
Batched Dynamic Geometric Problems

Jeff Vitter

Duke University

Center for Geometric and Biological Computing

and Department of Computer Science

Center for Geometric & Biological Computing

http://www.cs.duke.edu/CGBC/

July 2002

Center for Geometric & Biological Computing

✫ Fundamental Techniques for batched problems.

� Merge sort, distribution sort.

=) Techniques for solving batched geometric problems.

� Distribution sweeping, batched filtering, randomized incremental

construction, parallel simulation.

� Red-blue orthogonal rectangle intersection, convex hull, range

search, nearest neighbors.

� Empirical results (via TPIE programming environment).

✫ Fundamental lower bounds.

� Sorting, permuting, FFT, matrix transposition, bundle sort.

� Dynamic memory allocation

� Hierarchical memory.

✫ Parallel disks.

� Load balancing among disks is key issue.

� Duality: reading (prefetching) ! writing,

merging ! distribution

Center for Geometric & Biological Computing

Outline

Jeff Vitter 2

[Aggarwal & Vitter 88], [Vitter & Shriver 90, 94], . . .

CPU

Mem

Disk Disk

Block I/O
N = problem data size:

M = size of internal memory:

B = size of disk block:

D = number of independent disks:

P = number of CPUs:

Q = number of queries:

Z = problem output size:

Notational convenience (in units of blocks):

n =
N

B

, m =
M

B

, q =
Q

B
, z =

Z
B

.

Center for Geometric & Biological Computing

Review of Parallel Disk Model

Jeff Vitter 3

✫ Batched problems [AV88], [VS90], [VS94]:
� Scanning (touch problem):�
�

N
B

�
= �(n)

� Sorting:

�

N
B

log N
B

log M
B

!
= �
�

N
B

logM=B
N

B
�

= �(n logm n)

� Permuting:�(min fN; n logm ng)

✫ For other problems [CGGTVV95], [AKL95], . . .

� Graph problems� Permutation

� Computational Geometry� Sorting

✫ Online problems:

� Searching and Querying:�
�

logB N + Z
B
�

= �(logB N + z)

Center for Geometric & Biological Computing

Fundamental I/O Bounds (with D = 1 disk)

Jeff Vitter 4

[GTVV93], [AVV95], [APRSV98a], [APRSV98b], [CFMMR98]

✫ Orthogonal rectangle intersection.

✫ Red-blue line segment intersection.

✫ General line segment intersection.

✫ All nearest neighbors.

✫ 2-D and 3-D convex hulls.

✫ Batched range queries.

✫ Trapezoid decomposition

✫ Batched planar point location.

✫ Triangulation.

Use of virtual memory =)

�

N logB N + Z
�

I/Os. Bad !!!

We can improve this toO
�

n logm n+ z
�

I/Os using

✫ Distribution sweep.

✫ Persistent B-trees and batched filtering.

✫ Random incremental construction.

✫ Parallel simulation.

Center for Geometric & Biological Computing

Batched Problems in Geometry

Jeff Vitter 5

s

s

s

s s

s

1

2

3

4

5

6

7

s

s 8

9s

Problem:Find all intersections ofvertical segmentswith horizontal

segments.

Center for Geometric & Biological Computing

Orthogonal Line Segment Intersection

Jeff Vitter 6

✫ Presort the endpoints iny-order.

✫ Sweep the plane from top to bottom with a horizontal line.

✫ When reaching avertical segment, store itsx value in a balanced tree.

When leaving avertical segment, delete itsx value from the tree.

✫ At any given time, the balanced tree stores thevertical segmentshit

by the sweep line.

✫ When reaching ahorizontal segment, do a 1-d range query in the tree

to find intersections withvertical segments. Time isO(lgN + Z0),

whereZ0 is number of intersections reported.

✫ Total running time isO(N lgN + Z).

Center for Geometric & Biological Computing

Internal Memory Approach

Jeff Vitter 7

s

s

s

s s

s

1

2

3

4

5

6

7

s

s 8

9s

✫ Internal plane-sweep solution runs inO(N logN + Z) time.
✫ Using B-tree gives anO(N logB n+ z) I/O solution.
✫ We want anO(n logm n+ z) I/O solution that takes advantage of

batching!

