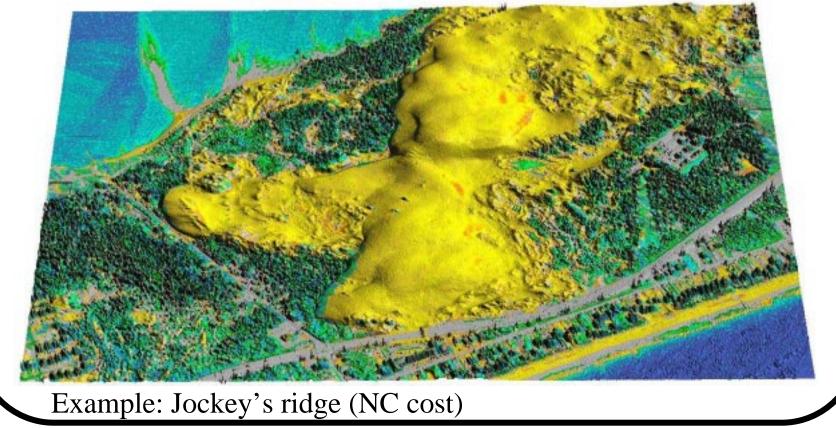


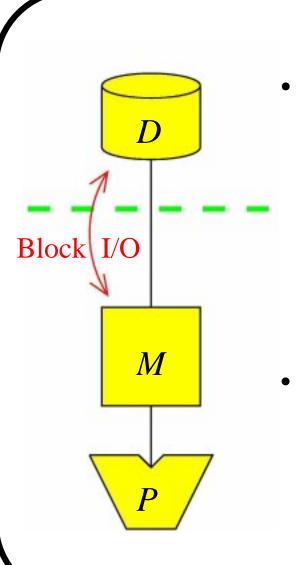
External Memory Geometric Data Structures

- Many massive dataset applications involve geometric data (or data that can be interpreted geometrically)
 - Points, lines, polygons
- Data need to be stored in data structures on external storage media such that on-line queries can be answered I/O-efficiently
- Data often need to be maintained during dynamic updates
- Examples:
 - Phone: Wireless tracking
 - Consumer: Buying patterns (supermarket checkout)
 - Geography: NASA satellites generate 1.2 TB per day

Example: LIDAR terrain data

- Massive (irregular) point sets (1-10m resolution)
- Appalachian Mountains (between 50GB and 5TB)
- Need to be queried and updated efficiently

