
Simple Randomized Mresgerot

Je� Vitter

Duke University

Department of Computer Science

Center for Geometric & Biological Computing

http://www.cs.duke.edu/CGBC/

EEF Summer School|July 2002

Center for Geometric & Biological Computing

✫ I/O Crisis! 106 times slower access than registers.

✫ Time for rotation � Time for seek.
✫ Amortize search time by large block transfer so that

Time for rotation � Time for seek � Time to transfer data.

✫ Parallel disks.

Center for Geometric & Biological Computing

Magnetic Disk Drives as Secondary Memory

Je� Vitter 2

[Dahlin 96]:

Parameter Yearly Improvement Rate

Disk Latency 10%

Disk Bandwidth 20%

Processor Speed 55%

RAM Bandwidth 40%

RAM Capacity/Cost 45%

✫ Performance gap is increasing.
✫ RAM Capacity/Cost doubling every 22{23 months, but users

doubling data storage every 5 months. [AUS98]

✫ Users frequently reprocess data in entirety. [AUS98]

✫ I/O Bottleneck.

Center for Geometric & Biological Computing

Trends

Je� Vitter 3

[A
g
garw
al
&
V
itter
88],
[V
itter
&
S
h
river
90,
94]

C

P

U

M

e
m

D

i
s
k

D

i
s
k

B
lo
ck
I/
O

N

=

p
rob
lem
d
ata
size:

M

=

size
of
in
tern
al
m
em
ory
:

B

=

size
of
d
isk
b
lo
ck
:

D

=

n
u
m
b
er
of
in
d
ep
en
d
en
t
d
isk
s:

P

=

n
u
m
b
er
of
C
P
U
s:

N
otation
al
con
ven
ien
ce
(in
u
n
its
of
b
lo
ck
s):

n
=
NB

,
m
=
MB

.

C
enter for G

eom
etric &

 B
iological C

om
puting

P
a
ra
lle
l
D
isk
M
o
d
e
l

J
e
�
V
itte
r

4

D
is
k

D
is
k

L
2

C
a
c
h
e

P
r
o
c

I
C

D
C

C
P
U

M

e
m
o
r
y

B
=
32
B

B
=
128
B

B
=
8
K
B

m

s

n
s

128{256
M
B

32{64
K
B

1{4
M
B

10
G
B
{10
T
B

C
enter for G

eom
etric &

 B
iological C

om
puting

A
\
R
e
a
l"
M
a
c
h
in
e

J
e
�
V
itte
r

5

✫ Single Disk Model, D = 1.

� Lower Bound on sorting.

� Single Disk Mergesort.

✫ Parallel Disk Model, D > 1.

� DiÆculties of Parallelization.

� Previous Approaches.

� Simple Randomized Mergesort (SRM) and its analysis.

✫ Implementation of SRM.

Center for Geometric & Biological Computing

Outline of Talk

Je� Vitter 6

✫ Batched problems [AV88], [VS90,VS94]:

� Scanning (touch problem): �
�

N
DB

�
= �
� n

D
�

� Sorting:

�

N
DB

log N
B

log M
B

!
= �
�

N
DB
logM=B
N

B
�

= �
� n

D
logm n
�

� Permuting: �
�

min
�

N
D
;
n

D
logm n
��

✫ Sorting is key subroutine for many problems [CGGTVV95],

[AKL95], . . .

� Graph problems � Permutation

� Computational Geometry � Sorting
✫ Online problems:

� Searching: �(logDB N + z)

Center for Geometric & Biological Computing

Fundamental Bounds

Je� Vitter 7

✫ Data Layout:

D0 D1 D2 D3 D4

stripe 0 0 1 2 3 4 5 6 7 8 9

stripe 1 10 11 12 13 14 15 16 17 18 19

stripe 2 20 21 22 23 24 25 26 27 28 29

stripe 3 30 31 32 33 34 35 36 37 38 39

✫ Disk striping involves using the D disks in lock step

as if thre is a logical block size of BD

=) Substitute B DB in single-disk algorithm.

