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✫ I/O Crisis! 106 times slower access than registers.

✫ Time for rotation � Time for seek.
✫ Amortize search time by large block transfer so that

Time for rotation � Time for seek � Time to transfer data.

✫ Parallel disks.
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Magnetic Disk Drives as Secondary Memory
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[Dahlin 96]:

Parameter Yearly Improvement Rate

Disk Latency 10%

Disk Bandwidth 20%

Processor Speed 55%

RAM Bandwidth 40%

RAM Capacity/Cost 45%

✫ Performance gap is increasing.
✫ RAM Capacity/Cost doubling every 22{23 months, but users

doubling data storage every 5 months. [AUS98]

✫ Users frequently reprocess data in entirety. [AUS98]

✫ I/O Bottleneck.
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✫ Single Disk Model, D = 1.

� Lower Bound on sorting.

� Single Disk Mergesort.

✫ Parallel Disk Model, D > 1.

� DiÆculties of Parallelization.

� Previous Approaches.

� Simple Randomized Mergesort (SRM) and its analysis.

✫ Implementation of SRM.
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Outline of Talk
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✫ Batched problems [AV88], [VS90,VS94]:

� Scanning (touch problem): �
�

N
DB

�
= �
� n

D
�

� Sorting:

�
 

N
DB

log N
B

log M
B

!
= �
�

N
DB
logM=B
N

B
�

= �
� n

D
logm n
�

� Permuting: �
�

min
�

N
D
;
n

D
logm n
��

✫ Sorting is key subroutine for many problems [CGGTVV95],

[AKL95], . . .

� Graph problems � Permutation

� Computational Geometry � Sorting
✫ Online problems:

� Searching: �(logDB N + z)
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Fundamental Bounds
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✫ Data Layout:

D0 D1 D2 D3 D4

stripe 0 0 1 2 3 4 5 6 7 8 9

stripe 1 10 11 12 13 14 15 16 17 18 19

stripe 2 20 21 22 23 24 25 26 27 28 29

stripe 3 30 31 32 33 34 35 36 37 38 39

✫ Disk striping involves using the D disks in lock step

as if thre is a logical block size of BD

=) Substitute B  DB in single-disk algorithm.

✫ Single-disk I/O bound �
�

N
B

logM=B
N

B
�

becomes

�
�

N
DB
logM=DB

N
DB

�
= �
� n

D

logm=D

n
D

�
✫ Ratio with optimal bound �

� n
D

logm n
�

is � logm

log m
D

when D � m.

✫ To get an optimal sorting algorithm, use disks independently!
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Disk Striping: D = 5 disks, block size B = 2
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[Aggarwal & Vitter 88], [Vitter & Shriver 90, 94]

CPU

Mem

Disk Disk

Block I/O

✫ D = number of independent disks.

✫ Goal:

Design computation to transfer �(D)

blocks in each I/O (one per disk).

✫ Optimal Sorting: �
� n

D
logm n
�

I/Os.

✫ Desired Sort Performance:

# passes = � (logm n);

#I=Os per pass = �
� n

D
�

:
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Parallel Disk Model
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✫ Distribution (bucket) sort

� Select S = �(m) or �(
p

m ) partitioning elements that

divide the �le evenly into buckets.

� Sort the buckets recursively.

� Append together the sorted buckets.

✫ The number of levels of recursion is logS n = logm n:

✫ If each level of recursion uses �
�

N
DB

�
= �
� n

D
�

I/Os

=) # I/Os = O
� n

D
logm n
�

.

✫ The partitioning into buckets is done in an online manner as

the data is streaming through memory: Whenever a bucket's

bu�er �lls, it is written to disk.

✫ DiÆculty is to store each bucket evenly across the disks,

given that the blocks of each bucket are formed online.
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Distribution Sort with D Disks
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Method 2 style

✫ If N is large or
M

DB

> logD, then random assignment to disks

works well.
✫ S simultaneous load balancing problems (one per bucket).

