Route Planning

- Tabulation
- Dijkstra
- Bidirectional
- A*
- Landmarks
- Reach
- ArcFlags
- Transit Nodes
- Contraction Hierarchies
- Hub-based labelling

```
[ADGW11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, Renato Fonseca F. Werneck.
    A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks.
    Proc. 10th International Symposium on Experimental Algorithms (SEA), LNCS 6630, 2011, 230-241.
[BFMSS07] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes.
    In Transit to Constant Time Shortest-Path Queries in Road Networks.
    Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), }2007
[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
    Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks.
    Proc. 7th International Workshop on Experimental Algorithms (WEA), LNCS 5038, 2008, 319-333.
```


Route Planning

Input: Directed weighted graph G

Query(s,t) - find shortest route in G from s to t

Lot of algorithm engineering work for road networks

Example: US Tigerline, 58 M edges \& 24 M vertices

No preprocessing	With preprocessing
Fast query time	Query Time \leftrightarrow Space trade-off
Variations of Dijksta's algorithm	Trivial: Distance table O(1) time \& O($\left.n^{2}\right)$ space Practice: Try to exploit graph properties

Route Planning - no preprocessing (non-negative edge weights)

Dijkstra
Build shortest path tree T
Visit vertices in increasing distance to s

Bidirectional Dijkstra

Grow s.p. tree T_{f} from s and T_{b} to t Maintain best so far $s \rightarrow t$ distance μ
Termination condition: next $_{f}+$ next $_{b} \geq \mu$

Dijkstra vs Bidirectional Dijkstra

$A^{*} \equiv$ Goal directed

Input: Weighted graph G with non-negative edges
Query(s,t): Shortest route queries

Idea Let $h(v)$ be "heights" \& define $w^{\prime}(u, v)=w(u, v)+h(v)-h(u)$
Fact $\quad w^{\prime}\left(s \rightarrow v_{1} \cdots v_{k} \rightarrow t\right)=w\left(s \rightarrow v_{1} \cdots v_{k} \rightarrow t\right)+h(t)-h(s)$
$\Rightarrow G$ and G^{\prime} have identical shortest paths
Fact If $w^{\prime} \geq 0 \Rightarrow$ we can use Dijkstra's algorithm
If $w^{\prime} \geq 0$ and $h(t)=0 \Rightarrow h(v)$ lower bound on distance $v \rightarrow t$
Ex. 1 Planar graphs with L_{2} distance, let $h(v)=|t-v|_{2}$ \Rightarrow triangle inequality ensures w^{\prime} non-negative

Ex. $2 h(v)=d_{G}(v, t) \Rightarrow w^{\prime}(s, t)=0$
\Rightarrow Dijkstra's algorithm would only explore the shortest path
Note Bidirectional A* \equiv Bidirectional Dijkstra and A* combined

A*

Freight Railroad Network of North America

http://en.wikipedia.org/wiki/A*_search_algorithm

Landmarks

Select a small number of vertices L (Landmarks)
For all nodes v store distance vector $d(v, /)$ to all landmarks $l \in L$

Idea In A* algorithm fix one landmark $I \in L$, and use $h(v)=d(v, l)$ (valid by triangle inequality)

Practice: Use more than one landmark to find lower bounds on $d(v, t)$ Dynamicly increase landmark set during search Bidirectional A*

Bidirectional A* with Landmarks

Reach

For all nodes v store

$$
\operatorname{Reach}(v)=\max _{(s, t): v \text { on shortest path } s \rightarrow t} \min \{d(s, v), d(v, t)\}
$$

Idea Reach (v) defines ball around v. If both s and t outside ball, v is not on shortest path
Query Prune edges (u, v) in Dijkstra, when relaxing (u, v) and $\operatorname{Reach}(v)<\min \{d(s, u)+w(u, v)$, LowerBound $(v, t)\}$

Practice: Approximate Reach for fast preprocessing

Reach(v)

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP\ shortest\ path\ algorithms.pdf

Shortcuts

A directed path $u \rightarrow v$ can be shortcut by a new edge (u, v)

Idea: Shortcuts reduce Reach (x) of vertices x along the shortcut path ($s \rightarrow t$ distances are unchanged)

Reach(v) + Shortcuts

http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP\ shortest\ path\ algorithms.pdf

Reach (v) + Shortcuts + Landmarks

Experiments - Northwest US

	PREPROCESSING		QUERY		
METHOD	minutes	MB	avgscan	maxscan	ms
Bidirectional Dijkstra	-	28	518723	1197607	340.74
Landmarks	4	132	16276	150389	12.05
Reaches	1100	34	53888	106288	30.61
Reaches+Shortcuts	17	100	2804	5877	2.39
Reaches+Shortcuts+Landmarks	21	204	367	1513	0.73

Arc Flags

Partition vertices into k components C_{1}, \ldots, C_{k}.
For all edges $e=(u, v)$ store a bitvector $\mathrm{Af}_{e}[1 . . k]$, where
$\mathrm{Af}_{e}[i]=$ true \Leftrightarrow Exist shortest path $u \rightarrow t$ where e is first edge and $t \in C_{i}$

Queries
Preprocessing
Expensive!

Transit Node Routing

Idea All shortest paths $s \rightarrow t$, where s and t are far away, must cross few possible transit nodes

1. Identify few transit nodes in graph $\sim \sqrt{\mathrm{n}}$
2. Compute All-Pair-Shortest-Path matrix for transit nodes
3. For each vertex s find very few transit node distances (US ~10)

Query($\boldsymbol{s}, \boldsymbol{t}$) far away queries
For all (u, v), transit nodes u and v for s and t respectively, find $d(s, t)=d(s, u)+d(u, v)+d(v, t)$ using table lookup

Locality filter = table over when to switch to other algorithm
Practice: Combine recursively with Highway Hierarchies

Transit Node Routing

Figure 1: Finding the optimal travel time between two points (flags) somewhere between Saarbrücken and Karlsruhe amounts to retrieving the 2×4 access nodes (diamonds), performing 16 table lookups between all pairs of access nodes, and checking that the two disks defining the locality filter do not overlap. Transit nodes that are not relevant for the depicted query are drawn as small squares.

Highway Hierachies

- Each nodes findes H closest nodes (Neighborhood)
- Highway edge $(u, v) \Leftrightarrow$ exist some shortest path $s \rightarrow$ t containing (u, v), where $s \notin H$ and $t \notin H$
- Contract \& Recurse \Rightarrow Hierarchy
- Queries
- Heuristics similar to Reach
- Bidrectional Dijkstra (skipping lower level edges)

Contraction Hierarchies

- Order nodes v_{1}, \ldots, v_{n} in increasing order of importance
- Repeatedly contract unimportant nodes by adding shortcuts required by shortest paths

- Many heuristics in construction phase
- Query: Bidirectional - only go to more important nodes

Hub Labelling

For all nodes v store two lists $L_{f}(v)$ and $L_{b}(v)$, such that for all (s, t) pairs, the shortest path $s \rightarrow t$ contains a node u, where $u \in L_{f}(s) \cap L_{b}(t)$

Trivially exist; hard part is to limit space usage

Hub Labelling comparison

