURE ≡ ||B|2t?
− d| ≥ εd

If the deviation is ≥ εd (where d is the number of distinct elements), then it is a failure event (this is just relative
error).

Let X t, j be indicator random variable such that

X t, j =

{
1 if ht ( j) = 0t (with probability 1

2t );
0 otherwise.

and X t =
∑

j : f j >0 X t, j is a sum of d pairwise independent identically distributed indicator random variables.
That is, X t is the number of elements in the buffer using ht .

E[X t ] =
d
2t

V ar [X t ] =
∑

j

V ar [X t, j ]

≤

∑
j

E[X t, j ]

= E[X t ]

=
d
2t

H⇒ V ar [X t ] = E[X t ] =
d
2t

H⇒ FAILURE ≡ |X t?2t?
− d| ≥ εd

Continuing the equality from above, and dividing both sides by 2t ,
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FAILURE ≡
log m⋃
t=0

(|X t −
d

2t∗ | ≥
εd
2t ∩ t∗ = t)

If t? = t , then the above is just equal to |X t?2t?
− d| ≥ εd (union on all possible values of t).

For small values of t , |X t −
d
2t | ≥

εd
2t is unlikely.

Similarly, for large values of t , t∗ = t is unlikely.

Let s be an integer such that
12
ε2 ≤

d
s2 <

24
ε2

Where anything greater than s is considered large and anything less than s− 1 is considered small. We are starting the
analysis from t = 1 since at t = 0 there would be no failure event:

⊆

s−1⋃
t=1

(|X t −
d
2t | ≥

εd
2t ) ∪

log m⋃
t=s

(t∗ = t)

⊆

s−1⋃
t=1

(|X t − E[X t ]| ≥ ε

√
d
2t σ X t ) ∪ (t∗ ≥ s)

(in Chebyshev form)

Pr [t? ≥ s] = Pr [xs−1 >
c
ε2 ] (Chebyshev)

≤ E[xs−1]
ε2

c
(Markov)

Pr [FAILURE] ≤
s−1∑
t=1

2t

ε2d
+

d
2s−1

ε2

c

≤
2s

ε2d
+

dε2

2s−1c

≤
1
12
+

48
c

=
1
6

with c = 576

4.4 Future Work

In their paper, the authors note that this problem has been shown to have a lower bound of �(log m) and �(1/ε) (via
reduction of the INDEX problem). Interesting future work would be to devise an algorithm that uses polylog space or
a lower bound of �(1/ε2).
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Lecture 5
Estimating Frequency Moments

Scribe: Robin Chhetri

5.1 Background

We are in the vanilla streaming model. We have a stream σ = 〈a1, . . . , an〉, with each ai ∈ [n], and this implicitly
defines a frequency vector f = ( f1, . . . , fn). Note that f1 + · · · + fn = m.

We have already seen that the count-min-sketch algorithm with parameters (ε, δ).Please note that, [Pr[answer not
with ε relative error]] ≤ δ. The Count Min-Sketch gives

∣∣∣ f̂ − fi

∣∣∣ ≤ ε‖f‖1 with high probability with Õ(1/ε) space

where Õ(.) means that we ignore factors polynomial in logm, logn, log1/ε etc

In Count-Sketch Algorithm,we have
∣∣∣ f̂ − fi

∣∣∣ ≤ ε‖f‖1 with high probability and the space requirement is Õ(1/ε2).
The question here is how to estimate ε‖f‖1

Please note the Õ notation. Typically, the space is O
(

f (ε).log
1
δ

)
but it is more convenient to express it in the

form of Õ . Therefore, we will be using the Õ notation quite a bit.

The kth frequency moment Fk is defined by

Fk =
∑

m
| fm |

k

Alon, Matias, and Szegedy or AMS[96] gave an ε, δ approximation for computing the moment. This is what we
will cover in this lecture.

First some background:The first frequency moment ‖f‖1 is

‖f‖1 = | f1| + | f2| + ...+ | fn|

If only positive updates are taken, that is there are no deletions but only insertions, then

‖f‖1 = f1 + f2 + ...+ fn = m

Clearly, m is trivial to compute.
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In fact,maintaining running sum also works, as frequencies stay positive, which implies strict turnstile model.

How to we find ‖f‖2 ? Strictly speaking, we know that sum of squares of frequencies is the 2nd frequency norm,
that is

‖f‖2 =
√

f 2
1 + f 2

2 + ...+ f 2
n =
√

F

But unfortunately, we can’t use this here. This is because we need to find the individual frequencies, f1, f2, .. and
so on but we don’t have space for this computation.

Therefore, we give a general algorithm. The K th frequency moment of the stream is

Fk = Fk(σ ) = f k
1 + f k

2 + ...+ f k
n

We assume that we are only taking positive updates, that is

f j =
∣∣ f j
∣∣

The zero moment of the set of frequencies of F , F0 is

F0 = f 0
1 + f 0

2 + ...+ f 0
n

Please note that ,we are taking a convention 00
= 0 here as some of the frequencies could be zero.

This equals to the number of distinct elements (DISTINCT-ELEMENTS).

Similarly, the first moment is simply the sum of frequencies or m, which takes O(logm) space.

F1 = f1 + f2 + ...+ fn = m

And, the second moment is
F2 = f 2

1 + f 2
2 + ...+ f 2

n

This takes Õ
(

1
ε2 loglogn + logn

)
space

5.2 AMS estimator for Fk

We pick an uniform random token from the stream. We count the number of times, our token appears in the remaining
stream. And we output m(rk

− (r−1)k). Please note that we don’t know the length of the stream before we choose the
token. Eventually, we will run many copies of this basic estimator to get our final estimation with better guarantees.

The space for the algorithm is O(logm + logn).
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Initialize : M ← 0;
R← 0;
T oken← 1

Process j :
m ← m + 1 ;1

With Probability 1
m do:2

token← j ;3

r ← 0 ;4

if j == token then5

r ← r + 1 ;6

Output : m(rk
− (r − 1)k);7

5.3 Analysis of the Algorithm

How to compute the expectation?

Let N be the position number of token picked by A. Then, N ∈R [m] where ∈R means that they are uniformly
random.

We can think of the choice of m as a two step process

1:Pick a random token value from [n]

Pr [picking j] =
f j

m

2:Pick one of the Pj of j uniformly at random

E[m(Rk
− (R − 1)k] = mE[Rk

− (R − 1)k]

= m
n∑

j=1

f j

m

f j∑
i=1

(( fi − i + 1)k
− ( f j − i)k)

1
f j

= m
n∑

j=1

f j

m

f j∑
i=1

(ik
− (i − 1)k)

1
f j

=

n∑
j=1

f j∑
j=1

(ik
− (i − 1)k)

=

n∑
j=1

f k
j

= Fk

which is the kth norm. Therefore, the estimator has the right expectation value. Even if errors are large in the
algorithm, we can bring them down in subsequent runs.

Now, to compute the variance
V ar [X ] = E[X2]− E[X ]2

≤ E[X2]
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We pick the token at random and use the occurrence,

V ar [X ] = mE2[(Rk
− (R − 1)k)2]

= m2
n∑

j=1

f j

m

f j∑
i=1

1
f j

(ik
− ( j − 1)k)2

= m
n∑

j=1

f j∑
i=1

(ik
− (i − 1)k)2

We are going to crudely estimate this using upper bounds, by using: (xk
− (x − 1)k)2

≤ kxk−1(xk
− (x − 1)k)

from mean value theorem

Get:

V ar [X ] ≤ m
n∑

j=1

f j∑
i=1

kik−1(ik
− (i − 1)k) ≤ m

n∑
j=1

k f k−1
j

f j∑
i=1

(ik
− (i − 1)k)

= m
n∑

j=1

k f k−1
j . f k

j

= mk
n∑

j=1

f 2k−1
j

i.e,
V ar [X ] ≤ k F1 F2k−1 ≤ kn1− 1

k F2
k

Using
F1 F2k−1 ≤ n1−1/k F2

k

Here, we have the expected value is right, and we have a bound on the variance. We want to compute the average
to bring down the ε error.

Now, we have
E[X i ] = µ

Let X1, X2, ..., Xn be independent and identically distributed random variables

And

V ar [X i ] ≤
V
T

Chebyshev inequality gives,

Pr [Y + E[Y ]] ≥ εE[Y ] = Pr [|Y − E[Y ]| ≥
εE(Y )

σ (Y )
.σ (Y )

≤
σ 2(Y )

ε2E[Y ]2 ≤
V/T
ε2µ2

=
V 2

ε2µ2
1

T 2

We want (ε,1/3). So, we pick T so that this becomes 1/3. Thus, choice of T =
3V

ε2µ2
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remembered as

3V ar [X i ]
ε2[X i ]2

Basic estimator X has E[X ] = Fk

V ar [X ] ≤ kn1−1/k F2
k

Therefore, for failure probability 1/δ, number of repetitions required for failure

=
3
ε2

kn1−1/k F2
k

F2
k

= O
(

1
ε2 kn1−1/k

)
For F2, space is

= O
(

1
ε2 n1/2(logm + logn)

)
which is not great, but is pretty good. In the next lecture, we will see something specific for F2 that will bring it down
to log space.
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Lecture 6
Why does the amazing AMS algorithm work?

Scribe: Joe Cooley

Normal distribution Probability distribution on the reals whose shape looks like the plot drawn in class.

