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Outline

● Background
● Current multicore architectures
● UMA vs NUMA
● The openMP framework and numa control
● Examples
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Software crisis

“The major cause of the software crisis is that the 
machines have become several orders of magnitude 
more powerful! To put it quite bluntly: as long as there 
were no machines, programming was no problem at 
all; when we had a few weak computers, programming 
became a mild problem, and now we have gigantic 
computers, programming has become an equally 
gigantic problem.”

-- E. Dijkstra, 1972 Turing Award Lecture
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Before

● The 1st Software Crisis

– When: around '60 and 70'

– Problem: large programs written in assembly

– Solution: abstraction and portability via high-level languages like C and 
FORTRAN

● The 2nd Software Crisis

– When: around '80 and '90

– Problem: building and maintaining large programs written by hundreds of 
programmers

– Solution: software as a process (OOP, testing, code reviews, design patterns)
– Also better tools: IDEs, version control, component libraries, etc.



2. MARTS 2015
AARHUS UNIVERSITETAU

5

Recently..

● Processor-oblivious programmers

– A Java program written on PC works on your phone

– A C program written in '70 still works today and is faster

– Moore’s law takes care of good speedups
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Currently..

● Software crisis again?

– When: 2005 and ...

– Problem: sequential performance is stuck

– Required solution: continuous and reasonable 
performance improvements

● To process large datasets (BIG Data!)
● To support new features
● Without loosing portability and maintainability
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Moore's law
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Uniprocessor performance

SPECint2000 [1]
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Uniprocessor performance (cont.)

Clock Frequency [1]
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Parallel processing: Predicted # of cores
for stationary systems, according to ITRS
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Even “worse” for GPUs

● GTX 780 Ti have 2880 cores @ 0.9Ghz
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Why
● Power considerations

– Consumption

– Cooling

– Efficiency

● DRAM access latency

– Memory wall

● Wire delays

– Range of wire in one clock cycle

● Diminishing returns of more instruction-level parallelism

– Out-of-order execution, branch prediction, etc.
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Power consumptions

● GTX 780 Ti have 2880 cores @ 0.9Ghz

150Watt

250Watt
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Overclocking

● Air-water: ~5.0 GHz

– Possible at home

● Phase change: ~6.0 GHz

● Liquid helium: 8.794 GHz

– Current world record

– Reached with AMD FX-8350

http://valid.canardpc.com/lpza4n
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Towards parallel setups

● Instead of going faster --> go more parallel!

– Transistors are now used for multiple cores
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4 sockets – 8 CPU setup
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UMA vs NUMA

● All laptops and most desktops are UMA
● Most modern servers are NUMA
● Important to know which you target!
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Current commercial MC CPUs

● Intel
– Intel® Core™ i7-5960X: 8-core (16 threads), 20 MB Cache, max 3.5 GHz

Intel® Xeon® Processor E5-2699 v3: 18-core (36 threads), 45 MB Cache, max 3.6 
GHz (x 8-socket configuration)

– Phi 7120P: 61 cores (244 threads), 30.5 MB Cache, max 1.33 GHz, max memory 
BW 352 GB/s

● AMD
– FX-9590: 8-core, 8 MB Cache, 4.7 GHz

– A10-7850K: 12-core (4 CPU 4 GHz + 8 GPU 0.72 GHz), 4 MB C

– Opteron 6386 SE: 16-core, 16 MB Cache, 3.5 GHz (x 4-socket conf.)

● Oracle
– SPARC M6: 12-core (96 threads), 48 MB Cache, 3.6 GHz (x 32-socket configuration)

http://ark.intel.com/products/75799
http://shop.amd.com/us/All/Detail/Processor/FD9590FHHKWOF
http://www.amd.com/uk/products/desktop/processors/a-series/Pages/a-series-apu.aspx
http://www.amd.com/uk/PRODUCTS/SERVER/PROCESSORS/6000-SERIES-PLATFORM/6300/Pages/6300-series-processors.aspx#5
http://www.oracle.com/us/products/servers-storage/servers/sparc/oracle-sparc/m6-32/overview/index.html
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Concurrency vs Parallelism

● Parallelism

– A condition that arises when at least two threads are executing 
simultaneously

– A specific case of concurrency

● Concurrency: 

– A condition that exists when at least two threads are making progress. 

– A more generalized form of parallelism

– E.g., concurrent execution via time-slicing in uniprocessors (virtual 
parallelism)

● Distribution:

– As above but running simultaneously on different machines (e.g., cloud 
computing)
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Amdahls law

● Potential program speedup is defined by the 
fraction of code that can be parallelized

● Serial components rapidly become performance 
limiters as thread count increases

– p – fraction of work that can parallelized

– n – the number of processors
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Amdahls law

Number of Processors
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When to parallelize

● When you have independent units of work 
● When your code is compute bound
● Or your code is not utilizing the memory 

bandwidth
● When you see performance gains in tests :-) 
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We have seen this previously

● L1 and L2 cache sizes
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Remember from previously
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Numa effects
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Cache coherence

● Ensures the consistency between all the 
caches.
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MESIF protocol

● Modified (M): present only in the current cache and 
dirty. A write-back to main memory will make it (E).

● Exclusive (E): present only in the current cache and 
clean. A read request will make it (S), a write-request 
will make it (M).

● Shared (S): may be stored in other caches and clean. 
May be changed to (I) at any time.

● Invalid (I): unusable

● Forward (F): a specialized form of the S state
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Cache coherency effects
Exclusive cache lines Modified cache lines

Latency in nsec on 2-socket Intel Nehalem
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Does it matter?

● Processing 1600M tuples on 32-core machine
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Commandments

● C1: Thou shalt not write thy neighbor’s memory 
randomly – chunk the data, redistribute, and then 
sort/work on your data locally.

● C2: Thou shalt read thy neighbor’s memory only 
sequentially – let the prefetcher hide the remote 
access latency.

● C3: Thou shalt not wait for thy neighbors – don’t 
use fine grained latching or locking and avoid 
synchronization points of parallel threads.
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The openMP framework

● API for multiprocessing
● Easily applied to parallelize code
● Built for shared memory processors
● Works cross platform
● http://openmp.org 
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Shared memory processors

● Recall the UMA and NUMA architetures
● Both are shared memory processor 

architetures 
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General control flow
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Compiling openMP

● #include <omp.h>
● Compile with the openmp flag

– Gcc -fopenmp test.cpp

● Environment variables
– setenv OMP_NUM_THREADS 12

–  export OMP_NUM_THREADS=12
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Useful functions

● Thread-ID
– omp_get_thread_num();

● Amount of threads
–  omp_get_num_threads();

● Set amount of active threads
– omp_set_num_threads(4);

– export OMP_NUM_THREADS=12
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Directives

● Used to communicate with the compiler
● #pragma directives used to instruct the 

compiler to use pragmatic or 
implementation-dependent features

● One such feature is openMP
● #pragma omp parallel 
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Problems with NUMA 

● We do not know where the data is allocated
● We do not know on which NUMA node the 

thread is running
● So, no openMP on really parallel machines?
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New libraries to the rescue

● We can pin threads to processors
● We can control memory allocations
● Tools

– Numactl

– libnuma
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libnuma

● Provides c++ header files
● Can be used to create numa awareness in 

the code
● A bit like openMP but instead provides 

methods for getting numa node and 
allocating memory on specific numa nodes
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Numactl

● Like libnuma, but controlled from the shell
● Can be used to control existing software without 

changing the code
● Very useful when running experiments
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Numactl (continued)
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Examples
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Questions?
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