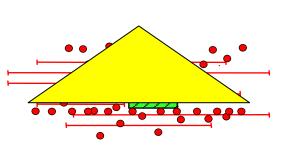


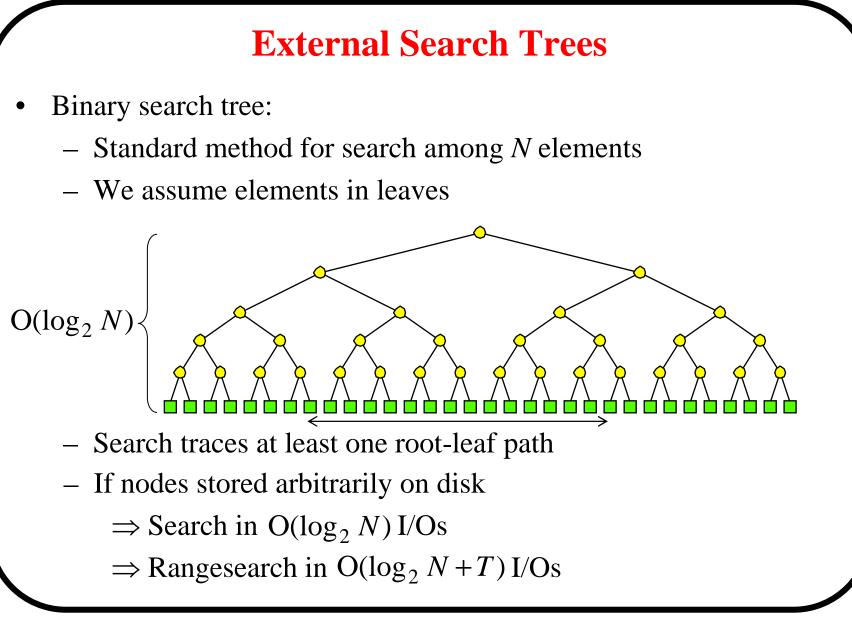


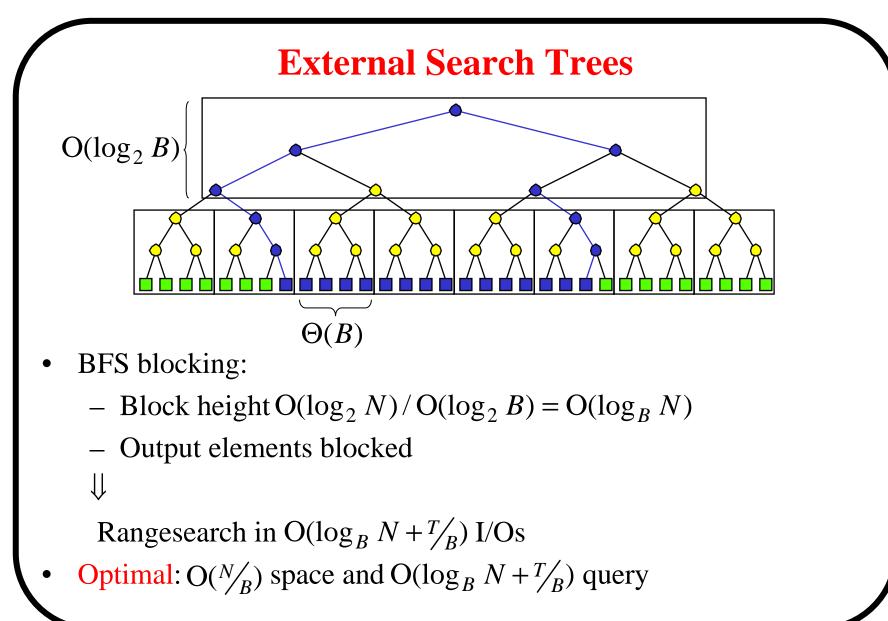
Model

- Model as previously
 - -N : Elements in structure
 - -B: Elements per block
 - -M: Elements in main memory
 - -T: Output size in searching problems
- Focus on
 - Worst-case structures
 - Dynamic structures
 - Fundamental structures
 - Fundamental design techniques

- Today: Dimension one
 - External search trees: B-trees
 - Techniques/tools
 - * Persistent B-trees (search in the past)
 - * Buffer trees (efficient construction)
- Tomorrow: "Dimension 1.5"
 - Handling intervals/segments (interval stabbing/point location)
 - Techniques/tools: Logarithmic method, weight-balanced B-trees, global rebuilding
- Saturday: Dimension two
 - Two-dimensional range searching



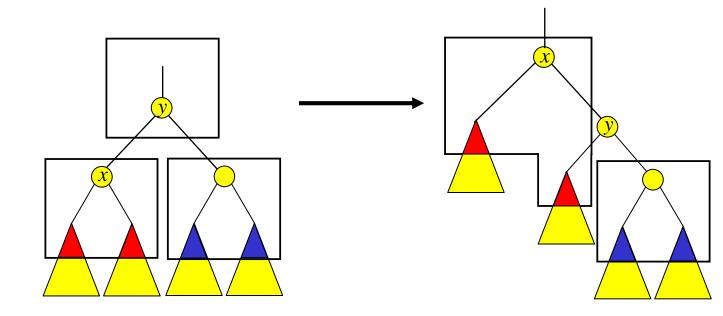




External Search Trees

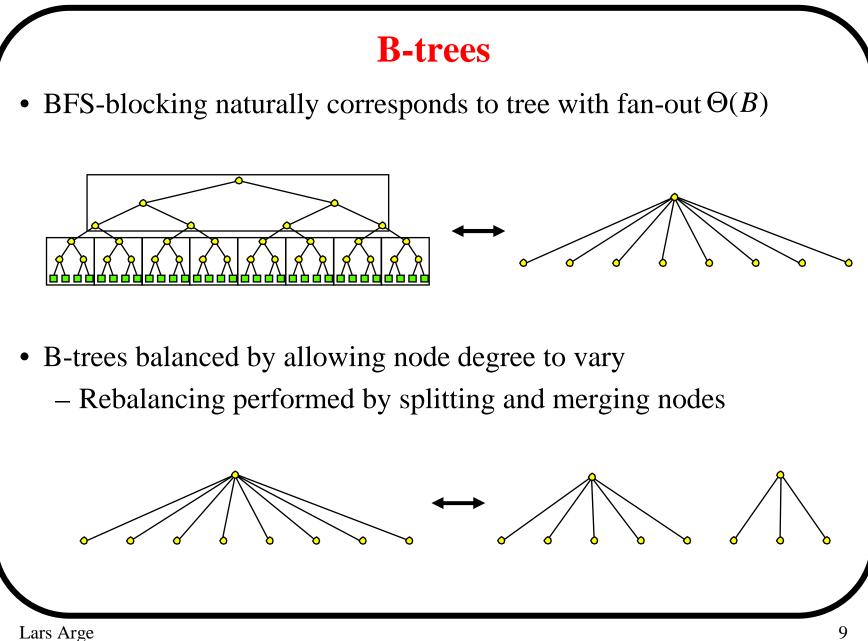
• Maintaining BFS blocking during updates?

- Balance normally maintained in search trees using rotations



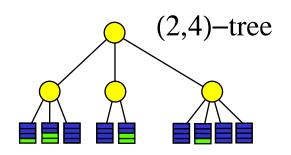
Seems very difficult to maintain BFS blocking during rotation

 Also need to make sure output (leaves) is blocked!