✫ Single-disk I/O bound �
�

N
B

logM=B
N

B
�

becomes

�
�

N
DB
logM=DB

N
DB

�
= �
� n

D

logm=D

n
D

�
✫ Ratio with optimal bound �

� n
D

logm n
�

is � logm

log m
D

when D � m.

✫ To get an optimal sorting algorithm, use disks independently!

Center for Geometric & Biological Computing

Disk Striping: D = 5 disks, block size B = 2

Je� Vitter 8

[Aggarwal & Vitter 88], [Vitter & Shriver 90, 94]

CPU

Mem

Disk Disk

Block I/O

✫ D = number of independent disks.

✫ Goal:

Design computation to transfer �(D)

blocks in each I/O (one per disk).

✫ Optimal Sorting: �
� n

D
logm n
�

I/Os.

✫ Desired Sort Performance:

passes = � (logm n);

#I=Os per pass = �
� n

D
�

:

Center for Geometric & Biological Computing

Parallel Disk Model

Je� Vitter 9

✫ Distribution (bucket) sort

� Select S = �(m) or �(
p

m) partitioning elements that

divide the �le evenly into buckets.

� Sort the buckets recursively.

� Append together the sorted buckets.

✫ The number of levels of recursion is logS n = logm n:

✫ If each level of recursion uses �
�

N
DB

�
= �
� n

D
�

I/Os

=) # I/Os = O
� n

D
logm n
�

.

✫ The partitioning into buckets is done in an online manner as

the data is streaming through memory: Whenever a bucket's

bu�er �lls, it is written to disk.

✫ DiÆculty is to store each bucket evenly across the disks,

given that the blocks of each bucket are formed online.

Center for Geometric & Biological Computing

Distribution Sort with D Disks

Je� Vitter 10

W
e
h
a
v
e
a
ch
o
ice
o
f
h
o
w
to
o
rg
a
n
ize
th
e
d
istrib
u
tio
n
so
rt:

1
.
M
a
k
e
ea
ch
b
u
ck
et
o
ccu
p
y
co
n
tig
u
o
u
s
\
strip
es"
o
n
th
e
d
isk
s.

F
o
r
ex
a
m
p
le,
p
u
t
b
u
ck
et
1
o
n

d
isk
1
tra
ck
1
,
d
isk
2
tra
ck
1
,
d
isk
3
tra
ck
1
,
....

T
h
en
w
h
en
w
e
o
u
tp
u
t
b
u
�
ers
d
u
rin
g
th
e
b
u
ck
etin
g
p
ro
cess,
ea
ch

b
lo
ck
w
ill
h
a
v
e
a
p
red
e�
n
ed
d
isk
to
b
e
w
ritten
to
.

=)
p
o
ssib
le
b
o
ttlen
eck
o
n
a
d
isk
d
u
rin
g
w
rite
I/
O
.

2
.
O
u
tp
u
t
th
e
D

b
lo
ck
s
a
lw
a
y
s
in
O
(1
)
I/
O
s,
b
u
t
a
b
u
ck
et
m
a
y
en
d
u
p

w
ith
m
o
re
b
lo
ck
s
o
n
o
n
e
d
isk
th
a
n
o
n
o
th
er
d
isk
s.

=)
a
b
u
ck
et
m
a
y
en
d
u
p
u
n
ev
en
ly
d
istrib
u
ted
o
n
th
e
d
isk
s,

lea
d
in
g
to
n
o
n
o
p
tim
a
l
rea
d
p
a
ss
in
n
ex
t
lev
el
o
f
recu
rsio
n
.

H
y
b
rid
v
ersio
n
s
a
re
p
o
ssib
le,
su
ch
a
s
w
h
en
ea
ch
b
u
ck
et
resid
es
o
n

co
n
tig
u
o
u
s
strip
es,
b
u
t
th
e
o
rd
er
in
w
h
ich
th
e
b
lo
ck
s
in
ea
ch
strip
e
a
re

w
ritten
ca
n
b
e
a
rb
itra
ry.

E
a
rly
m
eth
o
d
s
lo
o
k
ed
a
t
M
eth
o
d
2
fo
r
d
istrib
u
tio
n
so
rt.