Gaussian distribution A high dimensional analogue of a 1-dimensional normal distribution. More precisely, it’s
a vector (z1, z2, . . . , zn) ε <n (reals) where each zi is drawn from a normal distribution. When drawing a random
number n from a normal distribution, it will likely equal 0. Probability exponentially decreases as numbers become
large.

The following equation desribes a gaussian distribution:

y = exp−x2

or more generally,
y = α exp−β(x−γ )2

One can do linear combinations of gaussian distributions and still get gaussians. For example, Ez, Ew→ AEz + B Ew.

with probability
{

p pick Ez1 ∼ Gaussian1
1− p pick Ez2 ∼ Gaussian2

Define F2 =

n∑
j=1

f j
2.

Initialize :
Choose a random hash function h : [n]→ [n] from a 4-universal family ;1

x ← 0 ;2

Process j :
x ← x + h( j) ;3

Output : x2

This works because mixtures of Gaussians give gaussians. Gaussian distributions behave ”nicely” under a certain
set of conditions.
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Consider the N (0, 1) distribution. “0” refers to centering distribution on γ = 0, and “1” refers to ”thickness” of
curve, i.e., σ (stdev) of resulting distribution = 1.

Recall that in the discrete scenario, each outcome in the set of outcomes has a weight, and the weights sum to 1.

What is the probability distribution on the reals, i.e., what’s the probability of getting a number in the area of X?

The probability distribution on < can be specified in two ways.

1. probability density function (pdf)

F : R → [0, 1] s.t.
∫
∞

−∞

f (x) dx = 1,

i.e., assign a weight to every real number s.t. their sum is 1.

2. cumulative distribution function (cdf)

F → [0, 1], F(t) = Pr[X ≤ t] =
∫
∞

−∞

f (x)dx, f (x) = F ′(x)

Note that X is drawn from a distribution and is at most t.

Back to the N(0,1) distribution. The pdf = 1
√

2π
e−x2

and has the following property.

First, let X1, X2, . . . , Xn ∼ N (0, 1) i.i.d., and let a1, a2, . . . , an ε <

Theorem 6.0.1. a1 X1 + a2 X2 + ..+ an Xn ∼
√

a2
1 + a2

2 + ..+ a2
n X, where X ∼ N (0, 1)

(proof...fair amount of calculus)

For the intuition, imagine a1 X1+a2 X2+ ..+an Xn are orthogonal unit vectors in n-dimensions, length (the ‖L‖2-

norm) in euclidean sense of vector would be ∼
√

a2
1 + a2

2 + ..+ a2
n X . Adding normal random variables like these is

like taking length of orthogonal vectors in high dimensions

Recall that ‖ẑ‖p = (
n∑

i=1

|zi |
p)

1
p , 0 < p ≤ 2

Definition 6.0.2. A distribution µ on < is p-stable if X1, X2, .., Xn ∼ µ i.i.d. (distributed according to µ) and
Ea = (a1, . . . , an) ε <n , then a1 X1 + ..+ an Xn ∼ ‖Ea‖p X .

Theorem 6.0.3. N (0, 1) is 2-stable

Theorem 6.0.4. ∀ p ε (0, 2], ∃ a p-stable distribution (constructive)

How do we generate reals? Given some precision b, we can generate real numbers in time linear in b (# of bits
needed); the underlying distribution should be close to b. (We “just” need to generate a fair coin.)

Theorem 6.0.5. Cauchy distribution is 1-stable where the Cauchy pdf is 2
π

1
1+x2 (a fat tail distribution).

Intuitively (in a plot), at 0, y = 1 and the drop is slow, i.e., it has a fat tail. No well-defined variance (∞ variance),
integrating from−∞ to∞ gives∞. To compare distributions with infinite variances, we find the highest moment that
is still finite.

Back to algorithms. . .

Stream problem
Estimate Fp = ‖ Ef ‖

p
p, or equivalently, estimate ‖ Ef ‖p → L p.

”Algorithm A1” (we’ll handle reducing memory later)
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Initialize :
Choose n random reals X1, . . . , Xn ∼ µ, a p-stable distribution ;1

x ← 0 ;2

Process j :
x ← x + X j ;3

Output : |x |

Initialize :
Choose n random reals X1, . . . , Xn ∼ µ, a p-stable distribution ;1

x ← 0 ;2

Process j :
x ← x + cX j // with turnstile model;3

Output : |x |

Assume frequency is bounded by some constant, which would bound the counter size. Thus, storing x requires
O(log(m)) bits provided we guarantee each |X i | ≤ O(1)

Problems with real numbers

• X precision not bounded

• X range not bounded

Just truncate large values because the probability of getting a large is small (see plot); we’ll just add to the error.

Algorithm operation
Token arrives (j,c)→ real storage→ access X j portion of random string.

Why does this work?
Consider p = 1:

Let X be the final x of the algorithm, then by 1-stability X ≡ ‖ f ‖1 Z , where Z ∼ µ

X = f1 X1 + ..+ fn Xn

Where in the 1-stable case, so we’re using the Cauchy distribution scaled by the L1-norm.

Why do we output |x | instead of x?

Because the variance isn’t defined, we can’t compute expectation. Instead of computing expectation (like all other
solutions we’ve seen except for Misra-Gries).

We’re going to take the median of values and argue that this is reasonable. To do this, we need to take the median
of a random variable. What does this mean? How do we take the median of a random variable?

Consider the cdf of a Cauchy distribution. What does median mean in this context? Intuitively, when taking a
median, arrange values on a line and take middle value. When we have a continuous distribution, we’d like to choose
the median where 1

2 the mass is on one side, and half on the other.

Definition 6.0.6. For a random variable R ∼ ξ , ”median of R” or ”median of ξ” = t , s.t. Pr [R ≤ t] = 1
2 , i.e.,

t, s.t.
∫ t
−∞

ξ(x)dx = 1
2 , i.e., t, s.t. 4(t) = 1

2 , i.e., 4−1( 1
2 ).

How do we know that a unique t exists to satisfy the median property? Derivative assumptions must hold (we
won’t discuss those here).

Algorithm “A2” (Piotr Indyk, MIT)

Run k = c
ε2 log( 1

δ ) copies of A1 in, and output the median of the answers.
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Theorem 6.0.7. This gives (ε, δ)-approximation to L1 = ‖ f ‖1 = F1.

Consider that we have 2 streams, each defining a histogram. We’d like to the know the, for example, L1 distance
between the two vectors. If we’d like to know the L2 distance, use the previous algorithm where X2 is output.

Proof. Essentially, use a good old Chernoff bound, but first suppose X ∼ Cauchy (X is distributed according to
Cauchy)

Claim median[|X |] = 1 (corollary, median[a|X |] = |a| by linearity)

Proof. pdf of |X | = g where {
g(x) = 0, x < 0,
2
π

1
1+x2 , x > 0

The median = t s.t.

1
2
=

∫ t

−∞

g(x)dx

=
2
π

∫ t

−∞

dx
1+ x2

=
2
π

arctan(t)

⇒ arctan(t) = π
4

⇒ t = tan(π
4 )

= 1

What’s the intuition behind what we’re saying? If we take a random variable from the Cauchy distribution, the
median of the value is close to 1. If we take a bunch of values, the median is even more likely to be closer to 1. We
can use the Chernoff bound to show this.

Claim
Let X1, .., Xk (from definition of A2) ∼ |Cauchy|, then

Pr[median(X1, . . . , Xn) /∈ [1− O(ε), 1+ O(ε)]] ≤ δ

How do we prove this? Imagine plotting cdf of |Cauchy| 1 is the median, so curve touches 1
2 here.

If the median is too small, let’s examine one value.

Pr[X1 ≤ 1− O(ε)] ≤
1
2
− ε,

by continuity and bounded derivative of cdf of |Cauchy|.

So, how much do we need to twiddly 1− O(ε) to hold the inequality 1
2 − ε?

Pr[X ≤ t]
Pr[X ≤ 1] = 1

2

Pr[X ≤ 0.99] is close to 1
2 (we assume we’re bounded derivative property we haven’t discussed.)

E[i s.t. X i ≤ 1− O(ε)] ≤ ( 1
2 − ε)k
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Plugging into the Chernoff bound, we have

Pr[median ≤ 1− O(ε)] ≤ exp−ε2kO(1)
≤

δ

2

What a messy algorithm!

• How many bits of precision do we need?

• How do we generate from a distribution?

• etc.

A taste of later...
We can generate a large random string with small random string and a PRNG.

Based on the more general algorithm, A1, if we chose gaussian variables, we could compute the L2 norm. Using
yesterday’s algorithm (−1, 1), behaves like gaussian distribution.

If Y1, Y2, .., YnεR−1, 1 then EY = (Y1, .., Yn) is ”close” to EZ = (Z1, .., Zn) where Zi ← N (0, 1) for n→∞.

An open question posed by Piotr Indyk
Is there some way to choose values from a simple distribution with small of independence that happens to work, i.e.,
replace large array of reals w/ (−1, 1), i.e., we don’t have to rely on a heavy hammer (i.e., a PRNG).
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Finding the Median

Scribe: Jon Denning

7.1 The Median / Selection Problem

We are working in the vanilla stream model. Given a sequence of numbers σ =< a1, a2, . . . , am >, ai ∈ [n], assume
ai ’s are distinct, output the median.

Suppose that the stream is sorted. Then the median of the stream is the value in the middle position (when m is
odd) or the average of the two on either side of the middle (when m is even). More concisely, the median is the average
of the values at the bn/2c and dn/2e indices. (Running two copies of our algorithm finds the mathematical median.)

