
External Memory Geometr ic Data Structures

Lars Arge
Duke University

June 29, 2002

Summer School on Massive Datasets

Lars Arge

External memory data structures

2

So Far So Good
• Yesterday we discussed “dimension 1.5” problems:

– Interval stabbing and point location

• We developed a number of useful tools/techniques

– Logarithmic method

– Weight-balanced B-trees

– Global rebuilding

• On Thursday we also discussed several tools/techniques

– B-trees

– Persistent B-trees

– Construction using buffer technique

Lars Arge

External memory data structures

3

• Maintain N intervals with unique endpoints dynamically such that
stabbing query with point x can be answered efficiently

• Solved using external interval tree

• We obtained the same bounds as for the 1d case

– Space: O(N/B)

– Query:

– Updates: I/Os

Interval Management

x

)(log NO B

)(log B
T

B NO +

Lars Arge

External memory data structures

4

Interval Management
• External interval tree:

– Fan-out weight-balanced B-tree on endpoints

– Intervals stored in O(B) secondary structure in each internal node

– Query efficiency using filtering

– Bootstrapping used to avoid O(B) search cost in each node

* Size O(B2) underflow structure in each node

* Constructed using sweep and persistent B-tree

* Dynamic using global rebuilding

m blocksv
)(BΘ

v

)(BΘ

Lars Arge

External memory data structures

5

3-Sided Range Searching
• Interval management corresponds to simple form of 2d range search

• More general problem: Dynamic 3-sidede range searching

– Maintain set of points in plane such

that given query (q1, q2, q3), all points

(x,y) with q1 ≤ x ≤ q2 and y ≥ q3 can

be found efficiently

(x,x)

(x1,x2)

x

x1 x2

q3

q2q1

Lars Arge

External memory data structures

6

3-Sided Range Searching : Static Solution
• Construction: Sweep top-down inserting x in persistent B-tree at (x,y)

– O(N/B) space

– I/O construction using buffer technique

• Query (q1, q2, q3): Perform range query with [q1,q2] in B-tree at q3

– I/Os

• Dynamic using logarithmic method

– Insert:

– Query:

• Improve to ? Deletes?

q3

q2q1

)(log B
T

B NO +

)(log2 NO B

)log(NO BB
N

)(log2
B

T
B NO +

)(log NO B

Lars Arge

External memory data structures

7

• Base tree on x-coordinates with nodes augmented with points

• Heap on y-coordinates

– Decreasing y values on root-leaf path

– (x,y) on path from root to leaf holding x

– If v holds point then parent(v) holds point

Internal Pr ior ity Search Tree
9

16.20

16
19,9

13
13,3

19
20,3

4
5,6

5
9,4

1
1,2

20191613954
4,1

1

Lars Arge

External memory data structures

8

• Linear space

• Insert of (x,y) (assuming fixed x-coordinate set):

– Compare y with y-coordinate in root

– Smaller: Recursively insert (x,y) in subtree on path to x

– Bigger: Insert in root and recursively insert old point in subtree

� O(log N) update

Internal Pr ior ity Search Tree
9

16.20

16
19,9

13
13,3

19
20,3

4
5,6

5
9,4

1
1,2

20191613954
4,1

1

Insert (10,21) 10,21

Lars Arge

External memory data structures

9

Internal Pr ior ity Search Tree

• Query with (q1, q2, q3) starting at root v:

– Report point in v if satisfying query

– Visit both children of v if point reported

– Always visit child(s) of v on path(s) to q1 and q2

� O(log N+T) query

9
16.20

16
19,9

13
13,3

19
20,3

4
5,6

5
9,4

1
1,2

20191613954
4,1

1

4

194

Lars Arge

External memory data structures

10

• Natural idea: Block tree

• Problem:

– I/Os to follow paths to to q1 and q2

– But O(T) I/Os may be used to visit other nodes (“overshooting”)

� query

Externalizing Pr ior ity Search Tree
9

16.20

16
19,9

13
13,3

19
20,3

4
5,6

5
9,4

1
1,2

20191613954
4,1

1

)(log NO B

)(log TNO B +

Lars Arge

External memory data structures

11

Externalizing Pr ior ity Search Tree

• Solution idea:

– Store B points in each node �

* O(B2) points stored in each supernode

* B output points can pay for “overshooting”

