Simple Randomized Mresgerot

Jeff Vitter

Duke University

Department of Computer Science

-

-

N

C

v

C

()

Center for Geometric & Biological Computing
http://www.cs.duke.edu/CGBC/

EEF Summer School—July 2002

3 /\\
2 (1)
o 1

Magnetic Disk Drives as Secondary Memory

. magnetic surface
disk of disk

i Bt E o : E _' Ty)
o tpld

a
''''''''''

read/write head

disk track

[1 I/O Crisis! 10° times slower access than registers.
[] Time for rotation ~ Time for seek.

[] Amortize search time by large block transfer so that

Time for rotation ~ Time for seek ~ Time to transfer data.

[] Parallel disks.

i o
s o/

eometric & Biological Computing 2

@
=1
g
= (1)
S
[0}

Jeff Vitter

Trends

[Dahlin 96]:
Parameter Yearly Improvement Rate
Disk Latency 10%
Disk Bandwidth 20%
Processor Speed 55%
RAM Bandwidth 40%
RAM Capacity/Cost 45%

[1 Performance gap is increasing.

[RAM Capacity/Cost doubling every 22—23 months, but users
doubling data storage every 5 months. [AUS98]

[] Users frequently reprocess data in entirety. [AUS9S]

(] I/O Bottleneck.

J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 3

Parallel Disk Model

[Aggarwal & Vitter 88], [Vitter & Shriver 90, 94|

Block |[/O

= problem data size.

size of internal memory.

= size of disk block.

oS = = =
1

= number of independent disks.

P = number of CPUs.

Mem ZoﬁmmObm_ ooswwbwmbom (in units of blocks):

/ﬁ sﬂmuSHm.

- eW 8 o
N &g’ g waK

.H @ m. ./\. m. ,ﬁ ,ﬁ @ H. Center for Geometric & Biological Computing &”

A “Real” Machine

B=328B
8 KB
/mnsmw _
TR
—/ D
CPU : _ 15k
1S
_
]

N

32-64 KB 1-4 MB 10 GB-10 TB

I
I I
IC, pg|'| L2 |!
— T |!|Cache|' Memory —— Disk
_ _ :
I I

128-256 MB

.H @ m. ./\. m. ,ﬁ ,ﬁ @ H. Center for Geometric & Biological Computing m

Outline of Talk

[1 Single Disk Model, D = 1.
e Lower Bound on sorting.

e Single Disk Mergesort.
[1 Parallel Disk Model, D > 1.

e Difficulties of Parallelization.
e Previous Approaches.

e Simple Randomized Mergesort (SRM) and its analysis.

[] Implementation of SRM.

J e H‘ V i t t e r Center for Geometric & Biological Computing 6

Fundamental Bounds

[1 Batched problems [AV88], [VS90,VS94]:

. N n
e Scanning (touch problem): © (ﬁ) =0 (5>

e Sorting:

N log % N N n
=0 | ~=logy /5 = :@(—1)
@(DBbg_fg) @(DB o8 /BB) p O8m™

[Sorting is key subroutine for many problems [CGGTVV95],
[AKL95], ...

e Graph problems = Permutation

e (Computational Geometry =< Sorting

[] Online problems:

e Scarching: ©O(logpg N + 2)

J e H‘ V i t t e r Center for Geometric & Biological Computing 7

Disk Striping: D = 5 disks, block size B = 2

[1 Data Layout:

D() Dl DQ Dg D4
stripe 0 0 1 2 3 4 5 6 7 8 9
stripe 1 | 1011 | 1213 | 1415 | 16 17 | 18 19
stripe 2] 2021 | 2223 | 2425 | 26 27 | 28 29
stripe 3 | 3031 | 3233 | 3435 | 36 37 | 38 39
(] Disk striping involves using the D disks in lock step
as if thre is a logical block size of BD
—> Substitute B <— DB in single-disk algorithm.
: : N N
[Single-disk I/O bound © B log s/ 5 becomes
N N n n
© (ﬁ ogr/p ﬁ) =0 (5180 75)
1
[Ratio with optimal bound © <2 log, . n> is A — Zz when D
D log %

[1 To get an optimal sorting algorithm, use disks independently!

&1

e
N &g

J e ﬂ‘ V i t t e r Center for Geometric & Biological Computin

Parallel Disk Model

[Aggarwal & Vitter 88], [Vitter & Shriver 90, 94|

[1 D = number of independent disks.

L] Goal:
Design computation to transfer ©(D)
blocks in each I/O (one per disk).