Center for Geometric & Biological Computing

External Solution?

Jeff Vitter 8

[Goodrich, Tsay, Vengroff & Vitter 93]

being processed

horizontal
segment

4

Line
Sweep

s

s

s

s s

s

1

2

3

5

6

7

s

Slab 2 Slab 3 Slab 4Slab 1 Slab 5

s 8

9s

Center for Geometric & Biological Computing

Distribution Sweeping

Jeff Vitter 9

✫ Presort endpoints byx andy coordinates.

✫ Divide thex-range into�(m) slabs, so that each slab contains the

same number ofx values ofvertical segments.

✫ Sweep all slabs simultaneously from top to bottom, keeping the

vertical segmentsof a slab in a stack.

✫ For each slab spanned by ahorizontal segment, output all “living”

vertical segmentsin the slab’s stack and delete all “dead”vertical

segmentsfrom stack.

✫ For the left and right “endpieces” of ahorizontal segment, that stick

out into a slab but don’t completely span it, handle those intersections

recursively for each slab.

Center for Geometric & Biological Computing

Distribution Sweeping

Jeff Vitter 10

Various stack operations:

1. Push element onto top

2. Read top entry,

3. Pop entry from top.

Variants: We can read the topk entries from the stack

by iterating operation 3k times and then operation 1k

times.

Keep current block and one other in internal memory

(using LRU).

It takesO(B) pushes or pops to require one I/O.

=) # I/Os per operation= O
�

1
B

�

amortized.

...

i1
i2

i3
i4

...

ik
ik+1

ik+2

...

Center for Geometric & Biological Computing

Implementing a Stack

Jeff Vitter 11

✫ Each of the�(m) stacks can useO(1) blocks in internal memory.

✫ Therefore, each push, pop, or read uses

�
1

B
�

I/Os amortized.

✫ In each pass, theO(N) vertical segmentsare inserted into the stack

in O(n) I/Os.

✫ For each of theO(N) horizontal segments, we report intersections in

the slabs it completely spans. If the total number of intersections

reported in this pass isZ0, the number of I/Os isO(n) plus the cost

of Z0 stack push, pop, or read operations, which isO(n+ Z 0=B).

Center for Geometric & Biological Computing

Analysis of External Distribution Sweeping

Jeff Vitter 12

✫ We recurse on each of the�(m) slabs to handle the left endpieces

and right endpieces of thehorizontal segments.

✫ Note that the total number of endpieces at every level of recursion is

at most2� # horizontal segments.

It doesn’t double at each level.

✫ Number levels of recursion isO(logm n).

✫ Final result:O(n logm n+ z) I/Os.

Center for Geometric & Biological Computing

Analysis of External Distribution Sweeping

Jeff Vitter 13

What about batched range searching?

��
��
��
�� �

�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
� ��

��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

We want to be able to doQ range queries onN points in

O((n+ q) logm n+ z) I/Os.

Ideas???

Center for Geometric & Biological Computing

Class Quiz

Jeff Vitter 14

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
� ��

��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

Slab 1 Slab 3 Slab 4 Slab 5Slab 2

Sweep
Line

Center for Geometric & Biological Computing

Distribution Sweeping to the Rescue

Jeff Vitter 15

✫ Presort points onx andy coordinates.

✫ Presort thebottomhorizontal sidesof the query rectangles by theiry

coordinate.

✫ Sweep all slabs simultaneously from top to bottom, keeping the

points of each slab in a stack.

✫ For each slab spanned by a bottom horizontal side, traverse its stack.

✫ Recursively handle the left endpiece and the right endpiece.

Center for Geometric & Biological Computing

Distribution Sweeping

Jeff Vitter 16

✫ Each sweep usesO
�

n+ q +
Z0

B

�

I/Os.

✫ In each pass, the points are inserted into the stacks inO(n) I/Os.

✫ For each query rectangle, we report the points that are both inside the

rectangle and inside the slab spanned by the rectangle. If the total

number of points reported in this pass isZ0, the number of I/Os is

O(q + Z0=B).

✫ We recurse in each of the�(m) slabs to handle the left endpieces and

right endpieces of the query rectangles.

✫ The total number of endpieces at every level of recursion is at most

2Q.