This leads us to a slight generalization: finding the r th element in a sorted set.

Definition 7.1.1. Given a set S of elements from a domain D with an imposed order and an element x ∈ D, the rank
of x is the count of elements in the set S that are not greater than x .

rank(x, S) = |{y ∈ S : y ≤ x}|

This definition of rank makes sense even if x does not belong to S. Note: we are working with sets (no repeats),
so assume they are all distinct. Otherwise, we’d have to consider the rank of an element in a multiset.

There are multiple ways of solving for the median. For example, sort array then pick the r th position. However,
the running time is not the best, because sort is in m log m time (not linear).

There is a way to solve this in linear time. This is done by partitioning the array into 5 chunks, find median, then
recurse to find median. The median of median will have rank in the whole array. So, we need to find the rank of this
element. If it’s > r or < r , recurse on the right or left half. Want rank of r − t if r is rank you want and t is rank of
median.

Unfortunately, there’s no way to solve this median problem in one pass as it is stated. There is a theorem that says,
in one pass, selection requires �(min{m, n}) space (basically linear space).

Can we do something interesting in two passes? Yes! Like in the Misra-Gries algorithm, in two passes we have
space usage down close to Õ(

√
n) space (tilde hides some constant). It is similar but not in log. So, let’s use more

passes! In p passes, we can achieve Õ(n1/p) space. Making p large enough can “get rid of n.” Let’s use p = O(log n).
In O(log n) passes, we’re down to Õ(1) space.
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We will give an algorithm that uses p passes, and uses space O(n1/p). It will be difficult to state in pseudo code,
but it is very elegant.

The concept is called i-sample (i ∈ Z): from a set of numbers, construct a sample from it by selecting one in every
n integers. For example, a 1-sample is about half the set, and a 2-sample is about a quarter of the set.

Definition 7.1.2. An i-sample of a population (set of numbers) of size 2i s (s is some parameter) is a sorted sequence
of length s defined recursively as follows, where A ◦ B is stream A followed by stream B:

i = 0 : 0-sample(A) = sort(A)
i > 0 : i-sample(A ◦ B) =

= sort(evens((i − 1)-sample(A))
⋃

evens((i − 1)-sample(B)))

In other words, when i > 0, construct an (i − 1)-sample of the first part, and (i − 1)-sample of the second part
(each sorted sequence of length s). Then combine them by picking every even positioned element in the two sets and
insert in sorted order.

This algorithm says I want to run in a certain space bound, which defines what sample size can be done (can
afford). Process stream and then compute sample. Making big thing into small thing takes many layers of samples.

Claim: this sample gives us a good idea of the median.
Idea: each pass shrinks the size of candidate medians

7.2 Munro-Paterson Algorithm (1980)

Given r ∈ [m], find the element of stream with rank = r . The feature of Munro-Paterson Algorithm is it uses p passes
in space O(m1/p log2−2/p m log n). We have a notion of filters for each pass. At the start of the hth pass, we have
filters ah, bh such that

ah ≤ rank-r element ≤ bh .

Initially, we set a1 = −∞, b1 = ∞. The main action of algorithm: as we read stream, compute i-sample. Let mh
= number of elements in stream between the filters, ah and bh . With a1 and b1 as above, m1 = m. But as ah →← bh ,
mi will shrink. During the pass, we will ignore any elements outside the interval ah, bh except to compute rank(ah).
Build a t-sample of size s = S/ log m, where S = target size, where t is such that 2t s = mh . It does not matter if this
equation is exactly satisfied; can always “pad” up.

Lemma 7.2.1. let x1 < x2 < . . . < xs be the i-sample (of size s) of a population P. |P| = 2i s.

To construct this sample in a streaming fashion, we’ll have a working sample at each level and a current working
sample s (an (i − 1)-samples) that the new tokens go into. When the working samples become full (i − 1)-samples,
combine the two (i − 1)-samples into an i-sample. This uses 2s storage. (i.e., new data goes into 0-sample. When it’s
full, the combined goes into 1-sample, and so on.)

At the end of the pass, what should we see in the sample? t-sample contains 2t elements. Should be able to
construct rank of elements up to ±2t . In the final sample, we want rank r , so look at rank r/2t .

Let’s consider the j th element of this sample. We have some upper and lower bounds of the rank of this element.
Note: with lower bounds 2i j, 2i+1 j and upper bounds 2i (i + j), 2i+1(i + j), ranks can overlap.

2i j ≤ rank(x j , P) ≤ 2i (i + j)

L i j = lower bound = 2i j, Ui j = upper bound = 2i (i + j)
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An example, suppose these are elements of sample with given ranks

A B C D

(−−−−−) ← rank(A)

(−−−−−) ← rank(B)

(−−−−−) ← rank(C)

(−−−−−) ← rank(D)

↑ ← rank = r

A’s upper bound is too small and D’s lower bound is too large, so they will serve as the new filters. Update filters.
If ah = bh , output ah as answer.

Proof. We proceed by induction on i .

When i = 0, everything is trivially correct, because the sample is the whole population. L i j = Ui j = j .

Consider the (i+1)-sample, where i ≥ 0: (i+1)-sample is generated by joining two i-samples, a “blue” population
and a “red” population. We made an i-sample from blue population and then picked every other element. Similarly
for red population. Combined, they produce, for example,

i-sampleblue = b1 b2 b3 b4 b5 b6 b7 b8 b9 b10, i-samplered = r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

(i + 1)-sample = sort(b2 b4 b6 b8 b10 r2 r4 r6 r8 r10) = b2 b4 r2 b6 r4 b8 r6 b10 r8 r10.

Suppose, without loss of generality, the j th element of the (i +1)-sample is a b ( j = 6, for example), so it must be
the kth blue selected element from the blue i-sample (k = 4). This kth picked element means there are 2k elements up
to k. Now, some must have come from the red sample ( j − k picked elements, or the 2( j − k)th element in sample),
because the ∪ is sorted from blue and red samples.

rank(x j , P) ≥ L i,2k + L i,2( j−k) by inductive hypothesis on rank of elements in sample over their respective
populations.

Combining all these lower bounds

L i+1, j = min
k

(L i,2k + L i,2( j−k)) (7.1)

Note: the kth element in the (i + 1)-sample is the 2kth element in the blue sample, so the lower bound of the kth
element.

Upper bound: Let k be as before.

Ui+1, j = max
k

(Ui,2k +Ui,2( j−k+1)−1) (7.2)

Have to go up two red elements to find the upper bound, because one red element up is uncertainly bigger or
smaller than our blue element. (Check that L i j and Ui j as defined by (7.1) and (7.2) satisfy lemma.)

Back to the problem, look at the upper bounds for a sample. At some point we are above the rank, Ut, j < r
but Ut, j+1 ≥ r . We know that all these elements (up to j) are less than the rank we’re concerned with. In the final
t-sample constructed, look for uth element where u is the min such that Utu ≥ r , i.e., 2t (t+u) ≥ r ⇒ t+u = dr/2t

e.
u is an integer, so u = dr/2t

e − t . Set a← uth element in sample for the next pass.

Similarly, find the vth element where v is max such that L tv ≤ r , i.e., 2tv ≤ r ⇒ v = br/2t
c. Set b ← vth

element for the next pass.

Based on the sample at the end of the pass, update filters to get ah+1 and bh+1. Each pass reduces the number of
elements under consideration by S, whittling it down by the factor (mh log2 m)/S.
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Lemma 7.2.2. If there are n elements between filters at the start of a pass, then there are O(n log2 n/S) elements
between filters at the end of the pass.

mh+1 = O

(
mh log2 m

S

)
= O

(
mh

S/ log2 m

)

mh = O
(

m

(S/ log2 m)h−1

)
We are done making passes when the number of candidates is down to S. At this point, we have enough space to

store all elements between the filters and can find the rank element wanted.

The number of passes required p is such that, ignoring constants,

θ
(

m
(S/ log2 m)p−1

)
= θ(S)

⇒ m log2p−2 m = S p

⇒ m1/p log2−2/p m = S

where S is the number of elements from the stream that we can store.

We’re trading off the number of passes for the amount of space.

Note: this computes the exact median (or any rank element). Also, the magnitude of the elements makes no
difference. We do a compare for <, but don’t care how much less it is. This algorithm is immune to the magnitudes of
the elements.
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Approximate Selection

Scribe: Alina Djamankulova

8.1 Two approaches

The selection problem is to find an element of a given rank r, where rank is a number of element that are less than
or equal to the given element. The algorithm we looked at previously gives us the exact answer, the actual rank of
an element. Now we are going to look at two different algorithms that take only one pass over data. And therefore
give us an approximate answer. We’ll give only rough detailes of the algorithms analysing them at very high level.
Munro-Paterson algorithm we previously looked at considered this problem.

1. Given target rank r, return element of rank ≈ r . The important note is that we are not looking for the approxi-
mate value of r element, which does not make a lot of sense.
Let us define a notion of relative rank. Relative rank is computed the following way

relrank(x, S) =
rank(x, S)

|S|
The relative rank is going to be some number between 0 and 1. For example, median is an element of relative
rank 1/2. We can generalize this in terms of quantiles. Top quantile is the element of relative rank 1/4.
Given target relative rank φ, return element of relative rank ∈ [φ − ε, φ + ε]
(ε - approximation parameter, φ - quantile problem) [Greenwald - Khanna ’01]

2. Random-order streams The idea is to create some really bad ordering of the elements in the stream. This does
not mean that we literally mess the data. But we just suppose that we can get data in the worse order it can be.
And if we can successfully solve this problem within the time and space limits, we are guaranteed to get good
results, since data is very unlikely to come in that messy order.