(a,b)-tree

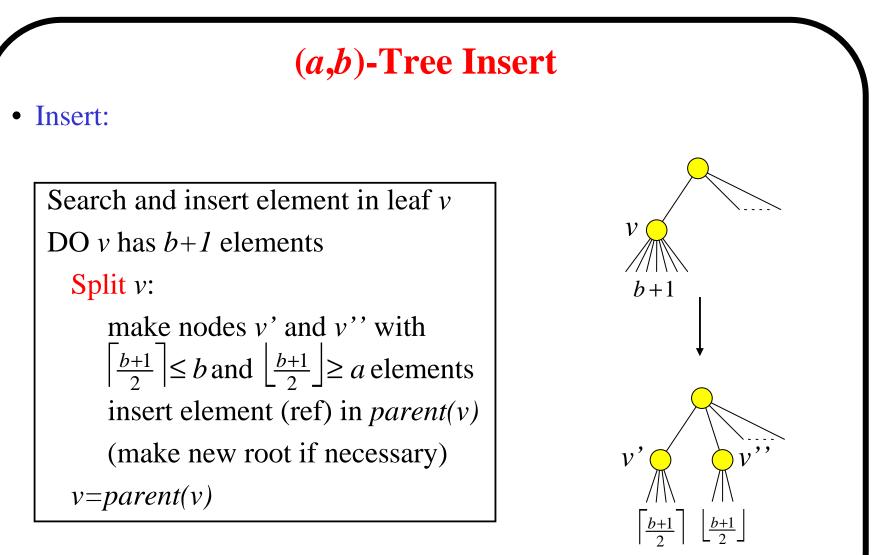
- *T* is an (a,b)-tree $(a \ge 2 \text{ and } b \ge 2a-1)$
 - All leaves on the same level
 (contain between *a* and *b* elements)
 - Except for the root, all nodes have degree between *a* and *b*
 - Root has degree between 2 and b



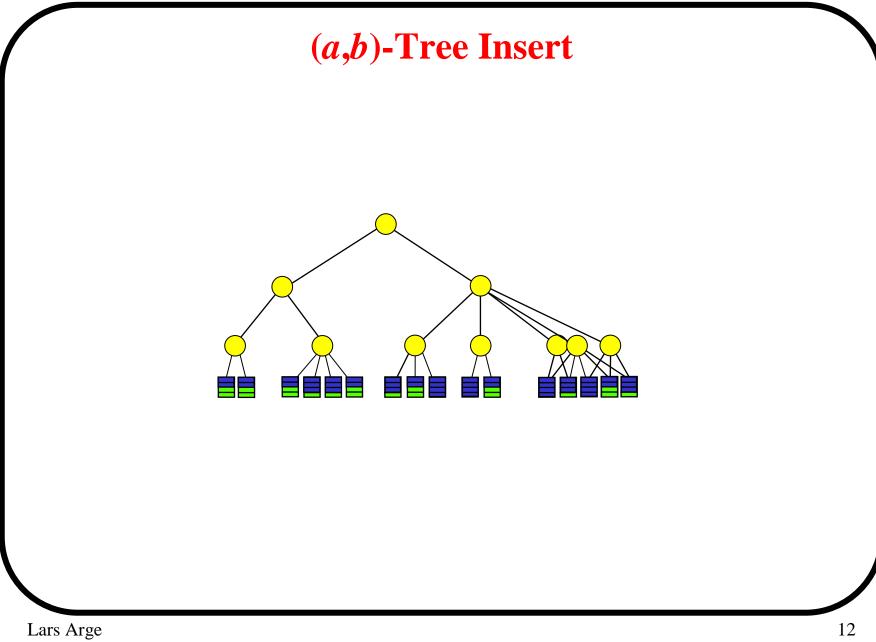
(*a*,*b*)-tree uses linear space and has height O(log_a N)
 ↓

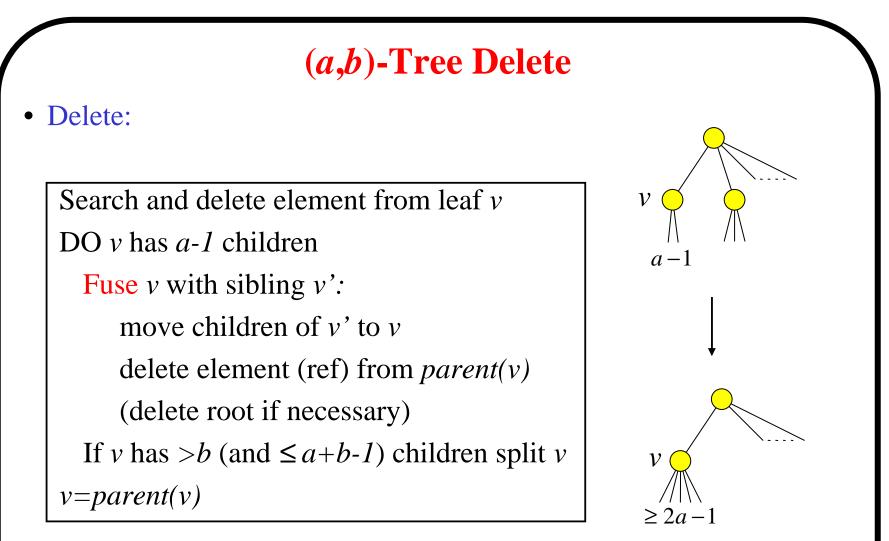
Choosing $a, b = \Theta(B)$ each node/leaf stored in one disk block \downarrow