✫ Recursion levels:O(logm n).

✫ Final result:O((n+ q) logm n+ z) I/Os.

Center for Geometric & Biological Computing

Analysis of Distribution Sweeping

Jeff Vitter 17

✫ Goal: Compute the convex hull in
T (N;H) = O(n logmdhe+ n) I/Os,

whereH = hB is the size of the convex hull.

✫ Motivation:H is often� N .

✫ Follow internal memory approach of [Kirkpatrick-Seidel].

✫ We no longer have time to sort byx coordinate for a distribution

sweep.

✫ We can avoid the need to presort byx coordinate and can instead do

the partitioning into slabs using the partitioning method described

earlier.

✫ Cost isO(n) I/Os to do the partitioning.

✫ But the number of slabs needs to be smaller:O(
p

m).

But that’s OK: # levels of recursion is stillO(logm h).

Center for Geometric & Biological Computing

Output-Sensitive Convex Hulls

Jeff Vitter 18

Main Ideas:

1. Apply Partitioning Lemma. Each of theS =
p

m slabs has between
3N

4S

and 5N
4S

points.

2. Find hull edges crossing dividers inO(n) I/Os (̀a la [Goodrich]).

3. Recurse only when needed.

Result:O(n logmdhe+ n) I/Os.

Analysis: Assuming Step 2 requiresO(n) I/Os, each recursive call

✫ either finds more than
p

m=2 edges

✫ or it eliminatesN=2 points.

Center for Geometric & Biological Computing

Output-Sensitive Convex Hulls

Jeff Vitter 19

Divide-and-conquer givesT (N;H) =
X

i

T (Ni; Hi) + n.

By convexity, the worst case is when eachHi =
Ni

N

Hi,

which is between3
4

Hp
m

and 5
4

Hp
m

.

Case 1:

l
5

4

H
B
p
m

m
� 2H

B
p

M

. By D-and-C and induction hypothesis,

T (N;H) �
X

i

�
cnp

m

logm
�

2H
B
p

m

�
+ ni
�

+ n

� cn logm

2H
B
p

m

+
p

m+ n+ n

� cn logm
H

B

+ cn logm 2� cn
2
+ 2n+
p

m

� cn logm h+ n;

assumingm > 4 andc is large enough s.t.

cn logm 2� cn=2 + 2n+
p

m � n.

Center for Geometric & Biological Computing

Proof that T (N;H) � cn log
m

dhe+ n
Jeff Vitter 20

Case 2:5
4

H
B
p
m

� 1.

By divide-and-conquer and induction hypothesis,

T (N;H) �
X

i

�
cnp

m

(0) + ni
�

+ n

= 2n:

Center for Geometric & Biological Computing

Proof that T (N;H) = O(n log
m

dhe+ n)
Jeff Vitter 21

✫ Plane sweep and disribution sweep don’t seem applicable.

✫ Instead we use externalization of randomized construction of

[Reif-Sen] to compute 3-d convex hulls .

✫ Idea:Use random sampling in the dual problem (intersecting

half-spaces containing origin).

✫ TakeO(logm n) samples ofS = N � half-spaces and recursively

compute intersection of each sample.

✫ For each sample, construct (triangulated) “cones” formed from origin

to faces and find cones hit by theN input half-spaces.

Origin

Non−sampled
half−space

sampled half−spaces
Intersection of

Center for Geometric & Biological Computing

3-d Convex Hull [Goodrich-Tsay-Vengroff-Vitter]

Jeff Vitter 22

✫ Eliminate redundant half-spaces.

✫ Poll to find a sample that gives a well-balanced partition.

✫ With high probability, there will be a sample such that the

subproblem sizes add up toO(N) and the largest is at mostlogN

times the smallest.

✫ Polling uses random sampling to find the good sample inO(n) I/Os.

✫ Recurse in each cone.

Center for Geometric & Biological Computing

3-d Convex Hull

Jeff Vitter 23

✫ Problem:given�1; �2; : : : ; �N , where�i = insert(x) or delete(x),

construct a data structure that allows a “B-tree search” in the past.

✫ We will apply distribution sweeping to construct a structure withp
m-way branching.

✫ We achieveO(n logm n).

✫ Online method takesO(N logm n).

