
String algorithms and data strutures?Paolo FerraginaDipartimento di Informatia, Universit�a di Pisa, ItalyAbstrat. The string-mathing �eld has grown at a suh ompliatedstage that various issues ome into play when studying it: data strutureand algorithmi design, database priniples, ompression tehniques, ar-hitetural features, ahe and prefething poliies. The expertise nowa-days required to design good string data strutures and algorithms istherefore transversal to many omputer siene �elds and muh morestudy on the orhestration of known, or novel, tehniques is needed tomake progress in this fasinating topi. This survey is aimed at illustrat-ing the key ideas whih should onstitute, in our opinion, the urrentbakground of every index designer. We also disuss the positive fea-tures and drawbaks of known indexing shemes and algorithms, anddevote muh attention to detail researh issues and open problems bothon the theoretial and the experimental side.1 IntrodutionString data is ubiquitous, ommon-plae appliations are digital libraries andprodut atalogs (for books, musi, software, et.), eletroni white and yel-low page diretories, speialized information soures (e.g. patent or genomidatabases), ustomer relationship management of data, et.. The amount of tex-tual information managed by these appliations is inreasing at a staggering rate.The best two illustrative examples of this growth are the World-Wide Web, whihis estimated to provide aess to at least three terabytes of textual data, andthe genomi databases, whih are estimated to store more than �fteen billion ofbase pairs. Even in private hands are ommon now olletion sizes whih wereunimaginable a few years ago.This senario is destined to beome more pervasive due to the migration ofurrent databases toward XML storage [2℄. XML is emerging as the de fatostandard for the publiation and interhange of heterogeneous, inomplete andirregular data over the Internet and amongst appliations. It provides groundrules to mark up data so it is self-desribing and easily readable by humans andomputers. Large portions of XML data are textual and inlude desriptive �eldsand tags. Evaluating an XML query involves navigating paths through a tree(or, in general, a graph) struture. In order to speed up query proessing, urrent? Address: Dipartimento di Informatia, Corso Italia 40, 56125 Pisa, Italy,ferragina�di.unipi.it, http://www.di.unipi.it/�ferragin. Partially sup-ported by Italian MIUR projets: \Tehnologies and servies for enhaned ontentdelivery" and \A high-performane distributed platform".



2approahes onsist of enoding doument paths into strings of arbitrary length(e.g. book/author/firstname/) and replaing tree navigational operations withstring pre�x queries (see e.g. [52, 129, 4℄).In all these situations brute-fore sanning of suh large olletions is nota viable approah to perform string searhes. Some kind of index has to beneessarily built over these massive textual data to e�etively proess stringqueries (of arbitrarily lengths), possibly keeping into aount the presene in ouromputers of various memory levels, eah with its tehnologial and performaneharateristis [8℄. The index design problem therefore turns out to be morehallenging than ever before.The Amerian Heritage Ditionary (2000, fourth edition) de�nes index asfollows: pl. (in � dex � es) or (in � di � es) \ 1. Something that serves toguide, point out, or otherwise failitate referene, espeially: a. An alphabetizedlist of names, plaes, and subjets treated in a printed work, giving the page orpages on whih eah item is mentioned. b. A thumb index. . Any table, �le, oratalog. [...℄"Some de�nitions proposed by experts are \The most important of the tools forinformation retrieval is the index|a olletion of terms with pointers to plaeswhere information about douments an be found" [119℄; \indexing is buildinga data struture that will allow quik searhing of the text" [22℄; or \the at ofassigning index terms to douments whih are the objets to be retrieved" [111℄.From our point of view an index is a persistent data struture that allows atquery time to fous the searh for a user-provided string (or a set of them) on avery small portion of the indexed data olletion, namely the loations at whihthe queried string(s) our. Of ourse the index is just one of the tools neededto fully solve a user query, so as the retrieval of the queried string loations isjust the �rst step of what is alled the \query answering proess". Informationretrieval (IR) models, ranking algorithms, query languages and operations, user-feedbak models and interfaes, and so on, all of them onstitute the rest ofthis ompliated proess and are beyond the sope of this survey. Hereafter wewill onentrate our attention onto the hallenging problems onerned with thedesign of eÆient and e�etive indexing data strutures, the basi blok uponwhih every IR system is built. We then refer the reader interested into thoseother interesting topis to the vast literature, browsing from e.g. [79, 114, 163,22, 188℄.The right step into the text-indexing �eld. The publiations regardingindexing tehniques and methodologies are a ommon outome of database andalgorithmi researh. Their number is ever growing so that iting all of them isa task doomed to fail. This fat is ontributing to make the evaluation of thenovelty, impat and usefulness of the plethora of reent index proposals moreand more diÆult. Hene to approah from the orret angle the huge �eld oftext indexing, we �rst need a lear framework for development, presentation andomparison of indexing shemes [193℄. The lak of this framework has lead someresearhers to underestimate the features of known indexes, disregard important



3riteria or make simplifying assumptions whih have lead them to unrealistiand/or distort results.The design of a new index passes through the evaluation of many riteria,not just its desription and some toy experiments. We need at a minimum toonsider overall speed, disk and memory spae requirements, CPU time and mea-sures of disk traÆ (suh as number of seeks and volume of data transferred),and ease of index onstrution. In a dynami setting we should also onsiderindex maintenane in the presene of addition, modi�ation and deletion of do-uments/reords; and impliations for onurreny, transations and reoverabil-ity. Also of interest for both stati and dynami data olletions are appliability,extensibility and salability. Indeed no indexing sheme is all-powerful, di�erentindexes support di�erent lasses of queries and manage di�erent kinds of data,so that they may turn out to be useful in di�erent appliation ontexts. As aonsequene there is no one single winner among the indexing data struturesnowadays available, eah one has its own positive features and drawbaks, andwe must know all of their �ne details in order to make the right hoie whenimplementing an e�etive and eÆient searh engine or IR system.In what follows we therefore go into the main aspets whih inuene thedesign of an indexing data struture thus providing an overall view of the textindexing �eld; we introdue the arguments whih will be detailed in the nextsetions, and we briey omment on some reent topis of researh that will befully addressed at the end of eah of these subsequent setions.The �rst key issue: The I/O subsystem. The large amount of textualinformation urrently available in eletroni form requires to store it into externalstorage devies, like (multiple) disks and droms. Although these mehanialdevies provide a large amount of spae at low ost, their aess time is more than105 times slower than the time to aess the internal memory of omputers [158℄.This gap is urrently widening with the impressive tehnologial progresses oniruit design tehnology. Ongoing researh on the engineering side is thereforetrying to improve the input/output subsystem by introduing some hardwaremehanisms suh as disk arrays, disk ahes, et.. Nevertheless the improvementahievable by means of a proper arrangement of data and a properly struturedalgorithmi omputation on disk devies abundantly surpasses the best expetedtehnology advanements [186℄.Larger datasets an stress the need for loality of referene in that theymay redue the hane of sequential (heap) disk aesses to the same blok orylinder; they may inrease the data feth osts (whih are typially linear in thedataset size); and they may even a�et the proportion of douments/reords thatanswer to a user query. In this situation a na��ve index might inur the so alledI/O-bottlenek, that is, its update and query operations might spend most of thetime in transferring data to/from the disk with a onsequent sensible slowdown oftheir performane. As a result, the index salability and the asymptoti analysisof index performane, orhestrated with the disk onsiousness of index design,are nowadays hot and hallenging researh topis whih have shown to indue



4a positive e�et not limited just to mehanial storage devies, but also to allother memory levels (L1 and L2 ahes, internal memory, et.).To design and arefully analyze the salability and query performane ofan index we need a omputational model that abstrats in a reasonable waythe I/O-subsystem. Aurate disk models are omplex [164℄, and it is virtuallyimpossible to exploit all the �ne points of disk harateristis systematially,either in pratie or for algorithmi design. In order to apture in an easy, yetsigni�ant, way the di�erenes between the internal (eletroni) memory andthe external (mehanial) disk, we adopt the external memory model proposedin [186℄. Here a omputer is abstrated to onsist of a two-level memory: a fastand small internal memory, of size M , and a slow and arbitrarily large externalmemory, alled disk. Data between the internal memory and the disk are trans-fered in bloks of sizeB (alled disk pages). Sine disk aesses are the dominatingfator in the running time of many algorithms, the asymptoti performane ofthe algorithms is evaluated by ounting the total number of disk aesses per-formed during the omputation. This is a workable approximation for algorithmdesign, and we will use it to evaluate the performane of query and update al-gorithms. However there are situations, like in the onstrution of indexing datastrutures (Setions 2.1 and 3.5), in whih this aounting sheme does not a-urately predit the running time of algorithms on real mahines beause it doesnot take into aount some important speialties of disk systems [162℄. Namely,disk aess osts have mainly two omponents: the time to feth the �rst bitof requested data (seek time) and the time required to transmit the requesteddata (transfer rate). Transfer rates are more or less stable but seek times arehighly variable. It is thus well known that aessing one page from the disk inmost ases dereases the ost of aessing the page sueeding it, so that \bulk"I/Os are less expensive per page than \random" I/Os. This di�erene beomesmuh more prominent if we also onsider the reading-ahead/bu�ering/ahingoptimizations whih are ommon in urrent disks and operating systems. To dealwith these speialties and avoid the introdution of many new parameters, wewill sometime refer to the simple aounting sheme introdued in [64℄: a bulkI/O is the reading/writing of a ontiguous sequene of M=B disk pages, where is a proper onstant; a random I/O is any single disk-page aess whih is notpart of a bulk I/O.In summary the performane of the algorithms designed to build, proess orquery an indexing data struture is therefore evaluated by measuring: (a) thenumber of random I/Os, and possibly the bulk I/Os, (b) the internal runningtime (CPU time), () the number of disk pages oupied by the indexing datastruture and the working spae of the query, update and onstrution algo-rithms.The seond key issue: types of queries and indexed data. Up to nowwe have talked about indexing data strutures without speifying the type ofqueries that an index should be able to support as well no attention has beendevoted to the type of data an index is alled to manage. These issues have a



5surprising impat on the design omplexity and spae oupany of the index,and will be stritly interrelated in the disussion below.There are two main approahes to index design: word-based indexes and full-text indexes. Word-based indexes are designed to work on linguisti texts, or ondouments where a tokenization into words may be devised. Their main idea is tostore the ourrenes of eah word (token) in a table that is indexed via a hashingfuntion or a tree struture (they are usually alled inverted �les or indexes).To redue the size of the table, ommon words are either not indexed (e.g. the,at, a) or the index is later ompressed. The advantage of this approah is tosupport very fast word (or pre�x-word) queries and to allow at reasonable speedsome omplex searhes like regular expression or approximate mathes; whiletwo weaknesses are the impossibility in dealing with non-tokenizable texts, likegenomi sequenes, and the slowness in supporting arbitrary substring queries.Setion 2 will be devoted to the disussion of word-based indexes and some reentadvanements on their implementation, ompression and supported operations.Partiular attention will be devoted to the tehniques used to ompress theinverted index or the input data olletion, and to the algorithms adopted forimplementing more omplex queries.Full-text indexes have been designed to overome the limitations above bydealing with arbitrary texts and general queries, at the ost of an inrease inthe additional spae oupied by the underlying data struture. Examples ofsuh indexes are: suÆx trees [128℄, suÆx arrays [121℄ and String B-trees [71℄.They have been suessfully applied to fundamental string-mathing problemsas well to text ompression [42℄, analysis of geneti sequenes [88℄, optimizationof Xpath queries on XML douments [52, 129, 4℄ and to the indexing of speiallinguisti texts [67℄. General full-text indexes are therefore the natural hoie toperform fast omplex searhes without any restritions on the query sequenesand on the format of the indexed data; however, a reader should always keepin mind that these indexes are usually more spae demanding than their word-based ounterparts [112, 49℄ (fr. opportunisti indexes [75℄ below). Setion 3 willbe devoted to a deep disussion on full-text indexes, posing partiular attentionto the String B-tree data struture and its engineering. In partiular we willintrodue some novel algorithmi and data strutural solutions whih are noton�ned to this spei� data struture. Attention will be devoted to the hal-lenging, yet diÆult, problem of the onstrution of a full-text index both froma theoretial and a pratial perspetive. We will show that this problem is re-lated to the more general problem of string sorting, and then disuss the knownresults and a novel randomized algorithm whih may have pratial utility andwhose tehnial details may have an independent interest.The third key issue: the spae vs. time trade-o�. The disussion onthe two indexing approahes above has pointed out an interesting trade-o�:spae oupany vs. exibility and eÆieny of the supported queries. It indeedseems that in order to support substring queries, and deal with arbitrary dataolletions, we do need to inur in an additional spae overhead required by themore ompliated struture of the full-text indexes. Some authors argue that



6this extra-spae oupany is a false problem beause of the ontinued delinein the ost of external storage devies. However the impat of spae redutiongoes far beyond the intuitive memory saving, beause it may indue a betterutilization of (the fast) ahe and (the eletroni) internal memory levels, mayvirtually expand the disk bandwidth and signi�antly redue the (mehanial)seek time of disk systems. Hene data ompression is an attrative hoie, ifnot mandatory, not only for storage saving but also for its favorable impaton algorithmi performane. This is very well known in algorithmis [109℄ andengineering [94℄: IBM has reently delivered the MXT Tehnology (MemoryeXpansion Tehnology) for its x330 eServers whih onsists in a memory hipthat ompresses/deompresses data on ahe writebaks/misses thus yielding afator of expansion two on memory size with just a slightly larger ost. It is notsurprising, therefore, that we are witnessing in the algorithmi �eld an upsurginginterest for designing suint (or impliit) data strutures (see e.g. [38, 143, 144,142, 87, 168, 169℄) that try to redue as muh as possible the auxiliary informationkept for indexing purposes without introduing any signi�ant slowdown in theoperations supported.Suh a researh trend has lead to some surprising results on the design of om-pressed full-text indexes [75℄ whose impat goes beyond the text-indexing �eld.These results lie at the rossing of three distint researh �elds| ompression,algorithmis, databases| and orhestrate together their latest ahievements,thus showing one more that the design of an indexing data struture is nowa-days an interdisiplinary task. In Setion 4 we will briey overview this issueby introduing the onept of opportunisti index: a data struture that tries totake advantage of the ompressibility of the input data to redue its overall spaeoupany. This index enapsulates both the ompressed data and the indexinginformation in a spae whih is proportional to the entropy of the indexed ol-letion, thus resulting optimal in an information-ontent sense. Yet these resultsare mainly theoretial in their avor and open to signi�ant improvements withrespet to their I/O performane. Some of them have been implemented andtested in [76, 77℄ showing that these data strutures use roughly the same spaerequired by traditional ompressors|suh as gzip and bzip2 [176℄| but withadded funtionalities: they allow to retrieve the ourrenes of an arbitrary sub-string within texts of several megabytes in a few milliseonds. These experimentsshow a promising line of researh and suggest the design of a new family of textretrieval tools whih will be disussed at the end of Setion 4.The fourth key issue: String transations and index ahing. Notonly is string data proliferating, but datastores inreasingly handle large numberof string transations that add, delete, modify or searh strings. As a result, theproblem of managing massive string data under large number of transationsis emerging as a fundamental hallenge. Traditionally, string algorithms fouson supporting eah of these operations individually in the most eÆient mannerin the worst ase. There is however an ever inreasing need for indexes thatare eÆient on an entire sequene of string transations, by possibly adaptingthemselves to time-varying distribution of the queries and to the repetitiveness