• Given a multiset of tokens, serialized into a sequence uniformly at random, and we need to compute the
approximate rank of the element. We can think of the problem in the following way.
We look at the multiset leaving the details of how we do it.

• Given r ∈ [m], return element of rank r with high probability with respect to the randomness n the ordering
(say ≥ 1 - δ)
(random order selection)[Guho - McGregor ’07]
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8.2 Greenwald - Khanna Algorithm

The algorithms has some slight similarities with Misra-Gries algoritms for solving frequent element problem. Maintain
a collection of s tuples (v1, g1, 11), ...(vs, gs, 1s) where
vi is a value from stream so far (δ)
gi = min-rank (vi ) - min-rank (vi − 1) // gain: how much more is this rank relative to the previously seen element.
Storing gi we can update easier and faster.
Minimum value seen so far and the maximum value seen so far will always be stored.
1i = max-rank (vi ) - min-rank (vi ) // range
min (δ) = v1 < ... < vs = max (δ) // seen so far, increasing order

Initialize :
Starting reading elements from the stream;1

m ← 0 ;2

Process a token v:
Find i such that vi < v < vi+1;3

v becomes the ”new” vi+1 −→ associated tuple = (v, 1, b2εmc);4

m ← m + 1;5

if v = new min/new max then6

1← 0 // every 1
ε elements;7

Check if compression is possible (withis some bound) and it it is, do the compression:8

if ∃ i such that gi + gi+1 +1i+1 ≤ b2εmc then9

Remove i t h tuple;10

Set gi+1 ← gi + gi+1;11

Output : a random element that is filtered12

Space: O( 1
ε log εmlogn)

At any point, G-K algorithm can tell the rank of any element up to ±e where e = maxi (
gi+1i

2 )

min-rank (vi ) = sumi
j=1g j

max-rank (vi ) = sumi
j=1g j +1i

Identify i such that vi < v < vi+1
Then rank(v) ∈ [min-rank(vi ), max-rank(vi+1)]
In this statement min-rank(vi ) = a and max-rank(vi+1) = b. So we do approach to the real rank of the element with a
and b filters.
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rank (v) ≥ min-rank (vi ) = sumi
j=1g j

rank (v) ≤ max-rank (vi+1) = sumi
j=1g j +1i+1

— rank range for v — ≤ gi+1 +1i+1 ≤ 2e If we announce rank(v) ≈ a+b
2 , then error ≤ ±( b−a

2 ) ≤ e
Algorithm maintains the invariant gi +1i ≤ 1+ b2εmc. So ranks are known up to error 1+b2εmc

2 = εm + 1/2

8.3 Guha-McGregor Algorithm

• Split stream into pieces: σ =< S1, E1, S2, E2, ..., Sp, E p >
S: sample
E: Estimate
One pass polylog space # passes for polylog space = O(log log m) and m and p both O(log m)

• Maintain filters an, bn(1 ≤ h ≤ p) initially
ai = −∞, bi = ∞

such that with high probability rel-rank - φ element ∈ (an, bn)

• Sample phase: find first token u ∈ (an, bn), f romSn

• Estimate phase: compute r = rel-rank (u, En)

• Update filters, setting as in binary search
True rank of u ∈ [rm −

√
l, rm +

√
l] with high probability

Filter update
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Graph Stream Algorithms

Scribe: Ryan Kingston

9.1 Graph Streams

In a graph stream, tokens represent lines in a graph, where the vertices are known in advance. Duplicate pairs can be
represented in a form that is convenient to the problem, such as weighted lines, parallel lines, etc. Given n vertices
{1, 2, ..., n}, stream = 〈(u1, v1), (u2, v2), ..., (um, vm)〉, with each (ui , vi ) ∈ [n].

Finding the most interesting properties of the graph requires �(n) space, e.g. ”Is there a path of length 2 between
vertices 1 and 2?”

The edges arrive as follows: (1, v) for v ∈ S where S ⊆ {3, 4, ..., n{, then (v, 2) for v ∈ T where T ⊆ {3, 4, ..., n{.
The question then boils down to ”is S∩ T 6= φ”? This is known as the Disjointess Problem, which is known to require
�(n). Graph streams are of the ”semi-streaming model” with slightly different goals as the streams we’ve seen
previously. Namely, to make the ( space

n ) as small as we can, and O(n · poly(logn)) is our new ”holy grail”.

9.2 Connectedness Problem

Initialize : F ← φ, where F is a set of edges ;

Process (u, v):
if F ∪ {(u, v)} does not contain a cycle then1

F ← {(u, v)} ∪ F ;2

3

Output : if |F | (The number of edges) = n − 1 then
Yes

else
No

The UNION-FIND data structure can be used to determine connected components in the graph. For example, if
component u and component v are equal, then (u, v) forms a cycle and the edge can be discarded, otherwise the
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components can be merged. This ensures that the graph will be maintained as a forest. Note that this works only on
insertion-only graph streams (edges in the stream do not depart from the graph).

9.3 Bipartite Graphs

A bipartite graph is a graph with no odd cycles, also known as a 2-colored graph. If a graph is bipartite, then a depth-
first search should traverse back and forth between the bipartitions. To discover whether a graph is bipartite or not can
be found by checking that the graph has no odd cycles.

Definition: Monotone properties - Properties that are not destroyed by adding more edges to the graph. For exam-
ple, once a graph is discovered to be connected, adding more edges cannot cause the graph to become disconnected.
The same holds true for bipartite graphs; A graph that is discovered to be non-bipartite, it is always going to be
non-bipartite after adding more edges.

Initialize : F ← φ;
Ans ← ”Y es”

Process (u, v):
if F ∪ {(u, v)} does not contain a cycle then1

F ← {(u, v)} ∪ F ;2

else3

if cycle created by (u, v) is odd then4

Ans← ”No”5

6

Output : Ans

Outline of proof, given an input graph G:

1. Information retained allows us to compute a 2-coloring of G.

2. Information discarded doesn’t affect this coloring or its validity.

3. The first edge to cause odd cycle violates the coloring.

9.4 Shortest Paths (Distances)

At the end of the stream, given vertices x, y, estimate dG(x, y) = min

{
# edges in an x-y path in G

∞, if no x-y path in G

}

Initialize : H a subgraph of G ← φ

Process (u, v):
if H ∪ {(u, v)} does not contain a cycle of length < t then1

H ← H ∪ {(u, v)}2

3

Output : Given query (x, y), output dH (x, y)

Quality analysis: dG(x, y) the actual distance ≤ dH (x, y) ≤ t · dG(x, y)
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We say that H is a t-spanner of G if it contains no cycles of length < t . A smaller t will give us a more accurate
answer but requires more space. The girth of a graph is the length of its shortest cycle. Here, we are ensuring that
girth(H ) ≤ t .

Theorem 9.4.1. A graph on n vertices with girth ≥ t has O(n1+ 2
t ) edges. This is known as Bollobá’s Theorem.

9.4.1 Algorithm Analysis

Say H has m edges (and without loss of generality, m > n). If we delete from H all vertices of degree < m
n . The

number of deleted edges ≤ (m
n − 1) · n = m − n.

∴ The number of edges remaining ≥ m − (m − n) = n > 0.

Consider a breadth-first search from any root in the remaining subgraph, H́ . Up to t−1
2 levels, we get≥ m

n children

per level (because the branching factor is ≥ m
n )→ (m

n )
t−1

2 vertices. So, n ≥ number of vertices of H́ ≥ (m
n )

t−1
2 ⇒

n
2

t−1 ≥
m
n ⇒ m ≤ n1+ 2

t−1
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Finding Matching, Counting Triangles in
graph streams

Scribe: Ranganath Kondapally

10.1 Matchings

Definition 10.1.1. Given a graph G(V, E), Matching is a set of edges M ⊆ E , such that no two edges in M share a
vertex.

Problem: We are given a graph stream (stream of edges). We want to find a maximum matching.

There are two types of maximum matchings that we will consider:

• Maximum cardinality matching(MCM) : We want to maximize the number of edges in the matching.

• Maximum weight matching(MWM) : In this case, edges are assigned weights and we want to maximize the sum
of weights of the edges in the matching.

“Semi-Streaming” model : aim for space Õ(n) or thereabouts [we just want to do better than O(n2) space usage]

Both the algorithms for MCM and MWM have the following common characteristics:

• Approximation improves with more number of passes

• Maintain a matching (in memory) of the subgraph seen so far

Input: Stream of edges of a n-vertex graph

Without space restrictions: We can compute a MCM, starting with an empty set, and try to increase the size of
matching : By finding an augmenting path.

Definition 10.1.2. Augmenting Path: Path whose edges are alternately in M and not in M , beginning and ending in
unmatched vertices.

Theorem 10.1.3. Structure theorem: If there is no augmenting path, then the matching is maximum.
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So, when we can no longer find an augmenting path, the matching we have is an MCM by the above theorem.

Streaming Algorithm for MCM: Maintain a maximal matching (cannot add any more edges without violating
the matching property). In more detail:

• Initialize: M ← ∅

• Process (u, v): If M ∪ {(u, v)} is a matching, M ← M ∪ {(u, v)}.

• Output: |M |

Theorem 10.1.4. Let t̂ denote the output of the above algorithm. If t is the size of MCM of G, then t/2 ≤ t̂ ≤ t .