N
ew
er
m
eth
o
d
s
co
n
cen
tra
te
o
n
M
eth
o
d
1
.

C
enter for G

eom
etric &

 B
iological C

om
puting

D
o
W
e
\
S
trip
e
"
B
u
c
k
e
ts
C
o
n
tig
u
o
u
sly
o
n
th
e
D
isk
s?

J
e
�
V
itte
r

1
1

Method 2 style

✫ If N is large or
M

DB

> logD, then random assignment to disks

works well.
✫ S simultaneous load balancing problems (one per bucket).

(disks)
Hash (independent uniform distribution)

D bins

Max Occupancy = 3.

n
S
balls (blocks)

total per bucket.

Center for Geometric & Biological Computing

Bucket Sort [VS94]: Phase 1

Je� Vitter 12

✫ If N (and S) are small and DB �M

(so that random assignment is not \balanced"),

a \typical" memoryload contains more than S log S blocks

(and is therefore well-balanced among the S buckets.)

✫ Get a \typical" memoryload by permuting each memoryload

and then shu�ing the memoryloads in a single pass to mix

them up randomly.

✫ Output each memoryload by a round-robin placement (perfect

shu�e) of the S buckets onto the D disks.

Center for Geometric & Biological Computing

Bucket Sort [VS94]: Phase 2

Je� Vitter 13

Deterministic version of BucketSort.

✫ Online tracking of bucket distribution on disks.

✫ Let numb = # items in bucket b processed so far.

✫ Let numb(d) = # items in bucket b written to disk d,

i.e., numb =

X
1�d�D

numb(d).

✫ Maintain invariant that the
�

D
2

�
largest values of

numb(1), numb(2), . . . , numb(D) di�er by at most 1.

=) numb(d) � 2
numb

D

, for each bucket b.
Center for Geometric & Biological Computing

BalanceSort [NV93]

Je� Vitter 14

Let's concentrate for rest of talk on Method 1: Each bucket or run

resides on \striped" prede�ned positions on the disks.
O(1) blocks

m blocks.

Merge �(m) runs together at a time.
per run.

✫ Sort individual memoryloads to create runs of M records each.

✫ Merge R = �(m) or �(
p

m) runs at a time

=) dlogm ne merge passes

✫ If each merge pass takes O(n=D) I/Os

=) Total of O
� n

D

logm n
�

I/Os for sorting (optimal).
Center for Geometric & Biological Computing

Back to Method 1

Je� Vitter 15

��
��
��
��

��
��
��
��

������

��
��
��
��

����

Internal Memory

block

Needed

(2R blocks)

✫ Each read: One needed block, D� 1 prefetched blocks for future use.

✫ Bounded memory size inhibits prefetching.
✫ Performance critical question: How many reads required to bring in

the \next" R = �(m) blocks? Ideally, R=D.

Center for Geometric & Biological Computing

DiÆculty of merging R = �(m) runs on D disks

Je� Vitter 16

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����

����

����

����

✫ Each run is striped, but the starting disk of the runs are staggered.

✫ Initially, # I/Os need to read in the next R leading blocks

= Max Occupancy (of leading blocks) on any disk

= R=D, as desired.

✫ But balance can quickly deteriorate.

Center for Geometric & Biological Computing

Staggered Layout: R = 8, D = 4.

Je� Vitter 17

����
����

����

��
��
��
��

����

����

��
��
��
��

����

Maximum Occupancy (of leading blocks on disks) is 7� R=D

=) # I/Os needed to load 8 blocks = 7.

Center for Geometric & Biological Computing

R = 8, D = 4: Imbalance can set in.

Je� Vitter 18

✫ Can achieve perfect balance for merging two runs, R = 2:

Run 1: A B C D

E F G H

I J K L

. . .

Run 2: D C B A (striped in reverse order)

H G F E

L K J I

. . .

✫ Reduces necessary bu�er space by half.

✫ Cannot be generalized to R > 2.

Center for Geometric & Biological Computing

Gilbreath Principle

Je� Vitter 19

Overall structure of each merge pass:

1. Do approximate merge

independently on each disk.

