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Yesterday
• Fan-out B-tree( )

– Degree balanced tree with each node/leaf inO(1) blocks

– O(N/B) space

– I/O query

– I/O update

• Persistent B-tree

– Update current version, query all previous versions

– B-tree bounds withN number of operations performed

• Buffer tree technique

– Lazy update/queries using buffers attached to each node

– amortized bounds

– E.g. used to construct structures in I/Os
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• Model

– N : Elements in structure

– B : Elements per block

– M : Elements in main memory

– T : Output size in searching problems

• Assumption

– Today (and tomorrow) assume thatM>B2

– Assumption not crucial but simplify
expressions a lot, e.g.:
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Today
• “Dimension 1.5” problems:

– More complicated problems: Interval stabbing and point location

– Looking for same bounds:

* O(N/B) space

* query

* update

* construction

• Use oftools/techniquesdiscussed yesterday as well as

– Logarithmic method

– Weight-balanced B-trees

– Global rebuilding
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• Problem:

– MaintainN intervals withunique endpointsdynamically such
that stabbing query with pointx can be answered efficiently

• As in (one-dimensional) B-tree case we are interested in

– space

– update

– query

Interval Management
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Interval Management: Static Solution
• Sweepfrom left to right maintaining persistent B-tree

– Insert interval when left endpoint is reached

– Delete interval when right endpoint is reached

• Query x answered by reporting all intervals in B-tree at “time” x

– space

– query

– construction using buffer technique

• Dynamic with insert bound usinglogarithmic method
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Internal Memory Logarithmic Method Idea
• Given (semi-dynamic) structureD on setV

– O(log N) query,O(log N) delete,O(N log N) construction

• Logarithmic method:

– PartitionV into subsetsV0, V1, … Vlog N, |Vi| = 2i or |Vi| = 0

– Build Di on Vi

* Delete: O(log N)

* Query: Query eachDi ÿ O(log2 N)

* Insert: Find first emptyDi and constructDi out of

elements inV0,V1, … Vi-1

– O(2i log 2i) constructionÿ O(log N) per moved element

– Element movedO(log N) timesÿ amortized
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• Decrease number of subsetsVi

to logB N to get query

• Problem: Since there are not enough elements in
V0,V1, … Vi-1 to build Vi

• Solution: We allowVi to contain any number of elements≤ Bi

– Insert: Find first Di such that and construct new

Di from elements inV0,V1, … Vi

* We move elements

* If Di constructed inO((|Vi|/B)logB |Vi|) = O(Bi-1logB N) I/Os
every moved element chargedO(logB N) I/Os

* Element movedO(logB N) timesÿ amortized
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External Logarithmic Method Idea
• Given (semi-dynamic) linear space external data structure with

– I/O query

– I/O construction

(– I/O delete)

ý
• Linear spacedynamicdata structure with

– I/O query

– I/O insert amortized

(– I/O delete)

• Dynamic interval management

– I/O query

– I/O insert amortized
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• Base tree on endpoints – “slab” Xv associated with each nodev

• Interval stored in highest nodev where it contains midpoint ofXv

• IntervalsIv associated withv stored in

– Left slab list sorted by left endpoint (search tree)

– Right slab listsorted by right endpoint (search tree)

ÿ Linear space andO(log N) update (assuming fixed endpoint set)

Internal Interval Tree
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• Querywith x on left side of midpoint ofXroot

– Searchleft slab listleft-right until finding non-stabbed interval

– Recurse in left child

ÿ O(log N+T) query bound

x

Internal Interval Tree
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Externalizing Interval Tree

• Natural idea:

– Block tree

– Use B-tree forslab lists

• Number of stabbed intervals in large slab list may be small (or zero)

– We can be forced to do I/O in each ofO(log N) nodes
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Externalizing Interval Tree

• Idea:

– Decrease fan-out to ÿ height remains

– slabs define multislabs

– Interval stored in two slab lists (as before) and onemultislab list

– Intervals in small multislab lists collected inunderflow structure

– Query answered inv by looking at2 slab lists and notO(log N)
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• Base tree: Fan-out B-tree on endpoints

– Interval stored in highest nodev where it contains slab boundary

• Each internal nodev contains:

– Left slab listfor each of slabs

– Right slab listsfor each of slabs

– multislab lists

– Underflow structure

• Interval in setIv of intervals associated withv stored in

– Left slab listof slab containing left endpoint

– Right slab listof slab containing right endpoint

– Widestmultislab listit spans

• If < B intervals inmultislab listthey are instead stored inunderflow
structure(ÿ contains