Proof. Let M∗ be a MCM and |M∗| = t . Suppose |M | < t/2. Each edge in M “kills” (prevents from being added to
M) at most two edges in M∗. Therefore, there exists an unkilled edge in M∗ that could have been added to M . So, M
is not maximal which is a contradiction.

State of the art algorithm for MCM: For any ε, can find a matching M such that (1−ε)t ≤ |M | ≤ t , using constant
(depends on ε) number of passes.

Outline: Find a matching, as above, in the first pass. Passes 2, 3, . . . find a “short” augmenting path (depending on
ε) and increase the size of the matching. Generalized version of the above structure theorem for matchings gives us
the quality guarantee.

MWM algorithm:

• Initialize: M ← ∅

• Process (u, v): If M ∪ {(u, v)} is a matching, then M ← M ∪ {(u, v)}. Else, let C = {edges of M conflicting
with (u, v)} (note |C | = 1 or 2). If wt (u, v) > (1+ α) wt (C), then M ← (M − C) ∪ {(u, v)}.

• Output: ŵ = wt (M)

Space usage of the above algorithm is O(n log n).

Theorem 10.1.5. Let M∗ be a MWM. Then, k· wt (M∗) ≤ ŵ ≤ wt (M∗) where k is a constant.

With respect to the above algorithm, we say that edges are “born” when we add them to M . They “die” when
they are removed from M . They “survive” if they are present in the final M . Any edge that “dies” has a well defined
“killer” (the edge whose inclusion resulted in its removal from M).

We can associate a (“Killing”) tree with each survivor where survivor is the root, and the edge(s) that may have
been “killed” by the survivor (at most 2), are its child nodes. The subtrees under the child nodes are defined recursively.

Note: The above trees, so defined, are node disjoint (no edge belongs to more than one tree) as every edge has a
unique “killer”, if any.

Let S = {survivors}, T (S) =
⋃

e∈S[ edges in the Killing tree(e) not including e] (descendants of e)

Claim 1: wt (T (S)) ≤ wt (S)/α

Proof. Consider one tree, rooted at e ∈ S.

wt (leveli descendants) ≤
wt (leveli−1 descendants)

1+ α
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Because, wt (edge) ≥ (1+ α)wt ({edges killed by it})

⇒ wt (leveli descendants) ≤
wt (e)

(1+ α)i

wt (descendants) ≤ wt (e)
( 1

1+ α
+

1
(1+ α)2 + . . .∞

)
= wt (e)

1
1+ α

( 1

1− 1
1+α

)
= wt (e)

1
1+ α − 1

=
wt (e)

α

wt (T (S)) =
∑

e∈S wt (descendants of e) ≤
∑

e∈S
wt (e)

α =
wt (S)

α

Claim 2: wt (M∗) ≤ (1+ α)(wt (T (S))+ 2 · wt (S))

Proof. Let e∗1, e∗2, . . . be the edges in M∗ in the stream order. We will prove the claim by using the following charging
scheme:

• If e∗i is born, then charge wt (e∗i ) to e∗i which is in T (S) ∪ S

• If e∗i is not born, this is because of 1 or 2 conflicting edges

– One conflicting edge, e: Note: e ∈ S ∪ T (S). Charge wt (e∗i ) to e. Since e∗i could not kill e, wt (e∗i ) ≤
(1+ α)wt (e)

– Two conflicting edges e1, e2: Note: e1, e2 ∈ T (S) ∪ S. Charge wt (e∗i )
wt (e j )

wt (e1)+wt (e2)
to e j for j = 1, 2.

Since e∗i could not kill e1, e2, wt (e∗i ) ≤ (1+ α)(wt (e1)+ wt (e2)). As before, we maintain the property
that weight charged to an edge e ≤ (1+ α)wt (e).

• If an edge is killed by e′, transfer charge from e to e′. Note: wt (e) ≤ wt (e′), so e′ can indeed absorb this charge.

Edges in S may have to absorb 2(1+α) times their weight (conflict two edges in M∗, etc). This proves the claim.

By claim 1&2,

wt (M∗) ≤ (1+ α)
(wt (S)

α
+ 2 · wt (S)

)
= (1+ α)

(1+ 2α

α

)
wt (S)

=

( 1
α
+ 3+ 2α

)
wt (S)

Best choice for α (which minimizes the above expression) is 1/
√

2. This gives

wt (M∗)

3+ 2
√

2
≤ ŵ ≤ wt (M∗)

Open question: Can we improve the above result (with a better constant)?
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10.2 Triangle Counting:

Given a graph stream, we want to estimate the number of triangles in the graph. Some known results about this
problem:

• We can’t multiplicatively approximate the number of triangles in o(n2) space.

• We can approximate the number of triangles up to some additive error

• If we are given that the number of triangles ≥ t , then we can multiplicatively approximate it.

Given a input stream of m edges of a graph on n vertices with at least t triangles, we can compute (ε, δ)-
approximation using space O( 1

ε2 log 1
δ ·

mn
t ) as follows:

1. Pick an edge (u, v) uniformly at random from the stream

2. Pick a vertex w uniformly at random from V \ {u, v}

3. If (u, w) and (v, w) appear after (u, v) in the stream, then output m(n − 2) else output 0.

It can easily be shown that the expectation of the output of the above algorithm is equal to the number of triangles.
As before we run copies of the above algorithm in parallel and take the average of their output to be the answer. Using
Chebyshev’s inequality, from the variance bound, we get the space usage to be O( 1

ε2 log 1
δ ·

mn
t ).

Bar-Yossef, Kumar, Sivakumar [BKS02] algorithm: Uses space Õ( 1
ε2 log 1

δ · (
mn
t )2). Even though the space

usage of this algorithm is more than the previous one, the advantage of this algorithm is it is a “sketching” algorithm
(computes not exactly a linear transformation of the stream but we can compose “sketches” computed by the algorithm
of any two streams and it can handle edge deletions).

Algorithm: Given actual stream of edges, pretend that we are seeing virtual stream of triples {u, v, w} where
u, v, w ∈ V . Specifically,

actual token Virtual token
{u, v} → {u, v, w1}, {u, v, w2}, . . . , {u, v, wn−2}

where {w1, w2, . . . , wn−2} = V \ {u, v}.

Let Fk be the kth frequency moment of virtual stream and

Ti =

∣∣∣{{u, v, w} : u, v, w are distinct vertices and ∃ exactly i edges amongst u, v, w
}∣∣∣

Note: T0 + T1 + T2 + T3 =
(n

3

)
.

F2 =
∑

u,v,w

(number of occurrences of {u, v, w} in the virtual stream)2

= 12
· T1 + 22

· T2 + 32
· T3

= T1 + 4T2 + 9T3

Similarly, F1 = T1 + 2T2 + 3T3 (Note: F1 = length of virtual stream = m(n − 2) ) and F0 = T1 + T2 + T3.

If we had estimates for F0, F1, F2, we could compute T3 by solving the above equations. So, we need to compute
two sketches of the virtual stream, one to estimate F0 and another to estimate F2.
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Scribe: Adrian Kostrubiak

11.1 Clustering

11.1.1 Metric Spaces

When talking about clustering, we are working in a metric space. A metric space is an abstract notion in which
points have certain distances between each other. This metric space consists of a set of M with a distance function
d : M × M → R+ and the following properties:

1. d(x, y) = 0⇔ x = y (Identity)

2. d(x, y) = d(y, x) (Symmetry)

3. ∀ x, y, z : d(x, y) ≤ d(x, z)+ d(z, y) (Triangle Inequality)

Note that if properties (2) and (3) hold and property (1) does not hold then we are working in a semi-metric space.

One example of a metric space is Rn , under the distance function d(Ex, Ey) = ‖Ex − Ey‖p such that (p > 0).

11.1.2 Working with Graphs

We will be working with weighted graphs that are in metric space. In these weighted graphs, M = the vertex set,
d = the shortest weighted path distance, and all weights ≥ 0. Whenever the set of points is finite, a weighted graph is
the general situation.

A general idea for a clustering algorithm is as follows:
Input: A set of points from a metric space and some integer k > 0.
Goal: Partition the points into ≤ k clusters in the ”best” way, using a cost function.
Possible objective (cost) functions:

• Max diameter = maxc(max distance between two points in c)
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• Three other cost functions involving representatives with the following properties:
clusters c1, . . . , ck
representatives r1 ∈ c1, . . . , rk ∈ ck
and let xi 1, xi 2, . . . , be points in ci

1. k-center:
maxi

(
max j

(
d(xi j , ri )

))
2. k-median:

maxi

(∑
j

d(xi j , ri )

)

3. k-means:

maxi

√∑
j

d(xi j , ri )2



11.2 Doubling Algorithm

The goal of the doubling algorithm is to try to minimize the k-center objective function.
The following is an outline of the algorithm:

Input stream: x1, x2, . . . , xm ∈ M , where (M, d) is a metric space, and some integer k > 0, which is the max
number of clusters that we wish to compute.
Desired output: a set y1, . . . , yk of representatives such that the k-center cost of using these representatives is (approx-
imately) minimized.

• When we see (k + 1)st point in the input stream, suppose that the minimum pairwise distance is 1, by rescaling
the distances.

• Then at this point, we know that O PT ≥ 1, where OPT is defined as

O PT = cost of optimum clustering

• The algorithm now proceeds in phases.
At the start of the i th phase, we know that O PT ≥ di/2(d1 = 1).

• Phase i does the following:

– Choose each point as the new representative if its distance from all other representatives > 2di .