7present in the query sequene both at string or pre�x level. Indeed it is wellknown that some user queries are frequently issued in some time intervals [173℄or some searh engines improve their preision by expanding the query termswith some of their morphologial variations (e.g. synonyms, plurals, et.) [22℄.Consequently, in the spirit of amortized analysis [180℄, we would like to designindexing data strutures that are ompetitive (optimal) over the entire sequeneof string operations. This hallenging issue has been addressed at the heuris-ti level in the ontext of word-based indexes [173, 39, 125, 131, 101℄; but it hasbeen unfortunately disregarded when designing and analyzing full-text indexes.Here the problem is partiularly diÆult beause: (1) a string may be so longto do not �t in one single disk page or even be ontained into internal mem-ory, (2) eah string omparison may need many disk aesses if exeuted in abrute-fore manner, and (3) the distribution of the string queries may be un-known or vary over the time. A �rst, preliminary, ontribution in this setting hasbeen ahieved in [48℄ where a self-adjusting and external-memory variant of theskip-list data struture [161℄ has been presented. By properly orhestrating theahing of this data struture, the ahing of some query-string pre�xes and thee�etive management of string items, the authors prove an external-memory ver-sion for strings of the famous Stati Optimality Theorem [180℄. This introduesa new framework for designing and analyzing full-text indexing data struturesand string-mathing algorithms, where a stream of user queries is issued by anunknown soure and ahing e�ets must then be exploited and aounted forwhen analyzing the query operations. In the next setions we will address theahing issue both for word-based and full-text indexing shemes, pointing outsome interesting researh topis whih deserve a deeper investigation.The moral that we would like to onvey to the reader is that the text in-dexing �eld has grown at a suh ompliated stage that various issues omeinto play when studying it: data struture design, database priniples, ompres-sion tehniques, arhitetural onsiderations, ahe and prefething poliies. Theexpertise nowadays required to design a good index is therefore transversal tomany algorithmi �elds and muh more study on the orhestration of known,or novel, tehniques is needed to make progress in this fasinating topi. Therest of the survey is therefore devoted to illustrate the key ideas whih shouldonstitute, in our opinion, the urrent bakground of every index-designer. Theguiding priniples of our disussion will be the four key issues above; they willguide the desription of the positive features and drawbaks of known indexingshemes as well the investigation of researh issues and open problems. A vast,but obviously not omplete, literature will aompany our disussion and shouldbe the referene where an eager reader may �nd further tehnial details andresearh hints.2 On the word-based indexesThere are three main approahes to design a word-based index: inverted indexes,signature �les and bitmaps [188, 22, 19, 63℄. The inverted index| also known as



8inverted �le, posting �le, or in normal English usage as onordane| is doubtlessthe simplest and most popular tehnique for indexing large text databases storingnatural-language douments. The other two mehanisms are usually adoptedin ertain appliations even if, reently, they have been mostly abandoned infavor of inverted indexes beause some extensive experimental results [194℄ haveshown that: Inverted indexes o�er better performane than signature �les andbitmaps, in terms of both size of index and speed of query handling [188℄. Asa onsequene, the emphasis of this setion is on inverted indexing; a readerinterested into signature �les and/or bitmaps may start browsing from [188, 22℄and have a look to some more reent, orrelated and stimulating results in [33,134℄.An inverted index is typially omposed of two parts: the lexion, also alledthe voabulary, ontaining all the distint words of the text olletion; and theinverted list, also alled the posting list, storing for eah voabulary term a list ofall text positions in whih that term ours. The voabulary therefore supportsa mapping from words to their orresponding inverted lists and in its simplestform is a list of strings and disk addresses. The searh for a single word inan inverted index onsists of two main phases: it �rst loates the word in thevoabulary and then retrieves its list of text positions. The searh for a phraseor a proximity pattern (where the words must appear onseutively or lose toeah other, respetively) onsists of three main phases: eah word is searhedseparately, their posting lists are then retrieved and �nally interseted, takingare of onseutiveness or loseness of word positions in the text.It is apparent that the inverted index is a simple and natural indexing sheme,and this has obviously ontributed to its spread among the IR systems. Startingfrom this simple theme, researhers indulged theirs whims by proposing numer-ous variations and improvements. The main aspet whih has been investigatedis the ompression of the voabulary and of the inverted lists. In both ases weare faed with some hallenging problems.Sine the voabulary is a textual �le any lassial ompression tehniquemight be used, provided that subsequent pattern searhes an be exeuted eÆ-iently. Sine the inverted lists are onstituted by numbers any variable lengthenoding of integers might be used, provided that subsequent sequential deod-ings an be exeuted eÆiently. Of ourse, any hoie in voabulary or invertedlists implementation inuenes both the proessing speed of queries and theoverall spae oupied by the inverted index. We proeed then to omment eahof these points below, referring the reader interested into their �ne details to theited literature.The voabulary is the basi blok of the inverted index and its \ontent"onstraints the type of queries that a user an issue. Atually the index de-signer is free to deide what a word is, and whih are the representative wordsto be inluded into the voabulary. One simple possibility is to take eah of thewords that appear in the doument and delare them verbatim to be voabularyterms. This tends both to enlarge the voabulary, i.e. the number of distintterms that appear into it, and inrease the number of doument/position iden-



9ti�ers that must be stored in the posting lists. Having a large voabulary notonly a�ets the storage spae requirements of the index but an also make itharder to use sine there are more potential query terms that must be on-sidered when formulating a query. For this reason it is ommon to transformeah word in some normal form before being inluded in the voabulary. Thetwo lassial approahes are ase folding, the onversion of all upperase lettersto their lowerase equivalents (or vie versa), and stemming, the redution ofeah word to its morphologial root by removing suÆxes or other modi�ers. Itis evident that both approahes present advantages (voabulary ompression)and disadvantages (extraneous material an be retrieved at query time) whihshould be taken into aount when designing an IR system. Another ommontransformation onsists of omitting the so alled stop words from the indexingproess (e.g., a, the, in): They are words whih our too often or arry suhsmall information ontent that their use in a query would be unlikely to eliminateany douments. In the literature there has been a big debate on the usefulnessof removing or keeping the stop words. Reent progresses on the ompation ofthe inverted lists have shown that the spae overhead indued by those words isnot signi�ant, and is abundantly payed for by the simpli�ation in the indexingproess and by the inreased exibility of the resulting index.The size of the voabulary deserves a partiular attention. It is intuitive thatit should be small, but more insight on its ardinality and struture must be a-quired in order to go into more omplex onsiderations regarding its ompressionand querying. An empirial law widely aepted in IR is the Heaps' Law [91℄,whih states that the voabulary of a text of n words is of size V = O(n�),where � is a small positive onstant depending on the text. As shown in [16℄, �is pratially between 0:4 and 0:6 so the voabulary needs spae proportional tothe square root of the indexed data. Hene for large data olletions the overheadof storing the voabulary, even in its extended form, is minimal. Classial imple-mentations of a set of words via hash tables and trie strutures seem appropriatefor exat word or pre�x word queries. As soon as the user aims for more ompli-ated queries, like approximate or regular-expression searhes, it is preferable tokeep the voabulary in its plain form as a vetor of words and then answer a userquery via one of the powerful san-based string-mathing algorithms urrentlyknown [148℄. The inrease in query time is payed for by the more ompliatedqueries the index is able to support.As we observed in the Introdution, spae saving is intimately related to timeoptimization in a hierarhial memory system, so that it turns out to be naturalto ask ourselves if, and how, ompression an help in voabulary storage andsearhing. From one hand, voabulary ompression might seem useless beauseof its small size; but from the other hand, any improvement in the voabularysearh-phase it is appealing beause the voabulary is examined at eah queryon all of its onstituting terms. Numerous sienti� results [9, 118, 82, 81, 184, 65,139, 108, 154, 178, 57, 140, 149, 106℄ have reently shown how to ompress a tex-tual �le and perform exat or approximate searhes diretly on the ompressedtext without passing through its whole deompression. This approah may be



10obviously applied to voabularies thus introduing two immediate improvements:it squeezes them to an extension that an be easily kept into internal memoryeven for large data olletions; it redues the amount of data examined duringthe query phase, and it fully exploits the proessing speed of urrent proessorswith respet to the bandwidth and aess time of internal memories, thus im-pating fruitfully onto the overall query performane. Experiments have shown aspeed up of a fator about two in query proessing and a redution of more thana fator three in spae oupany. Nonetheless the whole sanning of the om-pressed ditionary is a�orded, so that some room for query time improvementis still possible. We will be bak on this issue in Setion 4.Most of the spae usage of inverted indexes is devoted to the storage of theinverted lists; a proper implementation for them thus beomes urgent in orderto make suh an approah ompetitive against the other word-based indexingmethods: signature �les and bitmaps [188, 194℄. A large researh e�ort has beentherefore devoted to e�etively ompress the inverted lists still guaranteeinga fast sequential aess to their ontents. Three di�erent types of ompationapproahes have been proposed in the literature, distinguished aording to theauray to whih the inverted lists identify the loation of a voabulary term,usually alled granularity of the index. A oarse-grained index identi�es only thedouments where a term ours; an index of moderate-grain partitions the textsinto bloks and stores the blok numbers where a term ours; a �ne-grainedindex returns instead a sentene, a term number, or even the harater positionof every term in the text. Coarse indexes require less storage (less than 25%of the olletion size), but during the query phase parts of the text must besanned in order to �nd the exat loations of the query terms; also, with aoarse index multi-term queries are likely to give rise to insigni�ant mathes,beause the query terms might appear in the same doument but far from eahother. At the other extreme, a word-level indexing enables queries involvingadjaeny and proximity to be answered quikly beause the desired relationshipan be heked without aessing the text. However, adding preise loationalinformation expands the index of at least a fator of two or three, ompared witha doument-level indexing sine there are more pointers in the index and eahone requires more bits of storage. In this ase the inverted lists take nearly 60% ofthe olletion size. Unless a signi�ant fration of the queries are expeted to beproximity-based, or \snippets" ontaining text portions where the query termsour must be eÆiently visualized, then it is preferable to hoose a doument-level granularity; proximity and phrase-based queries as well snippet extrationan then be handled by a post-retrieval san.In all those ases the size of the resulting index an be further squeezed downby adopting a ompression approah whih is orthogonal to the previous ones.The key idea is that eah inverted list an be sorted in inreasing order, andtherefore the gaps between onseutive positions an be stored instead of theirabsolute values. Here an be used ompression tehniques for small integers.As the gaps for longer lists are smaller, longer lists an be ompressed betterand thus stop words an be kept without introduing a signi�ant overhead



11in the overall index spae. A number of suitable odes are desribed in detailin [188℄, more experiments are reported in [187℄. Golomb odes are suggestedas the best ones in many situations, e.g. TREC olletion, espeially when theintegers are distributed aording to a geometri law. Our experiene howeversuggests to use a simpler, yet e�etive, oding sheme whih is alled ontinuationbit and is urrently adopted in Altavista and Google searh engines for storingompatly their inverted lists. This oding sheme yields a byte-aligned andompat representation of an integer x as follows. First, the binary representationof x is partitioned into groups of 7 bits eah, possibly appending zeros to itsbeginning; then, one bit is appended to the front of eah group setting it toone for the �rst group and to zero for the other groups; �nally, the resultingsequene of 8-bit groups is alloated to a ontiguous sequene of bytes. Thebyte-aligning ensures fast deoding/enoding operations, whereas the tagging ofthe �rst bit of every byte ensures the fast detetion of odeword beginnings. Foran integer x, this representation needs blog2 x + 1=7 bytes; experiments showthat its overhead wrt Golomb odes is small, but the Continuation bit shemeis by far muh faster in deoding thus resulting the natural hoie whenever thespae issue is not a main onern. If a further spae overhead is allowed andqueries have to be speeded up, other integer oding approahes do exist. Amongthe others we ite the frequeny sorted index organization of [159℄, whih sortsthe posting lists in dereasing order of frequeny to failitate the immediateretrieval of relevant ourrenes, and the bloked index of [7℄ whih omputesthe gaps with respet to some equally-sampled pivots to avoid the deoding ofsome parts of the inverted lists during their intersetion at query time.There is another approah to index ompression whih enompasses all theothers beause it an be seen as their generalization. It is alled blok-addressingindex and was introdued in a system alled Glimpse some years ago [122℄. Therenewed interest toward it is due to some reent results [153, 75℄ whih haveshed new light on its struture and opened the door to further improvements.In this indexing sheme, the whole text olletion is divided into bloks of �xedsize; these bloks may span many douments, be part of a doument, or overlapdoument boundaries. The index stores only the blok numbers where eah vo-abulary term appears. This introdues two spae savings: multiple ourrenesof a voabulary term in a blok are represented only one, and few bits are neededto enode a blok number. Sine there are normally muh less bloks than dou-ments, the spae oupied by the index is very small and an be tuned aordingto the user needs. On the other hand, the index may by used just as a devieto identify some andidate bloks whih may ontain a query-sting ourrene.As a result a post-proessing phase is needed to �lter out the andidate blokswhih atually do not ontain a math (e.g. the blok spans two douments andthe query terms are spread in both of them). As in the doument-level indexingsheme, blok-addressing requires very little spae, lose to 5% of the olletionsize [122℄, but its query performane is modest beause of the postproessingstep and ritially depends on the blok size. Atually by varying the blok sizewe an make the blok-addressing sheme to range from oarse-grained to �ne-



12grained indexing. The smaller the blok size, the loser to a word-level index weare, the larger is the index but the faster is the query proessing. On the otherextreme, the larger is the blok size, the smaller is the spae oupany but thelarger is the query time. Finding a good trade-o� between these two quantitiesis then a matter of user needs; the analysis we ondut below is based on somereasonable assumptions on the distribution of the voabulary terms and the lin-guisti struture of the douments [20, 21℄. This allows us to argue about somepositive features of the blok-addressing sheme.The Heaps' law, introdued above, gives a bound on the voabulary size. An-other useful law related to the voabulary is the Zipf's Law [190℄ whih statesthat, in a text of n terms, the ith most frequent term appears n=(i�z) times,where � is a onstant that depends on the data olletion (typial [90℄ experi-mental values are in [1:7; 2:0℄) and z is a normalization fator. Given this model,it has been shown in [21℄ that the blok-addressing sheme may ahieve O(n0:85)spae and query time omplexity; notie that both omplexities are sublinear inthe data size.Apart from this analytial alulations, it is apparent that speeding up thepostproessing step (i.e. the sanning of andidate bloks) would impat on thequery performane of the index. This was the starting point of the fasinat-ing paper [153℄ whih investigated how to ombine in a single sheme: indexompression, blok addressing and sequential searh on ompressed text. In thispaper the speialized ompression tehnique of [140℄ is adopted to squeeze eahtext blok in less than 25% of its original size, and perform diret searhing onthe ompressed andidate bloks without passing through their whole deom-pression. The speialty of this ompression tehnique is that it is a variant ofthe Hu�man's algorithm with byte-aligned and tagged odewords. Its basi ideais to build a Hu�man tree with fan-out 128, so that the binary odewords havelength a multiple of 7 bits. Then these odewords are partitioned into groups of7 bits; to eah group is appended a bit that is set to 1 for the �rst group andto 0 for the others; �nally, eah 8-bit group is alloated to a byte. The result-ing odewords have many nie properties: (1) they are byte-aligned, hene theirdeoding is fast and requires very few shift/masking operations; (2) they aretagged, hene the beginning of eah odeword an be easily identi�ed; (3) theyallow exat pattern-mathing diretly over the ompressed blok, beause notagged odeword an overlap more then two tagged odewords; (4) they allowthe searh for more omplex patterns diretly on the ompressed bloks [140,153℄. The overall result is an improvement of a fator about 3 over well knowntools like Agrep [189℄ and Cgrep [140℄, whih operate on unompressed bloks.If we add to these interesting features the fat that the symbol table of thisHu�man's variant is atually the voabulary of the indexed olletion, then wemay onlude that this approah ouples perfetly well with the inverted-indexsheme.Figure 1 provides a pitorial summary of the blok-addressing struture. Wewill be bak on this approah in Setion 4 where we disuss and analyze a novel
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Fig. 1. The highlevel struture of the blok-addressing sheme.ompressed index for the andidate bloks whih has opened the door to furtherimprovements.2.1 Construting an inverted indexThis journey among the inverted index variations and results has highlightedsome of their positive features as well their drawbaks. It is lear that the stru-ture of the inverted index is suitable to be mapped in a two-level memory system,like the disk/memory ase. The voabulary an be kept in internal memory, itis usually small and random aesses must be performed on its terms in orderto answer the user queries; the inverted lists an be alloated on disk eah in aontiguous sequene of disk pages, thus fully exploiting the prefething/ahingapabilities of urrent disks during the subsequent gap-deoding operations. Inthis ase the performane of urrent proessors is suÆient to make transparentthe deoding ost with respet to the one inurred for fething the ompressedlists from the disk.There is however another issue whih has been not addressed in the previ-ous setions and o�ers some hallenging problems to be deal with. It onernswith the onstrution of the inverted lists. Here, the I/O-bottlenek an playa ruial role, and a na��ve algorithm might be unable to build the index evenfor olletions of moderate size. The use of in-memory data strutures of sizelarger than the atual internal memory and the non sequential aess to them,might experiene a so high paging ativity of the system to require one I/Oper operation ! EÆient methods have been presented in the literature [136,188℄ to allow a more eonomial index onstrution. From an high-level point ofview, they follow an algorithmi sheme whih realls to our mind the multiwaymergesort algorithm; however, the speialties of the problem make ompressiona key tool to redue the volume of proessed data and onstraint to reorganize



