External Memory Geometric Data Structures

Lars Arge
Duke University

June 29, 2002

Summer School on Massive Datasets

External memory data structures

So Far So Good

 Yesterday we discussed “dimension 1.5” problems:
— Interval stabbing and point location

» We developed a number of useful tools/techniques
— Logarithmic method
— Weight-balanced B-trees
— Global rebuilding

e On Thursday we also discussed several tools/techniques
— B-trees
— Persistent B-trees
— Construction using buffer technique

Lars Arge 2

External memory data structures

|nter val M anagement

e Maintain N intervals with unique endpoints dynamically such that
stabbing query with point x can be answered efficiently

X
» Solved using external interval tree
« \We obtained the same bounds as for the 1d case
— Space: O(N/B)
— Query: O(logg N +T74)
— Updates: O(logg N) I/Os

Lars Arge 3

External memory data structures

|nterval M anagement

e External interval tree:
— Fan-out @(@) weight-balanced B-tree on endpoints
— Intervals stored in O(B) secondary structure in each internal node
— Query efficiency using filtering
— Bootstrapping used to avoid O(B) search cost in each node

* Size O(B?) underflow structure in each node
* Constructed using sweep and persistent B-tree
* Dynamic using global rebuilding

Lars Arge 4

External memory data structures

3-Sided Range Sear ching

* Interval management corresponds to simple form of 2d range search

. 55

X

* More general problem: Dynamic 3-sidede range searching
— Maintain set of points in plane such !
that given query (g, 0., 0s), al points
(Xy) withg, = x< g, andy = g, can
be found efficiently

05

Lars Arge)

External memory data structures

3-Sided Range Searching : Static Solution

Construction: Sweep top-down inserting X in persistent B-tree at (X,y)
— O(N/B) space
— O(% logg N) 1/0O construction using buffer technique

Query (qy, 0,, ds): Perform range query with [q,,q,] In B-tree at g,
— O(logg N +74) 1/0s

A

Dynamic using |ogarithmic method
— Insert: O(logZ N)
— Query:O(logs N +T4)

ImprovetoO(logg N)? Deletes?

Lars Arge 6

External memory data structures

Internal Priority Search Tree

e Base tree on x-coordinates with nodes augmented with points
e Heap on y-coordinates

— Decreasing y values on root-leaf path

— (X,y) on path from root to leaf holding x

— If v holds point then parent(v) holds point

Lars Arge 7

External memory data structures

Internal Priority Search Tree

 Linear space
 Insert of (X,y) (assuming fixed x-coordinate set):

— Compare y with y-coordinate in root

— Smaller: Recursively insert (X,y) in subtree on path to x

— Bigger: Insert in root and recursively insert old point in subtree
— O(log N) update

Lars Arge 8

External memory data structures

Internal Priority Search Tree

» Query with (d,, 9,, g5) Starting at root v:

— Report point in v if satisfying query

— Vigit both children of v if point reported

— Always visit child(s) of v on path(s) to g, and g,
= O(log N+T) query

Lars Arge 9

External memory data structures

Externalizing Priority Search -

'

Ly 5
@ || @ || &

« Natural idea: Block tree
e Problem:
— O(logg N) I/Osto follow pathsto to g, and g,
— But O(T) 1/0s may be used to visit other nodes (“ oversnooting”)
= O(logg N +T) query

Lars Arge 10

External memory data structures

Externalizing Priority Search -

'

Ly 5
@ || @ || &

« Solution idea
— Store B points in each node =
* O(B?) points stored in each supernode
* B output points can pay for “overshooting”
— Bootstrapping:
* Store O(B?) points in each supernode in static structure

Lars Arge 11

External memory data structures

External Priority Search Tree

» Basetree: Weight-balanced B-tree on x-coordinates (a,k=B)
e Pointsin “heap order”:
— Root stores B top points for each of the ©(B) child dlabs
— Remaining points stored recursively
* Pointsin each node stored in “ O(B?)-structure”