Center for Geometric & Biological Computing

Batched Persistent B-trees

Jeff Vitter 24

t8 t12

t3

t1

t2t1

✫ Online property doesn’t hold for batched persistent B-trees.

✫ Online Property:For any timet, a root to leaf search or range search

w.r.t. timet traverses only blocks that are� half-full.

✫ Important for output-sensitivity in time-stamped 1-d range search

(3-sided range search).

Center for Geometric & Biological Computing

Batched Persistent B-trees

Jeff Vitter 25

✫ Online property not important for applications like batched planar

point location.

✫ Applications:

� K simultaneous point location queries.

� K ray-shooting queries in CSG model.

� K range queries.

� Graph drawing.

Center for Geometric & Biological Computing

Batched Persistent B-trees

Jeff Vitter 26

✫ Outdegree� m

✫ Search alayered planar dagin

O(n+ (q + 1)height) I/Os;

whereQ = qB is the number of queries.

Center for Geometric & Biological Computing

Persistent B-trees and Batch Filtering

Jeff Vitter 27

✫ Start by sending all queries to the root node.

✫ Proceed level by level, sending allQ queries to leveli before sending

any to leveli+ 1.

✫ To do this I/O-efficiently, maintain a FIFO queue of queries that flow

through the edges between current level and next level.

� If less than B queries traverse an edge, store edges in queue.

� Otherwise, store a pointer to a linked list of blocks.

✫ The queue for the next level is produced from the current one

I/O-efficiently.

Center for Geometric & Biological Computing

Persistent B-trees and Batch Filtering

Jeff Vitter 28

Spatial Data:

IMaps

I Terrains

I CAD models

I VLSI models

Traditionally, spatial data is stored

in layers.

Overlaying layers (map overlay)

is a fundamental operation in

geographical information systems

(GIS).

Center for Geometric & Biological Computing

Map Overlay / Spatial Join

Jeff Vitter 29

A typical GIS might store the following layers:

I Roads I Rivers and lakes I Railroads

Example: roads in Triangle Area.

Center for Geometric & Biological Computing

Geographical Information Systems

Jeff Vitter 30

Query:“Find all bridges in Triangle Area”

Requiresmap overlay(the roads map with the rivers/lakes map),

a type ofspatial join.

Center for Geometric & Biological Computing

Geographical Information Systems

Jeff Vitter 31

Pollution levelLand Utilization

✫ In database literature often solved in two steps:

� Filter step: Compute minimal bounding rectangles for each region

and compute intersections between rectangles from different maps

(red-blue rectangle intersection).

� Refinement step: Validate intersections.

✫ We consider filter step: intersecting the two sets of rectangles.

✫ Issues:

� # I/Os,

� Indexed vs. non-indexed structures for storing the rectangles.

� Skewed data

Center for Geometric & Biological Computing

Spatial Join

Jeff Vitter 32

Pollution levelLand Utilization

✫ In database literature often solved in two steps:

� Filter step: Compute minimal bounding rectangles for each region

and compute intersections between rectangles from different maps

(red-blue rectangle intersection).

� Refinement step: Validate intersections.

✫ We consider filter step: intersecting the two sets of rectangles.

✫ Issues:

� # I/Os,

� Indexed vs. non-indexed structures for storing the rectangles.

� Skewed data

Center for Geometric & Biological Computing

Spatial Join

Jeff Vitter 33

Previous Algorithm: PBSM [PD96]

Partitions data into tiles

Drawbacks:

Reports duplicate intersections

A tile may not fit in memory

Tile 0/Part 0 Tile 1/Part 1 Tile 2/Part 2 Tile 3/Part 0

Tile 7/Part 1

Tile 11/Part 2Tile 10/Part 1Tile 9/Part 0

Tile 5/Part 2 Tile 6/Part 0

Tile 8/Part 2

Tile 4/Part 1

New Improved Algorithm:

SSSJ [APRSV98]

Sort onx coordinate, then sweep.

Advantages:

No duplicate intersections

Optimal I/O performance

Robust to skewed data

Center for Geometric & Biological Computing

Case I: No Indexes

Jeff Vitter 34

sweep line

✫ Sweep plane while maintaining twoactive listsof red and blue

rectangles intersecting vertical sweep line [BW80]:

� When top of blue rectangle is reached:

(i) Insert blue rectangle in blue active list.