2. Interleave the \sorted" runs.

3. Use Columnsort to convert the ap-

proximately sorted output run into

a totally ordered output run.

��

����

����

��

��

��

����

��

Merge procedure for each disk:

✫ Read the two blocks with smallest and smallest maximum items

✫ Output the smallest B items of the 2B items.

Center for Geometric & Biological Computing

Greed Sort [NV91]

Je� Vitter 20

��
��
��
��

��
��
��
��

����

������

���
���
���
���

��
��
��
��

����

����

✫ Each run is striped starting at a randomly chosen disk.

✫ At any time, the disk containing the leading block of any run is

uniformly random.

Center for Geometric & Biological Computing

Simple Randomized Mergesort (SRM) [97,99]

Je� Vitter 21

0

2

37

8

9

6

5

4

1

F
o
reca
stin
g
In
fo
rm
a
tio
n
in
th
e
in
p
u
t
b
lo
ck
s
o
f
a
ru
n
:

Im
p
la
n
ted
in
b
lo
ck
i
is
th
e
sm
a
llest
k
ey
o
f
b
lo
ck
i
+
D
.

W
h
e
n
b
lo
c
k
i
is
in
m
e
m
o
ry
,
th
e
tim
e
a
t
w
h
ic
h

th
e
m
e
rg
e
n
eed
s
b
lo
c
k
i
+
D

ca
n
be
p
red
ic
ted
.

C
enter for G

eom
etric &

 B
iological C

om
puting

F
o
re
c
a
stin
g
In
fo
rm
a
tio
n
in
a
n
S
R
M

ru
n

J
e
�
V
itte
r

2
2

✫ Writes occur at full D-disk parallelism.

✫ SRM implants forecasting info in each input block.

✫ FF bu�er management: (greedy approach)

� If # Free Blocks is D � f , Flush f \largest" blocks.

� Forecast the \smallest" block from each disk.

� Read in the \smallest" block from each disk.

✫ Analysis: If E[MaxOccSRM] is the average Max Occupancy of

the next R blocks, let's look at how many I/Os SRM uses to

retrieve them:

E[#readsSRM] = E[MaxOccSRM]�
n

R
� dlogR(n=m)e

Center for Geometric & Biological Computing

SRM's Greedy Approach: Forecast and Flush (FF)

Je� Vitter 23

1

2

3

D

b
in
s

b
a
lls
(b
lo
ck
s)

R

D
(d
isk
s)

H
a
sh
(in
d
ep
en
d
en
t
u
n
ifo
rm

d
istrib
u
tio
n
)

M
a
x
O
c
c
u
p
a
n
c
y
=
3
.

E
[C
la
ssica
l
M
a
x
O
ccu
p
a
n
cy
]� 8>>>>>><>>>>>>:

ln
D

ln
ln
D

�
RD

if
RD

=
1

c�
RD

if
RD

=
�
(lo
g
D
)

RD

if
RD

�
lo
g
D

C
enter for G

eom
etric &

 B
iological C

om
puting

C
la
ssic
a
l
M
a
x
im
u
m

B
u
c
k
e
t
O
c
c
u
p
a
n
c
y

J
e
�
V
itte
r

2
4

Starting bin of each chain
is uniformly random.

1 2 3 4

(disks)

D

D bins

R0 chains

containing R balls

Max Occupancy = 2

Conjecture: Let ni =size of ith chain.

E[MaxOccd(n1; n2; : : : ; nR0)]

� E[MaxOccd(n1; n2; : : : ; nR0
�1; nR0 � 1; 1)]

� E[Classical Max Occupancy]:

We can prove the (harder !?!?) conjecture if the balls of each chain are

in random order rather than consecutive.

Center for Geometric & Biological Computing

Occupancies with Dependency

Je� Vitter 25

A
sy
m
p
totically,

E
[#
read
s
S
R
M

]� 8>>>>><>>>>>:
ln
D

k
ln
ln
D

�
nD

log
m

n

if
m2

D

�
k
:

c
�
nD

log
m

n

if
m2

D

=
�
(log
D
):

nD
log
m

n

if
m2

D

�
log
D
:

S
im
u
lation
of
I/O
p
erform
an
ce
ratio
IO
S
R
M

IO
D
S
M

for
m
�
(2
k
+
4)D
:

S
R
M
is
b
etter
th
an
strip
in
g!