14the operations in order to make use of sequential disk-based proessing. For thesake of ompleteness we sketh here an algorithm that has been used to buildan inverted index over a multi-gigabyte olletion of texts within few tens ofmegabytes of internal memory and only a small amount of extra disk spae.The algorithm will be detailed for the ase of a doument-level indexing sheme,other extensions are possible and left to the reader as an exerise. The basis ofthe method is a proess that reates a �le of pairs hd; ti, where d is a doumentnumber and t is a term number. Initially the �le is ordered by inreasing d,then the �le is reordered by inreasing t using an in-plae multi-way externalmergesort. This sorting phase is then followed by an in-plae permutation of thedisk pages that olletively onstitute the inverted lists in order to store eah ofthem into a onseutive sequene of disk pages.In detail, the olletion is read in doument order and parsed into terms,whih will form the voabulary of the inverted index. A bounded amount ofinternal memory is set aside as a working bu�er. Pairs hd; ti are olleted intothe bu�er until it is full; after that, it is sorted aording to the term numbersand a run of disk pages is written to disk in a ompressed format (padding isused to get disk-page alignment). One all the olletion has been proessed,the resultant runs are ombined via a multiway merge: Just one blok of eahrun is resident in memory at any given time, and so the memory requirement ismodest. As the merge proeeds, output bloks are produed and written bak todisk (properly ompressed) to any available slot. Notie that there will be alwaysone slot available beause the reading (merging) proess frees the blok slots ata faster rate than the bloks onsumed by the writing proess. One all the runshave been exhausted, the index is omplete, but the inverted lists are spreadover the disk so that loality of referene is absent and this would slowdown thesubsequent query operations. An in-plae permutation is then used to reorderthe bloks in order to alloate eah inverted list into a ontiguous sequene ofdisk pages. This step is disk-intensive, but usually exeuted for a short amountof time. At the end a further pass on the lists an be exeuted to \re�ne"their ompression; any now-unused spae at the end of the �le an be released.Experimental results [188, 153℄ have shown that the amount of internal memorydediated to the sorting proess impats a lot, as expeted, on the �nal timeomplexity. Just to have an idea, a 5 Gb olletion an be inverted using aninternal memory spae whih is just the one required for the voabulary, and adisk spae whih is about 10% more than the �nal inverted lists, at an overallrate of about 300 Mb of text per hour [188℄. If more internal memory is reservedfor the sorting proess, then we an ahieve an overall rate of about 1 Gb of textper hour [153℄.2.2 Some open problems and future researh diretionsWe onlude this setion by addressing some other interesting questions whih,we think, deserve some attention and further investigation. First, we point outone hallenging feature of the blok-addressing sheme whih has been not yetfully exploited: the voabulary allows to turn approximate or omplex pattern



15queries on the text olletion into an exat searh for, possibly many, voabularyterms on the andidate bloks (i.e. the voabulary terms mathing the omplexuser query). This feature has been deployed in the solutions presented in [140,153℄ to speed up the whole sanning of the ompressed andidate bloks. Wepoint out here a di�erent perspetive whih may help in further improving thepostproessing phase. Indeed we might build a suint index that supports justexat pattern searhes on eah ompressed bloks, and then use it in ombina-tion with the blok-addressing sheme to support arbitrarily omplex patternsearhes. This index would gain powerful queries, redued spae oupany and,more importantly, a faster searh operation beause the ost of a andidate-bloksearhing ould be o(b). This would impat onto the overall index design andperformane. A proposal in this diretion has been pursued in [75℄, where it hasbeen shown that this novel approah ahieves both spae overhead and query timesublinear in the data olletion size independently of the blok size b. Conversely,inverted indies ahieve only the seond goal [188℄, and lassial blok-addressingshemes ahieve both goals but under some restritive onditions on the valueof b [21℄.Another interesting topi of researh onerns with the design of indies andmethods for supporting faster voabulary searhes on omplex pattern queries.Hashing or trie strutures are well suited to implement (pre�x)word queries butthey atually fail in supporting suÆx, substring or approximate word searhes.In these ases the ommon approah onsists of sanning the whole voabulary,thus inurring in a performane slowdown that prevents its use in searh en-gines aiming for a high throughput. Filtering methods [148℄ as well novel metriindexes [45℄ might possibly help in this respet but simple, yet e�etive, datastrutures with provable query bounds are still to be designed.We have observed that the blok-addressing sheme and gap-oding methodsare the most e�etive tools to squeeze the posting lists in a redued spae. Agap-oding algorithm ahieves the best ompression ratio if most of the di�er-enes are very small. Several authors [34, 35, 135℄ have notied that this ourswhen the doument numbers in eah posting list have high loality, and henethey designed methods to passively exploit this loality whenever present in theposting lists. A di�erent approah to this problem has been undertaken reentlyin [32℄ where the authors suggest to permute the doument numbers in order toatively reate the loality in the individual posting lists. The authors proposetherefore a hierarhial lustering tehnique whih is applied on the doumentolletion as a whole, using the osine measure as a basis of doument similar-ity. The hierarhial lustering tree is then traversed in preorder and numbersare assigned to the douments as they are enountered. The authors argue thatdouments that share many term lists should be lose together in the tree, andtherefore be labeled with near numbers. This idea was tested on the TREC-8data (disks 4 and 5, exluding the Congressional Reord), and showed a spaeimprovement of 14%. Di�erent similarity measures to build the hierarhial tree,as well di�erent lustering approahes whih possibly do not pass through the



16exploration of the omplete graph of all douments, onstitute good avenues forresearh.Another interesting issue is the exploitation of the large internal memory ur-rently available in our PCs to improve the query performane. A small frationof the internal memory is already used at run time to maintain the voabularyof the doument terms and thus to support fast word searhes in response to auser query. It is therefore natural to aim at using the rest of the internal memoryto ahe parts of the inverted index or the last query answers, in order to exploitthe referene and temporal loality ommonly present in the query streams [99,179℄ for ahieving improved query performane. Due to the ubiquitous use of in-verted lists in urrent web searh engines, and the ever inreasing amount of userqueries issued per day, the design of ahing methodologies suitable for inverted-indexing shemes is beoming a hot topi of researh. Numerous papers havebeen reently published on this subjet, see e.g. [173, 39, 125, 131, 101℄, whih of-fer some hallenging problems for further study: how the interplay between theretrieval and ranking phase impats on the ahing strategy, how the ompres-sion of inverted lists a�ets the behavior of ahing shemes, how to extend theahing ideas developed for stand-alone mahines to a distributed informationretrieval arhiteture [131, 183℄. We refer the reader to the latest WWW, VLDBand SIGMOD/PODS onferenes for keeping trak of this ative researh �eld.On the software development side, there is muh room for data struturaland algorithmi engineering as well ode tuning and library design. Here wewould like to point out just one of the numerous researh diretions whih en-ompasses the interesting XML language [2℄. XML is an extremely versatilemarkup language, apable of labeling the information ontent of diverse datasoures inluding strutured or semi-strutured douments, relational databasesand objet repositories. A query issued on XML douments might exploit intel-ligently their struture to manage uniformly all these kinds of data and to enrihthe preision of the query answers. Sine XML was ompleted in early 1998 bythe World Wide Web Consortium [2℄, it has spread through siene and indus-try, thus beoming a de fato standard for the publiation and interhange ofstrutured data over the Internet and amongst appliations. The turning pointis that XML allows to represent the semantis of data in a strutured, dou-mented, mahine-readable form. This has lead some researhers to talk about\semanti Web" in order to apture the idea of having data on the Web de�nedand linked in a way that an be used by mahines not just for display (fr.HTML), but for automation, integration, reuse aross various appliations and,last but not least, for performing \semanti searhes". This is nowadays a visionbut a huge number of people all around the world are working to its onretiza-tion. One of the most tangible results of this e�ort is the plethora of IR systemsspeialized today to work on XML data [116, 98, 27, 175, 6, 61, 129, 3, 52, 104, 18℄.Various approahes have been undertaken for their implementation but the mostpromising for exibility, spae/time eÆieny and omplexity of the supportedqueries is doubtless the one based on a \native" management of the XML dou-ments via inverted indexes [24, 151℄. Here the idea is to support strutured text



17queries by indexing (real or virtual) tags as distint terms and then answeringthe queries via omplex ombinations of searhes for words and tags. In thisrealm of solutions there is a lak of a publi, easily usable and ustomizablerepository of algorithms and data strutures for indexing and querying XMLdouments. We are urrently working in this diretion [78℄: at the present timewe have a C library, alled XCDE Library (XCDE stands for Xml CompressedDoument Engine) that provides a set of algorithms and data strutures forindexing and searhing an XML doument olletion in its \native" form. Thelibrary o�ers various features: state-of-the-art algorithms and data strutures fortext indexing, ompressed spae oupany, and novel suint data struturesfor the management of the hierarhial struture present into the XML dou-ments. Currently we are using the XCDE Library to implement a searh enginefor a olletion of Italian literary texts marked with XML-TEI. The XCDE Li-brary o�ers to a researher the possibility to investigate and experiment novelalgorithmi solutions for indexing and retrieval without being obliged to re-writefrom srath all the basi proedures whih onstitute the kernel of any lassiIR system.3 On the full-text indexesThe inverted-indexing sheme, as well any other word-based indexing method,is well suited to manage text retrieval queries on linguisti texts, namely textsomposed in a natural language or properly strutured to allow the identi�ationof \terms" that are the units upon whih the user queries will be formulated.Other assumptions are usually made to ensure an e�etive use of this indexingmethod: the text has to follow some statistial properties that ensure, for ex-ample, small voabulary size, short words, queries mostly onerning with rareterms and aiming at the retrieval of parts of words or entire phrases. Under theserestritions, whih are nonetheless satis�ed in many pratial user settings, theinverted indexes are the hoie sine they provide eÆient query performane,small spae usage, heap onstrution time, and allow the easy implementationof e�etive ranking tehniques.Full-text indexes, on the other hand, overome the limitations of the word-based indexes. They allow to manage any kind of data and support omplexqueries that span arbitrary long parts of them; they allow to draw statistisfrom the indexed data, as well make many kind of omplex text omparisonsand investigations: detet pattern motifs, auto-repetitions with and without er-rors, longest-repeated strings, et.. The full-text indexes may be learly appliedto lassial information retrieval, but they are less adeguate than inverted in-dexes sine their additional power omes at some ost: they are more expensiveto build and oupy signi�ant more spae. The real interest in those indexingdata strutures is motivated by some appliation settings where inverted in-dexes result unappropriate, or even unusable: Building an inverted index on allthe substrings of the indexed data would need quadrati spae ! The appliationswe have in mind are: genomi databases (where the data olletion onsists of



18DNA or protein sequenes), intrusion detetion (where the data are sequenesof events, log of aesses, along the time), oriental languages (where word delim-iters are not so lear), linguisti analysis of the text statistis (where the textsare omposed by words but the queries require omplex statistial elaborationsto detet plagiarism, for instane), Xpath queries in XML searh engines (wherethe indexed strings are paths into the hierarhial tree struture of an XML do-ument), and voabulary implementations to support exat or omplex patternsearhes (even the inverted indexes might bene�t of full-text indexes !).These fasinating properties and the powerful nature of full-text indexes arethe starting points of our disussion. To begin with we need some notations andde�nitions.For the inverted indexes we de�ned as index points the blok numbers, wordnumbers or word starts in the indexed text. In the ontext of full-text indexes anindex point is, instead, any harater position or, lassially, any position wherea text suÆx may start. In the ase of a text olletion, an index point is aninteger pair (j; i), where i is the starting position of the suÆx in the jth text ofthe olletion. In most urrent appliations, an index point is represented usingfrom 3 to 6 bytes, thus resulting independent on the atual length of the pointedsuÆx, and haraters are enoded as bit sequenes, thus allowing the uniformmanagement of arbitrary large alphabets.Let � be an arbitrarily large alphabet of haraters, and let # be a newharater larger than any other alphabet harater. We denote by lp(P;Q) thelongest ommon pre�x length of two strings P and Q, by max lp(P;S) thevalue max flp(P;Q) : Q 2 Sg, and by �L the lexiographi order between pairof strings drawn from �. Finally, given a text T [1; n℄, we denote by SUF (T ) thelexiographially ordered set of all suÆxes of text T .Given a pattern P [1; p℄, we say that there is an ourrene of P at the positioni of the text T , if P is a pre�x of the suÆx T [i; n℄, i.e., P = T [i; i+ p� 1℄. A keyobservation is that: Searhing for the ourrenes of a pattern P in T amountsto retrieve all text suÆxes that have the pattern P as a pre�x. In this respet,the ordered set SUF (T ) exploits an interesting property found by Manber andMyers [121℄: the suÆxes having pre�x P oupy a ontiguous part of SUF (T ).In addition, the leftmost (resp. rightmost) suÆx of this ontiguous part follows(resp. preedes) the lexiographi position of P (resp. P#) in the ordered setSUF (T ). To perform fast string searhes is then paramount to use a data stru-ture that eÆiently retrieves the lexiographi position of a string in the orderedset SUF (T ).As an example, let us set T = abababb and onsider the lexiographiallyordered set of all text suÆxes SUF (T ) = f1; 3; 5; 2; 4; 6; 7; 8g (indiated by meansof their starting positions in T ). If we have P = ab, its lexiographi positionin SUF (T ) preedes the �rst text suÆx T [1; 8℄ = abababb, whereas the lexio-graphi position of P# in SUF (T ) follows the �fth text suÆx T [5; 8℄ = abb.From Manber-Myers' observation (above), the three text suÆxes between T [1; 8℄and T [5; 8℄ in SUF (T ) are the only ones pre�xed by P and thus P ours in Tthree times at positions 1; 3 and 5. If we instead have P = baa, then both P



19and P# have their lexiographi position in SUF (T ) between T [5; 8℄ = abb andT [2; 8℄ = bababb, so that P does not our in T .The above de�nitions an be immediately extended to a text olletion � byreplaing SUF (T ) with the set SUF (�) obtained by merging lexiographiallythe suÆxes in SUF (S) for all texts S 2 �.3.1 SuÆx arrays and suÆx treesThe suÆx array [121℄, or the PAT-array [84℄, is an indexing data struture thatsupports fast substring searhes whose ost does not depend on the alphabet'ssize. A suÆx array onsists of an array-based implementation of the set SUF (T ).In the example above, the suÆx array SA equals to [1; 3; 5; 2; 4; 6; 7; 8℄. The searhin T for an arbitrary pattern P [1; p℄ exploits the lexiographi order present inSA and the two strutural observations made above. Indeed it �rst determinesthe lexiographi position of P in SUF (T ) via a binary searh with one level ofindiretion: P is ompared against the text suÆx pointed to by the examinedSA's entry. Eah pattern-suÆx omparison needs O(p) time in the worst ase,and thus O(p logn) time suÆes for the overall binary searh. In our example,at the �rst step P = ab is ompared against the entry SA[4℄ = 2, i.e. the2nd suÆx of T , and the binary searh proeeds within the �rst half of SA sineP �L T [2; 8℄ = bababb. After that the lexiographi position of P in SA has beenfound, the searh algorithm sans rightward the suÆx array until it enounterssuÆxes pre�xed by P . This takes O(p o) time in the worst ase, where o isthe number of ourrenes of P in T . In our example, the lexiographi positionof P is immediately before the �rst entry of SA, and there are three suÆxespre�xed by P sine P is not a pre�x of T [SA[4℄; 8℄ = T [2; 8℄ = bababb.Of ourse the true behavior of the searh algorithm depends on how manylong pre�xes of P our in T . If there are very few of suh long pre�xes, then itwill rarely happen that a pattern-suÆx omparison in a binary-searh step takes�(p) time, and generally the O(p logn) bound is quite pessimisti. In \random"strings this algorithm requires O(p+logn) time. This latter bound an be foredto hold in the worst ase too, by adding an auxiliary array, alled Lp array,and designing a novel searh proedure [121℄. The array Lp stores the longest-ommon-pre�x information between any two adjaent suÆxes of SUF (T ), thusit has the same length of SA. The novel searh proedure still proeeds via abinary searh, but now a pattern-suÆx omparison does not start from the �rstharater of the ompared strings but it takes advantage of the omparisonsalready exeuted and the information available in the Lp array. However, sinepratitioners prefer simpliity and spae-ompation to time-eÆieny guaran-tee, this faster but spae-onsuming algorithm is rarely used in pratie. From apratial point of view, suÆx arrays are a muh spae-eÆient full-text indexingdata struture beause they store only one pointer per indexed suÆx (i.e. usually3 bytes suÆe). Nonetheless suÆx arrays are pretty muh stati and, in ase oflong text strings, the ontiguous spae needed for storing them an beome tooonstraining and may indue poor performane in an external-memory setting.In fat, SA an be easily mapped onto disk by stuÆng �(B) suÆx pointers per