 $O(N_B)$ space and $O(\log_B N + T_B)$ query

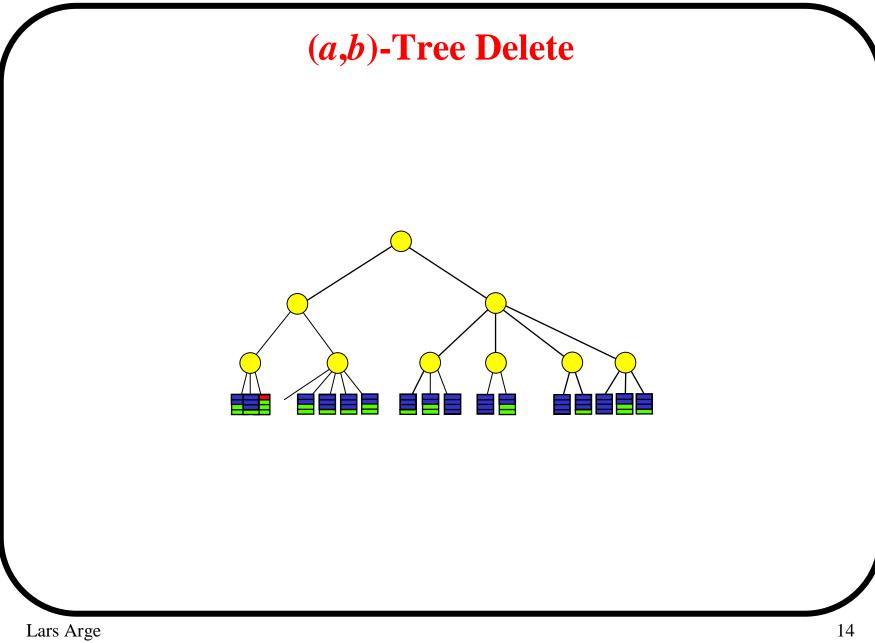


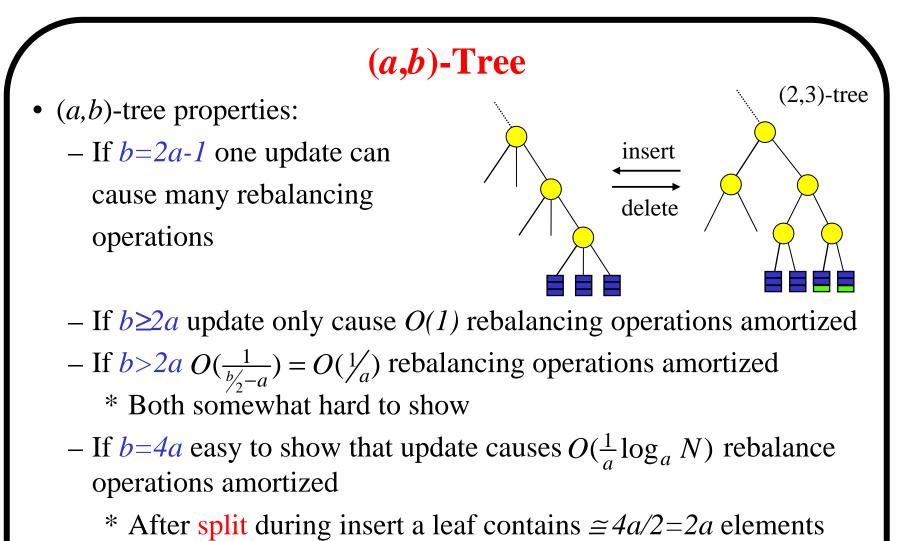
• Insert touch $O(\log_a N)$ nodes





• Delete touch $O(\log_a N)$ nodes





* After fuse (and possible split) during delete a leaf contains between $\cong 2a$ and $\cong \frac{5}{2}a$ elements

(*a*,*b*)-Tree

- (*a*,*b*)-tree with leaf parameters a_l, b_l (*b*=4*a* and b_l =4 a_l)
 - Height $O(\log_a \frac{N}{a_l})$
 - $-O(\frac{1}{a_1})$ amortized leaf rebalance operations
 - $-O(\frac{1}{a \cdot a_l} \log_a N)$ amortized internal node rebalance operations
- **B-trees**: (a,b)-trees with $a,b = \Theta(B)$

– B-trees with elements in the leaves sometimes called B^+ -tree

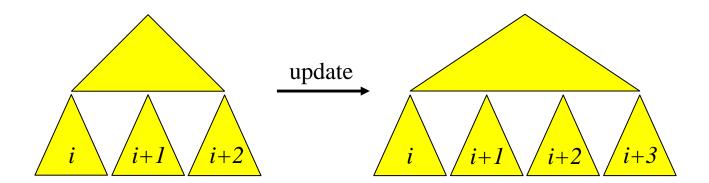
- Fan-out *k* B-tree:
 - -(k/4,k)-trees with leaf parameter $\Theta(B)$ and elements in leaves
- Fan-out $\Theta(B^{\frac{1}{c}})$ B-tree with $c \ge 1$
 - O(N/B) space

$$- O(\log_{B^{1/c}} N + T/B) = O(\log_{B} N + T/B)$$
 query

 $- O(\log_B^B N)$ update

- In some applications we are interested in being able to access previous versions of data structure
 - Databases
 - Geometric data structures (later)
- Partial persistence:
 - Update current version (getting new version)
 - Query all versions
- We would like to have partial persistent B-tree with
 - -O(N/B) space -N is number of updates performed
 - $-O(\log_B N)$ update
 - $-O(\log_B N + T/B)$ query in any version

