
External Memory Algorithms and Data Structures Fall 2003

GSB/RF
October 1, 2003

Project 2 — Sorting

This is the second project in the course External Memory Algorithms and Data Structures. The
project should be done in groups of 2–3 persons, and the report should be handed in by Wednesday,

November 5, 2003. The project should be programmed in C or C++ on a Unix system.
In this project, we study the behavior of various sorting algorithms when used in external

memory. More specifically, the goal of the project is to

1. Use different I/O approaches to manipulate streams of data to/from external memory.

2. Develop an efficient algorithm for merging several streams of data to/from external memory.

3. Implement multiway Mergesort in external memory.

4. Implement Radixsort in external memory.

5. Compare these implementations with the standard Heapsort and Quicksort algorithms.

As part of the project, you will need to implement a Heap, as well as Heapsort and Quicksort.
To keep the project down in size, and to increase comparability of results between different projects,
we require you to use the code in the book

Robert Sedgewick: Algorithms in C, Parts 1–4, third edition. Addison-Wesley, 1998,
ISBN 0201314525.

This code can be found online at

www.cs.princeton.edu/~rs/Algs3.c1-4/code.txt .

Tasks:

1. Write a program which takes two arguments n and filename and creates a file named filename

containing n random 32-bit integers.

2. The implementation of Mergesort and Radixsort should use the concept of streams. There
should be two different kinds of streams: input streams and output streams. An input stream
should at least support the operations open (open an existing stream for reading), read next

(read the next element from the stream), and end of stream (return true if the end of the
stream has been reached). An output stream should support the operations create (create
a new stream), write (write an element to an existing stream), and close (close the existing
stream).

Make five implementations of streams, each using a different one of the following four I/O
mechanisms. In all four cases, the actual data of the stream should be stored in a simple file.

(a) Reading and writing is done one element at a time by the read and write system calls.

(b) Reading and writing is done by the fread and fwrite functions from the stdio library.
These implement their own (fixed) buffering mechanism.

1



External Memory Algorithms and Data Structures Fall 2003

(c) Reading and writing is handled as in (a), except that now the stream is equipped with
a buffer in internal memory of size B, and whenever the buffer becomes empty/full, the
next B elements are read/written from/to the file.

(d) Reading and writing is handled as in (c), but now trying to parallelize CPU work and
I/Os by using double buffering : each stream has two buffers, where one is transfered
from/to disk while the other is used for reading/writing the stream. When the latter
is empty/full and the transfer of the former has completed, the roles of the buffers are
interchanged. For this to work, you must use asynchronous I/O or threads.

(e) Reading and writing is handled by mapping the file containing the stream to internal
memory using mmap and scanning the stream as if it was an array in internal memory.

For each of the implementations (a), (b), and (e), as well as for (c) and (d) with various
values of B (including very large ones), perform the experiment of opening k streams and n
times read/write one element to/from each of the streams. For each implementation, do this
for a large n and for k = 1, 2, 4, 8, . . . ,Max, where Max is the maximal number of streams
allowed by the operating system. For each of the four stream implementations, identify their
properties and limitations, and try to single out a winner.

3. Implement a d-way merging algorithm that given d sorted input streams creates an output
stream containing the elements from the input streams in sorted order. The merging should
be based on the priority queue structure Heap.

4. Implement a Mergesort algorithm for sorting 32-bit integers. The program should take pa-
rameters n,m, and d, and should proceed by the following steps.

(a) Read the input file and split it into dn/me streams, each of size ≤ m. Each stream
that is created should be sorted in internal memory using Quicksort before writing it to
external memory.

(b) Store the references to the dn/me streams in a queue (if necessary in external memory).

(c) Repeatedly merge the d (or less) first streams in the queue and put the resulting stream
at the end of the queue until only one stream remains.

5. Implement a version of the Mergesort algorithm above which tries to parallelize CPU work
and I/O in the first phase by restricting the initial sorted streams to be of length ≤ m/2,
and then sorting one stream while transferring another to/from disk. For this to work, you
should use threads.

6. Implement a Radixsort algorithm for sorting 32-bit integers. The program should take pa-
rameters n and s, and should proceed by the following steps.

(a) Scan the input while distributing the elements into 2s streams according to the s least
significant bits of the integers.

(b) Repeatedly concatenate the streams, and distribute the elements according to the next
s bits of the integers. For the last distribution, less than s bits may be left.

(c) Concatenate the last set of streams into one.

Note: It is probably more efficient just to read from the previous set of streams in order,
without actually concatenating them first.

2



External Memory Algorithms and Data Structures Fall 2003

7. Perform experiments with the two Mergesort and the Radixsort programs, using the best of
the stream implementations from above. The data should be random 32-bit integers. Try
different values for n,m, d, and s, and identify what are good choices of m, d, and s for the
various sizes.

8. Implement the standard Heapsort and Quicksort algorithms which sorts an array of n integers.

9. For various sizes of data (in particular sizes too large for main memory), compare the running
time of the best of your Mergesort algorithms, the best of your Radixsort algorithms, the
Heapsort algorithm and the Quicksort algorithm.

Hints:

1. Check the free disk space before creating the huge files, e.g. using the df command.

2. Do not create files in an NFS mounted directory. The files could be created in the directory
/tmp/<username> (i.e. on the local harddisk) to avoid the files to be send over the network.
Be careful to check that the disk used has sufficient space left for running your program.
Always leave significant additional disk space unused.

3. Remember to remove the files created.

4. Read the hints of Project 1 again.

3