– Bootstrapping:

* Store O(B2) points in each supernode in static structure

9
16.20

16
19,9

13
13,3

19
20,3

4
5,6

5
9,4

1
1,2

20191613954
4,1

1

Lars Arge

External memory data structures

12

External Pr ior ity Search Tree
• Base tree: Weight-balanced B-tree on x-coordinates (a,k=B)

• Points in “heap order” :

– Root stores B top points for each of the child slabs

– Remaining points stored recursively

• Points in each node stored in “O(B2)-structure”

– Persistent B-tree structure for static problem

�

Linear space

)(BΘ

)(BΘ

Lars Arge

External memory data structures

13

External Pr ior ity Search Tree
• Query with (q1, q2, q3) starting at root v:

– Query O(B2)-structure and report points satisfying query

– Visit child v if

* v on path to q1 or q2

* All points corresponding to v satisfy query

Lars Arge

External memory data structures

14

External Pr ior ity Search Tree
• Analysis:

– I/Os used to visit node v

– nodes on path to q1 or q2

– For each node v not on path to q1 or q2 visited, B points reported
in parent(v)

�

query

)1()(log 2
B

T
B

T
B

vv OBO +=+
)(log NO B

)(log B
T

B NO +

Lars Arge

External memory data structures

15

External Pr ior ity Search Tree
• Insert (x,y) (assuming fixed x-coordinate set – static base tree):

– Find relevant node v:

* Query O(B2)-structure to find

B points in root corresponding

to node u on path to x

* If y smaller than y-coordinates

of all B points then recursively

search in u

– Insert (x,y) in O(B2)-structure of v

– If O(B2)-structure contains >B points for child u, remove lowest
point and insert recursively in u

• Delete: Similarly

u

Lars Arge

External memory data structures

16

• Analysis:

– Query visits nodes

– O(B2)-structure queried/updated in each node

* One query

* One insert and one delete

• O(B2)-structure analysis:

– Query:

– Update in O(1) I/Os using update

block and global rebuilding

�

I/Os

External Pr ior ity Search Tree

u

)(log NO B

)1()/(log 2 OBBBO B =+

)(log NO B

Lars Arge

External memory data structures

17

Removing Fixed x-coordinate Set Assumption
• Deletion:

– Delete point as previously

– Delete x-coordinate from base

tree using global rebuilding

� I/Os amortized

• Insertion:

– Insert x-coordinate in base tree

and rebalance (using splits)

– Insert point as previously

• Split: Boundary in v becomes boundary in parent(v)

)(log NO B

v

v’ ’
v’

Lars Arge

External memory data structures

18

Removing Fixed x-coordinate Set Assumption
• Split: When v splits B new points needed in parent(v)

• One point obtained from v’ (v’ ’) using “bubble-up” operation:

– Find top point p in v’

– Insert p in O(B2)-structure

– Remove p from O(B2)-structure of v’

– Recursively bubble-up point to v

• Bubble-up in I/Os

– Follow one path from v to leaf

– Uses O(1) I/O in each node

�

Split in I/Os

v’ ’
v’

))((log vwO B

))(())(log(vwOvwBO B =

Lars Arge

External memory data structures

19

Removing Fixed x-coordinate Set Assumption
• O(1) amortized split cost:

– Cost: O(w(v))

– Weight balanced base tree: inserts below v between splits

�

• External Priority Search Tree

– Space: O(N/B)

– Query:

– Updates: I/Os amortized

• Amortization can be removed from update bound in several ways

– Utilizing lazy rebuilding

))((vwΩ

)(log NO B

)(log B
T

B NO +

v’ ’
v’

Lars Arge

External memory data structures

20

Summary: 3-sided Range Searching

• 3-sidede range searching

– Maintain set of points in plane such

that given query (q1, q2, q3), all points

(x,y) with q1 ≤ x ≤ q2 and y ≥ q3 can

be found efficiently

• We obtained the same bounds as for the 1d case

– Space: O(N/B)

– Query:

– Updates: I/Os

q3

q2q1

)(log B
T

B NO +
)(log NO B

Lars Arge

External memory data structures

21

Summary: 3-sided Range Searching
• Main problem in designing external priority

search tree was the increased fanout in

combination with “overshooting”