20page [84℄, but in this ase the searh bound is O( pB log2N + oB ) I/Os, and it ispoor in pratie beause all of these I/Os are random.To remedy this situation [23℄ proposed the use of supra-indies over the suÆxarray. The key idea is to sample one out of b suÆx array entries (usually b = �(B)and one entry per disk page is sampled), and to store the �rst ` haraters of eahsampled suÆx in the supra-index. This supra-index is then used as a �rst step toredue the portion of the suÆx array where the binary searh is performed. Suha redution impats favorably on the overall number of random I/Os requiredby the searh operation. Some variations on this theme are possible, of ourse.For example the supra-index does not need to sample the suÆx array entries at�xed intervals, and it does not need to opy in memory the same number ` ofsuÆx haraters from eah sampled suÆx. Both these quantities might be setaording to the text struture and the spae available in internal memory forthe supra-index. It goes without saying that if the sampled suÆxes are hosen tostart at word boundaries and entire words are opied into the supra-index, theresulting data struture turns out to be atually an inverted index. This showsthe high exibility of full-text indexing data strutures that, for a proper settingof their parameters, boil down eventually to the weaker lass of word-basedindexes.On the other extreme, the smaller is the sampling step, the larger is thememory requirement for the supra-index, and the faster is the searh opera-tion. Sampling every suÆx would be fabulous for query performane but thequadrati spae oupany would make this approah una�ordable. Atually ifa ompated trie is used to store all the suÆxes, we end up into the most famous,elegant, powerful and widely employed [15, 88℄ full-text indexing data struture,known as the suÆx tree [128℄. Eah ar of the suÆx tree is labeled with a textsubstring T [i; j℄, represented via the triple (T; i; j), and the sibling ars are or-dered aording to their �rst haraters, whih are distint (see Figure 2). Thereare no nodes having only one hild exept possibly the root and eah node hasassoiated the string obtained by onatenating the labels found along the down-ward path from the root to the node itself. By appending the speial harater# to the text, the leaves have a one-to-one orrespondene to the text suÆxes,eah leaf stores a di�erent suÆx and their rightward sanning gives atually thesuÆx array. It is an interesting exerise to design an algorithm whih goes fromthe suÆx array and the Lp array to the suÆx tree in linear time.SuÆx trees are also augmented by means of some speial node-to-node point-ers, alled suÆx links [128℄, whih turn out to be ruial for the eÆieny ofomplex searhes and updates. The suÆx link from a node storing a nonemptystring, say aS for a harater a, leads to the node storing S and this node alwaysexists. There an be �(j�j) suÆx links leading to a suÆx-tree node beause wean have one suÆx link for eah possible harater a 2 �. SuÆx trees requirelinear spae and are sometimes alled generalized suÆx trees when built upon atext olletion � [10, 89℄. SuÆx trees, and ompated tries in general, are veryeÆient in searhing an arbitrary pattern string beause the searh is diretedby the pattern itself along a downward tree path starting from the root. This



21
ab

a
b

b
c

a
b

b
c

b
c

b
c

a
b

b
c

c

b
c

a
b
b
c

4 6 7

1

8

0

2

1 3

4

(T,1,2)

(T,3,4)

(T,5,8) (T,7,8)

3(T,7,8)

5 2

(T,5,8)

(T,1,2)

(T,7,8)

(T,1,2)

(T,2,2)
(T,1,2)

v

4 7

1

8

0

6

(a)

2

1 3

4
3

5 2

v

(b)Fig. 2. (a) The suÆx tree for string T = \abababb". We have that node v spells outthe string `abab'. The substrings are represented by triples to oupy onstant spae,eah internal node stores the length of its assoiated string, and eah leaf stores thestarting position of its orresponding suÆx. For our onveniene, we illustrate in (b)the suÆx tree showed in (a) by expliitly writing down the string T [i; j℄ represented bythe triple (T; i; j). The endmarker # is not shown. Reading the leaves rightward we getthe suÆx array of T .gives a searh time proportional to the pattern length, instead of a logarithmibound as it ourred for suÆx arrays. Hene searhing for the o ourrenesof a pattern P [1; p℄ as a substring of �'s texts requires O(p log j�j+ o) time.Inserting a new text T [1;m℄ into � or deleting an indexed text from � takesO(m log j�j) time. The struture of a suÆx tree is rih of information so thatstatistis on text substrings [15℄ and numerous types of omplex queries [88, 148℄an be eÆiently implemented.Sine the suÆx tree is a powerful data struture, it would seem appropriateto use it in external memory. To our surprise, however, suÆx trees loose theirgood searhing and updating worst-ase performane when used for indexinglarge text olletions that do not �t into internal memory. This is due to thefollowing reasons:a. SuÆx trees have an unbalaned topology that is text-dependent beause theirinternal nodes are in orrespondene to some repeated substrings. Conse-quently, these trees inevitably inherit the drawbaks pointed out in sien-ti� literature with regard to paging unbalaned trees in external memory.There are some good average-ase solutions to this problem that group �(B)nodes per page under node insertions only [109, Set.6.2.4℄ (deletions makethe analysis extremely diÆult [182℄), but they annot avoid storing a down-ward path of k nodes in 
(k) distint pages in the worst ase.b. Sine the outdegree of a node an be �(j�j), its pointers to hildren mightnot �t into O(1) disk pages so they would have to be stored in a separateB-tree. This auses an O(logB j�j) disk aess overhead for eah branh outof a node both in searhing and updating operations.



22. Branhing from a node to one of its hildren requires further disk aessesin order to retrieve the disk pages ontaining the substring that labels thetraversed ar.d. Updating suÆx trees under string insertions or deletions [10, 89℄ requiresthe insertion or deletion of some nodes in their unbalaned struture. Thisoperation inevitably relies on merging and splitting disk pages in order tooupy �(NB ) of them. This approah is very expensive: splitting or merginga disk page an take O(Bj�j) disk aesses beause �(B) nodes an movefrom one page to another. The �(j�j) suÆx links leading to eah movednode must be redireted and they an be ontained in di�erent pages.Hene we an onlude that, if the text olletion � is stored on disk, thesearh for a pattern P [1; p℄ as a substring of �'s texts takes O(p logB j�j+ o)worst-ase disk aesses (aording to Points a{). Inserting an m-length textin � or deleting an m-length text from � takes O(mBj�j) disk aesses in theworst-ase (there an be �(m) page splits or merges, aording to point (d)).From the point of view of average-ase analysis, suÆx tree and ompatedtrie performanes in external memory are heuristi and usually on�rmed byexperimentation [14, 132, 144, 59, 13℄. The best result to date is the CompatPAT-tree [49℄. It is a suint representation of the (binary) Patriia tree [137℄,it oupies about 5 bytes per suÆx and requires about 5 disk aesses to searhfor a pattern in a text olletion of 100Mb. The paging strategy proposed tostore the Compat PAT-tree on disk is a heuristi that ahieves only 40% pageoupany and slow update performane [49℄. From the theoretial point of view,pattern searhes require O( hpp + logpN) I/Os, where h is the Patriia tree'sheight; inserting or deleting a text in � osts at least as searhing for all of itssuÆxes individually. Therefore this solution is attrative only in pratie and forstati textual arhives. Another interesting implementation of suÆx trees hasbeen proposed in [112℄. Here the spae oupany has been on�ned between 10and 20 bytes per text suÆx, assuming a text shorter than 227 haraters.3.2 Hybrid data struturesAlthough suÆx arrays and ompated tries present good properties, none ofthem is expliitly designed to work on a hierarhy of memory levels. The simplepaging heuristis shown above are not aeptable when dealing with large textolletions whih extensively and randomly aess the external storage deviesfor both searhing or updating operations. This is the reason why various re-searhers have tried to properly ombine these two approahes in the light of theharateristis of the urrent hierarhy of memory levels. The result is a familyof hybrid data strutures whih an be divided into two large sublasses.One sublass ontains data strutures that exploit the no longer negligiblesize of the internal memory of urrent omputers by keeping two indexing levels:one level onsists of a ompated trie (or a variant of it) built on a subset of thetext suÆxes and stored in internal memory (previously alled supra-index); theother level is just a plain suÆx array built over all the suÆxes of the indexed



23text. The trie is used to route the searh on a small portion of the suÆx array,by exploiting the eÆient random-aess time of internal memory; an external-memory binary searh is subsequently performed on a restrited part of the suÆxarray, so identi�ed, thus requiring a redued number of disk aesses. Variousapproahes to suÆx sampling have been introdued in the literature [50, 102, 144,11℄, as well various trie oding methods have been employed to stu� as muhsuÆxes as possible into internal memory [23, 13, 59, 105℄. In all these ases theaim has been to balane the eÆient searh performane of ompated tries withthe small spae oupany of suÆx arrays, taking into aount the limited spaeavailable into internal memory. The result is that: (1) the searh time is fasterthan in suÆx arrays (see e.g. [23, 11℄) but it is yet not optimal beause of thebinary searh on disk, (2) the updates are slow beause of the external-memorysuÆx array, and (3) slightly more spae is needed beause of the internal-memorytrie.The seond sublass of hybrid data strutures has been obtained by properlyombining the B-tree data struture [51℄ with the e�etive routing properties ofsuÆx arrays, tries or their variants. An example is the Pre�x B-tree [28℄ thatexpliitly stores pre�xes of the indexed suÆxes (or indexed strings) as routinginformation (they are alled separators) into its internal nodes. This design hoieposes some algorithmi onstraints. In fat the updates of Pre�x B-trees areomplex beause of the presene of arbitrarily long separators, whih requirerealulations and possibly trigger new expansions/ontrations of the B-treenodes. Various works have investigated the splitting of Pre�x B-tree nodes whendealing with variable length keys [28, 115℄ but all of them have been faed withthe problem of hoosing a proper splitting separator. For these reasons, whileB-trees and their basi variants are among the most used data strutures forprimary key retrieval [51, 109℄, Pre�x B-trees are not a ommon hoie as full-text indies beause their performane is known to be not eÆient enough whendealing with arbitrarily long keys or highly dynami environments.3.3 The string B-tree data strutureThe String B-tree [71℄ is a hybrid data struture introdued to overome thelimitations and drawbaks of Pre�x B-trees. The key idea is to plug a Patriiatree [137℄ into the nodes of the B-tree, thus providing a routing tool that eÆ-iently drives the subsequent searhes and, more importantly, oupies a spaeproportional to the number of indexed strings instead of their total length. TheString B-tree ahieves optimal searh bounds (in the ase of an unbounded al-phabet) and attrative update performane. In pratie it requires a negligible,guaranteed, number of disk aesses to searh for an arbitrary pattern string ina large text olletion, independent of the harater distribution. We now reallthe main ideas underlying the String B-tree data struture. For more theoretialdetails we refer the reader to [71℄, for a pratial analysis we refer to [70℄ andSetion 3.4.String B-trees are similar to B+-trees [51℄, the keys are pointers to the stringsin SUF (�) (i.e. to suÆxes of �'s strings), they reside in the leaves and some
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Fig. 3. An illustrative example depiting a String B-tree built on a set � of DNAsequenes. �'s strings are stored in a �le separated by speial haraters, here denotedwith blak boxes. The triangles labeled with PT depit the Patriia trees stored intoeah String B-tree node. The �gure also shows in bold the String B-tree nodes traversedby the searh for a pattern P = \CT 00. The irled pointers denote the suÆxes, one perlevel, expliitly heked during the searh; the pointers in bold, in the leaf level, denotethe �ve suÆxes pre�xed by P and thus the �ve positions where P ours in �.opies of these keys are stored in the internal nodes for routing the subsequenttraversals. The order between any two keys is the lexiographi order amongthe orresponding pointed strings. The novelty of the String B-tree is that thekeys in eah node are not expliitly stored, so that they may be of arbitrarylength. Only the string pointers are kept into the nodes, organized by meansof a Patriia tree [137℄ whih ensures small overhead in routing string searhesor updates, and oupies spae proportional to the number of indexed stringsrather than to their total length.We denote by SBT� the string B-tree built on the text olletion �, and weadopt two onventions: there is no distintion between a key and its orrespond-ing pointed string; eah disk page an ontain up to 2b keys, where b = �(B)is a parameter depending on the atual spae oupany of a node (this will



25be disussed in Setion 3.4). In detail, the strings of SUF (�) are distributedamong the String B-tree nodes as shown in Figure 3. SUF (�) is partitionedinto groups of at most 2b strings eah (exept the last group whih may ontainfewer strings) and every group is stored into a leaf of SBT� in suh a way thatthe left-to-right sanning of these leaves gives the ordered set SUF (�) (i.e. thesuÆx array of �). Eah internal node � has n(�) hildren, with b2 � n(�) � b(exept the root whih has from 2 to b hildren). Node � also stores the stringset S� formed by opying the leftmost and the rightmost strings ontained ineah of its hildren. As a result, set S� onsists of 2n(�) strings, node � hasn(�) = �(B) hildren, and thus the height of SBT� is O(logB N) where N isthe total length of �'s strings, or equivalently, the ardinality of SUF (�).The main advantage of String B-trees is that they support the standardB-tree operations, now, on arbitrary long keys. Sine the String B-tree leavesform a suÆx array on SUF (�), the searh for a pattern string P [1; p℄ in SBT�must identify foremost the lexiographi position of P among the text suÆxesin SUF (�), and thus, among the text pointers in the String B-tree leaves. Onethis position is known, all the ourrenes of P as a substring of �'s stringsare given by the onseutive pointers to text suÆxes whih start from thatposition and have P as a pre�x (refer to the observation on suÆx arrays, inSetion 3). Their retrieval takes O((p=B)o) I/Os, in ase of a brute-fore mathbetween the pattern P and the heked suÆxes; or the optimal O(o=B) I/Os, ifsome additional information about the longest-ommon-pre�x length shared byadjaent suÆxes is kept into eah String B-tree leaf. In the example of Figure 3the searh for the pattern P = \CT 00 traes a downward path of String B-treenodes and identi�es the lexiographi position of P into the fourth String B-treeleaf (from the left) and before the 42th text suÆx. The pattern ourrenes arethen retrieved by sanning the String B-tree leaves from that position until the32th text suÆx is enountered, beause it is not pre�xed by P . The text positionsf42; 20; 13; 24; 16g denote the �ve ourrenes of P as a substring of �'s texts.Therefore the eÆient implementation of string searhes in String B-treesboils down to the eÆient routing of the pattern searh among the String B-treenodes. In this respet it is lear that the way a string set S�, in eah traversednode �, is organized plays a ruial role. The innovative idea in String B-treesis to use a Patriia tree PT� to organize the string pointers in S� [137℄. Patriiatrees preserve the searhing power and properties of ompated tries, althoughin a redued spae oupany. In fat PT� is a simpli�ed trie in whih eahar label is replaed by only its �rst harater. See Figure 4 for an illustrativeexample.When the String B-tree is traversed downward starting from the root, thetraversal is routed by using the Patriia tree PT� stored in eah visited node�. The goal of PT� is to help �nding the lexiographi position of the searhedpattern P in the ordered set S� . This searh is a little bit more ompliated thanthe one in lassial tries (and suÆx trees), beause of the presene of only oneharater per ar label, and in fat onsists of two stages:



26{ Trae a downward path in PT� to loate a leaf l whih points to an interestingstring of S� . This string does not neessarily identify P 's position in S�(whih is our goal), but it provides enough information to �nd that positionin the seond stage (see Figure 4). The retrieval of the interesting leaf lis done by traversing PT� from the root and omparing the haraters ofP with the single haraters whih label the traversed ars until a leaf isreahed or no further branhing is possible (in this ase, hoose l to be anydesendant leaf from the last traversed node).{ Compare the string pointed by l with P in order to determine their longestommon pre�x. A useful property holds [71℄: the leaf l stores one of thestrings in S� that share the longest ommon pre�x with P . The length `of this ommon pre�x and the mismath harater P [`+ 1℄ are used in twoways: �rst to determine the shallowest anestor of l spelling out a stringlonger than `; and then, to selet the leaf desending from that anestorwhih identi�es the lexiographi position of P in S� .An illustrative example of a searh in a Patriia tree is shown in Figure 4 for apattern P = \GCACGCAC 00 . The leaf l found after the �rst stage is the seondone from the right. In the seond stage, the algorithm �rst omputes ` = 2 andP [` + 1℄ = A; then, it proeeds along the leftmost path desending from thenode u, sine the 3rd harater on the ar leading to u (i.e. the mismath G) isgrater than the orresponding pattern harater A. The position reahed by thistwo-stage proess is indiated in Figure 4, and results the orret lexiographiposition of P among S�'s strings.We remark here that PT� requires spae linear in the number of strings ofS�, therefore the spae usage is independent of their total length. Consequently,the number of strings in S� an be properly hosen in order to be able to �t PT�in the disk page alloated for �. An additional nie property of PT� is that itallows to �nd the lexiographi position of P in S� by exploiting the informationavailable in �'s page and by fully omparing P with just one of the strings in S�.This learly allows to redue the number of disk aesses needed in the routingstep. By ounting the number of disk aesses required for searhing P [1; p℄ inthe strings of �, and realling that �'s strings have overall length N , we getthe I/O-bound O( pB logB N). In fat, SBT� has height O(logB N), and at eahtraversed node � we may need to fully ompare P against one string of S� thustaking O( pB + 1) disk aesses.A further re�nement to this idea is possible, thought, by observing that wedo not neessarily need to ompare the two strings, i.e. P and the andidatestring of S�, starting from their �rst harater but we an take advantage of theomparisons exeuted on the anestors of �, thus skipping some harater om-parisons and reduing the number of disk aesses. An inremental aountingstrategy allows to prove that O( pB + logB N) disk aesses are indeed suÆient,and this bound is optimal in the ase of an unbounded alphabet. A more om-plete analysis and desription of the searh and update operations is given in [71℄where it is formally proved the following:
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Fig. 4. An example of Patriia tree built on a set of k = 7 DNA strings drawn fromthe alphabet � = fA;G;C; Tg. Eah leaf points to one of the k strings; eah internalnode u (they are at most k � 1) is labeled with one integer len(u) whih denotes thelength of the ommon pre�x shared by all the strings pointed by the leaves desendingfrom u; eah ar (they are at most 2k � 1) is labeled with only one harater (alledbranhing harater). The haraters between square-brakets are not expliitly stored,and denote the other haraters labeling a trie ar.Theorem 1. String B-trees support the searh for all the o ourrenes ofan arbitrary pattern P [1; p℄ in the strings of a set � taking O(p+oB + logB N)disk aesses, where N is the overall length of �'s strings. The insertion or thedeletion of an m-length string in/from the set � takes O(m logB(N +m)) diskaesses. The required spae is �(NB ) disk pages.As a orollary, we get a result whih points out the String B-tree as ane�etive data struture also for ditionary appliations.Corollary 1. String B-trees support the searh for all the o ourrenes ofan arbitrary pattern P [1; p℄ as a pre�x of the K strings in a set � takingO(p+oB + logBK) disk aesses. The insertion or the deletion of an m-lengthstring in/from the set � takes O(mB + logBK) disk aesses. The spae usage ofthe String B-tree is �(KB ) disk pages, whereas the spae oupied by the stringset � is �(NB ) disk pages.