(ii) Find intersections with rectangles in red active list.

� When bottom of blue rectangle is reached:

(i) Remove rectangle from blue active list.

✫ Red rectangles are handled similarly.

Center for Geometric & Biological Computing

Red-Blue Rectangle Intersection

Jeff Vitter 35

sweep line

✫ Algorithm performs badly (> N I/Os)

if size of active lists> M .

Center for Geometric & Biological Computing

Red-Blue Rectangle Intersection

Jeff Vitter 36

sweep line

✫ Algorithm performs badly (> N I/Os)

if size of active lists> M .

✫ Solved in optimalO(n logm n+ z) I/Os

using general method for solvingBatched Dynamic Problems.

✫ Sequence of operationsa1; a2; : : : ; aN known beforehand.

(ai is Insert , Delete or Query .)

✫ Key point:Updates and queries are batched!

Center for Geometric & Biological Computing

Red-Blue Rectangle Intersection

Jeff Vitter 37

1. Divide plane into

p
m slabs, each withO(N=
p

m) endpoints.
2. Break rectangles into three pieces:

left endpiece, centerpiece, and right endpiece.
3. FindZ0 intersections involving at least one centerpiece.
4. Recursively solve problem in each slab for endpieces.
✫ O(logpm n) = O(logm n) levels of recursion.

✫ Performing Step 3 inO
�

n+
Z0

B

�

I/Os

=) O(n logm n+ z) I/Os total.

Center for Geometric & Biological Computing

Sketch of External Solution [APRSV98]:

Jeff Vitter 38

1. Divide plane into

p
m slabs, each withO(N=
p

m) endpoints.
2. Break rectangles into three pieces:

left endpiece, centerpiece, and right endpiece.
3. FindZ0 intersections involving at least one centerpiece.
4. Recursively solve problem in each slab for endpieces.
✫ O(logpm n) = O(logm n) levels of recursion.

✫ Performing Step 3 inO
�

n+
Z0

B

�

I/Os

=) O(n logm n+ z) I/Os total.

Center for Geometric & Biological Computing

Sketch of External Solution [APRSV98]:

Jeff Vitter 39

1. Divide plane into

p
m slabs, each withO(N=
p

m) endpoints.
2. Break rectangles into three pieces:

left endpiece, centerpiece, and right endpiece.
3. FindZ0 intersections involving at least one centerpiece.
4. Recursively solve problem in each slab for endpieces.
✫ O(logpm n) = O(logm n) levels of recursion.

✫ Performing Step 3 inO
�

n+
Z0

B

�

I/Os

=) O(n logm n+ z) I/Os total.

Center for Geometric & Biological Computing

Sketch of External Solution [APRSV98]:

Jeff Vitter 40

Consider intersections ofredcenterpieces and tops ofbluerects.:

✫ Use

p
m slabs

✫ =) O(m) multislabs(continuous ranges of slabs)

✫ Store each red centerpiece in a multislab, implemented as a stack.

✫ Stack effectively keeps the firstB rectangles of each multislab in

internal memory.

✫ Perform top down sweep:

� Maintainingactive listfor each multislab.

Center for Geometric & Biological Computing

Key Idea

Jeff Vitter 41

✫ Intersections betweenredcenterpieces and tops ofbluerects.:

� At red rectangle: Insert into relevant multislab list (stack).

� At blue rectangle: Scan through allrelevantmultislab lists of red

rectangles.

(i) Report intersection with “non-expired” red rectangles.

(ii) Remove “expired” red rectangles (“lazy” deletion). (Combine

block with neighbor if< B=2 living rectangles.)

✫ Other cases handled similarly—in one sweep!

Center for Geometric & Biological Computing

Sketch of Sweep

Jeff Vitter 42

Intersections ofredcenterpieces and tops ofbluerects.

✫ Centerpieces of red rectangles are scanned inO(n) I/Os.

✫ For each top of a blue rectangle, we report intersections with

non-expired red centerpieces in all relevant multislab lists.

✫ Since the first block of each multlislab list (stack) is in internal

memory, if a multislab list hask centerpieces, # I/Os=
�

k
B

�
� k

B
:

✫ Each centerpiece is deleted in lazy manner at most once.

