
2. MARTS 2015
AARHUS UNIVERSITETAU

Parallel Algorithm Engineering

Kenneth S. Bøgh
PhD Fellow

Based on slides by
Darius Sidlauskas

2. MARTS 2015
AARHUS UNIVERSITETAU

2

Outline

● Background
● Current multicore architectures
● UMA vs NUMA
● The openMP framework and numa control
● Examples

2. MARTS 2015
AARHUS UNIVERSITETAU 3

Software crisis

“The major cause of the software crisis is that the
machines have become several orders of magnitude
more powerful! To put it quite bluntly: as long as there
were no machines, programming was no problem at
all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic
computers, programming has become an equally
gigantic problem.”

-- E. Dijkstra, 1972 Turing Award Lecture

2. MARTS 2015
AARHUS UNIVERSITETAU

4

Before

● The 1st Software Crisis

– When: around '60 and 70'

– Problem: large programs written in assembly

– Solution: abstraction and portability via high-level languages like C and
FORTRAN

● The 2nd Software Crisis

– When: around '80 and '90

– Problem: building and maintaining large programs written by hundreds of
programmers

– Solution: software as a process (OOP, testing, code reviews, design patterns)
– Also better tools: IDEs, version control, component libraries, etc.

2. MARTS 2015
AARHUS UNIVERSITETAU

5

Recently..

● Processor-oblivious programmers

– A Java program written on PC works on your phone

– A C program written in '70 still works today and is faster

– Moore’s law takes care of good speedups

2. MARTS 2015
AARHUS UNIVERSITETAU

6

Currently..

● Software crisis again?

– When: 2005 and ...

– Problem: sequential performance is stuck

– Required solution: continuous and reasonable
performance improvements

● To process large datasets (BIG Data!)
● To support new features
● Without loosing portability and maintainability

2. MARTS 2015
AARHUS UNIVERSITETAU

7

Moore's law

2. MARTS 2015
AARHUS UNIVERSITETAU

8

Uniprocessor performance

SPECint2000 [1]

2. MARTS 2015
AARHUS UNIVERSITETAU

9

Uniprocessor performance (cont.)

Clock Frequency [1]

2. MARTS 2015
AARHUS UNIVERSITETAU

10

Parallel processing: Predicted # of cores
for stationary systems, according to ITRS

2. MARTS 2015
AARHUS UNIVERSITETAU

11

Even “worse” for GPUs

● GTX 780 Ti have 2880 cores @ 0.9Ghz

2. MARTS 2015
AARHUS UNIVERSITETAU

12

Why
● Power considerations

– Consumption

– Cooling

– Efficiency

● DRAM access latency

– Memory wall

● Wire delays

– Range of wire in one clock cycle

● Diminishing returns of more instruction-level parallelism

– Out-of-order execution, branch prediction, etc.

2. MARTS 2015
AARHUS UNIVERSITETAU

13

Power consumptions

● GTX 780 Ti have 2880 cores @ 0.9Ghz

150Watt

250Watt

2. MARTS 2015
AARHUS UNIVERSITETAU

14

Overclocking

● Air-water: ~5.0 GHz

– Possible at home

● Phase change: ~6.0 GHz

● Liquid helium: 8.794 GHz

– Current world record

– Reached with AMD FX-8350

http://valid.canardpc.com/lpza4n

2. MARTS 2015
AARHUS UNIVERSITETAU

15

Towards parallel setups

● Instead of going faster --> go more parallel!

– Transistors are now used for multiple cores

2. MARTS 2015
AARHUS UNIVERSITETAU

16

4 sockets – 8 CPU setup

2. MARTS 2015
AARHUS UNIVERSITETAU

17

UMA vs NUMA

● All laptops and most desktops are UMA
● Most modern servers are NUMA
● Important to know which you target!

2. MARTS 2015
AARHUS UNIVERSITETAU

18

Current commercial MC CPUs

● Intel
– Intel® Core™ i7-5960X: 8-core (16 threads), 20 MB Cache, max 3.5 GHz

Intel® Xeon® Processor E5-2699 v3: 18-core (36 threads), 45 MB Cache, max 3.6
GHz (x 8-socket configuration)

– Phi 7120P: 61 cores (244 threads), 30.5 MB Cache, max 1.33 GHz, max memory
BW 352 GB/s

● AMD
– FX-9590: 8-core, 8 MB Cache, 4.7 GHz

– A10-7850K: 12-core (4 CPU 4 GHz + 8 GPU 0.72 GHz), 4 MB C

– Opteron 6386 SE: 16-core, 16 MB Cache, 3.5 GHz (x 4-socket conf.)

● Oracle
– SPARC M6: 12-core (96 threads), 48 MB Cache, 3.6 GHz (x 32-socket configuration)

http://ark.intel.com/products/75799
http://shop.amd.com/us/All/Detail/Processor/FD9590FHHKWOF
http://www.amd.com/uk/products/desktop/processors/a-series/Pages/a-series-apu.aspx
http://www.amd.com/uk/PRODUCTS/SERVER/PROCESSORS/6000-SERIES-PLATFORM/6300/Pages/6300-series-processors.aspx#5
http://www.oracle.com/us/products/servers-storage/servers/sparc/oracle-sparc/m6-32/overview/index.html

2. MARTS 2015
AARHUS UNIVERSITETAU

19

Concurrency vs Parallelism

● Parallelism

– A condition that arises when at least two threads are executing
simultaneously

– A specific case of concurrency

● Concurrency:

– A condition that exists when at least two threads are making progress.