(disks)
Hash (independent uniform distribution)

D bins

Max Occupancy = 3.

n
S
balls (blocks)

total per bucket.

Center for Geometric & Biological Computing

Bucket Sort [VS94]: Phase 1
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✫ If N (and S) are small and DB �M

(so that random assignment is not \balanced"),

a \typical" memoryload contains more than S log S blocks

(and is therefore well-balanced among the S buckets.)

✫ Get a \typical" memoryload by permuting each memoryload

and then shu�ing the memoryloads in a single pass to mix

them up randomly.

✫ Output each memoryload by a round-robin placement (perfect

shu�e) of the S buckets onto the D disks.

Center for Geometric & Biological Computing

Bucket Sort [VS94]: Phase 2

Je� Vitter 13



Deterministic version of BucketSort.

✫ Online tracking of bucket distribution on disks.

✫ Let numb = # items in bucket b processed so far.

✫ Let numb(d) = # items in bucket b written to disk d,

i.e., numb =

X
1�d�D

numb(d).

✫ Maintain invariant that the
�

D
2

�
largest values of

numb(1), numb(2), . . . , numb(D) di�er by at most 1.

=) numb(d) � 2
numb

D

, for each bucket b.
Center for Geometric & Biological Computing

BalanceSort [NV93]
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Let's concentrate for rest of talk on Method 1: Each bucket or run

resides on \striped" prede�ned positions on the disks.
O(1) blocks

m blocks.

Merge �(m) runs together at a time.
per run.

✫ Sort individual memoryloads to create runs of M records each.

✫ Merge R = �(m) or �(
p

m ) runs at a time

=) dlogm ne merge passes

✫ If each merge pass takes O(n=D) I/Os

=) Total of O
� n

D

logm n
�

I/Os for sorting (optimal).
Center for Geometric & Biological Computing

Back to Method 1
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Internal Memory

block

Needed

(2R blocks)

✫ Each read: One needed block, D� 1 prefetched blocks for future use.

✫ Bounded memory size inhibits prefetching.
✫ Performance critical question: How many reads required to bring in

the \next" R = �(m) blocks? Ideally, R=D.
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DiÆculty of merging R = �(m) runs on D disks
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✫ Each run is striped, but the starting disk of the runs are staggered.

✫ Initially, # I/Os need to read in the next R leading blocks

= Max Occupancy (of leading blocks) on any disk

= R=D, as desired.

✫ But balance can quickly deteriorate.

Center for Geometric & Biological Computing

Staggered Layout: R = 8, D = 4.
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Maximum Occupancy (of leading blocks on disks) is 7� R=D

=) # I/Os needed to load 8 blocks = 7.

Center for Geometric & Biological Computing

R = 8, D = 4: Imbalance can set in.
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✫ Can achieve perfect balance for merging two runs, R = 2:

Run 1: A B C D

E F G H

I J K L

. . .

Run 2: D C B A (striped in reverse order)

H G F E

L K J I

. . .

✫ Reduces necessary bu�er space by half.

✫ Cannot be generalized to R > 2.

Center for Geometric & Biological Computing

Gilbreath Principle
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Overall structure of each merge pass:

1. Do approximate merge

independently on each disk.

2. Interleave the \sorted" runs.

3. Use Columnsort to convert the ap-

proximately sorted output run into

a totally ordered output run.

��

����

����

��

��

��

����

��

Merge procedure for each disk:

✫ Read the two blocks with smallest and smallest maximum items

✫ Output the smallest B items of the 2B items.

Center for Geometric & Biological Computing

Greed Sort [NV91]

Je� Vitter 20



��
��
��
��

��
��
��
��

����

������

���
���
���
���

��
��
��
��

����

����

✫ Each run is striped starting at a randomly chosen disk.

✫ At any time, the disk containing the leading block of any run is

uniformly random.