– If we’re about to choose the (k + 1)st representative, stop this phase, and let di+1 = 2di .

• If the algorithm ends with w < k clusters, we are O.K. and we can just add in some arbitrary cluster. This
additional cluster could be empty or not.

11.3 Summaries

A summary of a stream σ =< x1, x2, . . . > with xi ∈ U is any set S ⊆ U .
Associated with the summary is a summarization cost, 1(σ, S).
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With the k-center algorithm, we’ll use the following function in order to determine the summarization cost:

1(σ, S) = max
x∈σ

(
min
y∈S

(d(x, y))

)
The following is an example of a stream, with ◦ representing normal elements in the stream and ⊗ representing

elements that have been chosen as representatives. In this example, σ has been processed, and the rest of the stream,
π has not yet been processed.

◦ ⊗ ◦ ◦ ⊗ ◦ ⊗ ◦ ◦◦︸ ︷︷ ︸
σ

| ◦ ◦ ◦ ◦ ◦◦︸ ︷︷ ︸
π

We can say 1 is a metric cost if for any streams σ, π and their respective summaries, S, T , we have:

1(S ◦ π, T )−1(σ, S) ≤ 1(σ ◦ π, T ) ≤ 1(S ◦ π, T )+1(σ, S) (1)

We can think of this scenario as S summarizing σ , and T summarizing the whole stream, σ ◦ π .

11.4 k-center Problem

Problem: Summarize a stream, while minimizing a summarization cost given by the function 1. In order to do this,
the following conditions are required:

1. 1 is a metric cost

2. 1 has an α-approximate threshold algorithm, A

Note that a threshold algorithm is an algorithm that takes as input an estimate t and a stream σ , and

• Either produces a summary S (where |S| = k) such that 1(σ, S) ≤ αt

• Or fails, proving that ∀ T (where |T | = k), 1(σ, T ) > t

Looking at the Doubling Algorithm, any one phase of the doubling algorithm is a 2-approximate threshold algorithm.
If S∗ is an optimum summary for σ then running A with threshold t∗ = 1(σ, S∗) will surely not fail. Therefore, it
will produce a summary S with 1(σ, S) ≤ α · t∗ = α · O PT .

11.4.1 Guha’s Algorithm

Guha’s algorithm (2009) is just one algorithm designed to solve the k-center problem in the streaming model. The
idea behind this algorithm is to run multiple copies in parallel with different thresholds. So we will run p instances of
the A algorithm all in parallel. If any run i with a threshold of ti fails, then we can know for sure that ∀ j < i copies
of the algorithm will fail too.

The following is an outline of Guha’s Algorithm:

• Keep p (such that (1+ ε)p
=

α
ε ) instances of theA algorithm with contiguous geometrically increasing thresh-

olds of the form (1+ ε)i running in parallel.

• Whenever q ≤ p of instances fail, start up next q instances of A using the summaries from the failed instances
the “replay” the stream. When an instance fails, kill all the other instances with a lower threshold.
(Note that the threshold goes up from (1+ ε)i

→ (1+ ε)i+p).

• At the end of input, output the summary from the lowest threshold alive instances of A.

We can think of this algorithm as raising the threshold of an instance by (1+ε)p rather than starting a new instance.
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11.4.2 Space Bounds

Let: σi = the portion of the stream in phase i ,
Si = summary of the stream at the end of phase i ,
π = the final portion of the stream,
T = the final summary,
and t = the estimate that A was using when input ended.

Then: 1(S j ◦ π, T ) ≤ αt (by the α-approximate property).

1(σ1 ◦ σ2 ◦ . . . ◦ σ j ◦ π, T ) ≤ 1(S j ◦ π, T )+1(σ1 ◦ σ2 ◦ . . . ◦ σ j , S j ) by (1)
≤ αt +1(σ1 ◦ σ2 ◦ . . . ◦ σ j , S j )

Since A was running with threshold t
(1+ε)p =

εt
α at the end of σ j then by α-approximate property,

1(S j−1 ◦ σ j , S j ) ≤ α
εt
α
= εt

and by the metric property,

1(σ1 ◦ σ2 ◦ . . . ◦ σ j−1 ◦ σ j , S j ) ≤ 1(S j−1 ◦ σ j , S j )+1(σ1 ◦ . . . ◦ σ j−1, S j−1)

≤ εt +1(σ1 ◦ . . . ◦ σ j−1, S j−1)

Repeating this argument ( j − 1) times,

1(σ1 ◦ σ2 ◦ . . . ◦ σ j ◦ π, T ) ≤ αt + εt + ε2t + . . .

= αt + t
(

ε

1− ε

)
Let S∗ be an optimum summary. Then the instance of A with a threshold of t

1+ε failed on the input stream, so

O PT = 1(σ1 ◦ σ2 ◦ . . . ◦ σ jπ, S∗) >
t

1+ ε

So our output T has

cost ≤ αt + t
(

ε

1− ε

)
= t

(
α +

ε

1− ε

)
<

(
α +

ε

1− ε

)
(1+ ε) · O PT

= (α + O(ε)) · O PT

So we get an (α + O(ε))-approximate algorithm.
So in using this with k-center, this will leave us with a (2+ ε′)-approximation. And the space required is

Õ(k · p) = Õ
(

k ·
log(α/ε)

log(1+ ε)

)
= Õ

(
k
ε
· log

(α

ε

))
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Core-sets

Scribe: Konstantin Kutzkow

12.1 The Problem

Core-sets

• Arise in computational geometry

• Naturally gives streaming algorithms for several (chiefly geometric) problems

Suppose we have cost function CP : Rd
→ R+ parameterized by a set P of points in Rd . CP is monotonic, i.e. if

Q ⊆ P , then ∀x ∈ Rd : CQ(x) ≤ CP (x).

Definition 12.1.1. Problem: Min-Enclosing-Ball (MEB). In this case CP (x) = maxy∈P‖x − y‖2, i.e. radius of
smallest ball containing all points in P ⊂ R2.

Definition 12.1.2. We say Q ⊆ P is an α-core-set for P if ∀T ⊂ Rd ,∀x ∈ Rd : CQ∪T (x) ≤ CP∪T (x) ≤ αCQ∪T (x)
for α > 1.

The first inequality always holds by monotonicity of CP . We will think of T as disjoint of P . We want α > 1 as
small as possible.

12.2 Construction

Theorem 12.2.1. MEB admits a (1+ δ)-core-set of size O( 1
δ2(d−1) ) for Rd . In particular for d = 2 we have O( 1

δ2 ).

Proof. Let v1, v2, .., vt ∈ Rd be t unit vectors, such that given any unit vector u ∈ Rd there exists i ∈ [t] with
ang(u, vi ) ≤ θ , where ang(u, v) = | arccos〈u, v〉|. (In Rd we need t = O( 1

θd−1 ), for R2 we need t = π
2θ .) A core-set

for P is equal to

Q =
t⋃

i=1

{the two extreme points of P along direction vi } =

t⋃
i=1

{arg max
x∈P
〈x, vi 〉, arg min

x∈P
〈x, vi 〉}
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1. Note that the size of the core-set is ≤ 2t = O( 1
θd−1 ).

We need to show that ∀T ⊂ Rd , x ∈ Rd : CP∪T (x) ≤ αCQ∪T (x) for some small α (1).

Suppose z is the furthest point from x in P ∪ T , i.e. z = arg maxx ′∈P∪T ‖x − x ′‖. CP∪T (x) = ‖x − z‖. If
z ∈ Q ∪ T , then clearly CQ∪T (x) = CP∪T (x) and we are done. If not, z ∈ P\Q. Let u = x − z and vi be a direction
such that ang( u

‖u‖ , vi ) ≤ θ , exists by construction. W.l.o.g. we assume 〈vi , u〉 > 0. Let y = arg maxx ′∈P 〈x ′, vi 〉.
Then, by construction, y ∈ Q. By the constraints on y:

• ‖y − x‖ ≤ ‖z − x‖

• 〈y, vi 〉 ≥ 〈z, vi 〉

and we see that
‖y − x‖ ≥ ‖z − x‖ cos θ = CP∪T (x) cos θ

i.e.
CQ∪T (x) ≥ CP∪T (x) cos θ

We have proved (1) with α = 1/ cos θ . Set θ such that 1
cos θ = 1 + δ ⇒ θ = arccos 1

1+δ = O(δ2), which completes
the proof.

12.3 Streaming algorithm

Theorem 12.3.1. Suppose a problem of the form “minimize CP ” where CP is a cost function that admits a (1+O(ε))-
core-set of size A(ε). Then the problem has a streaming algorithm using space O(A( ε

log m ) · log m), for approximation
(1+ ε).

Before proving the theorem we present two simple lemmas:

Lemma 12.3.2. (Merge property) If Q is an α-core-set for P and Q′ is an β-core-set for P ′, then Q ∪ Q′ is an
(αβ)-core-set for P ∪ P ′’

Proof. The first inequality follows from monotonicity and for the second we have ∀T ⊂ Rd ,∀x ∈ Rd :

CP∪P ′∪T (x) ≤ αCQ∪P ′∪T (x) ≤ αβCQ∪Q′∪T (x)

for α > 1 since Q and Q′ are core-sets for P and P ′, respectively.

Lemma 12.3.3. (Reduce property) If Q is an α-core-set for P and R is a β-core-set for Q then R is an (αβ)-core-set
for P.