– A more generalized form of parallelism

– E.g., concurrent execution via time-slicing in uniprocessors (virtual
parallelism)

● Distribution:

– As above but running simultaneously on different machines (e.g., cloud
computing)

2. MARTS 2015
AARHUS UNIVERSITETAU

20

Amdahls law

● Potential program speedup is defined by the
fraction of code that can be parallelized

● Serial components rapidly become performance
limiters as thread count increases

– p – fraction of work that can parallelized

– n – the number of processors

2. MARTS 2015
AARHUS UNIVERSITETAU

21

Amdahls law

Number of Processors

2. MARTS 2015
AARHUS UNIVERSITETAU

22

When to parallelize

● When you have independent units of work
● When your code is compute bound
● Or your code is not utilizing the memory

bandwidth
● When you see performance gains in tests :-)

2. MARTS 2015
AARHUS UNIVERSITETAU

23

We have seen this previously

● L1 and L2 cache sizes

2. MARTS 2015
AARHUS UNIVERSITETAU

24

Remember from previously

2. MARTS 2015
AARHUS UNIVERSITETAU

25

Numa effects

2. MARTS 2015
AARHUS UNIVERSITETAU

26

Cache coherence

● Ensures the consistency between all the
caches.

2. MARTS 2015
AARHUS UNIVERSITETAU

27

MESIF protocol

● Modified (M): present only in the current cache and
dirty. A write-back to main memory will make it (E).

● Exclusive (E): present only in the current cache and
clean. A read request will make it (S), a write-request
will make it (M).

● Shared (S): may be stored in other caches and clean.
May be changed to (I) at any time.

● Invalid (I): unusable

● Forward (F): a specialized form of the S state

2. MARTS 2015
AARHUS UNIVERSITETAU

28

Cache coherency effects
Exclusive cache lines Modified cache lines

Latency in nsec on 2-socket Intel Nehalem

2. MARTS 2015
AARHUS UNIVERSITETAU

29

Does it matter?

● Processing 1600M tuples on 32-core machine

2. MARTS 2015
AARHUS UNIVERSITETAU

30

Commandments

● C1: Thou shalt not write thy neighbor’s memory
randomly – chunk the data, redistribute, and then
sort/work on your data locally.

● C2: Thou shalt read thy neighbor’s memory only
sequentially – let the prefetcher hide the remote
access latency.

● C3: Thou shalt not wait for thy neighbors – don’t
use fine grained latching or locking and avoid
synchronization points of parallel threads.

2. MARTS 2015
AARHUS UNIVERSITETAU

31

The openMP framework

● API for multiprocessing
● Easily applied to parallelize code
● Built for shared memory processors
● Works cross platform
● http://openmp.org

2. MARTS 2015
AARHUS UNIVERSITETAU

32

Shared memory processors

● Recall the UMA and NUMA architetures
● Both are shared memory processor

architetures

2. MARTS 2015
AARHUS UNIVERSITETAU

33

General control flow

2. MARTS 2015
AARHUS UNIVERSITETAU

34

Compiling openMP

● #include <omp.h>
● Compile with the openmp flag

– Gcc -fopenmp test.cpp

● Environment variables
– setenv OMP_NUM_THREADS 12

– export OMP_NUM_THREADS=12

2. MARTS 2015
AARHUS UNIVERSITETAU

35

Useful functions

● Thread-ID
– omp_get_thread_num();

● Amount of threads
– omp_get_num_threads();

● Set amount of active threads
– omp_set_num_threads(4);

– export OMP_NUM_THREADS=12

2. MARTS 2015
AARHUS UNIVERSITETAU

36

Directives

● Used to communicate with the compiler
● #pragma directives used to instruct the

compiler to use pragmatic or
implementation-dependent features

● One such feature is openMP
● #pragma omp parallel

2. MARTS 2015
AARHUS UNIVERSITETAU

37

Problems with NUMA

● We do not know where the data is allocated
● We do not know on which NUMA node the

thread is running
● So, no openMP on really parallel machines?

2. MARTS 2015
AARHUS UNIVERSITETAU

38

New libraries to the rescue

● We can pin threads to processors
● We can control memory allocations
● Tools

– Numactl

– libnuma

2. MARTS 2015
AARHUS UNIVERSITETAU

39

libnuma

● Provides c++ header files
● Can be used to create numa awareness in

the code
● A bit like openMP but instead provides

methods for getting numa node and
allocating memory on specific numa nodes

2. MARTS 2015
AARHUS UNIVERSITETAU

40

Numactl

● Like libnuma, but controlled from the shell
● Can be used to control existing software without

changing the code
● Very useful when running experiments

2. MARTS 2015
AARHUS UNIVERSITETAU

41

Numactl (continued)

2. MARTS 2015
AARHUS UNIVERSITETAU

42

Examples

2. MARTS 2015
AARHUS UNIVERSITETAU

43

Questions?

4 4

AARHUS UNIVERSITETAU

	Slide4
	Slide5
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide6
	Slide7