28 Some authors have suessfully used String B-trees in other settings: multi-dimensional pre�x-string queries [97℄, onjuntive boolean queries on two sub-strings [72℄, ditionary mathing problems [73℄, distributed searh engines [74℄,indexing of XML texts [54℄. All of these appliations show the exibility of thisdata struture, its eÆieny in external memory, and foretell engineered im-plementations beause up to now String B-trees have been on�ned mainly tothe theoretial realm perhaps beause of their spae oupany: the best knownimplementation uses about 12 bytes per indexed suÆx [70℄. Given this bottle-nek, less I/O-eÆient but spae heaper data strutures have been preferred inpratie (e.g. supra-indexes [23℄). In the next setion we try to overome thislimitation by proposing a novel engineered version of String B-trees suitable forpratial implementations.3.4 Engineering the String B-treeString B-trees have the harateristis that their height dereases exponentiallyas b's value inreases (with �xed N). The value of b is stritly related to thenumber of strings ontained in eah node � beause b � jS� j � 2b. If the diskpage size B inreases, we an store more suÆxes in S� . However, sine B istypially hosen to be proportional to the size of a disk page, we need a tehniquethat maximizes jS�j for a �xed disk page size B.The spae oupany of a String B-tree node � is evaluated as the sum ofthree quantities:1. The amount of auxiliary and bookkeeping information neessary to node �.This is pratially negligible and, hereafter, it will not be aounted for.2. The amount of spae needed to store the pointers to the hildren of �. Thisquantity is absent for the leaves; in the ase of internal nodes, usually a4-byte pointer suÆes.3. The amount of spae required to store the pointers to the strings in S�and the assoiated mahinery PT�. This spae is highly implementationdependent, so deserves an aurate disussion.Let us therefore onentrate on the amount of spae required to store S�and PT�. This is determined by three kinds of information: (i) the Patriia treetopology, (ii) the integer values kept into the internal nodes of PT� (denoted bylen), and (iii) the pointers to the strings in S�. The na��ve approah to implement(i{iii) is to use expliit pointers to represent the parent-hild relationships in PT�and the strings in S�, and alloate 4 bytes for the len values. Although simpleand eÆient in supporting searh and update operations, this implementationindues an unaeptable spae oupany of about 24 bytes per string of S� !The literature about spae-eÆient implementations of Patriia trees is huge butsome \pruning" of known results an be done aording to the features of ourtrie enoding problem. Hash-based representation of tries [58℄, although elegantand suint, an be disarded beause they do not have guaranteed performanein time and spae, and they are not better than lassial tries on small string



29sets [5, 31℄, as it ours in our S�'s sets. List or array-based implementations ofPatriia trees adopting path and/or level ompression strategies [13, 12, 157℄ arespae onsuming and e�etive mainly on random data.More appealing for our purposes is a reent line of researh pioneered by [96℄and extended by other authors [143, 144, 49, 107, 117℄ to the suint enoding ofPatriia trees. Their main idea is to suintly enode the Patriia tree topologyand then use some other data strutures to properly enode the other informa-tion, like the string pointers (kept into the leaves) and the len values (kept intothe internal nodes). The general poliy is therefore to handle the data and thetree struture separately. This enables to ompress the plain data using any ofthe known methods (see e.g. [188℄) and independently �nd an eÆient odingmethod for the tree struture irrespetive of the form and ontents of the dataitems stored in its nodes and leaves.In the original implementation of String B-trees [70℄, the shape of PT� wassuintly enoded via two operations, alled ompress and unompress. Theseoperations allow to go from a Patriia tree to a binary sequene, and vie versa,by means of a preorder traversal of PT�. Although spae eÆient and simple,this enoding is CPU-intensive to be updated or searhed, so that a small pagesize of B = 1 kilobytes was hosen in [70℄ to balane the CPU-ost of nodeompression/unompression and the I/O-ost of the update operations (see [70℄for details). Here we propose a novel enoding sheme that surprisingly throwsaway the Patriia tree topology, keeps just the string pointers and the len values,and is still able to support pattern searhes in a onstant number of I/Os pervisited String B-tree node. As a result, the asymptoti I/O-bounds stated inTheorem 1 still hold with a signi�ant spae improvement in the onstants hiddenin the big-Oh notation.The starting point is the beautiful result of [69℄ that we briey reall here. Letus be given a lexiographially ordered array of string pointers, alled SP , andthe array of longest-ommon-pre�xes shared by strings adjaent in SP , alledLp. We an look at SP and Lp as the sequene of string pointers and lenvalues enountered in an inorder traversal of the Patriia tree PT� stored into agiven String B-tree node �. Now, let us assume that we wish to route the searhfor a pattern P [1; p℄ through node �, we then need to �nd the lexiographiposition of P in SP sine it indexes S�. We might implement that searh via thelassial binary searh proedure on suÆx arrays within a logarithmi numberof I/Os (see Setion 3.1). The result in [69℄ shows instead that it is enough toexeute only one string aess, few more �(p+ k) bit omparisons and one fullsan of the arrays Lp and SP . Of ourse this new algorithm is una�ordableon large arrays, but this is not our ontext of appliation: the string set S�atually onsists of few thousands of items (stored in one disk page), and thearrays SP and Lp reside in memory when the searh is performed (i.e. thedisk page has been fethed). Hene the searh is I/O-heap in that it requiresjust one sequential string aess, it is CPU-e�etive beause the array-san anbene�t from the reading-ahead poliy of the internal ahe, and is spae eÆientbeause it avoids the storage of PT�'s topology.



30 Let us therefore detail the searh algorithm whih assumes a binary patternP and onsists of two phases (see [69℄ for the uneasy proof of orretness). Inthe �rst phase, the algorithm sans rightward the array SP and indutivelykeeps x as the position of P in this array (initially x = 0). At a generi step iit omputes ` = Lp[i℄, as the mismathing position between the two adjaentstrings SP [i℄ and SP [i+ 1℄. Notie that the `th bit of the string SP [i℄ is surely0, whereas the `th bit of the string SP [i+1℄ is surely 1 beause they are binaryand lexiographially ordered. Hene the algorithm sets x = i+1 and inrementsi if P [`℄ = 1; otherwise (i.e. P [`℄ = 0), it leaves x unhanged and inrements iuntil it meets an index i suh that Lp[i℄ < `. Atually, in this latter ase thealgorithm is jumping all the sueeding strings whih have the `th bit set to 1(sine P [`℄ = 0). The �rst phase ends when i reahes the end of SP ; it is possibleto prove that SP [x℄ is one of the strings in SP sharing the longest ommon pre�xwith P . In the illustrative example of Figure 5, we have P = \GCACGCAC 00and oded its haraters in binary; the �rst phase ends by omputing x = 4. Theseond phase of the searh algorithm initiates by omputing the length `0 of thelongest ommon pre�x between P and the andidate string SP [x℄. If SP [x℄ = Pthen it stops, otherwise the algorithm starts from position x a bakward sanningof SP if P [`0 + 1℄ = 0 or a forward sanning if P [`0 + 1℄ = 1. This san searhesfor the lexiographi position of P in SP and proeeds until is met the positionx0 suh that Lp[x0℄ < `0. The searhed position lies between the two stringsSP [x0℄ and SP [x0 + 1℄. In the example of Figure 5, it is `0 = 4 (in bits) andP [5℄ = 0 (the �rst bit of A's binary ode); hene SP is sanned bakward fromSP [4℄ for just one step sine Lp[3℄ = 0 < 4 = `0. This is the orret position ofP among the strings indexed by SP .Notie that the algorithm needs to aess the disk just for fething the stringSP [x℄ and omparing it against P . Hene O(p=B) I/Os suÆe to route P throughthe String B-tree node �. An inremental aounting strategy, as the one devisedin [71℄, allows to prove that we an skip some harater omparisons and thereforerequire O(p+oB + logB N) I/Os to searh for the o ourrenes of a patternP [1; p℄ as a substring of �'s strings. Preliminary experiments have shown thatsearhing few thousands of strings via this approah needs about 200�s, whihis negligible ompared to the 5:000�s required by a single I/O on modern disks.Furthermore, the inremental searh allows sometimes to avoid the I/Os neededto aess SP [x℄ !Some improvements to this idea are still possible both in time and spae.First, we an redue the CPU-time of searh and update operations by adoptinga sort of supra-index on SP de�ned as follows. We deompose the array SP(and hene Lp) into sub-arrays of size �(log2 jSP j). The rightmost string ofeah subarray is stored in a pointer-based Patriia tree. This way, the (sampled)Patriia tree is used to determine the subarray ontaining the position of thesearhed pattern; then the searh proedure above is applied to that subarrayto �nd the orret position of P into it. The overall time omplexity is O(p)to traverse the Patriia tree, and O(p + log2 jSP j) to explore the reahed sub-array. Notie also that only two strings in SP are aessed on disk. The data
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Fig. 5. The arrays SP and Lp omputed on the Patriia tree of Figure 4. The arraySkip is derived from the array Lp by subtrating its adjaent entries. The Skips andLps are expressed in bits.struture is dynami and every insertion or deletion of an m-length string takesO(m + log2 jSP j) time and only two string aesses to the disk. The resultingdata struture turns out to be simple, its onstrution from srath is fast andthus split/merge operations on String B-tree nodes should be e�etive if PT� isimplemented in this way.We point out that due to the sequential aess to the array Lp, a furtherspae saving is possible. We an ompatly enode the entries of array Lp byrepresenting only their di�erenes. Namely, we use a novel array Skip in whiheah value denotes the di�erene between two onseutive Lp's entries (i.e.Skip[i℄ = Lp[i℄�Lp[i� 1℄, see Figure 5). Various experimental studies on thedistribution of the Skips over standard text olletions have shown that mostof them (about 90% [177℄) are small and thus they are suitably represented viavariable-length odes [49, 132℄. We suggest the use of the ontinuation bit ode,desribed in Setion 2, beause of two fats: the string sampling at the internal



32nodes of SBT� and the results in [177℄ drives us to onjeture small skips andthus one byte oding for them; furthermore, this oding sheme is simple to beprogrammed, indues byte-aligned odes and hene it is CPU eÆient.We onlude this setion by observing that up to now we assumed the textolletion � to be �xed. In a real-life ontext, we should expet that new textsare added to the olletion and old texts are removed from it. While handlingdeletions is not really a problem as we have a plethora of tools inherited fromstandard B-trees, implementing the addition of a new text requires deisely newtehniques. This asymmetry between deletion and insertion is better understoodif we observe that the insertion of a new text T [1;m℄ into� requires the insertionof all of its m suÆxes fT [1;m℄; T [2;m℄; : : : ; T [m;m℄g into the lexiographiallyordered set SUF (�). Consequently, the dominant ost is due to the omparisonof all haraters in eah text suÆx that may sum up to �(m2). Sine T anbe as large as m = 106 haraters (or even more), the resanning of the textharaters might be a omputational bottlenek. On the other hand, the deletionof a text T [1;m℄ from � onsists of a sequene of m standard deletions of T 'ssuÆx pointers, and hene an exploit standard B-tree tehniques.The approah proposed in [71℄ to avoid the \resanning" in text insertion ismainly theoretial in its avor and onsiders an augmented String B-tree wheresome pointers are added to its leaves. The ounterpart for this I/O improvementis that a larger spae oupany is needed and, when rebalaning the String B-tree, the rediretion of some of these additional pointers may ause the exeutionof random I/Os. Therefore, it is questionable if this approah is really attrativefrom a pratial point of view. Starting from these onsiderations [70℄ proposedan alternative approah based on a bathed insertion of the m suÆxes of T .This approah exploits the LRU bu�ering strategy of the underlying operatingsystem and proves e�etive in the ase of a large m. In the ase of a small m adi�erent approah must be adopted whih is based on the suÆx-array mergingproedure presented in [84℄: a suÆx array SA is built for T , together with its Lparray; the suÆx array SA� on the suÆxes in SUF (�) is instead derived fromthe leaves of SBT� within O(N=B) I/Os. The merge of SA and SA� (and theirorresponding Lp arrays) gives the new set of String B-tree leaves, the internalnodes are onstruted within O(N=B) I/Os via the simple approah devised inSetion 3.3. Even if the merging of the two suÆx arrays an be dramatiallyslow in theory, sine every suÆx omparison might require one disk aess, theharater distribution of real text olletions makes the Lp arrays very helpfuland allows to solve in pratie most of the suÆx omparisons without aessingthe disk. A throughtful sperimentation of these approahes is still needed tovalidate suh empirial onsiderations.3.5 String B-tree onstrutionThe eÆient onstrution of full-text indexes on very large text olletions is ahot topi: \We have seen many papers in whih the index simply `is', withoutdisussion of how it was reated. But for an indexing sheme to be useful it



33must be possible for the index to be onstruted in a reasonable amount of time,....." [193℄. The onstrution phase may be, in fat, a bottlenek that an preventthese powerful indexing tools to be used even in medium-sale appliations.Known onstrution algorithms are very fast when employed on textual data that�t in the internal memory of omputers [121, 165, 112, 124℄ but their performaneimmediately degrades when the text size beomes so large that the texts mustbe arranged on (slow) external storage devies. In the previous setion we haveaddressed the problem of updating the String B-tree under the insertion/deletionof a single text. Obviously those algorithms annot be adopted to onstrut fromsrath the String B-tree over a largely populated text olletion beause theywould inur in an enormous amount of random I/Os. In this setion we desribe�rst an eÆient algorithm to build the suÆx array SA� for a text olletion �of size N , and then present a simple algorithm whih derives the String B-treeSBT� from this array in O(N=B) I/Os. For further theoretial and experimentalresults on this interesting topi we refer the reader to [66, 55, 165, 84℄.How to build SA�. As shown in [55℄, the most attrative algorithm forbuilding large suÆx arrays is the one proposed in [84℄ beause it requires only4 bytes of working spae per indexed suÆx, it aesses the disk mostly in asequential manner and it is very simple to be programmed. For the simpliity ofpresentation, let us assume to onatenate all the texts in � into just one singlelong text T of length N , and let us onentrate on the onstrution of the suÆxarray SAT of T . The transformation from SAT to SA� is easy and left to thereader as an exerise.The algorithm omputes inrementally the suÆx array SAT in �(N=M)stages. Let ` < 1 be a positive onstant �xed below, and assume to set a param-eter m = `M whih, for the sake of presentation, divides N . This parameter willdenote the size of the text piees loaded in memory at eah stage.The algorithm maintains at eah stage the following invariant: At the begin-ning of stage h, with h = 1; 2; : : : ; N=m, the algorithm has stored on the disk anarray SAext ontaining the sequene of the �rst (h � 1)m suÆxes of T orderedlexiographially and represented via their starting positions in T .During the hth stage, the algorithm inrementally updates SAext by properlyinserting into it the text suÆxes whih start in the substring T [(h�1)m+1; hm℄.This preserves the invariant above, thus ensuring that after all the N=m stages,it is SAext = SAT . We are therefore left with showing how the generi hth stageworks.In the hth stage, the text substring T [(h�1)m+1; hm℄ is loaded into internalmemory, and the suÆx array SAint ontaining only the suÆxes starting in thattext substring is built. Then, SAint is merged with the urrent SAext in twosteps with the help of a ounter array C[1;m+ 1℄:1. The text T is sanned rightwards and the lexiographi position pi of eahtext suÆx T [i; N ℄, with 1 � i � (h�1)m, is determined in SAint via a binarysearh. The entry C[pi℄ is then inremented by one unit in order to reordthe fat that T [i; N ℄ lexiographially lies between the SAint[pi � 1℄-th andthe SAint[pi℄-th suÆx of T .



