
 time O(log d)

Exponential-search(13)

Finger Search
Searching in a sorted array

1

2 3 5 7 8 11 13 14 15 17 18 20 24 25 26 28 29 31 33 34

 time O(log n)

Binary-search(13)

2 3 5 7 8 11 13 14 15 17 18 20 24 25 26 28 29 31 33 34

Finger

d

20 21

22

Bently Yao 1976 log(𝑖) 𝑥
log∗ 𝑛
𝑖=1 +O(log∗ 𝑛)

O(1) Insertions

 Buckets O(log n)  Amortized O(1) insertions (also by 2-4-trees)

 2-level buckets O(log2 n) size

 Incremental splitting of buckets  Wost-case O(1) insertions

 Split largest bucket
2

n/log2 n leafs



degree Θ(log n)

[C. Levcopoulos, M. Overmars, A balanced search tree with O(1) worst-case update time, Acta Informatica, 1988, 26(3), 269-277, 1988]

Zeroing Game

 Variables x1,…,xn  0 (initially xi = 0)
 Players Z and A alternate to take turns

– Z: Select j where aj = maxi xi : xj := 0
– A: Select a1,…,an  0 and i ai = 1 : xi += ai

Theorem i : xi  Hn-1+1  ln n+2

Proof
 Consider a vector x(m) after mn rounds
 Sk = sum of k largest xi of x(m+1-k)

 Sn  n (induction)
 Si  1+ Si+1i/(i+1)
 S1  1+S2 /2  1+1/2+S2/3  1+1/2++1/(n-1)+Sn/n  Hn-1+1

Corollary
For the halving game, Z : xi := xi/2
For the splitting game, Z : xi,xi’ := xi/2 3

[P. Dietz, D. Sleator, Two algorithms for maintaining order in a list, Proc. 19th ACM Conf. on Theory of Computing, 365-372, 1987]

x1 x2 x3 ∙ ∙ ∙ ∙ xn

def

i : xi 2∙(Hn-1+1)

Dynamic Finger Search

4

Search Insert/Delete

Search without fingers

 Red-black, AVL, 2-4-trees, ...
 Levcopolous, Overmars 1978

O(log n)
O(log n)

O(1)

O(1) fixed fingers

 Guibas et al. 1977, O(log d) O(1)

Each node a finger

 Level-linked (2,4)-trees O(log d)
O(log n)
O(1) am.

 Randomized Skip lists O(log d) exp. O(1) exp.

 Treaps O(log d) exp. O(1) exp.

 Brodal, Lagogiannis, Makris,
 Tsakalidis, Tsichlas 2003
 Dietz, Raman 1994 (RAM)

O(log d) O(1)

Level-Linked (2,4)-trees

5

[S. Huddleston, K. Mehlhorn. A new data structure for representing sorted lists. Acta Informatica, 17:157–184, 1982]

Potential Φ = 2 ∙ # degree-4 + # degree-2

Updates Split nodes of degree >4, fusion nodes of degree <2

Search Search up + top-down search

finger
search(T)

Randomized Skip Lists

Insertion Increase pile to next level with pr. = 1/2

Height O(log n) expected with high probability

Pointer Horizontally spans O(1) exp. piles one level below

Finger Remember nodes on search path

6

[W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of the ACM, 33(6):668–676, 1990]

finger

search(D)

Treaps – Randomized Binary Search Trees

7

[R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica, 16(4/5):464–497, 1996]

 Each element random priority

 Search tree wrt element

 Heap order wrt priority

 Height O(log n) expected

 Insert & deletion rotations
O(1) expected time

 Search Go up to LCA, and search
down – concurrently follow
excess path to find next LCA candidate
Search path O(log d) expected

finger

Search(P)

 Merging sorted lists L1 and L2 / finger search trees

 Merging leaf lists in an
arbitrary binary tree O(n∙log n)

 Proof Induction O(log n!)

O(log n1! + log n2! + n1∙log ((n1+n2)/n1))
= O(log n1! + log n2! + log ())

 = O(log (n1!  n2!  ())) = O(log (n1+n2)!) 

repeated
insertion

Application: Binary Merging

8

[S. Huddleston, K. Mehlhorn. A new data structure for representing sorted lists. Acta Informatica, 17:157–184, 1982]

L1

L2

 di








 


||

||||
log||)log(

1

12
1

L

LL
Ldi

n1+n2
n1

2

7 3

1 4 5 9 6

8 4 5 1 2 3 7

1 2 3 4 5 7

n2 n1

1 2 3 4 5 6 7 8 9

n1+n2
n1

Maximal Pairs with Bounded Gap

ABCDABDBADAADDABDBACABA

9

[G.S. Brodal, R.B. Lyngsø, C.N.S. Pedersen, J. Stoye. Finding Maximal Pairs with Bounded Gap,
Journal of Discrete Algorithms, Special Issue of Matching Patterns, volume 1(1), pages 77-104, 2000]

P P gap
[low,high]

≠ right maximal left maximal ≠

 Build suffix tree (ST) & make it binary

 Create leaf lists at each node

 Right-maximal pairs = ST nodes

 Find maximal pairs = finger search at ST nodes

O(n∙log n+k)