✫ Sum of

k
B

over all reportings is thus at most

Z 0 +N 0

B

,

whereN 0 is number of red centerpieces in the current pass.

✫ Over thelogm n passes, summingO
�

n+
Z0 +N 0

B

�

gives a total of

O(n logm n+ z) I/Os.

Center for Geometric & Biological Computing

Analysis of I/O Performance in each Pass

Jeff Vitter 43

✫ Example: A given blue rectangle could intersect the centerpiece of a

red rectangle, and the blue rectangle’s endpiece could intersect the

red rectangle’s endpiece.

✫ Two intersections would be reported at different levels of recursion.

✫ How to fix this without sorting all intersections?

(Technically, sorting would requireO(z logm z) I/Os, which is too

much theoretically, and inefficient in practice.)

Center for Geometric & Biological Computing

Avoiding redundant reportings of intersections

Jeff Vitter 44

✫ Example: A given blue rectangle could intersect the centerpiece of a

red rectangle, and the blue rectangle’s endpiece could intersect the red

rectangle’s endpiece.

✫ Two intersections would be reported at different levels of recursion.

✫ How to fix this without sorting all intersections?

(Technically, sorting would requireO(z logm z) I/Os, which is too

much theoretically, and inefficient in practice.)

✫ Solution:Avoid redundant reportings of intersections by adopting a

convention as to when to report an intersection.

✫ For example, each intersection could be reported only at the first

available opportunity. At each potential reporting time, the two

rectangles must be examined to determine if the intersection has

already been reported.

✫ Charge each non-reporting to the actual intersection. Each intersection

is non-reported at mostO(1) times.

Center for Geometric & Biological Computing

Avoiding redundant reportings of intersections

Jeff Vitter 45

✫ Technique can be used recursively in dimensiond > 2 by decreasing
number of slab boundaries tom1=2(d�1) in each of thed� 1

dimensions orthogonal to sweep.

✫ Ford = 3, consider a checkerboard of slabs,m1=4 �m1=4.

✫ There are at mostm1=2 �m1=2 = m multislabs.

✫ Rectangles are partitioned inx dimension and then a sweep is done
in thez dimension simultaneously for allx-slabs to solve the

y; z-dimension subproblems.COMPLICATED!

✫ I/O performance using technique:

� d-dim. batched range searching:

O(n logd�1

m n+ t) I/Os, O(n) space.

� d-dim. rectangle intersection:

O(n logd�1

m n+ t) I/Os, O(n) space.

� Batched semidynamic planar point location:

O((n+ k) log2m(n+ k)) I/Os, O(n+ k) space.

Center for Geometric & Biological Computing

Higher Dimensions

Jeff Vitter 46

Many problems can be solved using small number of paradigms.

OS often provides inadequate support for I/O and internal memory

management.

Center for Geometric & Biological Computing

TPIE, http://www.cs.duke.edu/TPIE/

Jeff Vitter 47

Many problems can be solved using small number of paradigms.

OS often provides inadequate support for I/O and internal memory

management.

✫ TPIE originally designed by former student Darren Vengroff:

� Make implementation easy (and portable). I/O-efficient (and

portable) programs.

� Framework oriented: Implements a number of high-level paradigms

on streams (C++)

—Scanning, merging, distribution, sorting, permuting, ...

� Access-Oriented: For index structures.

Center for Geometric & Biological Computing

TPIE, http://www.cs.duke.edu/TPIE/

Jeff Vitter 48

Center for Geometric & Biological Computing

TPIE’s Distribution Access Method

Jeff Vitter 49

✫ TIGER/Line data from U.S. Census Bureau

(standard benchmark data for spatial databases)

State Category Size Objects

Rhode Island (RI) Roads 4.3 MB 68,278

Hydrography 0.4 MB 7,013

Connecticut (CT) Roads 12.0 MB 188,643

Hydrography 1.8 MB 28,776

New Jersey (NJ) Roads 26.5 MB 414,443

Hydrography 3.2 MB 50,854

New York (NY) Roads 55.7 MB 870,413

Hydrography 10.0 MB 156,568

All Roads 98.5 MB 1541,777

Hydrography 15.4 MB 243,211

Center for Geometric & Biological Computing

TIGER/Line Data

Jeff Vitter 50

N
ew

 PB
SM

N
ew

 PB
SM

N
ew

 PB
SM

N
ew

 PB
SM

N
ew

 PB
SM

200

100

0

300

RI

CT

NJ

NY

ALL

T
im

e
(s

ec
on

ds
)