342. The information kept in the array C is employed to quikly merge SAintwith SAext: entry C[j℄ indiates how many onseutive suÆxes in SAextfollow the SAint[j� 1℄-th text suÆx and preede the SAint[j℄-th text suÆx.This implies that a simple disk san of SAext is suÆient to perform suh amerging proess.At the end of these two steps, the invariant on SAext has been properlypreserved so that h an be inremented and the next stage an start orretly.Some omments are in order at this point. It is lear that the algorithm proeedsby mainly exeuting two disk sans: one is performed to load the text pieeT [(h � 1)m + 1; hm℄ in internal memory, the other disk san is performed tomerge SAint and SAext via the ounter array C. However, the algorithm mightinur in many I/Os: either when SAint is built or when the lexiographi positionpi of eah text suÆx T [i; N ℄ within SAint has to be determined. In both these twoases, we may need to ompare a pair of text suÆxes whih share a long pre�x notentirely available in internal memory (i.e., it extends beyond T [(h�1)m+1; hm℄).In the pathologial ase T = aN , the omparison between two text suÆxes takesO(N=M) bulk I/Os so that: O(N log2m) bulk I/Os are needed to build SAint;the omputation of C takes O(hN log2m) bulk I/Os; whereasO(h) bulk I/Os areneeded to merge SAint with SAext. No random I/Os are exeuted, and thus theglobal number of bulk I/Os is O((N3 log2M)=M2). The total spae oupanyis 4N bytes for SAext and 8m bytes for both C and SAint; plus m bytes to keepT [(h� 1)m+1; hm℄ in internal memory (the value of ` is derived onsequently).The merging step an be easily implemented using some extra spae (indeedadditional 4N bytes are suÆient), or by employing just the spae alloated forSAint and SAext via a more triky implementation.Sine the worst-ase number of total I/Os is ubi, a purely theoretial anal-ysis would lassify this algorithm not muh interesting. But there are some on-siderations that are ruial to shed new light on it, and look at this algorithmfrom a di�erent perspetive. First of all, we must observe that, in pratial situa-tions, it is very reasonable to assume that eah suÆx omparison �nds in internalmemory all the (usually, onstant number of) haraters needed to ompare thetwo involved suÆxes. Consequently, the pratial behavior is more reasonably de-sribed by the formula: O(N2=M2) bulk I/Os. Additionally, in the analysis aboveall I/Os are sequential and the atual number of random seeks is O(N=M) (i.e.,at most a onstant number per stage). Consequently, the algorithm takes fullyadvantage of the large bandwidth of urrent disks and of the high CPU-speedof the proessors [162, 164℄. Moreover, the redued working spae failitates theprefething and ahing poliies of the underlying operating system and �nally,a areful look to the algebrai alulations shows that the onstants hidden inthe big-Oh notation are very small. A reent result [55℄ has also shown how tomake it no longer questionable at theoretial eyes by proposing a modi�ationthat ahieves eÆient performane in the worst ase.From SA� to SBT�. The onstrution of SA� an be oupled with theomputation of the array Lp� ontaining the sequene of longest-ommon-pre�x lengths (lp) between any pair of adjaent suÆxes. Given these two arrays,



35the String B-tree for the text olletion � an be easily derived proeeding in abottom-up fashion. We split SA� into groups of about 2b suÆx pointers eah (asimilar splitting is adopted on the array Lp�) and use them to form the leavesof the String B-tree. That requires sanning SA� and Lp� one. For eah leaf� we have its string set S� and its sequene of lps, so that the onstrution ofthe Patriia tree PT� takes linear time and no I/Os.After the leaf level of the String B-tree has been onstruted, we proeed tothe next higher level by determining new string and lp sequenes. For this, wesan rightward the leaf level and take the leftmost string L(�) and the rightmoststring R(�) from eah leaf �. This gives the new string sequene whose lengthis a fator �(1=B) smaller than the sequene of strings stored in the leaf level.Eah pair of adjaent strings is either a L(�)=R(�) pair or a R(�)=L(�0) pair(derived from onseutive leaves � and �0). In the former ase, the lp of thetwo strings is obtained by taking the minimum of all the lps stored in �; in thelatter ase, the lp is diretly available in the array Lp� sine R(�) and L(�0)are ontiguous there. After that the two new sequenes of strings and lps havebeen onstruted, we repeat the partitioning proess above thus forming a newlevel of internal nodes of the String B-tree. The proess ontinues for O(logB N)iterations until the string sequene has length smaller than 2b; in that asethe root of the String B-tree is formed and the onstrution proess stopped.The implementation is quite standard and not fully detailed here. Preliminaryexperiments [70℄ have shown that the time taken to build a String B-tree fromits suÆx array is negligible with respet to the time taken for the onstrutionof the suÆx array itself. Hene we refer the reader to [55℄ for the latter timings.We onlude this setion by observing that if we aim for optimal I/O-boundsthen we have to resort a suÆx tree onstrution method [66℄ expliitly designedto work in external memory. The algorithm is too muh sophistiated to bedetailed, we therefore refer the reader to the orresponding literature and, just,point out here that the two arrays SA� and Lp� an be obtained from thesuÆx tree by means of an inorder traversal. It an be shown that all these stepsrequire sorting and sequential disk-san proedures, thus aounting for overallO((N=B) logM=B(N=B)) I/Os [66℄.3.6 String vs suÆx sortingThe onstrution of full-text indexes involves the sorting of the suÆxes of theindexed text olletion. Sine a suÆx is a string of arbitrary length, we would bedriven to onlude that suÆx sorting and string sorting are \similar" problems.This is not true beause, intuitively, the suÆxes partiipating to the sortingproess share so long substrings that some I/Os may be possibly saved whenomparing them, and indeed this saving an be ahieved as shown theoretiallyin [66℄. Conversely [17℄ showed that sorting strings on disk is not nearly as simpleas it is in internal memory, and introdued a bunh of sophistiated, determinis-ti string-sorting algorithms whih ahieve I/O-optimality under some onditionson the string-omparison model. In this setion we present a simpler random-ized algorithm that omes lose to the I/O-optimal omplexity, and surprisingly



36mathes the O(N=B) linear I/O-bound under some reasonable onditions on theproblem parameters.Let K be the number of strings to be sorted, they are arbitrarily long, and letN be their total length. For the sake of presentation, we introdue the notationn = N=B; k = K=B and m = M=B. Sine algorithms do exist that math the
(K log2K + N) lower bound for string sorting in the omparison model, itseems reasonable to expet that the omplexity of sorting strings in externalmemory is �(k logm k + n) I/Os. But any na��ve algorithm does not even omelose to meet this I/O-bound. In fat, in internal memory a trie data struturesuÆes to ahieve the optimal omplexity; whereas in external-memory the useof the powerful String B-tree ahieves O(K logBK+n) I/Os. The problem hereis that strings have variable length and their brute-fore omparisons over thesorting proess may indue a lot of I/Os. We aim at speeding up the stringomparisons, and we ahieve this goal by shrinking the long strings via an hashingof some of their piees. Sine hashing does not preserve the lexiographi order,we will orhestrate the seletion of the string piees to be hashed with a arefullydesigned sorting proess so that the orret sorted order may be eventuallyomputed. Details follow, see Figure 6 for the pseudoode of this algorithm.We illustrate the behavior of the algorithm on a running example and thensketh a proof of its orretness. Let S be a set of six strings, eah of length 10. InFigure 8 these strings are drawn vertially, divided into piees of L = 2 haraterseah. The hash funtion used to assign names to the L-piees is depited inFigure 7. We remark that L� 2 log2K in order to ensure, with high probability,that the names of the (at most 2K) mismathing L-piees are di�erent. Oursetting L = 2 is to simplify the presentation.Figure 8 illustrates the exeution of Steps 1{4: from the naming of the L-piees to the sorting of the -strings and �nally to the identi�ation of the mis-mathing names. We point out that eah -string in C has atually assoiated apointer to the orresponding S's string, whih is depited in Figure 8 below everytable; this pointer is exploited in the last Step 8 to derive the sorted permutationof S from the sorted table T . Looking at Figure 8(iii), we interestingly note thatC is di�erent from the sorted set S (in C the 4th string of S preedes its 5thstring !), and this is due to the fat that the names do not reet of ourse thelexiographi order of their original string piees. The subsequent steps of thealgorithm are then designed to take are of this apparent disorder by driving the-strings to their orretly-ordered positions.Step 6 builds the logial table T by substituting marked names with theirranks (assigned in Step 5 and detailed in Figure 7), and the other names withzeros. Of ourse this transformation is lossy beause we have lost a lot of -stringharaters (e.g. the piee b whih was not marked), nonetheless we will showbelow that the aneled haraters would have not been ompared in sortingthe S's strings so that their evition has not impat on the �nal sorting step.Figure 9(i-ii) shows how the forward and bakward sanning of table T �lls someof its entries that got zeros in Step 6. In partiular Step 7(a) does not hangetable T , whereas Step 7(b) hanges the �rst two olumns. The resulting table T



37Input: A set S of K strings, whose total length is N (bits)Output: A sorted permutation of S1. Every string of S is partitioned into piees of L bits eah. L is hosen to be muhlarger than 2 log2K.2. Compute for eah string piee a name, i.e. a bit string of length 2 log2K, by meansof a proper hash funtion. Eah string of S is then ompressed by replaing L-piees with their orresponding names. The resulting set of ompressed strings isdenoted with C, and its elements are alled -strings.3. Sort C via any known external-memory sorting algorithm (e.g. Mergesort).4. Compute the longest ommon pre�x between any pair of -strings adjaent in (thesorted) C and mark the (at most two) mismathing names. Let lpx be the numberof names shared by the xth and the (x+ 1)th string of C.5. San the set C and ollet the (two) marked names of eah -string together withtheir orresponding L-piees. Sort these string piees (they are at most 2K) andassign a rank to eah of them| equal piees get the same rank. The rank isrepresented with 2 log2K bits (like the names of the string piees), possibly paddingthe most signi�ant digits with zeros.6. Build a (logial) table T by mapping -strings to olumns and names of L-piees totable entries: T [a; b℄ ontains the ath name in the bth -string of C. Subsequently,transform T 's entries as follows: replae the marked names with their orrespondingranks, and the other names with a bit-sequene of 2 log2K zeros. If the -stringshave not equal length, pad logially them with zeros. This way names and ranksare formed by the same number of bits, -strings have the same length, and their(name or rank) piees are orretly aligned.7. Perform a forward and bakward pass through the olumns of T as follows:(a) In the rightward pass, opy the �rst lpx�1 entries of the (x� 1)th olumn ofT into the subsequent xth olumn, for x = 2; :::; K. The mismathing namesof the xth olumn are not overridden.(b) In the leftward pass, opy the �rst lpx entries of the (x+ 1)th olumn of Tinto the xth olumn, for x = K � 1; ::::; 1.8. The olumns of T are sorted via any known external-memory sorting algorithm(e.g. Mergesort). From the bijetion: string $ -string $ olumn; we derive thesorted permutation of S.Fig. 6. A randomized algorithm for sorting arbitrary long strings in external memory.L-piee name rankaa 6 1ab 1 2bb 4 3b 2 -a 5 4b 3 5 7 6Fig. 7. Names of all L-piees and ranks of the marked L-piees. Notie that the L-pieeb has no rank beause it has been not marked in Step 4.



38 ab bb ab bb aa abab b ab b bb b a b   aab aa aa  bb bab bb bb aa aa ab1 2 3 4 5 6i. Step 1
1 4 1 4 6 11 2 1 2 4 72 5 2 7 7 63 6 6 7 4 21 4 4 6 6 11 2 3 4 5 6ii. Step 2

1 1 1 4 4 61 1 7 2 2 42 2 6 5 7 73 6 2 6 7 41 4 1 4 6 61 3 6 2 4 5iii. Steps 3{5Fig. 8. Strings are written from the top to the bottom of eah table olumn. (i) Stringsare divided into piees of 2 hars eah. (ii) Eah L-piee is substituted with its nametaken from the (hash) table of Figure 7. (iii) Columns are sorted and mismathingnames between adjaent olumns are underlined.is �nally sorted to produe the orret sequene of string pointers 5,3,1,6,2,4(Figure 9(iii)).0 0 2 3 3 10 2 6 0 0 00 0 0 4 6 05 1 0 0 0 00 0 0 0 0 01 3 6 2 4 5i. Step 6 and 7(a)
2 2 2 3 3 12 2 6 0 0 00 0 0 4 6 05 1 0 0 0 00 0 0 0 0 01 3 6 2 4 5ii. Step 7(b)

1 2 2 2 3 30 2 2 6 0 00 0 0 0 4 60 1 5 0 0 00 0 0 0 0 05 3 1 6 2 4iii. Step 8Fig. 9. (i) The rightward pass through table T . (ii) The leftward pass through tableT . (iii) The sorted T .As far as the I/O-omplexity is onerned, we let sort(�; �) denote theI/O-ost of sorting � strings of total length � via multiway Mergesort, atu-ally sort(�; �) = O( �B logm �B ). Sine the string set S is sequentially storedon disk, Steps 1-2 take O(n) I/Os. Step 3 sorts K -strings of total lengthN 0 = �(N(2 log2K)L + K), where the seond additive term aounts for thosestrings whih are shorter than L, thus requiring sort(K;N 0) I/Os. Step 4 markstwo names per -string, so Step 5 requires sort(2K; 2KL) I/Os. Table T onsistsof K olumns of total length N 0 bits. Hene, the forward and bakward sanningof Step 7 takes O(N 0=B) I/Os. Sorting the olumns of table T takes sort(K;N 0)I/Os in Step 8. Summing up we haveTheorem 2. The randomized algorithm detailed in Figure 6 sorts K strings oftotal length N in sort(K;N 0 + 2KL) + n expeted I/Os.By setting L = �(logm n log2K), the ost is O(n + k(logm n)2 log2K)I/Os. Moreover if it is K � N=(log2m n log2K), i.e. the average string length ispolylogarithmi in n, then the total sorting ost results the optimal O(n) I/Os.It goes without saying that if one replaes the mismathing names with theiroriginal L-piees (instead of their ranks), it would still get the orret lexio-



