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External memory data structures

So Far So Good

 Yesterday we discussed “dimension 1.5” problems:
— Interval stabbing and point location

» We developed a number of useful tools/techniques
— Logarithmic method
— Weight-balanced B-trees
— Global rebuilding

e On Thursday we also discussed several tools/techniques
— B-trees
— Persistent B-trees
— Construction using buffer technique
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External memory data structures

|nter val M anagement

e Maintain N intervals with unique endpoints dynamically such that
stabbing query with point x can be answered efficiently

X
» Solved using external interval tree
« \We obtained the same bounds as for the 1d case
— Space: O(N/B)
— Query: O(logg N +T74)
— Updates: O(logg N) I/Os
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External memory data structures

|nterval M anagement

e External interval tree:
— Fan-out @(@ ) weight-balanced B-tree on endpoints
— Intervals stored in O(B) secondary structure in each internal node
— Query efficiency using filtering
— Bootstrapping used to avoid O(B) search cost in each node

* Size O(B?) underflow structure in each node
* Constructed using sweep and persistent B-tree
* Dynamic using global rebuilding
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External memory data structures

3-Sided Range Sear ching

* Interval management corresponds to simple form of 2d range search

. 55

X

* More general problem: Dynamic 3-sidede range searching
— Maintain set of points in plane such !
that given query (g, 0., 0s), al points
(Xy) withg, = x< g, andy = g, can
be found efficiently
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External memory data structures

3-Sided Range Searching : Static Solution

Construction: Sweep top-down inserting X in persistent B-tree at (X,y)
— O(N/B) space
— O(% logg N) 1/0O construction using buffer technique

Query (qy, 0,, ds): Perform range query with [q,,q,] In B-tree at g,
— O(logg N +74) 1/0s

A

Dynamic using |ogarithmic method
— Insert: O(logZ N)
— Query:O(logs N +T4)

ImprovetoO(logg N)? Deletes?
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External memory data structures

Internal Priority Search Tree

e Base tree on x-coordinates with nodes augmented with points
e Heap on y-coordinates

— Decreasing y values on root-leaf path

— (X,y) on path from root to leaf holding x

— If v holds point then parent(v) holds point
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External memory data structures

Internal Priority Search Tree

 Linear space
 Insert of (X,y) (assuming fixed x-coordinate set):

— Compare y with y-coordinate in root

— Smaller: Recursively insert (X,y) in subtree on path to x

— Bigger: Insert in root and recursively insert old point in subtree
— O(log N) update
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External memory data structures

Internal Priority Search Tree

» Query with (d,, 9,, g5) Starting at root v:

— Report point in v if satisfying query

— Vigit both children of v if point reported

— Always visit child(s) of v on path(s) to g, and g,
= O(log N+T) query
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External memory data structures

Externalizing Priority Search -

'

Ly 5
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« Natural idea: Block tree
e Problem:
— O(logg N) I/Osto follow pathsto to g, and g,
— But O(T) 1/0s may be used to visit other nodes (“ oversnooting”)
= O(logg N +T) query
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External memory data structures

Externalizing Priority Search -

'
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« Solution idea
— Store B points in each node =
* O(B?) points stored in each supernode
* B output points can pay for “overshooting”
— Bootstrapping:
* Store O(B?) points in each supernode in static structure
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External memory data structures

External Priority Search Tree

» Basetree: Weight-balanced B-tree on x-coordinates (a,k=B)
e Pointsin “heap order”:
— Root stores B top points for each of the ©(B) child dlabs
— Remaining points stored recursively
* Pointsin each node stored in “ O(B?)-structure”

— Persistent B-tree structure for static problem

U
Linear space O(B
’ S
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External memory data structures

External Priority Search Tree

* Query with (d,, 0,, 05) Starting at root v:
— Query O(B?)-structure and report points satisfying query
— Vigit child vif
* vonpathtoq, or g,
* All points corresponding to v satisfy query

N

6
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External memory data structures

External Priority Search Tree

o Analysis:
— O(logg B? +4) = O(1+ "4) 1/0Os used to visit node v
— O(logg N)nodes on path to g, or g,
— For each node v not on path to g, or g, visited, B points reported
In parent(v)

U
O(logg N +74) query
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External memory data structures

External Priority Search Tree

Insert (x,y) (assuming fixed x-coordinate set — static base tree):
— Find relevant node v
* Query O(B?)-structure to find

B pointsin root corresponding \
to node u on path to x \3

* |f y smaller than y-coordinates “os

of all B points then recursively
searchinu
— Insert (x,y) in O(B2)-structure of v

— If O(B?)-structure contains >B points for child u, remove lowest
point and insert recursively in u

o Delete: Similarly
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External memory data structures

External Priority Search Tree

o Analysis:
— Query visitsO(logg N) nodes
— O(B?)-structure queried/updated in each node
* One query
* Oneinsert and one delete

« O(B?)-structure anaysis:
— Query:O(logg BZ + B/ B) = O(1)
— Update in O(1) I/Os using update
block and global rebuilding