�

B2 intervals)

External Interval Tree
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External Interval tree
• Each leaf containsO(B) intervals (unique endpoint assumption)

– Stored in oneO(1) block

• Slablists implemented using B-trees

– query

– Linear space

* We may “wasted” a block for each of the lists in node

* But only internal nodes

• Underflow structureimplemented using static structure

– query

– Linear space

ý
• Linear space
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External Interval Tree
• Querywith x

– Search down tree forx while in nodev

reporting all intervals inIv stabbed byx

• In nodev

– Query twoslab lists

– Report all intervals in relevantmultislab lists

– Queryunderflow structure

• Analysis:

– Visit nodes

– Queryslab lists

– Querymultislab lists

– Queryunderflow structure
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External Interval Tree
• Update(assuming fixed endpoint set – static base tree):

– Search for relevant node

– Update twoslab lists

– Updatemultislab listor underflow structure

• Update ofunderflow structurein O(1) I/Os amortized

– Maintain update block with

�

B updates

– Check of update block addsO(1) I/Os to query bound

– Rebuild structure whenB updates have been collected using

I/Os (Global rebuilding)

ý
Update in I/Os amortized
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External Interval Tree
• Note:

– Insert may increase number of intervals inunderflow structure
for samemultislabto B

– Delete may decrease number of intervals inmultislabto B

ý
Need to moveB intervals to/frommultislab/underflow structure

• We only move

– intervals frommultislab listwhen decreasing to sizeB/2

– Intervals tomultislab listwhen increasing to sizeB

ý
O(1) I/Os amortized used to move intervals
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Removing Fixed Endpoint Assumption
• We need to usedynamic base tree

– Natural choice is B-tree

• Insertion:

– Insert new endpoints and rebalance

base tree (usingsplits)

– Insert interval as previously in

I/Os amortized

• Split: Boundary inv becomes

boundary inparent(v)
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Splitting Interval Tree Node

• Whenv splits we may need to move

O(w(v)) intervals

– Intervals inv containing boundary

– Intervals inparent(v) with endpoints

in Xv containing boundary

• Intervals move to two newslabandmultislablists in parent(v)
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Splitting Interval Tree Node

• Moving intervals inv in O(w(v)) I/Os

– Collected in left order (and remove) by scanning leftslab lists

– Collected in right order (and remove) by scanning rightslab lists

– Removedmultislab listscontaining boundary

– Remove fromunderflow structureby rebuilding it

– Construct lists andunderflow structurefor v’ andv’’ similarly
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Splitting Interval Tree Node

• Moving intervals inparent(v) in O(w(v)) I/Os

– Collect in left order by scanning leftslab list

– Collect in right order by scanning rightslab list

– Merge with intervals collected invÿ two newslab lists

– Construct newmultislab listsby splitting relevantmultislab list

– Insert intervals in smallmultislab listsin underflow structure
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Removing Fixed Endpoint Assumption
• Split of nodev useO(w(v)) I/Os

– If inserts have to be made belowv

ÿ O(1) amortized split bound

ÿ amortized insert bound

• Nodes in standard B-tree do not have this property
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BB[αααα]-tree
• In internal memory BB[α]-trees have the desired property

• Defined usingweight-constraints

– Ratio between weight of left child an weight of right child of a
nodev is betweenα and 1-α

ý
HeightO(log N)

• If rebalancing can be performed using rotations

• Seems hard to implement BB[α]-trees I/O-efficiently
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Weight-balanced B-tree
• Idea: Combination of B-tree and BB[α]-tree

– Weight constraint on nodes instead of degree constraint

– Rebalancing performed using split/fuse as in B-tree

• Weight-balanced B-treewith parametersa andk (a>4, k>0)

– All leaves on same level and

contain betweenk and2k-1elements

– Internal nodev at levell has

w(v) <

– Except for the root, internal nodev

at level l havew(v)>

– The root has more than one child
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Weight-balanced B-tree
• Every internal node has degree between

and

ý
Height

• External memory:

– Choose4a=B (or evenBc for 0 < c

�

1)

– 2k=B

ý
O(N/B) space, query
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Weight-balanced B-tree
• Insert:

– Search and insert element in leafv

– If w(v)=2k then splitv

– For each nodev on path to root

if w(v)> then

split v into two nodes with weight <

insert element (ref) inparent(v)

• Number of splits after insert is

• A split level l node will not split for next inserts below it

ý
Desired property: inserts belowv between splits
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External Interval Tree
• Use weight-balanced B-tree with and2k=B as base structure

– Space:O(N/B)

– Query:

– Insert: I/Os amortized

• Deletesin I/Os amortized usingglobal rebuilding:

– Delete interval as previously using I/Os

– Mark relevant endpoint as deleted

– Rebuild structure in afterN/2 deletes

• Note: Deletes can also be handled usingfuseoperations
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External Interval Tree
• External interval tree

– Space:O(N/B)

– Query:

– Updates: I/Os amortized

• Removing amortization:

– Moving intervals to/from

underflow structure

– Delete global rebuilding

– Underflow structure update

– Base node tree splits
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Perform operations/construction lazily
Move lazily – complicated:

• Interference

• Queries
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Other Applications

• Examples of applications ofexternal interval tree:

– Practical visualization applications

– Point location

– External segment tree

• Examples of applications ofweight-balance B-tree

– Base tree of external data structures

– Remove amortization from internal structures (alternative to
BB[α]-tree)

– Cache-oblivious structures
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Summary: Interval Management
• Interval management corresponds to simple form of2d range search

– Diagonal corner queries

• We obtained the same bounds as for the1d case

– Space:O(N/B)

– Query:

– Updates: I/Os)(log NO B

)(log B
T

B NO +

(x,x)

(x1,x2)

x

x1 x2



Lars Arge

External memory data structures

32

Summary: Interval Management
• Main problem in designing structure:

– Binary→ large fan-out
• Large fan-out resulted in the need for

– Multislabs and multislab lists
– Underflow structure to avoidO(B)-cost in each node

• General solution techniques:

– Filtering: Charge part of query cost to output

– Bootstrapping:

* Use O(B2) size structure in each internal node

* Constructed using persistence

* Dynamic using global rebuilding

– Weight-balanced B-tree: Split/fuse in amortizedO(1)
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Planar Point Location
• Static problem:

– Store planar subdivision withN segments on disk such that
region containing query pointq can be found I/O-efficiently

• We concentrate onvertical ray shooting query

– Segments can store regions it bounds

– Segments do not have to form subdivision

• Dynamic problem:

– Insert/delete segments

q
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Static Solution
• Vertical line imposesabove-beloworder on intersected segments

• Sweepfrom left to right maintaining

persistent B-tree on above-below order

– Left endpoint: Insert segment

– Right endpoint: Delete segment

• Queryq answered by successor query on B-tree at timeqx
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Static Solution

• Note: Not all segments comparable!

– Have to be careful about what we compare

ý

• Problem: Routing elements in internal nodes of leaf oriented B-trees

– Luckily we can modify persistent B-tree to use regular elements
as routing elements

• However, buffer technique construction cannot be used

ý
• Only I/O construction algorithm

• Cannot be made dynamic usinglogarithmic method

q
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Dynamic Point Location
• Structure similar to external interval tree

– Built on x-projection of segments

• Fan-out base B-tree onx-coordinates

– Interval stored in highest nodev where

it contains slab boundary
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Dynamic Point Location

• Linear space in nodevÿ linear space

• Queryidea:

– Search forqx

– Answer query in each nodev encountered

– Result is globally closest segment

ý
query in each nodeÿ I/O query
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Dynamic Point Location
• Secondary structures:

– For each slab:

* Left slab structureon segments with left endpoint in slab

* Right slab structureon segments with right endpoint in slab

– Multislab structureon part of segments completely spanning slab
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Dynamic Point Location

• To answerquerywe query

– Oneleft slab structure

– Oneright slab structure

– Multislab structure

and return globally closest segment

• We need to answer query on

each secondary structure in

I/Os
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Left (right) slab Structure
• B-tree on segments sorted byy-coordinate of right endpoint

• Each internal nodev augmented with segments

– For each childcv:

The segment in leaves belowcv with minimal left x-coordinate

ý
O(N/B) space (each node fits in block)

• Construction:

– Sort segments

– Build level-by-level bottom up

ý
I/Os
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Left (right) slab Structure
• Invariant: Search top-down such thati’th step visit nodesvu andvd

– vu contains answer toupwardquery among segments on leveli

– vd contains answer todownwardquery among segments on leveli

ÿ vu contains query result when reaching leaf level

• Algorithm: At level i

– Consider two children of

vu andvd containing two

segments hit on leveli

– Updatevu andvd to relevant

of these nodes base on their

segments

• Analysis: O(1) I/Os on each of levels

vd

vu

)(log NO B
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Multislab Structure

• Segments crossing a slab are ordered byabove-below order

– But not all segments are comparable!