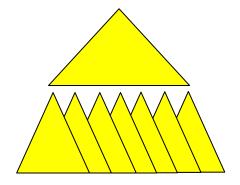
- East way to make B-tree partial persistent
 - Copy structure at each operation
 - Maintain "version-access" structure (B-tree)



- Good $O(\log_B N + T/B)$ query in any version, but
 - O(N/B) I/O update

$$-O(N^2/B)$$
 space

- Idea:
 - Elements augmented with "existence interval"
 - Augmented elements stored in one structure
 - Elements "alive" at "time" *t* (version *t*) form B-tree



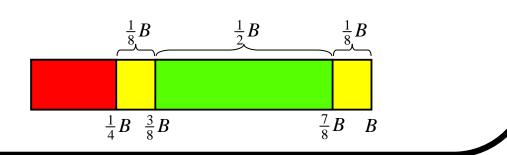
– Version access structure (B-tree) to access B-tree root at time t

- Directed acyclic graph with elements in leaves (sinks)
 - Routing elements in internal nodes
- Each element (routing element) and node has existence interval
- Nodes alive at time t make up (B/4,B)-tree on alive elements
- B-tree on all roots (version access structure)
 ↓

Answer query at version *t* in $O(\log_B N + T/B)$ I/Os as in normal B-tree • Additional invariant:

- New node (only) contains between $\frac{3}{8}B$ and $\frac{7}{8}B$ live elements

O(*N*/*B*) blocks



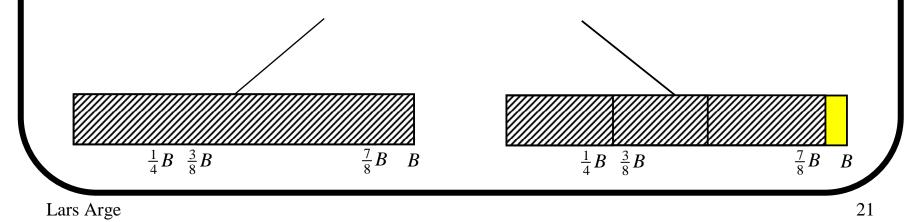
Persistent B-tree Insert

- Search for relevant leaf *l* and insert new element
- If *l* contains *x* >*B* elements: Block overflow
 - Version split:

Mark l dead and create new node v with x alive element

- If $x > \frac{7}{8}B$: Strong overflow
- If $x < \frac{3}{8}B$: Strong underflow
- If $\frac{3}{8}B \le x \le \frac{7}{8}B$ then recursively update *parent*(*l*):

Delete reference to l and insert reference to v



Persistent B-tree Insert

- Strong overflow $(x > \frac{7}{8}B)$
 - Split v into v' and v' with $\frac{x}{2}$ elements each $(\frac{3}{8}B < \frac{x}{2} \le \frac{1}{2}B)$
 - Recursively update parent(l):

Delete reference to l and insert reference to v' and v''



- Merge *x* elements with *y* live elements obtained by version split on sibling $(x + y \ge \frac{1}{2}B)$
- If $x + y \ge \frac{7}{8}B$ then (strong overflow) perform split
- Recursively update parent(l):

Delete two references insert one or two references

Persistent B-tree Delete

- Search for relevant leaf *l* and mark element dead
- If *l* contains $x < \frac{1}{4}B$ alive elements: Block underflow
 - Version split:

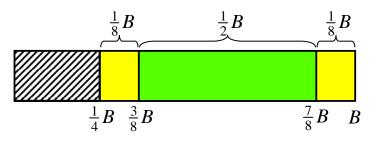
Mark l dead and create new node v with x alive element

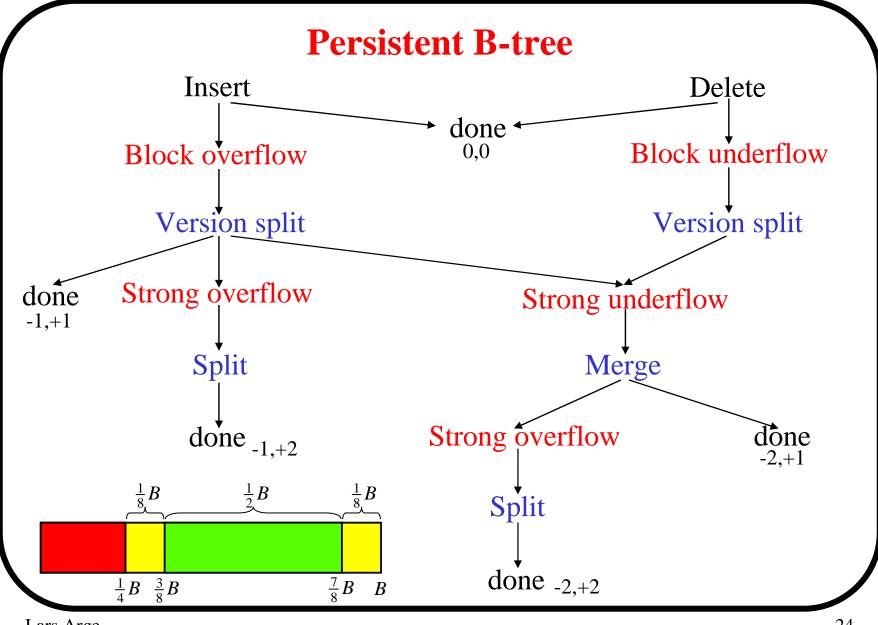
– Strong underflow ($x < \frac{3}{8}B$):