Proof. From Q α-core-set for P we have ∀T ⊂ Rd ,∀x ∈ Rd :

CP∪T (x) ≤ αCQ∪T (x)

and analogously ∀T ⊂ Rd ,∀x ∈ Rd :
CQ∪T (x) ≤ βCR∪T (x)

thus ∀T ⊂ Rd ,∀x ∈ Rd : CP∪T (x) ≤ αβCR∪T (x).

Now we prove the theorem:

1arg minx∈P f (x) returns x0 such that ∀x ∈ P : f (x0) ≤ f (x) for some real-valued function f : P → R
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Proof. Place incoming points in a buffer of size B. When the buffer is full, summarize using next level core-set in
post-order. Maintain at most one core-set per level by merging as needed.

If each core-set is a (1+ δ)-core-set, then final (root) core-set is a ((1+ δ)2 log m
B )-core-set for the input stream. So

final approximation is ≈ 1+ 2 log m
B δ. Set δ so that 2 log m

B δ = ε. The required space is log m
B (number of core-sets)

times A( ε
log m ) (number of each core-set) +B (size of buffer) = O(A( ε

log m ) · log m).

Corollary: MEB admits a (1+ ε)-approximation and requires space O( log3 m
ε2 ).
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Scribe: Aarathi Prasad

Recall the Misra-Gries algorithm for MAJORITY problem where we found the majority element in a data stream
in 2 passes. We can show that it is not possible to find the element using 1 pass in sublinear space. Lets see how to
determine such lower bounds.

13.1 Introduction to Communication Complexity

First let’s start with an introduction to an abstract model of communication complexity.
There are two parties to this communication “game”, namely Alice and Bob. Alice’s input is x ∈ X and Bob’s input
is y ∈ Y . X and Y are known before the problem is specified. Now we want to compute f (x, y), f: X×Y→ Z ,
when X = Y = [n] , Z = {0,1}. For example,

f (x, y) = (x + y) mod 2 = x mod 2+ y mod 2

In this case, Alice doesn’t have to send the whole input x, using dlog ne bits; instead she can send x mod 2 to Bob using
just 1 bit! Bob calculates y mod2 and uses Alice’s message to find f(x,y). However, only Bob knows the answer. Bob
can choose to send the result to Alice, but in this model, it is not required that all the players should know the answer.
Note that we are not concerned about the memory usage, but we try to minimise the number of communication steps
between Alice and Bob.

13.1.1 EQUALITY problem

This problem finds its application in image comparisons.

Given X = Y = {0, 1}n , Z = {0, 1}n

EQ(x, y) =

{
1 if x = y
0 otherwise

So in this case, communication between Alice and Bob requires n bits. For now, we consider a one-way transmission,
ie messages are sent only in one direction. For symmetric functions, it doesn’t matter who sends the message to whom.
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Theorem 13.1.1. Alice must send Bob n bits, in order to solve EQ in a one-way model.

D→(EQ) ≥ n

Proof : Suppose Alice sends < n bits to Bob. Then the number of different messages she might send ≤ 21
+ 22
+

....2n−1
= 2n

− 2. But Alice can have upto 2n inputs.

Let’s recall the Pigeonhole principle. There are n pigeons, m holes and m< n. This implies that ≥ 2 pigeons have
to go into one hole.

Using the pigeonhole principle, there exists two different inputs x 6= x ′ , such that Alice sends the same message
α on inputs x and x ′.

Let P(x, y) be Bob’s output, when input is (x, y). We should have

P(x, y) = EQ(x, y) (13.1)

Since P(x, y) is determined fully by Alice’s message on x and Bob’s input y, using equation 13.1, we have

P(x, y) = EQ(x, x) = 1 (13.2)

P(x ′, y) = EQ(x ′, x) = 0 (13.3)

However since Bob sees the message α from Alice for both inputs x and x ′, P(x, y) = P(x ′, y), which is a contradic-
tion.

Hence the solution to the EQUALITY problem is for Alice to send all the 2n messages using n bits.

Theorem 13.1.2. Using randomness, we can compute EQ function with an error probability ≤ 1/3, in the one-way
model, with message size O(log n)

R→(EQ) = O(log n)

Proof: Consider the following protocol.

• Alice picks a random prime p ∈ [n2, 2n2]

• Alice sends Bob (p, x mod p), using O(log n) bits

• Bob checks if y mod p = x mod p, outputs 1 if true and 0 otherwise

If EQ(x, y) = 1, output is correct. If EQ(x, y) = 0, then its an error if and only if (x-y) mod p = 0.

Remember that x and y are fixed and p is random. Also we should choose a large prime for p, since if we choose
p = 2, there is high error probability.

Let x − y = p1 p2...pt be the prime factorisation of x − y, where p1, p2, ...pt need not be distinct. For the output
EQ(x, y) to be incorrect, p ∈ {p1, p2..pt }.

Pr [error ] ≤
t

no of primes in [n2, 2n2]
(13.4)

x − y ≤ 2n, p1 p2...pt ≥ 2t
⇒ t ≤ n

Using prime number theorem,

Number of primes in [1..N ] ≈
N

ln N
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Number of primes in [n2, 2n2] ≈
2n2

ln 2n2 −
n2

ln n2

=
2n2

ln 2 + 2 ln n
−

n2

2 ln n

≥
1.9 n2

2 ln n
−

n2

2 ln n

=
0.9 n2

2 ln n

Using estimates in equation 3, Pr [error ] ≤
n

0.9 n2 / 2 ln n

=
2 ln n
0.9 n

≤
1
3

13.2 Communication complexity in Streaming Algorithms

Now lets consider communication complexity models in streaming algorithms. Here the stream is cut into two parts,
one part is with Alice and the other with Bob. We claim that if we can solve the underlying problem, we can solve the
communication problem as well.

Suppose ∃ a deterministic or randomised streaming algorithm to compute f (x, y) using s bits of memory, then

D→( f ) ≤ s OR R→( f ) ≤ s

Alice runs the algorithm on her part of the stream, sends the values in memory (s bits) to Bob, and he uses these
values, along with his part of the stream, to compute the output.

Note one-pass streaming algorithm implies a one-way communication. So a

p pass streaming algo ⇒
{

p messages from A → B
p -1 messages from B → A

Hence we can generalize that a communication lower bound proven for a fairly abstract problem can be reduced to a
streaming lower bound. ie from a streaming lower bound, we can reach the lower bound for a communication problem.

13.2.1 INDEX problem

Given X = {0, 1}n, Y = [n], Z = {0, 1},

INDEX(x, j) = x j = j th bit of x

e.g., INDEX(1100101, 3) = 0

Theorem 13.2.1.
D→(INDEX) ≥ n
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Proof Can be proved using Pigeonhole Principle.

Say we have a MAJORITY streaming algorithm using s space. We are given an INDEX instance, Alice’s input :
1100101 and Bob’s input : 3. The scheme followed is

Given an instance (x, j) of INDEX, we construct streams σ, π of length m each as follows. Let A be the streaming
algorithm, then

• ALICE’s input x is mapped to a1a2...am , where ai = 2(i − 1)+ xi

• BOB’s input j is mapped to bb...b, b occurs m times, where b = 2(j-1)

• Alice and Bob communicate by running A on σ.π

• If A says “no majority”, then output 1, else output 0.

1-pass MAJORITY algorithm requires �(m) space. By theorem 13.2.1, communication uses ≥ m, s ≥ m = 1/2
stream length. We also have R→(INDEX) = �(m).
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Scribe: Priya Natarajan

Recap and an important point: Last time we saw that 1-pass MAJORITY requires space �(n) by reducing from
INDEX. We say �(n), but in our streaming notation, m is the stream length and n is the size of the universe. We
produced a stream σ ◦ π , where m = 2N and n = 2N , and we concluded that the space s must be �(N ). Looks
like s = �(m) or s = �(n) but we have proven the lower bound only for the worst of the two. So, in fact, we
have s = �(min{m, n}). For MAJORITY, we could say �(n) because m and n were about the same. We won’t be
explicit about this point later, but most of our lower bounds have �(min{m, n}) form.

Today, we will see some communication lower bounds. But first, here is a small table of results:

f D→( f ) R→1/3( f ) D( f ) R1/3( f )

INDEX ≥ n �(n) ≤ d log ne ≤ d log ne
EQUALITY ≥ n O(log n) ≥ n O(log n)

DISJOINTNESS �(n) �(n) �(n) �(n)

Table 14.1: In this table, we will either prove or have already seen almost all results except R→1/3(E Q). Also, we will
only prove a special case of DISJ.

We will start by proving D(EQ) ≥ n. In order to prove this, however, we first have to prove an important property
about deterministic communication protocols.

Definition 14.0.2. In two-way communication, suppose Alice first sends message α1 to Bob to which Bob responds
with message β1. Then, say Alice sends message α2 to Bob who responds with message β2, and so on. Then, the
sequence of messages < α1, β1, α2, β2, . . . > is known as the transcript of the deterministic communication protocol.

Theorem 14.0.3. Rectangle property of deterministic communication protocol: Let P be a deterministic communi-
cation protocol, and let X and Y be Alice’s and Bob’s input spaces. Let transp(x, y) be the transcript of P on input
(x, y) ∈ X × Y . Then, if transp(x1, y1) = transp(x2, y2) = τ (say); then transp(x1, y2) = transp(x2, y1) = τ .

Proof : We will prove the result by induction.

Let τ =< α1, β1, α2, β2, . . . >. Let τ ′ =< α′1, β
′

1, α
′

2, β
′

2, . . . > be transp(x2, y1).