E
xternal

PB
SM

E
xternal

PB
SM

E
xternal

PB
SM

E
xternal

PB
SM

E
xternal

PB
SM

Sun SparcStation 20 (Solaris 2.5) , 32MB memory (TPIE 12MB)

Center for Geometric & Biological Computing

Performance Comparison with PBSM [DP96]

Jeff Vitter 51

N

N

0

Data set: tall_rect

0

500

1000

1500

2000

2500

3000

3500

0 200000 400000 600000 800000 1e+06

T
im

e
(s

ec
on

ds
)

Number of rectangles

"external_join"
"PBSM"

N

N

0

0

200

400

600

800

1000

0 200000 400000 600000 800000 1e+06

T
im

e
(s

ec
on

ds
)

Number of rectangles

Data set: wide_rect

"external_join"
"PBSM"

Center for Geometric & Biological Computing

Performance Comparison with PBSM [DP96]

Jeff Vitter 52

Previous Algorithm: ST [BKS93]

Carefully synchronized depth-first traversal.

Our Algorithm: PQ [APRSVV00]

R-tree ! Priority Queue! Sweep

Center for Geometric & Biological Computing

Case II: Indexes Exist

Jeff Vitter 53

✫ External segment tree used in conjunction withbatched filtering

[GTVV93] andexternal fractional cascadingto solve large number

of problems with GIS applications [AVV95]:

� Red-blue line segment intersection inO(n logm n+ t) I/Os.

✫ Persistent B-trees [GTVV93] to solve batched point location in

O(n logm n+ t) I/Os.

✫ Random incremental construction [CFMMR98] to get optimal

O
�

(n+ q) logm n+ z
�

I/Os for general line segment intersection.

Center for Geometric & Biological Computing

Related Results

Jeff Vitter 54

✫ LetA be anN -processor PRAM algorithm such that

� A reduces a problem of sizeN to one of size�N in constant time.
� Parallel running time ofA is�(logN).

✫ For each PRAM statement, sort theN operands so that they are contiguous.

✫ SimulateN operations via a linear pass through the data.

✫ I/O Complexity forD = 1:
T (N) = O(sort(N)) + T (�N)

= O(sort(N)):

✫ Gives optimal EM algorithms for list ranking, Euler tours, expression tree

evaluation, connected components of sparse graph.

✫ Sometimes the sorting can be done inO(N) I/Os because of constraints and

assumptions [DDH97, SK97].

✫ Some problems like topological sorting, BFS, DFS are hard.

Center for Geometric & Biological Computing

Parallel Simulation Paradigm [CGGTVV95]

Jeff Vitter 55

✫ Répertoire of useful paradigms (distribution, merging, distribution

sweeping, persistence, parallel simulation, B-trees, external interval

tree, external priority search tree) for important problems.
� Worst-case optimality requires overhead.

� Simpler versions are practical!

� Building blocks for external data structures

✫ Lots of open problems in the design and analysis of external memory
algorithms and data structures.Stay tuned!

� TPIE, seehttp://www.cs.duke.edu/TPIE/

� Handling many disks, large merge orders, many partition elements,
large fanouts. (Don’t use square root trick.)

� GIS applications (e.g. practical red-blue line segment intersection,
nearest neighbor, spatial join, terrain processing).

� Image processing (indexing images, analyzing images).

� Fundamental graph problems
(e.g. topological sorting, BFS, DFS, connectivity).

Center for Geometric & Biological Computing

Conclusions and Open Problems

Jeff Vitter 56

� Online dynamic data structures

(e.g. dynamic point location, range search in higher dimensions,

clustering, similarity search).

� String processing, molecular databases.

� Typical-case behavior of popular data structures (e.g., R-trees).

� : : :

Center for Geometric & Biological Computing

Conclusions and Open Problems

Jeff Vitter 57