Merge (version split) and possibly split (strong overflow)

– Recursively update parent(l):

Delete two references insert one or two references





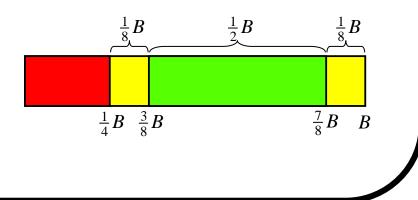
Persistent B-tree Analysis

- Update: $O(\log_B N)$
 - Search and "rebalance" on one root-leaf path
- **Space**: *O*(*N*/*B*)
 - At least $\frac{1}{8}B$ updates in leaf in existence interval
 - When leaf l die

* At most two other nodes are created

* At most one block over/underflow one level up (in parent(l)) \downarrow

- During N updates we create: * O(N/B) leaves * O(N/B) nodes *i* levels up \Rightarrow Space: O(N/B) = O(N/B)



Summary: B-trees

• Problem: Maintaining N elements dynamically

• Fan-out $\Theta(B^{\frac{1}{c}})$ B-tree $(c \ge 1)$

– Degree balanced tree with each node/leaf in O(1) blocks

- O(N/B) space

- $O(\log_B N + T/B)$ I/O query
- $O(\log_B N)$ I/O update

• Space and query optimal in comparison model

- Persistent B-tree
 - Update current version
 - Query all previous versions

Other B-tree Variants

- Weight-balanced B-trees
 - Weight instead of degree constraint
 - Nodes high in the tree do not split very often
 - Used when secondary structures are used

More later!

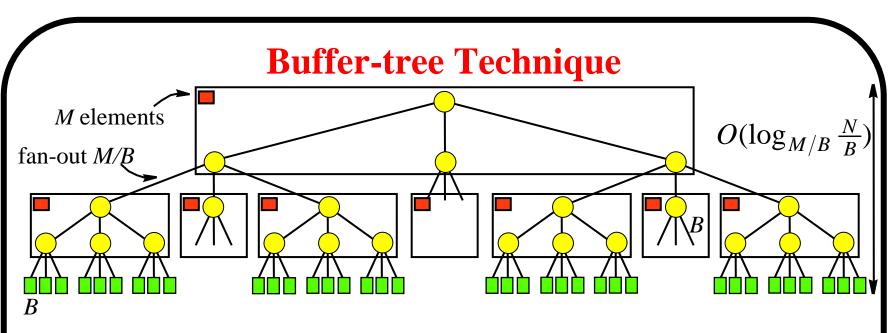
- Level-balanced B-trees
 - Global instead of local balancing strategy
 - Whole subtrees rebuilt when too many nodes on a level
 - Used when parent pointers and divide/merge operations needed
- String B-trees
 - Used to maintain and search (variable length) strings

More later (Paolo)

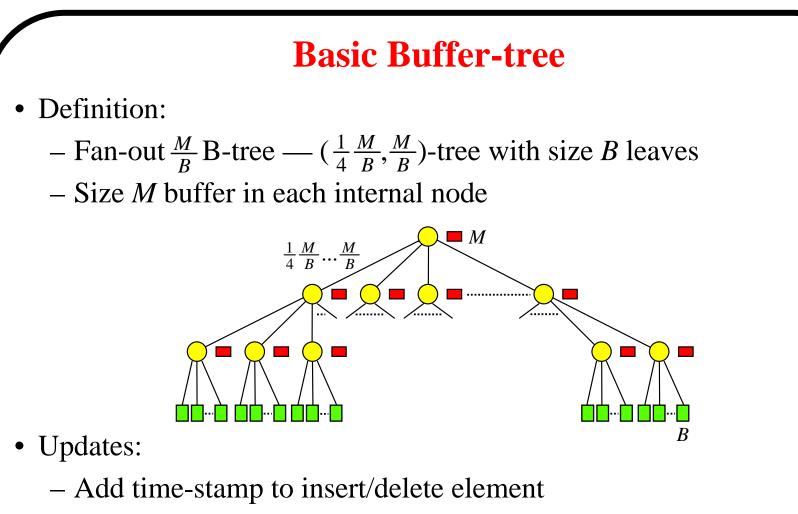
B-tree Construction

- In internal memory we can sort *N* elements in *O*(*N* log *N*) time using a balanced search tree:
 - Insert all elements one-by-one (construct tree)
 - Output in sorted order using in-order traversal
- Same algorithm using B-tree use $O(N \log_B N)$ I/Os - A factor of $O(B \frac{\log \frac{M}{B}}{\log B})$ non-optimal
- We could of course build B-tree bottom-up in $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os But what about persistent B-tree?
 - In general we would like to have dynamic data structure to use in $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ algorithms $\Rightarrow O(\frac{1}{B}\log_{M/B}\frac{N}{B})$ I/O operations