[] Optimal Sorting: © (% log,, n) I/0Os.

[] Desired Sort Performance:

Mem
passes = O (log,, n);
l _ o™
#1/0s per pass = O <D)

Y
()
{
N

J e H‘ V i t t e r Center for Geometric & Biological Computing 9

Distribution Sort with D Disks

[Distribution (bucket) sort
e Select S = O(m) or O(y/m) partitioning elements that
divide the file evenly into buckets.
e Sort the buckets recursively.
e Append together the sorted buckets.

[] The number of levels of recursion is loggs n = log, , n.

N n
D 1 - — <_> I
If each level of recursion uses © (DB)) D /OS

— #1/0s=0 (%logm n)
[1 The partitioning into buckets is done in an online manner as

the data is streaming through memory: Whenever a bucket’s
buffer fills, it is written to disk.

[] Difficulty is to store each bucket evenly across the disks,

given that the blocks of each bucket are formed online.

- oW 8 o
NI &' o/

Jeff Vitter

Do We “Stripe” Buckets Contiguously on the Disks?
We have a choice of how to organize the distribution sort:

Make each bucket occupy contiguous “stripes” on the disks.
For example, put bucket 1 on
disk 1 track 1, disk 2 track 1, disk 3 track 1,
Then when we output buffers during the bucketing process, each
block will have a predefined disk to be written to.
— possible bottleneck on a disk during write I/0.

Output the D blocks always in O(1) 1/Os, but a bucket may end up
with more blocks on one disk than on other disks.
—> a bucket may end up unevenly distributed on the disks,

leading to nonoptimal read pass in next level of recursion.

Hybrid versions are possible, such as when each bucket resides on
contiguous stripes, but the order in which the blocks in each stripe are
written can be arbitrary.

Early methods looked at Method 2 for distribution sort.
Newer methods concentrate on Method 1.

- oW 8 o
N SV o/

AH. mm. ./\.m.d d @H. Center for Geometric & Biological Computing H ”_.

Bucket Sort [VS94]: Phase 1

Method 2 style

M
[If N is large or DB > log D, then random assignment to disks

works well.

[S simultaneous load balancing problems (one per bucket).

OO0O0O0O000 OO0
OO0OO0OO0O00 OO0

" balls (blocks)
S Hash (independent uniform distribution

total per bucket.
Max Occupancy = 3.

D bins o OOOOOOOO‘
(disks)|[© O 8

J e ff V i t t e r Center for Geometric & Biological Computing 1 2

Bucket Sort [VS94]: Phase 2

O If N (and S) are small and DB ~ M
(so that random assignment is not “balanced”),
a “typical” memoryload contains more than Slog .S blocks
(and is therefore well-balanced among the S buckets.)

[1 Get a “typical” memoryload by permuting each memoryload
and then shuflling the memoryloads in a single pass to mix
them up randomly.

[J Output each memoryload by a round-robin placement (perfect
shuffle) of the S buckets onto the D disks.

J e ff V i t t e r Center for Geometric & Biological Computing 1 3

BalanceSort [NV93]

Deterministic version of BucketSort.
[] Online tracking of bucket distribution on disks.
[] Let nump = # items in bucket b processed so far.

[Let numy(d) = # items in bucket b written to disk d,
i.e., nump = Z numy(d).

1<d<D

D
[] Maintain invariant that the {EJ largest values of
nump (1), numy(2), ..., numy(D) differ by at most 1.

numy

— nump(d) < 2 o for each bucket b.

o
o/

J e ff V i t t e r Center for Geometric & Biological Co

mputing 1 4

Back to Method 1

Let’s concentrate for rest of talk on Method 1: Each bucket or run

resides on “striped” predefined positions on the disks.

e |
|

ﬁ | m blocks.
|

EE R EE EE N oo
b hphhg

¢_|

(RIRIgIRRNiA

Merge ©(m) runs together at a time.

[1 Sort individual memoryloads to create runs of M records each.
[J Merge /i = ©(m) or ©(y/m) runs at a time
— [log,, n| merge passes
[] If each merge pass takes O(n/D) 1/0s
—> Total of O <% log, . n) I/Os for sorting (optimal).

4)
N S'@ 'Sy =\ ey,
J eﬁ‘ Vit t er Center for Geometric & Biological Computing 1 5

&1

Difficulty of merging R = ©(m) runs on D disks

e~——]

—_—

Internal Memory

(2R blocks)

~———]

I
e~——]

JE——
~———]

!