— Persistent B-tree structure for static problem

U
Linear space O(B
’ S

Lars Arge 12

External memory data structures

External Priority Search Tree

* Query with (d,, 0,, 05) Starting at root v:
— Query O(B?)-structure and report points satisfying query
— Vigit child vif
* vonpathtoq, or g,
* All points corresponding to v satisfy query

N

6

Lars Arge 13

External memory data structures

External Priority Search Tree

o Analysis:
— O(logg B? +4) = O(1+ "4) 1/0Os used to visit node v
— O(logg N)nodes on path to g, or g,
— For each node v not on path to g, or g, visited, B points reported
In parent(v)

U
O(logg N +74) query

Lars Arge 14

External memory data structures

External Priority Search Tree

Insert (x,y) (assuming fixed x-coordinate set — static base tree):
— Find relevant node v
* Query O(B?)-structure to find

B pointsin root corresponding \
to node u on path to x \3

* |f y smaller than y-coordinates “os

of all B points then recursively
searchinu
— Insert (x,y) in O(B2)-structure of v

— If O(B?)-structure contains >B points for child u, remove lowest
point and insert recursively in u

o Delete: Similarly

Lars Arge 15

External memory data structures

External Priority Search Tree

o Analysis:
— Query visitsO(logg N) nodes
— O(B?)-structure queried/updated in each node
* One query
* Oneinsert and one delete

« O(B?)-structure anaysis:
— Query:O(logg BZ + B/ B) = O(1)
— Update in O(1) I/Os using update
block and global rebuilding

U
O(logg N)1/Os

Lars Arge 16

External memory data structures

Removing Fixed x-coordinate Set Assumption

e Deletion:
— Déelete point as previousy
— Déelete x-coordinate from base
tree using global rebuilding
= O(logg N) I/Os amortized

 |nsertion:
— Insert x-coordinate in base tree
and rebalance (using splits)
— Insert point as previously

« Split: Boundary in v becomes boundary in parent(v)

Lars Arge 17

External memory data structures

Removing Fixed x-coordinate Set Assumption
e Split: When v splits B new points needed in parent(v)

» One point obtained from V' (V') using “bubble-up” operation:
— Findtop pointpinV
— Insert p in O(B?)-structure

— Remove p from O(B?)-structure of v’
— Recursively bubble-up point to v
e Bubble-upinO(logg W(V)) 1/Os
— Follow one path from v to |eaf
— Uses O(1) I/O in each node
U

Split InO(Blogg w(v)) = O(w(Vv)) I/Os

Lars Arge 18

External memory data structures

Removing Fixed x-coordinate Set Assumption

e O(1) amortized split cost:

— Cost: O(W(V))

— Weight balanced base tree: Q(w(V)) inserts below v between splits
U o o
e External Priority Search Tree | %

— Space: O(N/B)

— Query: O(logg N +T4)

— Updates: O(logg N) I/Os amortized

« Amortization can be removed from update bound in several ways
— Utilizing lazy rebuilding

Lars Arge 19

External memory data structures

Summary: 3-sided Range Sear ching

o 3-sidede range searching 27257
— Maintain set of pointsin plane such | /
that given query (g, 0., 0;), al points . ' // 7R
(x,y) with g, <x<g,andy =g, can '
be found efficiently

* We obtained the same bounds as for the 1d case
— Space: O(N/B)

— Query: O(logg N +T4)
— Updates: O(logg N) I/Os

Lars Arge 20

External memory data structures

Summary: 3-sided Range Sear ching

e Main problem in designing external priority 4

search tree was the increased fanout in
combination with “overshooting”

0; | 0

o Same general solution technigues asin interval tree:
— Bootstrapping:
* Use O(B?) size structure in each internal node
* Constructed using persistence
* Dynamic using global rebuilding
— Welght-balanced B-tree: Split/fuse in amortized O(1)
— Filtering: Charge part of query cost to output

Lars Arge 21

External memory data structures

Two-Dimensional Range Sear ch
 We have now discussed structures for special cases of two-
dimensional range searching & , -
— Space: O(N/B) 7 |
— Query: O(logg N +T4) - %

— Updates: O(logg N) TR

« Cannot be obtained for general 2d range searching:

. | B
— O(logg N) query requiresQ(& log‘:‘]l’og':) space

— O() space requiresQ(,/ N4) query ol

4

CI3.