Since Alice’s input does not change between (x2, y1) and (x2, y2), we have α′1 = α1.

Induction hypothesis: τ and τ ′ agree on the first j messages.
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Case 1: j is odd = 2k − 1 (k ≥ 1) (say).

So, we have: α′1 = α1, α
′

2 = α2, . . . , α
′

k−1 = αk−1, α
′

k = αk and β ′1 = β1, β
′

2 = β2, . . . , β
′

k−1 = βk−1, β
′

k =?.

Now, β ′k depends on Bob’s input which does not change between (x1, y1) and (x2, y1), and it depends on the
transcript so far which also does not change. So, β ′k = βk .

Case 2: j is even = 2k (k ≥ 1) (say).

The proof for this case is similar to that of case 1, except we consider inputs (x2, y2) and (x2, y1).

By induction, we have the rectangle property.

Now that we have the rectangle property at hand, we can proceed to prove:

Theorem 14.0.4. D(EQ) ≥ n.

Proof : Let P be a deterministic communication protocol solving EQ. We will prove that P has at least 2n different
transcripts which will imply that P sends ≥ n bits.

Suppose transp(x1, x1) = transp(x2, x2) = τ , where x1 6= x2.

Then, by rectangle property:
transp(x1, x2) = τ
⇒ output on (x1, x1) = output on (x1, x2)
⇒ 1 = EQ(x1, x1) = EQ(x1, x2) = 0. [Contradiction]

This means that the 2n possible inputs lead to 2n distinct transcripts.

Note: General communication corresponds to multi-pass streaming.

Theorem 14.0.5. Any deterministic streaming algorithm for DISTINCT-ELEMENTS, i.e., F0 must use space �(n/p),
where p is the number of passes.

Before seeing the proof, let us make note of a couple of points.

Why �(n/p)? Over p passes, Alice and Bob exchange 2p − 1 messages; if the size of each message (i.e., space
usage) is s bits, then:

total communication cost = s(2p − 1)
⇒ total communication cost ≤ 2ps.

If we can prove that the total communication must be at least n bits, then we have:
n ≤ 2ps
⇒ s ≥ n/2p
i.e., s = �(n/p)

Proof Idea: We will reduce from EQ. Suppose Alice’s input x ∈ {0, 1}n is {100110}, and Bob’s input y ∈ {0, 1}n

is {110110}. Using her input, Alice produces the stream σ =< 1, 2, 4, 7, 9, 10 > (i.e., σi = 2(i − 1)+ xi ). Similarly,
Bob produces the stream π =< 1, 3, 4, 7, 9, 10 >.

Suppose Alice’s string disagrees in d places with Bob’s string (i.e., Hamming distance(x, y) = d). Then, F0(σ ◦ π) = n + d.
If σ and π are equal, then d = 0, i.e., EQ(x, y) = 1⇔ d = 0.

So, EQ(x, y) = 1⇒ d = 0⇒ F0(σ ◦ π) = n
EQ(x, y) = 0⇒ d ≥ 1⇒ F0(σ ◦ π) ≥ n + 1

However, note that unless the F0 algorithm is exact, it is very difficult to differentiate between n and n + (a small d).
As we proved earlier, we can only get an approximate value for F0, so we would like that if x 6= y, then Hamming
distance between x and y be noticeably large. In order to get this large Hamming distance, we will first run Alice’s and
Bob’s input through an encoder that guarantees a certain distance. For example, running Alice’s n-bit input x through
an encoder might lead to a 3n-bit string c(x) (similarly, y and c(y) for Bob), and the encoder might guarantee that
x 6= y ⇒ Hamming distance between c(x) and c(y) ≥ 3n/100 (say).

Proof : Reduction from EQ.
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Suppose Alice and Bob have inputs x, y ∈ {0, 1}n . Alice computes x̃= C(x), where C is an error-correcting
code with encoded length 3n, and distance ≥ 3n/100. Then, she produces a stream σ =< σ1, σ2, . . . , σ3n >, where
σi = 2(i − 1)+ x̃i . Similarly, Bob has y, he computes ỹ= C(y) and produces a stream π where πi = 2(i − 1)+ ỹi .

Now, they simulate F0 streaming algorithm to estimate F0(σ ◦ π).

If x = y, EQ(x, y) = 1, then x̃ = ỹ, so F0 = 3n.

If x 6= y, EQ(x, y) = 0, then Hamming(x̃, ỹ) ≥ 3n/100, so F0 ≥ (3n + 3n/100). That is F0 ≥ 3n ∗ 1.01.

If F0 algorithm gives a (1 ± ε)-approximation with ε < 0.005, then we can distinguish between the above two
situations and hence solve EQ. But D(EQ) ≥ n, therefore, D(F0) = �(n/p) with p passes.

56



Lecture 15
Set Disjointness and Multi-Pass Lower Bounds

Scribe: Zhenghui Wang

15.1 Communication Complexity of DISJ

Alice has a n-bit string x and Bob has a n-bit string y, where x, y ∈ [0, 1]n . x, y represent subset X, Y of [n]
respectively. x, y are named characteristic vector or bitmask, i.e.

x j =

{
1 if j ∈ X
0 otherwise

Compute function

DISJ(x, y) =

{
1 if X ∩ Y 6= ∅
0 otherwise

Theorem 15.1.1. R(DISJ) = �(n)

Proof. We prove the special case: R→(DI S J ) = �(n) by reduction from INDEX. Given an instance (x, j) of
INDEX, we create an instance (x ′, y′) of DISJ, where x ′ = x, y′ is a vector s.t.

y′i =

{
0 if i 6= j
1 otherwise

By construction, x ′ ∩ y′ 6= ∅ ⇔ x j = 1 i.e. DISJ(x ′, y′) =INDEX(x ′, y′). Thus, a one way protocol of DISJ
implies a one way protocol of INDEX with the same communication cost. But R→(INDEX) = �(n), so we have
R→(DISJ) = �(n).

The general case is proved by [Kalya], [Razborov ’90] [Bar Yossof-Jayarom Kauor ’02].
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15.2 ST-Connectivity

ST-connectivity: Given an input graph stream, are two specific vertices s and t connected?

Theorem 15.2.1. Solving ST-CONN requires �(n) space. (semi-streaming is necessary.)

Proof. By reduction from DISJ.
Let (x, y) be an instance of DISJ. Construct an instance of CONN on a graph with vertex set {s, t, v1, v2, · · · , vn−2}.
So Alice gets set of edges A = {(s, v) : v ∈ x} and Bob gets set of edges B = {(v, t) : v ∈ y}.

Vertex s and t are connected in the resulting graph
⇔ ∃ a length-two path from s to t

⇔ ∃v s.t. (s, v) ∈ A and (v, t) ∈ B

⇔ ∃v ∈ x ∩ y

⇔ DISJ(x, y) = 1

Reducing this communication problem to a streaming problem, we have the required space in a p pass algorithm is
�(n/p).

15.3 Perfect Matching Problem

Given a graph on n vertices, does it have a perfect matching i.e. a matching of size n/2?

Theorem 15.3.1. One pass streaming algorithm for this problem requires �(n2) space.

Proof. Reduction from INDEX.
Suppose we have an instance (x, k) of INDEX where x ∈ {0, 1}N

2
, k ∈ [N 2]. Construct graph G, where VG =

∪
N
i=1{ai , bi , ui , vi } and EG = E A ∪ EB . Edges in E A and EB are introduced by Alice and Bob respectively.

E A = {(ui , v j : x f (i, j)=1)}, where f is a 1-1 correspondence between [N ]× [N ]→ [N 2]

e.g f (i, j) = (N − 1)i + j

EB = {(al , ul : l 6= i)} ∪ {(bl , vl : l 6= j)} ∪ {(ai , b j )}, where i, j ∈ [N ] are s.t. f (i, j) = k

By construction,

G has a perfect matching
⇔ (ui , v j ) ∈ EG

⇔ xk = 1
⇔ INDEX(x, k) = 1

Thus, the space usage of a streaming algorithm for perfect matching must be �(N 2). The number of vertices in
instance constructed is n = 4N . So the lower bound in term of n is �(( n

4 )2) = �(n2).

15.4 Multiparty Set Disjointness (DISJn,t)

Suppose there are t player and each player Ai has a n-bit string xi ∈ {0, 1}n . Define

DISJn,t =

{
1 if

⋃n
i=1 xi 6= ∅

0 otherwise
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Theorem 15.4.1 (C.-Khot-Sun ’03/Granmeicr ’08). R(DISJn,t ) = �(n/t)

Theorem 15.4.2. Approximating 1-pass Fk with randomization allowed requires �(m1−2/k) space.

Proof. Given a DISJ instance (x1, x2, · · · , xt ) s.t. every column of matrix


x1
x2
· · ·

xt

 must contain 0,1 or t ones and at

most one column can have t ones. Player Ai converts xi into a stream πi =< σ1, σ2, · · · > such that σ j ∈ πi iff.
xi j = 1. Simulate the Fk algorithm on stream π = π1 ◦π2 ◦ · · · ◦πt . The frequency vector of this stream is either 0, 1
only (if DISJn,t = 0) or 0, 1 and a single t( If DISJn,t = 1). In the first case, Fk ≤ n while Fk ≥ tk in the second case.
Choose t s.t. tk > 2m, then 2-approximation to Fk can distinguish these two situations. Thus, The memory usage is
�(m/t2) = �( m

(m1/k )2 ) = �(m1−2/k), for stream length m ≤ nt and m = �(1/t).
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