Needed
block

[1 Each read: One needed block, D — 1 prefetched blocks for future use.

[1 Bounded memory size inhibits prefetching.

[J Performance critical question: How many reads required to bring in
the “next” 7 = ©(m) blocks? Ideally, /7/D.

Jeff Vitter

m
2
s
= (1)
g

Geometric &

Biological Computing 1 6

Staggered Layout: R =8, D = 4.

[] Each run is striped, but the starting disk of the runs are staggered.
(] Initially, # 1/Os need to read in the next R leading blocks

= Max Occupancy (of leading blocks) on any disk

= /D, as desired.
[But balance can quickly deteriorate.

J e H‘ V i t t e r Center for Geometric & Biological Computing 1 7

R =8, D = 4: Imbalance can set in.

Maximum Occupancy (of leading blocks on disks) is 7> 7/D

—> # 1/Os needed to load 8 blocks = 7.

g
@]
5]
3l 60
S
s

Jeff Vitter

18

Gilbreath Principle

[1 Can achieve perfect balance for merging two runs, R = 2:

Run 1: A B C D

E F G H
I J K L
Run 2: D C B A (striped in reverse order)
H G F E
L K J 1

[] Reduces necessary buffer space by half.

[Cannot be generalized to R > 2.

J e H‘ V i t t e r Center for Geometric & Biological Computing 1 9

Greed Sort [NV91]

Overall structure of each merge pass: || . |

1. Do approximate merge
independently on each disk.

2. Interleave the “sorted” runs.

3. Use Columnsort to convert the ap-
proximately sorted output run into
a totally ordered output run.

Merge procedure for each disk:

[Read the two blocks with smallest and smallest maximum 1tems

[Output the smallest B items of the 2B items.

N
st/
J e ff V i t t e r Center for Geometric & Biological Computing 2 O

Simple Randomized Mergesort (SRM) [97,99]

[1 Each run is striped starting at a randomly chosen disk.

[1 At any time, the disk containing the leading block of any run is

uniformly random.

J e H‘ V i t t e r Center for Geometric & Biological Computing 2 1

Forecasting Information in an SRM run

C O L L o

0 = 1 = 2
-=>
3 = 4 i 5 > 6
> -> >
7 8 9

Forecasting Information in the input blocks of a run:
Implanted in block ¢ is the smallest key of block 7 + D.

When block i is in memory, the time at which
the merge needs block i + D can be predicted.

- eW 8 o
N &g’ g waK

.H @ m. ./\. m. ,ﬁ ,ﬁ @ r Center for Geometric & Biological Computing N M

SRM'’s Greedy Approach: Forecast and Flush (FF)

[] Writes occur at full D-disk parallelism.
[I SRM implants forecasting info in each input block.

[1 FF buffer management: (greedy approach)
e If # Free Blocks is D — f, Flush f “largest” blocks.
e Forecast the “smallest” block from each disk.
e Read in the “smallest” block from each disk.
[Analysis: If E[MaxOccsgras] is the average Max Occupancy of
the next /7 blocks, let’s look at how many I/0Os SRM uses to

retrieve them:

E|#readssri| = E[MaxOccsras] X % X [log,,(n/m)]

J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 2 3

Classical Maximum Bucket Occupancy

OO0 OO0OO0O0 OO0
OO0 OO0OO0O0 OO0
R balls (blocks)
Hash (independent uniform distribution)
M\FN Ooo;@@ﬁo%%ﬂ 3.
i
D
: R . R
E|Classical Max Occupancy| ~ ¢ ¢ 5 if D= O(log D)
i
D

.H @ m. ./\. m. ,ﬁ ,ﬁ @ r Center for Geometric & Biological Computing N &”

Occupancies with Dependency

OO O 00 00O
C N NSO ONO)
R’ chains

containing R balls Starting bin of each chain
Is uniformly random.

Max Occupancy = 2

RRAL

@
(disks) |@@O1@
1 2 3
Conjecture: Let n; =size of ith chain.

E[MaxOccq(ni,na,...,ng)]
S E[M&XOCCd(nl,’N/Q,...,’n,R/_l,’I'LR/ — 1,1)]
< FE|[Classical Max Occupancy].

We can prove the (harder !?!?) conjecture if the balls of each chain are

in random order rather than consecutive.