U
O(logg N)1/Os
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External memory data structures

Removing Fixed x-coordinate Set Assumption

e Deletion:
— Déelete point as previousy
— Déelete x-coordinate from base
tree using global rebuilding
= O(logg N) I/Os amortized

 |nsertion:
— Insert x-coordinate in base tree
and rebalance (using splits)
— Insert point as previously

« Split: Boundary in v becomes boundary in parent(v)
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External memory data structures

Removing Fixed x-coordinate Set Assumption
e Split: When v splits B new points needed in parent(v)

» One point obtained from V' (V') using “bubble-up” operation:
— Findtop pointpinV
— Insert p in O(B?)-structure

— Remove p from O(B?)-structure of v’
— Recursively bubble-up point to v
e Bubble-upinO(logg W(V)) 1/Os
— Follow one path from v to |eaf
— Uses O(1) I/O in each node
U

Split InO(Blogg w(v)) = O(w(Vv)) I/Os
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External memory data structures

Removing Fixed x-coordinate Set Assumption

e O(1) amortized split cost:

— Cost: O(W(V))

— Weight balanced base tree: Q(w(V)) inserts below v between splits
U o o
e External Priority Search Tree | %

— Space: O(N/B)

— Query: O(logg N +T4)

— Updates: O(logg N) I/Os amortized

« Amortization can be removed from update bound in several ways
— Utilizing lazy rebuilding
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External memory data structures

Summary: 3-sided Range Sear ching

o 3-sidede range searching 27257
— Maintain set of pointsin plane such | /
that given query (g, 0., 0;), al points . ' // 7R
(x,y) with g, <x<g,andy =g, can '
be found efficiently

* We obtained the same bounds as for the 1d case
— Space: O(N/B)

— Query: O(logg N +T4)
— Updates: O(logg N) I/Os
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External memory data structures

Summary: 3-sided Range Sear ching

e Main problem in designing external priority 4

search tree was the increased fanout in
combination with “overshooting”

0; | 0

o Same general solution technigues asin interval tree:
— Bootstrapping:
* Use O(B?) size structure in each internal node
* Constructed using persistence
* Dynamic using global rebuilding
— Welght-balanced B-tree: Split/fuse in amortized O(1)
— Filtering: Charge part of query cost to output
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External memory data structures

Two-Dimensional Range Sear ch
 We have now discussed structures for special cases of two-
dimensional range searching & , -
— Space: O(N/B) 7 |
— Query: O(logg N +T4) - %

— Updates: O(logg N) TR

« Cannot be obtained for general 2d range searching:

. | B
— O(logg N) query requiresQ(& log‘:‘]l’og': ) space

— O() space requiresQ(,/ N4 ) query ol

4

CI3.
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External memory data structures

External Range Tree

Base tree: Fan-out ©(logg N) weight balanced tree on x-coordinates

U

logg N -
O(IogB logg N ) hes ght

Points below each node stored in 4 linear space secondary structures:

— “Right” priority search tree

— “Left” priority search tree O(logg N)

— B-tree on y-coordinates O/B{‘/ﬁx\‘w
%
ik

— Interval tree

U 777
N logg N ‘%{ %

Q ‘B logglogg N ) space
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External memory data structures

External Range Tree

« Secondary interval tree structure:
— Connect pointsin each dab in y-order
— Project obtained segments in y-axis

=7 AN

SRS

— Intervals stored in interval tree

* Interval augmented with pointer to corresponding pointsin y-
coordinate B-tree in corresponding child node
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External memory data structures

External Range Tree
* Query with (d,, 9,, 03, d,) answered in top node with ¢, and g, In
different dabsv, and v,
 Pointsin slab v,
— Found with 3-sided query in v, 90995/'\') \
using right priority search tree
grngntp y o O/ \)

e Pointsindab v,

— Found with 3-sided query inv, 2
using left priority search tree >3

* Pointsin slabs between v, and v, ! V2
— Answer stabbing query with g; using interval tree
= first point above g, in each of the O(logg N) dabs
— Find points using y-coordinate B-tree in O(logg N) sabs
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External memory data structures

External Range Tree

e Query anaysis.
— O(logg N)1/Osto find relevant node
— O(logg N +T4)1/Os to answer two 3-sided queries
— O(logg N +'°% '%) =O(logg N)I/Osto query interval tree
— O(logg N +T4)1/Os to traverse O(logg N) B-trees
U

O(logg N +74) 1/0s O(lagg N)
AN
o b o

k)
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External memory data structures

External Range Tree

e |Insert:
— Insert x-coordinate in weight-balanced B-tree
* Split of v can be performed in O(w(v) logg W(V))I/Os
— O(lologéN )1/0s

gglogg N :
— Update secondary structuresin all O(5

root-leaf path

logg N
dg100g

<) hodes on one

* Update priority search trees 9('998/'\')
* Update interval tree o C/

* Update B-tree
loga N #
— O(IogBISQBN)I/OS _M
 Delete:

Vv
— Similar and using global rebuilding '
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External memory data structures