39graphi order but it would possibly end up in the same I/O-ost of lassialmergesort: in the worst ase, Step 7 expands all entries of T thus resorting to astring set of size N !The argument underlying the proof of orretness of this algorithm is nontrivial. The key point is to prove that given any pair of strings in S, the or-responding olumns of T (i.e. -strings of C) ontain enough information afterStep 7 that the olumn omparison in Step 8 reets their orret lexiographiorder. For simpliity we assume to use a perfet hash funtion so that di�erentL-piees get di�erent names in Step 2.Let � and � be any two -strings of C and assume that they agree up to theith name (inluded). After C is sorted (Step 3), � and � are possibly separated bysome -strings whih satisfy the following two properties: (1) all these -stringsagree at least up to their ith name, (2) at least two adjaent -strings amongthem disagree at their (i + 1)th name. Aording to Step 6 and Property (1),the olumns in T orresponding to � and � will initially get zeros in their �rsti entries; aording to Step 6 and Property (2) at least two olumns between�'s and �'s ones will get a rank value in their (i + 1)th entry. The leftmostof these ranks equals the rank of the (i + 1)th name of �; the rightmost ofthese ranks equals the rank of the (i+ 1)th name of �. After Step 7, the �rst ientries of �'s and �'s olumns will be �lled with equal values; and their (i+1)thentry will ontain two distint ranks whih orretly reet the two L-pieesoupying the orresponding positions. Hene the omparison exeuted in Step 8between these two olumns gives the orret lexiographi order between the twooriginal strings. Of ourse this argument holds for any pair of -strings in C, andthus overall for all the olumns of T . We an then onlude that the stringpermutation derived in Step 8 is the orret one.3.7 Some open problems and future researh diretionsAn important advantage of String B-trees is that they are a variant of B-treesand onsequently most of the tehnologial advanes and know-how aquired onB-trees an be smoothly applied to them. For example, split and merge strate-gies ensuring good page-�ll ratio, node bu�ering tehniques to speed up searhoperations, B-tree distribution over multi-disk systems, as well adaptive overowtehniques to defer node splitting and B-tree re-organization, an be applied onString B-trees without any signi�ant modi�ation. Surprisingly enough, thereare no publily available implementations of the String B-tree, whereas somesoftwares are based on it [54, 97, 110℄. The novel ideas presented in this paperforetell an engineered, publily available implementation of this data struture.In partiular, it would be worth to design a library for full-text indexing largetext olletions based on the String B-tree data struture. This library shouldbe designed to follow the API of the Berkeley DB [181℄, thus failitating its usein well-established appliations. The String B-tree ould also be adopted as themain searh engine for genomi databases thus ompeting with the numerousresults based on suÆx trees reently appeared in the literature [88, 46, 103, 133,



40126℄. Another setting where an implementation of the String B-tree ould �nda suessful use is the indexing of the tagged struture of an XML doument.Reent results [52, 47, 4℄ adopt a Patriia tree or a SuÆx tree to solve and/orestimate the seletivity of strutural queries on XML douments. However theyare fored to either summarize the trie struture, in order to �t it into the inter-nal memory, or to propose disk-paging heuristis, in order to ahieve reasonableperformane. Unfortunately these proposals [52℄ forget the advanements in thestring-mathing literature and thus inevitably inur into the well-known I/Obottlenek deeply disussed in Setion 3.1. Of ourse String B-trees might besuessfully used here to manage in an I/O-eÆient manner the arbitrary longXML paths in whih an XML doument an be parsed, as well provide a betterahing behavior for the in-memory implementations.The problem of multi-dimensional substring searh, i.e. the searh for thesimultaneous ourrene of k substrings, deserves some attention. The approahproposed in [72℄ provides some insights into the nature of two-dimensional queries,but what an we say about multi-dimensions ? Can we ombine the String B-treewith some known multi-dimensional data struture [172, 86℄ in order to ahieveguaranteed worst-ase bounds ? Or, an we design a full-text index whih al-lows proximity queries between two substrings [120, 72℄ ? More study is worthto be devoted to this important subjet beause of its ubiquitous appliationsto databases, data mining and searh engines.When dealing with word-based indexes, we addressed the doument listingproblem: given a word-based query w �nd all the douments in the indexedolletion that ontain w. Conversely when dealing with full-text indexes, weaddressed the ourrene listing problem: given an arbitrary pattern string P�nd all the doument positions where P ours. Although more natural from anappliation-spei� point of view, the doument listing problem has surprisinglyreeived not muh attention from the algorithmi ommunity in the area of full-text indexes, so that eÆient (optimal) solutions are yet missing for many of itsvariants. Some papers [127, 145℄ have reently initiated the study of hallengingvariations of the doument listing problem and solved them via simple and ef-�ient algorithms. Improving these approahes, as well extending these resultsto multiple-pattern queries and to external-memory setting turns out to be astimulating diretion of researh.Exat searhes are just one side of the oin, probably the tool with the nar-rowest setting of appliation ! The design of searh engines for approximateor similarity string searhes is beoming more urgent beause of the doubt-less theoretial interest and the numerous appliations in the �eld of genomidatabases, audio/video olletions and textual databases, in general. Signi�antbiologial breakthroughs have already been ahieved in genome researh basedon the analysis of similar geneti sequenes, and the algorithmi �eld is over-ooding of results in this setting [148℄. However most of these similarity-basedor approximate-mathing algorithms require the whole san of the data olle-tion thus resulting muh ostly in the presene of a large amount of string dataand user queries. Indexes for approximate, or similarity, searhes turn out to



41be the holy grail of the Information Retrieval �eld. Several proposals have ap-peared in the literature and it would be impossible to omment the speialtiesof, or even list, all of them. Just to have an idea, a searh for \(approximate ORsimilarity) AND (index OR searh)" returned on Altavista more than 500,000mathes. To guide ourselves in this jungle of proposals we state the followingonsideration: \it is not yet known an index whih eÆiently routes the searhto the orret positions where an approximate/similar string ourrene lies".Most of the researh e�ort has been devoted to design �lters: they transform theapproximate/similarity pattern searh into another string or geometri queryproblem for whih eÆient data strutures are known. The transformation is ofourse \not perfet" beause it introdues some false positive mathes that mustbe then �ltered out via a (ostly) san-based algorithm. The more �ltration isahieved by the index, the smaller is the part on whih the approximate/similarsan-based searh is applied, the faster is the overall algorithmi solution. Thekey point therefore relies on the design of a good distane-preserving transfor-mation.Some approahes transform the approximate searh into a set of q-gramexat searhes, then solved via known full-text indexes [185, 40, 155, 100, 160,41℄. Other approahes map a string onto a multi-dimensional integral pointvia a wavelet-based transformation and then use multi-dimensional geometristrutures to solve the transformed query [103℄. Reently a more sophistiateddistane-preserving transformation has been introdued in [146, 53℄ whih mapsa string into a binary vetor suh that the hamming distane between two ofthese vetors provides a provably good approximation of the (blok) edit dis-tane between the two original strings. This way an eÆient approximate nearest-neighbor data struture (see e.g. [95, 113℄) an be used to searh over these multi-dimensional vetors and ahieve guaranteed good average-ase performane. No-tie that this solution applies on whole strings; its pratial performane has beentested over genomi data in [147℄.It goes without saying that in the plethora of results about omplex patternsearhes a speial plae is oupied by the solutions based on suÆx trees [88, 152,126, 93℄. The suÆx-tree struture is well suitable to perform regular expressions,approximate or similarity-based searhes but at an average-time ost whih maybe exponential in the pattern length or polynomial in the text length [148℄.Although some reent papers [93, 171, 126℄ have investigated the e�etiveness ofthose results onto genomi databases, their usefulness remains limited due tothe I/O bottleneks inurred by the suÆx tree both in the onstrution phaseand for what onerns their spae oupany (see Setion 3.1). Perhaps theadaptation of these omplex searhing algorithms to the String B-tree mightturn into appealing these approahes also from a pratial perspetive.As a �nal remark, we mention that the tehniques for designing �lteringindexes are not limited to genomi or textual databases, but they may be used toextend the searh funtionalities of relational and objet-oriented databases, e.g.provide a support to approximate string joins [85℄. This shows a new interestingdiretion of researh for pattern-mathing tools.



42 In Setion 2.1 we addressed the problem of ahing inverted indexes for im-proving their query time under biased operations. This issue is hallenging overall the indexing shemes and it beomes partiularly diÆult in the ase of full-text indexes beause of their ompliated struture. For example, in the aseof a suÆx tree its unbalaned tree struture asks for an alloation of its nodesto disk pages, usually alled paking, that optimizes the ahe performane forsome pattern of aesses to the tree nodes. This problem has been investigatedin [83℄ where an algorithm is presented that �nds an optimal paking with re-spet to both the total number of di�erent pages visited in the searh and thenumber of page faults inurred. It is also shown that �nding an optimal pakingwhih minimizes also the spae oupany is, unfortunately, NP-omplete and aneÆient approximation algorithm is presented. These results deal with a statitree, so that it would be interesting to explore the general situation in whih thedistribution of the queries is not known in advane, hanges over the time, andnew strings are inserted or deleted from the indexed set. A preliminary insight onthis hallenging question has been ahieved in [48℄. There a novel self-adjustingfull-text index for external memory has been proposed, alled SASL, based ona variant of the Skip List data struture [161℄. Usually a skip list is turnedinto a self-adjusting data struture by promoting the aessed items up its levelsand demoting ertain other items down its levels [62, 141, 130℄. However all of theknown approahes fail to work e�etively in an external-memory setting beausethey lak loality of referene and thus eliit a lot of random I/Os. A tehnialnovelty of SASL is a simple randomized demotion strategy that, together witha doubly-exponential grouping of the skip list levels, guides the demotions andguarantees loality of referene in all the updating operations; this way, frequentitems get to remain at the highest levels of the skip list with high probability, ande�etive I/O-bounds are ahieved on expetation both for the searh and updateoperations. SASL furthermore ensures balanedness without expliit weight onthe data struture; its update algorithms are simple and guarantee a good useof disk spae; in addition, SASL is with high probability no worse than StringB-trees on the searh operations but an be signi�antly better if the sequeneof queries is highly skewed or hanges over the time (as most transations doin pratie). Using SASL over a sequene of m string searhes Si1 ; Si2 ; : : : ; Simtakes O(Pmj=1 � jSij jB �+Pni=1(ni logB mni )) expeted I/Os, where ni is the num-ber of times the string Si is queried. The �rst term is a lower bound for sanningthe query strings; the seond term is the entropy of the query sequene and isa standard information-theoreti lower bound. This is atually an extension ofthe Stati Optimality Theorem to external-memory string aess [180℄.In the last few years a number of models and tehniques have been devel-oped in order to make it easier to reason about multi-level hierarhies [186℄.Reently in [80℄ it has been introdued the elegant ahe-oblivious model, thatassumes a two-level view of the omputer memory but allows to prove resultsfor an unknown multilevel memory hierarhy. Cahe oblivious algorithms aredesigned to ahieve good memory performane on all levels of the memory hi-erarhy, even though they avoid any memory-spei� parameterization. Several



43basi problems| e.g. matrix multipliation, FFT, sorting [80, 36℄| have beensolved optimally, as well irregular and dynami problems have been reentlyaddressed and solved via eÆient ahe-oblivious data strutures [29, 37, 30℄. Inthis researh ow turns out hallenging the design of a ahe oblivious trie be-ause we feel that it would probably shed new light on the indexing problem: itis not lear how to guarantee ahe obliviousness in a setting where items arearbitrarily long and the size of the disk page is unknown.4 Spae-time tradeo� in index designA leitmotiv of the previous setions has been the following: Inverted indexes o-upy less spae than full-text indexes but are limited to eÆiently support poorersearh operations. This is a frequent statement in text indexing papers and talks,and it has driven many authors to onlude that the inreased query power offull-text indexes has to be paid by additional storage spae. Although this ob-servation is muh frequent and apparently established, it is hallenging to askourselves if it is provable that suh a tradeo� does exist when designing an index.In this ontext ompression appears as an attrative tool beause it allows notonly to squeeze the spae oupany but also to improve the omputing speed.Indeed \spae optimization is losely related to time optimization in a disk mem-ory" [109℄ beause it allows a better use of the fast and small memory levels loseto CPU (i.e. L1 or L2 ahes), redues the disk aesses, virtually inreases thedisk bandwidth, and omes at a negligible ost beause of the signi�ant speedof urrent CPUs. It is therefore not surprising that IBM has reently installedon the eServers x330 a novel memory hip (based on the Memory eXpansionTehnology [94℄) that stores data in a ompressed form thus ensuring a perfor-mane similar to the one ahieved by a server with double real memory but, ofourse, at a muh lower ost. All these onsiderations have driven developers tostate that it is more eonomial to store data in ompressed form than unom-pressed, so that a renewed interest in ompression tehniques raised within thealgorithmi and IR ommunities.We have already disussed in Setion 2 the use of ompression in word-basedindex design, now we address the impat of ompression onto full-text indexdesign.Compression may of ourse operate at the text level or at the index level, orboth. The simplest approah onsists of ompressing the text via a lexiographi-preserving ode [92℄ and then build a suÆx array upon it [138℄. The improvementin spae oupany is however negligible sine the index is muh larger than thetext. A most promising and sophistiated diretion was initiated in [143, 144℄with the aim of ompressing the full-text index itself. These authors showed howto build a suÆx-tree based index on a text T [1; n℄ within n log2 n + O(n) bitsof storage and support the searh for a pattern P [1; p℄ in O(p+ o) worst-asetime. This result stimulated an ative researh on suint enodings of full-textindexes that ended up with a breakthrough [87℄ in whih it was shown thata suint suÆx array an be built within �(n) bits and an support pattern



44searhes in O( plog2 n + o log� n) time, where � is an arbitrarily small positiveonstant. This result has shown that the apparently \random" permutation ofthe text suÆxes an be suintly oded in optimal spae in the worst ase [60℄.In [168, 169℄ extensions and variations of this result| e.g. an arbitrary largealphabet| have been onsidered.The above index, however, uses spae linear in the size of the indexed olle-tion and therefore it results not yet ompetitive against the word-based indexes,whose spae oupany is usually o(n) (see Setion 2). Real text olletions areompressible and thus a full-text index should desiderably exploit the repeti-tiveness present into them to squeeze its spae oupany via a muh suintoding of the suÆx pointers.The �rst step toward the design of a truly ompressed full-text index ensur-ing e�etive searh performane in the worst ase has been reently pursuedin [75℄. The novelty of this approah resides in the areful ombination of theBurrows-Wheeler ompression algorithm [42℄ with the suÆx array data stru-ture thus designing a sort of ompressed suÆx array. It is atually a self-indexingtool beause it enapsulates a ompressed version of the original text inside theompressed suÆx array. Overall we an say that the index is opportunisti inthat, although no assumption on a partiular text distribution is made, it takesadvantage of the ompressibility of the indexed text by dereasing the spaeoupany at no signi�ant slowdown in the query performane. More preisely,the index in [75℄ oupies O(n Hk(T ))+o(n) bits of storage, where Hk(T ) is thek-th order empirial entropy of the indexed text T , and supports the searh foran arbitrary pattern P [1; p℄ as a substring of T in O(p+ o log� n) time.In what follows we sketh the basi ideas underlying the design of this om-pressed index, hereafter alled FM-index [75℄, and we briey disuss some exper-imental results [77, 76℄ on various text olletions. These experiments show thatthe FM-index is ompat (its spae oupany is lose to the one ahieved bythe best known ompressors), it is fast in ounting the number of pattern our-renes, and the ost of their retrieval is reasonable when they are few (i.e. in aseof a seletive query). As a further ontribution we briey mention an interestingadaptation of the FM-index to word-based indexing, alled WFM-index. Thisresult highlights further on the interplay between ompression and index design,as well the reent plot between word-based and full-text indexes: everything ofthese worlds must be deeply understood in order to perform valuable researhin this topi.4.1 The Burrows-Wheeler transformLet T [1; n℄ denote a text over a �nite alphabet �. In [42℄ Burrows and Wheelerintrodued a new ompression algorithm based on a reversible transformation,now alled the Burrows-Wheeler Transform (BWT from now on). The BWTpermutes the input text T into a new string that is easier to ompress. The BWTonsists of three basi steps (see Figure 10): (1) append to the end of T a speialharater # smaller than any other text harater; (2) form a logial matrix Mwhose rows are the yli shifts of the string T# sorted in lexiographi order;



45mississippi#ississippi#mssissippi#misissippi#misissippi#missssippi#missisippi#missisippi#mississppi#mississipi#mississipi#mississipp#mississippi
=)

F L# mississipp ii #mississip pi ppi#missis si ssippi#mis si ssissippi# mm ississippi #p i#mississi pp pi#mississ is ippi#missi ss issippi#mi ss sippi#miss is sissippi#m iFig. 10. Example of Burrows-Wheeler transform for the string T = mississippi. Thematrix on the right has the rows sorted in lexiographi order. The output of the BWTis olumn L; in this example the string ipssm#pissii.(3) onstrut the transformed text L by taking the last olumn ofM. Notie thatevery olumn of M, hene also the transformed text L, is a permutation of T#.In partiular the �rst olumn of M, all it F , is obtained by lexiographiallysorting the haraters of T# (or, equally, the haraters of L). The transformedstring L usually ontains long runs of idential symbols and therefore an beeÆiently ompressed using move-to-front oding, in ombination with statistialoders (see for example [42, 68℄).4.2 An opportunisti indexThere is a bijetive orrespondene between the rows of M and the suÆxes of T(see Figure 10); and thus there is a strong relation between the string L and thesuÆx array built on T [121℄. This is a ruial observation for the design of theFM-index. We reall below the basi ideas underlying the searh operation inthe FM-index, referring for the other tehnial details to the seminal paper [75℄.In order to simplify the presentation, we distinguish between two searh tools:the ounting of the number of pattern ourrenes in T and the retrieval oftheir positions. The ounting is implemented by exploiting two nie struturalproperties of the matrix M: (i) all suÆxes of T pre�xed by a pattern P [1; p℄oupy a ontiguous set of rows of M (see also Setion 3.1); (ii) this set ofrows has starting position first and ending position last, where first is thelexiographi position of the string P among the ordered rows of M. The value(last � first + 1) aounts for the total number of pattern ourrenes. Forexample, in Figure 10 for the pattern P = si we have first = 9 and last = 10for a total of two ourrenes.The retrieval of the rows first and last is implemented by the proedureget rows whih takes O(p) time in the worst ase, working in p onstant-time