Center for Geometric & Biological Computing

Simple Randomized Mergesort (SRM) [97,99]
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✫ Writes occur at full D-disk parallelism.

✫ SRM implants forecasting info in each input block.

✫ FF bu�er management: (greedy approach)

� If # Free Blocks is D � f , Flush f \largest" blocks.

� Forecast the \smallest" block from each disk.

� Read in the \smallest" block from each disk.

✫ Analysis: If E[MaxOccSRM ] is the average Max Occupancy of

the next R blocks, let's look at how many I/Os SRM uses to

retrieve them:

E[#readsSRM ] = E[MaxOccSRM ]�
n

R
� dlogR(n=m)e

Center for Geometric & Biological Computing

SRM's Greedy Approach: Forecast and Flush (FF)
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Starting bin of each chain
is uniformly random.

1 2 3 4

(disks)

D

D bins

R0 chains

containing R balls

Max Occupancy = 2

Conjecture: Let ni =size of ith chain.

E[MaxOccd(n1; n2; : : : ; nR0)]

� E[MaxOccd(n1; n2; : : : ; nR0
�1; nR0 � 1; 1)]

� E[Classical Max Occupancy]:

We can prove the (harder !?!? ) conjecture if the balls of each chain are

in random order rather than consecutive.
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Occupancies with Dependency
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✫ Probabilistic analysis required getting around dependencies.

✫ Same technique and analysis for a simple randomized

(multi-way) distribution. Application in parallel disk

distribution sort.

✫ Forecast and Flush technique has been used in a competitive

parallel prefetching algorithm for certain request sequences,

and may have other applications.
✫ Not optimal theoretically for all parameter values because of

maximum occupancy e�ect.

Center for Geometric & Biological Computing

Other Aspects
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✫ Implanting forecasting information.

✫ FF bu�er management:

� If # Free Blocks is D � f , Flush f \largest" blocks.

� Forecast the \smallest" block from each disk.

� Read in the \smallest" block from each disk.

✫ As stated, Forecasting requires D priority queues each

containing R keys at any time.
✫ Flushing requires maintaining order among prefetched blocks in

memory.

Center for Geometric & Biological Computing

Implementation of SRM
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✫ If I is item size,

Size of forecasting information =

1
BI

� Input �le size:

✫ Our approach

� Don't implant forecasting information in run blocks.

� Store forecasting keys of a run in a separate �le.

� Using the forecasting keys during SRM requires a (much)

smaller-scale R-way auxiliary merge of forecasting �les.

✫ Requires only one priority queue with R keys in it.

✫ Automatically orders prefetched blocks and ushing is easy.

Center for Geometric & Biological Computing

Simplifying the implementation of FF
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Simpli�ed Implementation of FF
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Simpli�ed Implementation of FF
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Simpli�ed Implementation of FF
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✫ SRM outperforms DSM by 25{50% in running time.

✫ Merge passes of SRM are slower, but fewer than those of DSM.

✫ Overhead ratio for SRM is very close to 1 in practice.
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Practical Performance
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✫ Implementation of SRM and DSM was in the TPIE system;

TPIE's functionality had to be extended to suport parallel disk

operations.

✫ Several internal memory and other optimizations were

programmed, and play a signi�cant role in performance

improvement.

✫ Parallel I/O was performed using the mmb memory-map

system developed at Duke.

Center for Geometric & Biological Computing

Other Aspects
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✫ Practical bene�ts from using parallel disks independently.

✫ SRM outperforms DSM by 25{50% in running time.

✫ Merge passes of SRM are slower, but fewer than those of DSM.

✫ Overhead ratio for SRM is very close to 1 in practice.

✫ Not theoretically optimal for all parameter settings

(N , D, M , B).

✫ Stay tuned for distribution sort based on SRM ideas.

✫ Powerful notion of duality reconverts the distribution sort into

merge sort that is provably optimal.

Center for Geometric & Biological Computing

Conclusions
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