External memory data structures



- Main idea: Logically group nodes together and add buffers
 - Insertions done in a "lazy" way elements inserted in buffers.
 - When a buffer runs full elements are pushed one level down.
 - Buffer-emptying in O(M/B) I/Os
 - \Rightarrow every *block* touched constant number of times on each level
 - \Rightarrow inserting N elements (N/B blocks) costs $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os.



- Collect B elements in memory before inserting in root buffer
- Perform buffer-emptying when buffer runs full

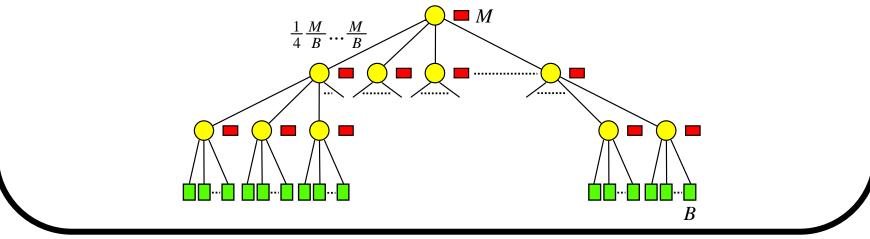
• Note:

– Buffer can be larger than *M* during recursive buffer-emptying

* Elements distributed in sorted order

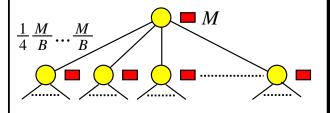
 \Rightarrow at most *M* elements in buffer unsorted

- Rebalancing needed when "leaf-node" buffer emptied
 - * Leaf-node **buffer-emptying** only performed after all full internal node buffers are emptied



• Internal node buffer-empty:

- Load first *M* (unsorted) elements into memory and sort them
- Merge elements in memory with rest of (already sorted) elements
- Scan through sorted list while
 - * Removing "matching" insert/deletes
 - * Distribute elements to child buffers
- Recursively empty full child buffers



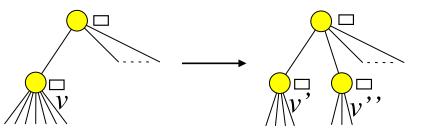
• Emptying buffer of size X takes O(X/B+M/B)=O(X/B) I/Os

- Buffer-empty of leaf node with *K* elements in leaves
 - Sort buffer as previously
 - Merge buffer elements with elements in leaves
 - Remove "matching" insert/deletes obtaining K' elements
 - If K' < K then
 - * Add *K*-*K*' "dummy" elements and insert in "dummy" leaves Otherwise
 - * Place *K* elements in leaves
 - * Repeatedly insert block of elements in leaves and rebalance
- Delete dummy leaves and rebalance when all full buffers emptied

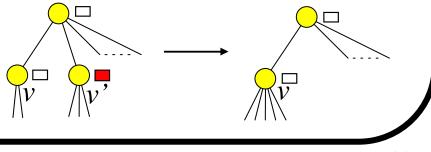
• Invariant:

Buffers of nodes on path from root to emptied leaf-node are empty ↓

• Insert rebalancing (splits) performed as in normal B-tree



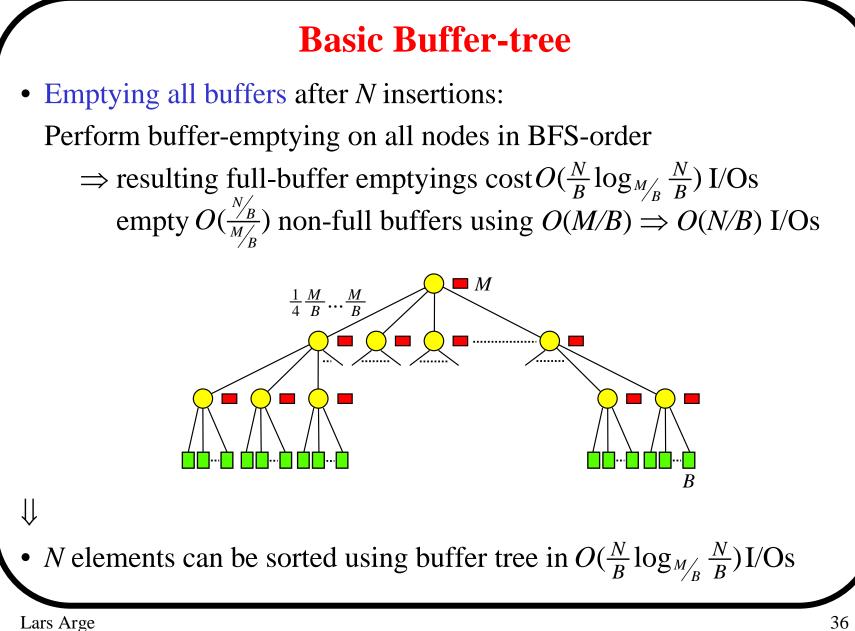
- Delete rebalancing: *v*' buffer emptied before fuse of *v*
 - Necessary buffer emptyings performed before next dummyblock delete
 - Invariant maintained