• B-tree in each of slabs on segments crossing the slab

ÿ query answered in I/Os

• Problem: Each segment stored in many structures

• Key idea:

– Usetotal orderconsistent with above-below order in each slab

– Build one structure ontotal order
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Multislab Structure

• Fan-out B-tree on total order

• Nodev augmented with segments for each of children

– For childvi and each slabsi:

Maximal segment belowvi crossingsi

ÿ O(N/B) space (each nodev fits in one block)

• queryas in normal B-tree

– Only segments crossingsi considered inv
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Multislab Structure Construction
• Multislab structure constructed

in O(N/B) I/Os bottom-up

– aftertotal ordercomputed

• Sorting:

– Distributesegments to a list for each multislab

– Sort listsindividually

– Mergesorted lists: Repeatedly consider top segment all lists and
select/output (any) segment not below any of the other segments

• Correctness:

– Selected top segment cannot be below any unprocessed segment

• Analysis:

– Distribute/Merge inO(N/B), sort in I/Os
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Dynamic Point Location
• Static point location structure:

– O(N/B) space

– I/O construction

– I/O query

• Updatesinvolve:

– Updating (and rebalance) base tree

– Updating twoslab structures

– Updating onemultislab structure

• Base tree update as in interval tree case usingweight-balanced B-tree

– Inserts: Node split inO(w(v)) I/Os

– Deletes: Global rebuilding
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Updating Left (right) Slab Structures
• Recall that each internal node augmented with minimal leftx-

coordinate segment below each child

• Insert:

– Insert in leafl and (B-tree) rebalance

– Insert segment in relevant nodes

on root-l path

• Delete:

– Delete from leafl and rebalance as in B-tree

– Find new minimal x-coordinate segment inl

– Replace deleted segment in relevant nodes on root-l path

ý
update)(log NO B
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Updating Multislab Structure
• Problem: Insertionof segment may change total order completely

– Seems hard to control changes

ý
Need to rebuild multislab structure completely!

• Segmentdeletiondoes not change orderÿ I/O delete)(log NO B
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Updating Multislab Structure
• Recall that each node in multislab structure is augmented with

maximal segment for each child and each slab

– Deleted segment may be stored in nodes on one root-leaf path

– Stored segment may correspond to several slabs

• Deletein I/Os amortized:

– Search leaf-root path and replace segment with segment above in
relevant slab

– Relevant replacement segments found in leaf or on path

– Useglobal rebuildingto delete from leaf

)(log NO B
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Dynamic Point Location
• Semi-dynamic point location structure:

– O(N/B) space

– I/O construction

– I/O query

– I/O amortized delete

• Usingexternal logarithmic methodwe get:

– Space:O(N/B)

– Insert: amortized

– Deletes: amortized

– Query:

* Improved to (complicated– fractional cascading)

)(log2 NO B

)(log NO B

)log(
B
N

BB
NO

)(log3 NO B

)(log2 NO B

)(log NO B

)(log2 NO B



Lars Arge

External memory data structures

50

Summary: Dynamic Point Location
• Maintain planar subdivision withN segments such that region

containing query pointq can be found efficiently

• We did not quite obtain desired (1d) bounds

– Space:O(N/B)

– Query:

– Insert: amortized

– Deletes: amortized

• Structure based on interval tree with use of severaltechniques, e.g.

– Weight-balancing, logarithmic method, and global rebuilding

– Segment sorting and augmented B-trees

q
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Summary
• Todaywe discussed “dimension 1.5” problems:

– Interval stabbingand point location

– We obtained linear space structures with update and query
bounds similar to the ones for1d structures

• We developed a number of

– Logarithmic method

– Weight-balanced B-trees

– Global rebuilding

• We also used techniques from yesterday:

– Persistent B-trees

– Construction using buffer technique
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Summary
• Tomorrowwe will consider two dimensional problems

– 3-sided queries

– Full (4-sided) queries

q3
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q2q1
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