Lars Arge 22

External memory data structures

External Range Tree

Base tree: Fan-out ©(logg N) weight balanced tree on x-coordinates

U

logg N -
O(IogB logg N) hes ght

Points below each node stored in 4 linear space secondary structures:

— “Right” priority search tree

— “Left” priority search tree O(logg N)

— B-tree on y-coordinates O/B{‘/ﬁx\‘w
%
ik

— Interval tree

U 777
N logg N ‘%{ %

Q ‘B logglogg N) space

Lars Arge 23

External memory data structures

External Range Tree

« Secondary interval tree structure:
— Connect pointsin each dab in y-order
— Project obtained segments in y-axis

=7 AN

SRS

— Intervals stored in interval tree

* Interval augmented with pointer to corresponding pointsin y-
coordinate B-tree in corresponding child node

Lars Arge 24

External memory data structures

External Range Tree
* Query with (d,, 9,, 03, d,) answered in top node with ¢, and g, In
different dabsv, and v,
 Pointsin slab v,
— Found with 3-sided query in v, 90995/'\') \
using right priority search tree
grngntp y o O/ \)

e Pointsindab v,

— Found with 3-sided query inv, 2
using left priority search tree >3

* Pointsin slabs between v, and v, ! V2
— Answer stabbing query with g; using interval tree
= first point above g, in each of the O(logg N) dabs
— Find points using y-coordinate B-tree in O(logg N) sabs

Lars Arge 25

External memory data structures

External Range Tree

e Query anaysis.
— O(logg N)1/Osto find relevant node
— O(logg N +T4)1/Os to answer two 3-sided queries
— O(logg N +'°% '%) =O(logg N)I/Osto query interval tree
— O(logg N +T4)1/Os to traverse O(logg N) B-trees
U

O(logg N +74) 1/0s O(lagg N)
AN
o b o

k)

Lars Arge 26

External memory data structures

External Range Tree

e |Insert:
— Insert x-coordinate in weight-balanced B-tree
* Split of v can be performed in O(w(v) logg W(V))I/Os
— O(lologéN)1/0s

gglogg N :
— Update secondary structuresin all O(5

root-leaf path

logg N
dg100g

<) hodes on one

* Update priority search trees 9('998/'\')
* Update interval tree o C/

* Update B-tree
loga N #
— O(IogBISQBN)I/OS _M
 Delete:

Vv
— Similar and using global rebuilding '

Lars Arge 27

External memory data structures

Summary: External Range Tree

e N _logg N
* 2d range searching inO(5 092 Toge N)space

— O(IogBZN +T£) 11O query

logg N
— O(IOQJBIOQJB <)1/0 update

« Optimal amongO(logg N +T4) query structures

A
d,

O3

Lars Arge 28

External memory data structures

e kd-tree;

— Recursive subdivision of point-set into two half using
vertical/horizontal line

— Horizontal line on even levels, vertical on uneven levels
— One point in each leaf

U

Linear space and logarithmic height

Lars Arge 29

External memory data structures

e Query:

— Recursively visit node corresponding to regions intersected query
— Report point in trees/nodes completely contained in query

o Analysis:
— Number of regions intersecting horizontal line satisfy recurrence
Q(N) = 2+2Q(N/4) = Q(N) = O(VN)
— Query intersects 4@(\/W)+T = O(\/W +T)regions

Lars Arge 30

External memory data structures

m

db db db db db db db d h

e KdB-tree:

— Blocking of kd-tree but with B point in each |eaf
e Query asbefore
— Analysis as before except that each region now contains B points