• Same general solution techniques as in interval tree:

– Bootstrapping:

* Use O(B2) size structure in each internal node

* Constructed using persistence

* Dynamic using global rebuilding

– Weight-balanced B-tree: Split/fuse in amortized O(1)

– Filtering: Charge part of query cost to output

q3

q2q1

Lars Arge

External memory data structures

22

Two-Dimensional Range Search
• We have now discussed structures for special casesof two-

dimensional range searching

– Space: O(N/B)

– Query:

– Updates:

• Cannot be obtained for general 2d range searching:

– query requires space

– space requires query

q3

q2q1q

q

q3

q2q1

q4

)(
loglog

log
N

N
B
N

BB

B

�

)(log NO c
B

)(
B
NO)(B

NΩ

)(log NO B

)(log B
T

B NO +

Lars Arge

External memory data structures

23

• Base tree: Fan-out weight balanced tree on x-coordinates

�

height

• Points below each node stored in 4 linear space secondary structures:

– “Right” priority search tree

– “Left” priority search tree

– B-tree on y-coordinates

– Interval tree

�

space

External Range Tree

)(
loglog

log
N

N

BB

BO

)(log NBΘ

)(
loglog

log
N

N
B
N

BB

B

�

)(log NBΘ

Lars Arge

External memory data structures

24

• Secondary interval tree structure:

– Connect points in each slab in y-order

– Project obtained segments in y-axis

– Intervals stored in interval tree

* Interval augmented with pointer to corresponding points in y-
coordinate B-tree in corresponding child node

External Range Tree

)(log NBΘ

Lars Arge

External memory data structures

25

• Query with (q1, q2, q3 , q4) answered in top node with q1 and q2 in
different slabs v1 and v2

• Points in slab v1

– Found with 3-sided query in v1

using right priority search tree

• Points in slab v2

– Found with 3-sided query in v2

using left priority search tree

• Points in slabs between v1 and v2

– Answer stabbing query with q3 using interval tree

� first point above q3 in each of the slabs

– Find points using y-coordinate B-tree in slabs

External Range Tree

)(log NO B

)(log NO B

)(log NBΘ

v1 v2

Lars Arge

External memory data structures

26

External Range Tree
• Query analysis:

– I/Os to find relevant node

– I/Os to answer two 3-sided queries

– I/Os to query interval tree

– I/Os to traverse B-trees

�

I/Os

)(log NO B

)(log B
T

B NO +
)(log)(log log NONO BB

N
B

B =+
)(log B

T
B NO +)(log NO B

)(log B
T

B NO +)(log NBΘ

v1 v2

Lars Arge

External memory data structures

27

External Range Tree
• Insert:

– Insert x-coordinate in weight-balanced B-tree

* Split of v can be performed in I/Os

� I/Os

– Update secondary structures in all nodes on one
root-leaf path

* Update priority search trees

* Update interval tree

* Update B-tree

� I/Os

• Delete:

– Similar and using global rebuilding

)(
loglog

log
N

N

BB

BO
)(

loglog
log2

N
N

BB

BO

))(log)((vwvwO B

)(
loglog

log2

N
N

BB

BO

)(log NBΘ

v1 v2

Lars Arge

External memory data structures

28

Summary: External Range Tree
• 2d range searching in space

– I/O query

– I/O update

• Optimal among query structures

)(
loglog

log2

N
N

BB

BO

)(log B
T

B NO +
)(

loglog
log

N
N

B
N

BB

BO

)(log B
T

B NO +

q3

q2
q1

q4

Lars Arge

External memory data structures

29

kdB-tree

• kd-tree:

– Recursive subdivision of point-set into two half using
vertical/horizontal line

– Horizontal line on even levels, vertical on uneven levels

– One point in each leaf

�

Linear space and logarithmic height

Lars Arge

External memory data structures

30

kdB-tree

• Query:

– Recursively visit node corresponding to regions intersected query

– Report point in trees/nodes completely contained in query

• Analysis:

– Number of regions intersecting horizontal line satisfy recurrence

Q(N) = 2+2Q(N/4) � Q(N) =

– Query intersects regions

)(NO

)()(4 TNOTNO +=+⋅

Lars Arge

External memory data structures

31

kdB-tree

• KdB-tree:

– Blocking of kd-tree but with B point in each leaf

• Query as before

– Analysis as before except that each region now contains B points

�

I/O query)(B
T

B
NO +

Lars Arge

External memory data structures

32

kdB-tree

• kdB-tree can be constructed in I/Os

– somewhat complicated

�

• Dynamic using logarithmic method:

– I/O query

– I/O update

– O(N/B) space

)(B
T

B
NO +

)(log2 NO B

)log(NO BB
N

Lars Arge

External memory data structures

33

O-Tree Structure
• O-tree:

– B-tree on vertical slabs

– B-tree on horizontal slabs in each vertical slab

– kdB-tree on points in each leaf

NBB
N log

)log(NBB
NΘ

)log()(2
)log(2 NB BN

N
BB

N
Θ=Θ

NBB
N 2log

)log(NBB
NΘ

NB B
2log

Lars Arge

External memory data structures

34

O-Tree Query
• Perform rangesearch with q1 and q2 in vertical B-tree

– Query all kdB-trees in leaves of two horizontal B-trees with x-
interval intersected but not spanned by query

– Perform rangesearch with q3 and q4 horizontal B-trees with x-
interval spanned by query

* Query all kdB-trees with range intersected by query

NBB
N log

NBB
N 2log

NB B
2log

Lars Arge

External memory data structures

35

O-Tree Query Analysis
• Vertical B-tree query:

• Query of all kdB-trees in leaves of two horizontal B-trees:

• Query horizontal B-trees:

• Query kdB-trees not completely in query

• Query in kdB-trees completely

contained in query:

�

I/Os

)())log((log B
N

BB
N

B ONO =

)()log()log(2
B
T

B
N

B
T

BBB
N OBNBONO +=+⋅

)log(NO BB
N

)())log((log)log(B
N

BB
N

BBB
N ONONO =⋅

)()log()log(2 2
B
T

B
N

B
T

BBB
N OBNBONO +=+⋅⋅

)(
B
TO

)(
B
T

B
NO +

)log(2 NO BB
N⋅

Lars Arge

External memory data structures

36

O-Tree Update
• Insert:

– Search in vertical B-tree: I/Os

– Search in horizontal B-tree: I/Os

– Insert in kdB-tree: I/Os

• Use global rebuilding when structures grow too big/small

– B-trees not contain elements

– kdB-trees not contain elements

�

I/Os

• Deletes can be handled

in I/Os similarly

)log(NBB
NΘ

)log(2 NB BΘ

)(log NO B

)(log NO B

)(log))log((log 22 NONBO BBB =

)(log NO B

)(log NO B

Lars Arge

External memory data structures

37

Summary: O-Tree
• 2d range searching in linear space

– I/O query

– I/O update

• Optimal among structures

using linear space

• Can be extended to work in d-dimensions

with optimal query bound

q3

q2
q1

q4

)(log NO B

)(
B
T

B
NO +

))((
11

B
T

B
N dO +−

Lars Arge

External memory data structures

38

Summary: 3 and 4-sided Range Search
• 3-sided 2d range searching: External priority search tree

– query, space, update

• General (4-sided) 2d range searching:

– External range tree: query, space,

update

– O-tree: query, space, update

q3

q2q1

q3

q2q1

q4

)(
loglog

log
N

N
B
N

BB

B

�

)(log B
T

B NO +

)(
B
NO)(B

T
B

N +Ω

)(log NO B)(log B
T

B NO +

)(log NO B

)(
loglog

log2

N
N

BB

BO

)(
B
NO

Lars Arge

External memory data structures

39

Techniques (one final time)
• Tools:

– B-trees

– Persistent B-trees

– Buffer trees

– Logarithmic method

– Weight-balanced B-trees

– Global rebuilding

• Techniques:

– Bootstrapping

– Filtering

q3

q2q1

q3

q2q1

q4

(x,x)

Lars Arge

External memory data structures

40

Other results
• Many other results for e.g.

– Higher dimensional range searching

– Range counting

– Halfspace (and other special cases) of range searching

– Structures for moving objects

– Proximity queries

• Many heuristic structures in database community

• Implementation efforts:

– LEDA-SM (MPI)

– TPIE (Duke)

Lars Arge

External memory data structures

41

THE END