D
=
5

D
=
1
0

D
=
5
0

k
=
5

0
:5
6

0
:4
7

0
:3
7

k
=
1
0

0
:6
1

0
:5
2

0
:4
0

k
=
5
0

0
:7
1

0
:6
3

0
:5
1

C
enter for G

eom
etric &

 B
iological C

om
puting

I/
O
P
e
rfo
rm
a
n
c
e
o
f
S
R
M
,
R
=

m
=
2

J
e
�
V
itte
r

2
6

✫ Probabilistic analysis required getting around dependencies.

✫ Same technique and analysis for a simple randomized

(multi-way) distribution. Application in parallel disk

distribution sort.

✫ Forecast and Flush technique has been used in a competitive

parallel prefetching algorithm for certain request sequences,

and may have other applications.
✫ Not optimal theoretically for all parameter values because of

maximum occupancy e�ect.

Center for Geometric & Biological Computing

Other Aspects

Je� Vitter 27

✫ Implanting forecasting information.

✫ FF bu�er management:

� If # Free Blocks is D � f , Flush f \largest" blocks.

� Forecast the \smallest" block from each disk.

� Read in the \smallest" block from each disk.

✫ As stated, Forecasting requires D priority queues each

containing R keys at any time.
✫ Flushing requires maintaining order among prefetched blocks in

memory.

Center for Geometric & Biological Computing

Implementation of SRM

Je� Vitter 28

✫ If I is item size,

Size of forecasting information =

1
BI

� Input �le size:

✫ Our approach

� Don't implant forecasting information in run blocks.

� Store forecasting keys of a run in a separate �le.

� Using the forecasting keys during SRM requires a (much)

smaller-scale R-way auxiliary merge of forecasting �les.

✫ Requires only one priority queue with R keys in it.

✫ Automatically orders prefetched blocks and ushing is easy.

Center for Geometric & Biological Computing

Simplifying the implementation of FF

Je� Vitter 29

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��������
Lookahead Queue

Prefetch Block

Bu�er

Occupancy

Queues

Forecasting

Merge

Main Merge

Center for Geometric & Biological Computing

Simpli�ed Implementation of FF

Je� Vitter 30

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

������

Center for Geometric & Biological Computing

Simpli�ed Implementation of FF

Je� Vitter 31

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

������

Center for Geometric & Biological Computing

Simpli�ed Implementation of FF

Je� Vitter 32

✫ SRM outperforms DSM by 25{50% in running time.

✫ Merge passes of SRM are slower, but fewer than those of DSM.

✫ Overhead ratio for SRM is very close to 1 in practice.

0.0

50.0

100.0

150.0

200.0

250.0

300.0

 1 2 3 4 5 6 7 8 9 10

T
im

e
in

 s
ec

on
ds

Input Size N in millions of items

"DSM,15"
"SRM,15"
"DSM,24"
"SRM,24"

Center for Geometric & Biological Computing

Practical Performance

Je� Vitter 33

✫ Implementation of SRM and DSM was in the TPIE system;

TPIE's functionality had to be extended to suport parallel disk

operations.

✫ Several internal memory and other optimizations were

programmed, and play a signi�cant role in performance

improvement.

✫ Parallel I/O was performed using the mmb memory-map

system developed at Duke.

Center for Geometric & Biological Computing

Other Aspects

Je� Vitter 34

✫ Practical bene�ts from using parallel disks independently.

✫ SRM outperforms DSM by 25{50% in running time.

✫ Merge passes of SRM are slower, but fewer than those of DSM.

✫ Overhead ratio for SRM is very close to 1 in practice.

✫ Not theoretically optimal for all parameter settings

(N , D, M , B).

✫ Stay tuned for distribution sort based on SRM ideas.

✫ Powerful notion of duality reconverts the distribution sort into

merge sort that is provably optimal.

Center for Geometric & Biological Computing

Conclusions

Je� Vitter 35