46phases numbered from p to 1 (see the pseudoode in Fig. 11). Eah phase pre-serves the following invariant: At the i-th phase, the parameter \�rst" points tothe �rst row of M pre�xed by P [i; p℄ and the parameter \last" points to the lastrow of M pre�xed by P [i; p℄. After the �nal phase, first and last will delimitthe rows of M ontaining all the text suÆxes pre�xed by P .Algorithm get rows(P [1; p℄)1. i = p,  = P [p℄, first = C[℄ + 1, last = C[+ 1℄;2. while ((first � last) and (i � 2)) do3.  = P [i� 1℄;4. first = C[℄ +O(; first� 1) + 1;5. last = C[℄ +O(; last);6. i = i� 1;7. if (last < first) then return \no rows pre�xed by P [1; p℄" else return(first; last).Fig. 11. Algorithm get rows �nds the set of rows pre�xed by pattern P [1; p℄. ProedureO(; k) ounts the number of ourrenes of the harater  in the string pre�x L[1; k℄.In [75℄ it is shown how to implement O(; k) in onstant time.The loation of a pattern ourrene is found by means of algorithm loate.Given an index i, loate(i) returns the starting position in T of the suÆx or-responding to the ith row in M. For example in Figure 10 we have pos(3) = 8sine the third row ippi#mississ orresponds to the suÆx T [8; 11℄ = ippi.The basi idea for implementing loate(i) is the following. We logially mark asuitable subset of the rows of M, and for eah marked row j we store the start-ing position pos(j) of its orresponding text suÆx. As a result, if loate(i) �ndsthe ith row marked then it immediately returns its position pos(i); otherwise,loate uses the so alled LF-omputation to move to the row orresponding tothe suÆx T [pos(i) � 1; n℄. Atually, the index of this row an be omputed asLF [i℄ = C[L[i℄℄ + O(L[i℄; i), where C[℄ is the number of ourrenes in Tof the haraters smaller than . The LF-omputation is iterated v times un-til we reah a marked row iv for whih pos(iv) is available; we an then setpos(i) = pos(iv)+v. Notie that the LF-omputation is onsidering text suÆxesof inreasing length, until the orresponding marked row is enountered.Given the appealing asymptotial performane and strutural properties ofthe FM-index, the authors have investigated in [77, 76℄ its pratial behavior byperforming an extensive set of experiments on various text olletions: 1992 CIAworld fat book (shortly world) of about 2Mb, King James Bible (shortly bible)of about 4Mb, DNA sequene (shortly e.oli) of about 4Mb, SGML-tagged textsof AP-news (shortly, ap90) of about 65Mb, the java doumentation (shortly,jdk13) of about 70Mb, and the Canterbury Corpus (shortly, antrbry) of about



473Mb. On these �les they atually experimented two di�erent implementationsof the FM-index:{ A tiny index designed to ahieve high ompression but supporting only theounting of the pattern ourrenes.{ A fat index designed to support both the ounting and the retrieval of thepattern ourrenes.Both the tiny and the fat indexes onsist of a ompressed version of the inputtext plus some additional information used for pattern searhing. In Table 1we report a omparison among these ompressed full-text indexes, gzip (thestandard Unix ompressor) and bzip2 (the best known ompressor based on theBWT [176℄). These �gures have been derived from [76, 77℄.File bible e.oli world antbry jdk13 ap90tiny index Compr. ratio 21.09 26.92 19.62 24.02 5.87 22.14Constrution time 2.24 2.19 2.26 2.21 3.43 3.04Deompression time 0.45 0.49 0.44 0.38 0.42 0.57Ave. ount time 4.3 12.3 4.7 8.1 3.2 5.6fat index Compr. ratio 32.28 33.61 33.23 46.10 17.02 35.49Constrution time 2.28 2.17 2.33 2.39 3.50 3.10Deompression time 0.46 0.51 0.46 0.41 0.43 0.59Ave. ount time 1.0 2.3 1.5 2.7 1.3 1.6Ave. loate time 7.5 7.6 9.4 7.1 21.7 5.3bzip2 Compression ratio 20.90 26.97 19.79 20.24 7.03 27.36Compression time 1.16 1.28 1.17 0.89 1.52 1.16Deompression time 0.39 0.48 0.39 0.31 0.28 0.43gzip Compr. ratio 29.07 28.00 29.17 26.10 10.79 37.35Compression time 1.74 10.48 0.87 5.04 0.39 0.97Deompression time 0.07 0.07 0.06 0.06 0.04 0.07Table 1. Compression ratio (perentage) and ompression/deompression speed (mi-roseonds per input byte) of tiny and fat indexes ompared with those of gzip (withoption -9 for maximum ompression) and bzip2. For these ompressed indexes we alsoreports the average time (in milliseonds) for the ount and loate operations. Theexperiments were run on a mahine equipped with Gnu/Linux Debian 2.2, 600MhzPentium III and 1 Gb RAM.The experiments show that the tiny index takes signi�antly less spae thanthe orresponding gzip-ompressed �le, and for all �les exept bible and antrbryit takes less spae than bzip2. This may appear surprising sine bzip2 is alsobased on the BWT [176℄. The explanation is simply that the FM-index omputesthe BWT for the entire �le whereas bzip2 splits the input in 900Kb bloks. Thisompression improvement is payed in terms of speed; the onstrution of the tinyindex takes more time than bzip2. The experiments also show that the fat indextakes slightly more spae than the orresponding gzip-ompressed �le. For what



48onerns the query time we have that both the tiny and the fat index omputethe number of ourrenes of a pattern in a few milliseonds, independently ofthe size of the searhed �le. Using the fat index one an also ompute the positionof eah ourrene in a few milliseonds per ourrene.These experiments show that the FM-index is ompat (its spae oupanyis lose to the one ahieved by the best known ompressors), it is fast in ountingthe number of pattern ourrenes, and the ost of their retrieval is reasonablewhen they are few (i.e. in ase of a seletive query). In addition, the FM-indexallows to trade spae oupany for searh time by hoosing the amount of aux-iliary information stored into it. As a result the FM-index ombines ompressionand full-text indexing: like gzip and bzip2 it enapsulates a ompressed versionof the original �le; like suÆx trees and arrays it allows to searh for arbitrarypatterns by looking only at a small portion of the ompressed �le.4.3 A word-based opportunisti indexAs far as user queries are formulated on arbitrary substrings, the FM-index is ane�etive and ompat searh tool. In the information retrieval setting, thought,user queries are ommonly word-based sine they are formulated on entire wordsor on their parts, like pre�xes or suÆxes. In these ases, the FM-index su�ersfrom the same drawbaks of lassial full-text indexes: at any word-based queryformulated on a pattern P , it needs a post-proessing phase whih aims at �lteringout the ourrenes of P whih are not word ourrenes beause they lie entirelyinto a text word. This mainly onsists of heking whether an ourrene ofP , found via the get rows operation, is preeded and followed by a non-wordharater. In the presene of frequent query-patterns suh a �ltering proessmay be very time onsuming, thus slowing down the overall query performane.This e�et is more dramati when the goal is to ount the ourrenes of a word,or when we need to just hek whether a word does our or not into an indexedtext.Starting for these onsiderations the FM-index has been enrihed with someadditional information onerning with the linguisti struture of the indexedtext. The new data struture, alledWFM-index, is atually obtained by buildingthe FM-index onto a \digested" version of the input text. This digested text,shortly DT , is a speial ompressed version of the original text T that allows tomap word-based queries on T onto substring queries on DT .More preisely, the digested text DT is obtained by ompressing the textT with the byte-aligned and tagged Hu�word algorithm desribed in Setion 2(see [153℄). This way DT is a byte sequene whih possesses a ruial prop-erty: Given a word w and its orresponding tagged odeword w, we have thatw ours in T i� w ours in DT . The tagged odewords are in some senseself-synhronizing at the byte level beause of their most signi�ant bit set to 1.In fat it is not possible that a byte-aligned odeword overlaps two or more otherodewords, sine it should have at least one internal byte with its most signi�-ant bit set to 1. Similarly, it is not possible that a odeword is byte-aligned andstarts inside another odeword, beause the latter should again have at least one



49internal byte with its most signi�ant bit set to 1. Suh a bijetion allows us toonvert every word-based query formulated on a pattern w and the text T , intoa byte-aligned substring query formulated on the tagged odeword w, relativeto w, and the digested text DT .Of ourse more ompliated word queries on T , like pre�x-word or suÆx-word queries, an be translated into multiple substring queries on DT as follows.Searhing for the ourrenes of a pattern P as a pre�x of a word in T onsists ofthree steps: (1) searh in the Hu�word ditionary D for all the words pre�xed byP , say w1; w2; : : : ; wk; (2) ompute the tagged odewords w1; w2; : : : ; wk forthese words, and then (3) searh for the ourrenes of the wi into the digestedtext DT . Other word-based queries an be similarly implemented.It is natural to use an FM-index built over DT to support the odewordsearhes over the digested text. Here the FM-index takes as haraters of theindexed text DT its onstituting bytes. This approah has a twofold advantage:it redues the spae oupied by the (digested) byte sequene DT and supportsover DT e�etive searhes for byte-aligned substrings (i.e. odewords).TheWFM-index therefore onsists of two parts: a full-text index FM-index(D)built over the Hu�word ditionary D, and a full-text index FM-index(DT ) builtover the digested text DT . The former index is used to searh for the queriedword (or for its variants) into the ditionary D; from the retrieved words wederive the orresponding (set of) odewords whih are then searhed in DTvia FM-index(DT ). Hene a single word-based query on T , an be translatedby WFM-index into a set of exat substring queries to be performed by FM-index(DT ).The advantage of the WFM-index over the standard FM-index should beapparent. Queries are word-oriented so that the time onsuming post-proessingphase has been avoided; ounting or existential queries are diretly exeutedon the (small) ditionary D without even aessing the ompressed �le; theoverall spae oupany is usually smaller than the one required by the FM-index beause D is small and DT has a lot of struture that an be exploited bythe Burrows-Wheeler ompressor present in WFM-index. This approah needsfurther experimental investigation and engineering, although some preliminaryexperiments have shown that WFM-index is very promising.4.4 Some open problems and future researh diretionsIn this setion we have disussed the interplay between data ompression andindexing. The FM-index is a promising data struture whih ombines e�etivespae ompression and eÆient full-text queries. Reently, the authors of [75℄have shown that another ompressed index does exist that, based on the BWTand the Lempel-Ziv parsing [192℄, answers arbitrary pattern queries in O(p+o)time and oupies O(nHk(T ) log� n) + o(n) bits of storage. Independently, [150℄has presented a simpli�ed ompressed index that does not ahieve these goodasymptoti bounds but it ould be suitable for pratial implementation. Themain open problem left in this line of researh is the design of a data struturewhih ahieves the best of the previous bounds: O(p + o) query time and



50O(nHk(T )) + o(n) bits of storage oupany. However, in our opinion, the mosthallenging question is if, and how, loality of referene an be exploited in thesedata strutures to ahieve eÆient I/O-bounds. We aim at obtaining O(o=B)I/Os for the loation of the pattern ourrenes, where B is the disk-page size.In fat, the additive term O(p) I/Os is negligible in pratie beause any user-query is ommonly omposed of few haraters. Conversely o might be largeand thus fore the loate proedure to exeute many random I/Os in the aseof a large indexed text olletion. An I/O-onsious ompressed index mightompete suessfully against the String B-tree data struture (see Setion 3.3).The Burrows-Wheeler transform plays a entral role in the design of theFM-index. Its omputation relies on the onstrution of the suÆx array of theompressed string; this is the atual algorithmi bottlenek for a fast imple-mentation of this ompression algorithm. Although a plethora of papers havebeen devoted to engineering the suÆx sorting step [42, 174, 68, 176, 165, 156, 31℄,there is still room for improvement [124℄ and investigation. Any advanement inthis diretion would immediately impat on the ompression time performaneof bzip2. As far as the ompression ratio of bzip2 is onerned, we point outthat the reent improvements presented in the literature are either limited tospeial data olletions or they are not fully validated [43, 44, 166, 167, 68, 26,25℄. Hene the open-soure software bzip2 yet remains the hoie [176℄. Furtherstudy, simpli�ation or variation on the Burrows-Wheeler transform are neededto improve its ompression ratio and/or possibly impat on the design of newompressed indexes. The approah followed in WFM-index is an example of thisline of researh.Although we have explained in the previous setions how to perform sim-ple exat searhes, full-text indexes an do muh more. In Setion 3.1 we havementioned that suÆx trees an support omplex searhes like approximate orsimilarity-based mathes, as well regular expression searhes. It is also well-known that suÆx arrays an simulate any algorithm designed on suÆx trees atan O(logn) extra-time penalty. This slowdown is payed for by the small spaeoupied by the suÆx array. It is lear at this point that it should be easy toadapt these algorithms to work on the FM-index or on the WFM-index. Theresulting searh proedures might bene�t more from the ompatness of theseindexes, and therefore possibly turn into in-memory some (e.g. genomi) om-putations whih now require the use of disk, with onsequent poor performane.This line of researh has been pioneered in the experimental setting by [170℄whih showed that ompressed suÆx arrays an be used as �ltering data stru-ture to speed up similarity-based searhes on large genomi databases. From thetheoretial point of view, [56℄ reently proposed another interesting use of om-pression for speeding up similarity-based omputations in the worst ase. Therethe dynami programming matrix has been divided into variable sized bloks,as indued by the Lempel-Ziv parsing of both strings [192℄, and the inherentperiodi nature of the strings has been exploited to ahieve O(n2= logn) timeand spae omplexity. It would be interesting to ombine these ideas with theones developed for the FM-index in order to redue the spae requirements of



51these algorithms without impairing their sub-quadrati time omplexity (whihis onjetured in [56℄ to be lose to optimal).The FM-index an also be used as a building blok of sophistiated Infor-mation Retrieval tools. In Setion 2 we have disussed the blok-addressingsheme as a promising approah to index moderate sized textual olletions,and presented some approahes to ombine ompression and blok-addressingfor ahieving better performane [122, 153℄. In these approahes opportunististring-mathing algorithms have been used to perform searhes on the om-pressed bloks thus ahieving an improvement of about 30-50% in the �nal per-formane. The FM-index andWFM-index naturally �t in this framework beausethey an be used to index eah text blok individually [75℄; this way, at querytime, the ompressed index built over the andidate bloks ould be employedto fasten the detetion of the pattern ourrenes. It must be noted here thatthis approah fully exploits one of the positive properties of the blok-addressingsheme: The voabulary allows to turn omplex searhes on the indexed text intomultiple exat-pattern searhes on the andidate text bloks. These are properlythe types of searhes eÆiently supported by FM-index and WFM-index. Atheoretial investigation using a model generally aepted in Information Re-trieval [21℄ has showed in [75℄ that this approah ahieves both sublinear spaeoverhead and sublinear query time independent of the blok size. Conversely, in-verted indies ahieve only the seond goal [188℄, and the lassial Glimpse toolahieves both goals but under some restritive onditions on the blok size [21℄.Algorithmi engineering and further experiments on this novel IR system are yetmissing and worth to be pursued to validate these good theoretial results.5 ConlusionsIn this survey we have foused our attention on algorithmi and data struturalissues arising in two aspets of information retrieval systems design: (1) rep-resenting textual olletions in a form whih is suitable to eÆient searhingand mining; (2) design algorithms to build these representations in reasonabletime and to perform e�etive searhes and proessing operations over them. Ofourse this is not the whole story about this huge �eld as the Information Re-trieval is. We then onlude this paper by iting other important aspets thatwould deserve further onsideration: (a) �le strutures and database mainte-nane; (b) ranking tehniques and lustering methods for soring and improv-ing query results; () omputational linguistis; (d) user interfaes and models;(e) distributed retrieval issues as well seurity and aess ontrol management.Every one of these aspets has been the subjet of thousands of papers and sur-veys ! We ontent ourselves to ite here just some good starting points from whiha user an browse for further tehnial deepenings and bibliographi links [188,22, 123, 1℄.Aknowledgments This survey is the outome of hours of highlighting and,sometime hard and fatiguing, disussions with many fellow researhers and
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