- Analysis:
 - Not counting rebalancing, a buffer-emptying of node with $X \ge M$ elements (full) takes O(X/B) I/Os
 - \Rightarrow total full node emptying cost $O(\frac{N}{B}\log_{M_B}\frac{N}{B})$ I/Os
 - Delete rebalancing buffer-emptying (non-full) takes O(M/B) I/Os
 - \Rightarrow cost of one split/fuse O(M/B) I/Os
 - During N updates

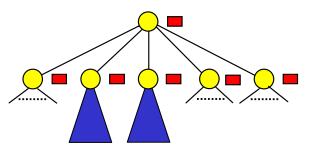
*
$$O(N/B)$$
 leaf split/fuse
* $O(\frac{N/B}{M/B} \log_{M/B} \frac{N}{B})$ internal node split/fuse
 \downarrow

Total cost of N operations: $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ I/Os



Buffer-tree Technique

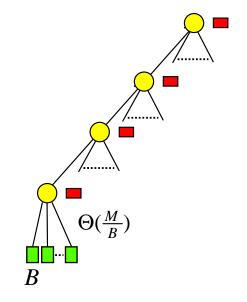
- Insert and deletes on buffer-tree takes $O(\frac{1}{B}\log_{M/B}\frac{N}{B})$ I/Os amortized Alternative rebalancing algorithms possible (e.g. top-down)
- One-dim. rangesearch operations can also be supported in
 - $O(\frac{1}{B}\log_{M/B}\frac{N}{B} + \frac{T}{B})$ I/Os amortized
 - Search elements handle lazily like updates
 - All elements in relevant sub-trees reported during buffer-emptying
 - Buffer-emptying in O(X/B+T'/B), where *T*' is reported elements



 Buffer-tree can e.g. be use in standard plane-sweep algorithms for orthogonal line segment intersection (alternative to distribution sweeping)

Buffered Priority Queue

- Basic buffer tree can be used in external priority queue
- To delete minimal element:
 - Empty all buffers on leftmost path
 - Delete $\frac{1}{4}M$ elements in leftmost
 - leaf and keep in memory
 - Deletion of next *M* minimal elements free
 - Inserted elements checked against minimal elements in memory



$$O(\frac{M}{B}\log_{M/B}\frac{N}{B})$$
 I/Os every $O(M)$ delete $\Rightarrow O(\frac{1}{B}\log_{M/B}\frac{N}{B})$ amortized

Other External Priority Queues

- External priority queue has been used in the development of many I/O-efficient graph algorithms
- Buffer technique can be used on other priority queue structure
 - Heap
 - Tournament tree
- Priority queue supporting update often used in graph algorithms
 - $-O(\frac{1}{B}\log_2\frac{N}{B})$ on tournament tree
 - Major open problem to do it in $O(\frac{1}{B}\log_{M/B}\frac{N}{B})$ I/Os
- Worst case efficient priority queue has also been developed
 - B operations require $O(\log_{M/B} \frac{N}{B})$ I/Os

Other Buffer-tree Technique Results

- Attaching Θ(B) size buffers to normal B-tree can also be use to improve update bound
- Buffered segment tree
 - Has been used in batched range searching and rectangle intersection algorithm
- Can normally be modified to work in D-disk model using D-disk merging and distribution
- Has been used on String B-tree to obtain I/O-efficient string sorting algorithms
- Can be used to construct (bulk load) many data structures, e.g:

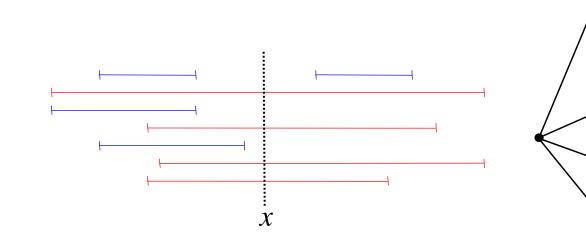
– R-trees

- Persistent B-trees

Summary

- Fan-out $\Theta(B^{\frac{1}{c}})$ B-tree $(c \ge 1)$
 - Degree balanced tree with each node/leaf in O(1) blocks
 - -O(N/B) space
 - $-O(\log_B N + T/B)$ I/O query
 - $-O(\log_B N)$ I/O update
- Persistent B-tree
 - Update current version, query all previous versions
 - B-tree bounds with N number of operations performed
- Buffer tree technique
 - Lazy update/queries using buffers attached to each node
 - $-O(\frac{1}{B}\log_{M/B}\frac{N}{B})$ amortized bounds
 - E.g. used to construct structures in $O(\frac{N}{B}\log_{M_{B}}\frac{N}{B})$ I/Os

• "Dimension 1.5" problems: Interval stabbing and point location



- Use of tools/techniques discussed today as well as
 - Logarithmic method
 - Weight-balanced B-trees
 - Global rebuilding

q