Summary: External Range Tree

e N _logg N
* 2d range searching inO(5 092 Toge N )space

— O(IogBZN +T£) 11O query

logg N
— O(IOQJBIOQJB <)1/0 update

« Optimal amongO(logg N +T4) query structures

A
d,

O3
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External memory data structures

e kd-tree;

— Recursive subdivision of point-set into two half using
vertical/horizontal line

— Horizontal line on even levels, vertical on uneven levels
— One point in each leaf

U

Linear space and logarithmic height
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External memory data structures

e Query:

— Recursively visit node corresponding to regions intersected query
— Report point in trees/nodes completely contained in query

o Analysis:
— Number of regions intersecting horizontal line satisfy recurrence
Q(N) = 2+2Q(N/4) = Q(N) = O(VN)
— Query intersects 4@(\/W )+T = O(\/W +T)regions
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External memory data structures

m

db db db db db db db d h

e KdB-tree:

— Blocking of kd-tree but with B point in each |eaf
e Query asbefore
— Analysis as before except that each region now contains B points

U
O(,/N4 + T4) 110 query

Lars Arge 31



External memory data structures

m

e

db db db db db db db d h

» kdB-tree can be constructed inO( logg N) 1/0s

— somewhat complicated
U

e Dynamic using |ogarithmic method:
— O(\/NZ; + %) 1/0O query
— O(logg N) 1/0 update
— O(N/B) space
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External memory data structures

O-Tree Structure
o O-tree:
— B-treeon @(\/%/MQB N) vertical slabs
— B-tree on (9(\/'\'23 / logg N) horizontal dabsin each vertical slab
— kdB-tree on e(%\/%/logs WE ©(Blog3 N) pointsin each leaf

sl A\ A

sk NALAN ADAA ARAA AR AN

Blog3 N
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External memory data structures

O-Tree Query

 Perform rangesearch with g, and g, in vertical B-tree

— Query all kdB-treesin leaves of two horizontal B-trees with x-
Interval intersected but not spanned by query

— Perform rangesearch with ¢, and g, horizontal B-trees with x-
Interval spanned by query

* Query all kdB-trees with range intersected by query

souafl A A

3/ogb N[ ) AAAMAAMAM
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External memory data structures

O-Tree Query Analysis
* Vertical B-tree query: O(IogB(\/'\T/IogB N)) —O(\/'\T)

e Query of al kdB-treesin leaves of two horizontal B-trees:
O(/V% /logs N) D(y/Blog’ N/B +I) = O(,/% + 1)
* Query O(y/V4 / logg N) horizontal B-trees:

O(4/N% /logs N) [D(logg (V4 /logg N)) = O(/N%)

* Query 2[D(,/ V4 / logg N) kdB-trees not completely in query

200(,/V% /logg N) [O(/Blog3 N/B +—) o(/ é 1)
e Query in kdB-trees completely
contained in query: O(3)

U
O(/V4 + ) 1/0s

.
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External memory data structures

O-Tree Update

e Insert:

— Search in vertical B-tree: O(logg N) I/Os

— Search in horizontal B-tree: O(logg N) 1/0Os

— Insert in kdB-tree: O(logs (Blogs N)) = O(logg N) 1/Os
» Useglobal rebuilding when structures grow too big/small

— B-trees not contain ©(,/ N4 / logg N) elements
— kdB-trees not contain ©(Blog3 N) elements

U

O(logg N) 1/0s

e Deletes can be handled /\ /\ /\ /\

inO(logs N) 1/Os similarly AAALAAANAADAAAAN
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External memory data structures

Summary: O-Tree

 2d range searching in linear space

— O(/N4 +%) 1/0 query
— O(logg N)I/O update

e Optimal among structures
using linear space

e Can be extended to work in d-dimensions
with optimal query boundO((%)l"% +5)
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External memory data structures

Summary: 3 and 4-sided Range Sear ch

» 3-sided 2d range searching: External priority search tree
—O(logg N +T4) query, O(%) space, O(logg N) update

[ [

Qg

t"./ N

0 <] s — U

.
» -
- >

o ] | d, O; o
o Genera (4-sided) 2d range searching:
. logg N
— Exterlgsél3 range tree: O(logg N +T4)query, (& o9 log. ) SPace;
C)(IogB logg N ) update
— O-tree: Q(/Ng +74) query, O(%) space, O(logg N) update
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External memory data structures

Techniques (onefinal time)

e Tools:

— B-trees ZB
— Persistent B-trees AN
— Buffer trees
— Logarithmic method
— Weight-balanced B-trees

— Global rebuilding

e Techniques:
— Bootstrapping
— Filtering
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External memory data structures

Other results

« Many other results for e.g.
— Higher dimensional range searching
— Range counting
— Halfspace (and other special cases) of range searching
— Structures for moving objects

— Proximity queries

e Many heuristic structures in database community

 |mplementation efforts:
— LEDA-SM (MPI)
— TPIE (Duke)
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External memory data structures

THE END
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