U
O(,/N4 + T4) 110 query

Lars Arge 31

External memory data structures

m

e

db db db db db db db d h

» kdB-tree can be constructed inO(logg N) 1/0s

— somewhat complicated
U

e Dynamic using |ogarithmic method:
— O(\/NZ; + %) 1/0O query
— O(logg N) 1/0 update
— O(N/B) space

Lars Arge 32

External memory data structures

O-Tree Structure
o O-tree:
— B-treeon @(\/%/MQB N) vertical slabs
— B-tree on (9(\/'\'23 / logg N) horizontal dabsin each vertical slab
— kdB-tree on e(%\/%/logs WE ©(Blog3 N) pointsin each leaf

sl A\ A

sk NALAN ADAA ARAA AR AN

Blog3 N

Lars Arge 33

External memory data structures

O-Tree Query

 Perform rangesearch with g, and g, in vertical B-tree

— Query all kdB-treesin leaves of two horizontal B-trees with x-
Interval intersected but not spanned by query

— Perform rangesearch with ¢, and g, horizontal B-trees with x-
Interval spanned by query

* Query all kdB-trees with range intersected by query

souafl A A

3/ogb N[) AAAMAAMAM

Lars Arge BT005 N

External memory data structures

O-Tree Query Analysis
* Vertical B-tree query: O(IogB(\/'\T/IogB N)) —O(\/'\T)

e Query of al kdB-treesin leaves of two horizontal B-trees:
O(/V% /logs N) D(y/Blog’ N/B +I) = O(,/% + 1)
* Query O(y/V4 / logg N) horizontal B-trees:

O(4/N% /logs N) [D(logg (V4 /logg N)) = O(/N%)

* Query 2[D(,/ V4 / logg N) kdB-trees not completely in query

200(,/V% /logg N) [O(/Blog3 N/B +—) o(/ é 1)
e Query in kdB-trees completely
contained in query: O(3)

U
O(/V4 +) 1/0s

.

Lars Arge 35

External memory data structures

O-Tree Update

e Insert:

— Search in vertical B-tree: O(logg N) I/Os

— Search in horizontal B-tree: O(logg N) 1/0Os

— Insert in kdB-tree: O(logs (Blogs N)) = O(logg N) 1/Os
» Useglobal rebuilding when structures grow too big/small

— B-trees not contain ©(,/ N4 / logg N) elements
— kdB-trees not contain ©(Blog3 N) elements

U

O(logg N) 1/0s

e Deletes can be handled /\ /\ /\ /\

inO(logs N) 1/Os similarly AAALAAANAADAAAAN

Lars Arge 36

External memory data structures

Summary: O-Tree

 2d range searching in linear space

— O(/N4 +%) 1/0 query
— O(logg N)I/O update

e Optimal among structures
using linear space

e Can be extended to work in d-dimensions
with optimal query boundO((%)l"% +5)

Lars Arge 37

External memory data structures

Summary: 3 and 4-sided Range Sear ch

» 3-sided 2d range searching: External priority search tree
—O(logg N +T4) query, O(%) space, O(logg N) update

[[

Qg

t"./ N

0 <] s — U

.
» -
- >

o] | d, O; o
o Genera (4-sided) 2d range searching:
. logg N
— Exterlgsél3 range tree: O(logg N +T4)query, (& o9 log.) SPace;
C)(IogB logg N) update
— O-tree: Q(/Ng +74) query, O(%) space, O(logg N) update

Lars Arge 38

External memory data structures

Techniques (onefinal time)

e Tools:

— B-trees ZB
— Persistent B-trees AN
— Buffer trees
— Logarithmic method
— Weight-balanced B-trees

— Global rebuilding

e Techniques:
— Bootstrapping
— Filtering

Lars Arge 39

External memory data structures

Other results

« Many other results for e.g.
— Higher dimensional range searching
— Range counting
— Halfspace (and other special cases) of range searching
— Structures for moving objects

— Proximity queries

e Many heuristic structures in database community

 |mplementation efforts:
— LEDA-SM (MPI)
— TPIE (Duke)

Lars Arge 40

Lars Arge

External memory data structures

THE END

41