- I
Kot st/
J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 2 5

/0 Performance of SRM, R = m/2

Asymptotically,
(InD n | ¢ m
C if — ~
klnlnD D o' T oD
E|#reads] << " e
srM] = q ¢ logy,n if 55 =
r Wﬂomﬁz if % > log D.
I0srM

Simulation of I/O performance ratio for m ~ (2k + 4)D:

SRM is better than striping!

I0psm

D=5 |D=10 | D =50

k = 0.56 0.47 0.37
k=10 0.61 0.52 0.40
k =50 0.71 0.63 0.51

- eW 8 o
N &g’ g waK

.H @ m. ./\. m. ,ﬁ ,ﬁ @ r Center for Geometric & Biological Computing N @

Other Aspects

[1 Probabilistic analysis required getting around dependencies.

[] Same technique and analysis for a simple randomized
(multi-way) distribution. Application in parallel disk
distribution sort.

[l Forecast and Flush technique has been used in a competitive
parallel prefetching algorithm for certain request sequences,
and may have other applications.

[Not optimal theoretically for all parameter values because of

maximum occupancy effect.

)
e/
J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 2 7

Implementation of SRM

[] Implanting forecasting information.

[FF buffer management:
e If # Free Blocks is D — f, Flush f “largest” blocks.

e Forecast the “smallest” block from each disk.

e Read in the “smallest” block from each disk.

[] As stated, Forecasting requires D priority queues each

containing /7 keys at any time.

[1 Flushing requires maintaining order among prefetched blocks in

memory.

J e H‘ V i t t e r Center for Geometric & Biological Computing 2 8

Simplifying the implementation of FF

[] If I is item size,

1
Size of forecasting information = B3] x Input file size.

[] Our approach
e Don’t implant forecasting information in run blocks.
e Store forecasting keys of a run in a separate file.

e Using the forecasting keys during SRM requires a (much)

smaller-scale /i-way auxiliary merge of forecasting files.
[Requires only one priority queue with /7 keys in it.
[] Automatically orders prefetched blocks and flushing is easy.

N
st/
J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 2 9

Simplified Implementation of FF

Prefetch Block

Buffer -

' ~
Lookahead Queue | e
~
~
D L
AN S 4

Forecasting IR . RS . Main Merge
Merge \ . 4 " Y

. " " ‘ Occupancy

§ ‘\T Queues

- oW 8 o
N 'y » e 'Sy,

J e H‘ V i t t e r Center for Geometric & Biological Computing 3 O

Simplified Implementation of FF

=
~

l ~

A
t
|
~

Do bbb

2\

L@ ? . @
‘\T N “\T
® ® ®

- oW 8 o
N 'y » e 'Sy,

J e H‘ V i t t e r Center for Geometric & Biological Computing 3 1

Simplified Implementation of FF

=

|
|

A
| S o
~
~N
~
Sl Snd g Sud tand Seng Sand Sand 2and B
‘~~ \.~ - AN V.~. {1

ol o
! W LI K J

J e H‘ V i t t e r Center for Geometric & Biological Computing 3 2

Practical Performance

[1 SRM outperforms DSM by 25-50% in running time.
[Merge passes of SRM are slower, but fewer than those of DSM.

[] Overhead ratio for SRM is very close to 1 in practice.

300.0
"DSM,15" —~—
250.0- "SRM 15" A~
, "DSM 24> -5
2 200.0- SRM24" e
(@]
(&)
» 150.0- -4
. e i
£ =
Q g X
£ 100.0- o
- B e
=t S
OO |' | | | | | | | |

1 2 3 4 5 6 7 8 9 10
Input Size N in millions of items

- oW 8 o
N 'y » e 'Sy,

J e H‘ V i t t e r Center for Geometric & Biological Computing 3 3

Other Aspects

[] Implementation of SRM and DSM was in the TPIE system:;
TPIE’s functionality had to be extended to suport parallel disk

operations.

[] Several internal memory and other optimizations were
programmed, and play a significant role in performance

improvement.

[Parallel I/O was performed using the mmb memory-map

system developed at Duke.

N
st/
J e ff V i t t e r Center for Geometric & Biological Computing 3 4

Conclusions

Practical benefits from using parallel disks independently.
SRM outperforms DSM by 25-50% in running time.
Merge passes of SRM are slower, but fewer than those of DSM.

Overhead ratio for SRM is very close to 1 in practice.

1 OO OO o @O

Not theoretically optimal for all parameter settings
(N, D, M, B).

[] Stay tuned for distribution sort based on SRM ideas.

[Powerful notion of duality reconverts the distribution sort into

merge sort that is provably optimal.

N
st/
J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 3 5

