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In this paper we consider the following question: given a linear operator 1 on a Hilbert

space, can we compute the projection on the closure of its range?

Instead of making the notion of computation precise, we use Bishop’s informal ap-
proach [1], in which ‘there exists’ is interpreted strictly as ‘we can compute’. It turns out
that the reasoning we use to capture this interpretation can be described by intuitionistic
logic. This logic differs from classical logic by not recognising certain principles, such
as the scheme ‘P or not P ’, as generally valid. Since we do not adopt axioms that are
classically false, all our theorems are acceptable in classical mathematics.

To answer our initial question affirmatively, it is enough to show that the range ran (T )
of the operator T on the Hilbert space H is located—that is, the distance

ρ (x, ran (T )) = inf {‖x − Ty‖ : y ∈ H}

exists (is computable) for each x ∈ H ([2], pages 366 and 371). The locatedness of the
kernel ker (T ∗) of the adjoint T ∗ of T is easily seen to be a necessary—but according
to Example 1 of [6], not sufficient—condition for ran (T ) to be located. Theorem gives
necessary and sufficient conditions under which the locatedness of ker (T ∗) ensures that
of ran (T ). Proposition 9 below shows that (despite an earlier claim by Bridges–Ishihara
[6]) in recursive mathematics, and hence in Bishop–style mathematics, a condition known
as well–behavedness is not sufficient for the locatedness of ran (T ).

As we saw in [6, 15, 16], sequential versions of boundedness and openness play an
important role for linear operators; for example, the Hellinger–Toeplitz theorem [6] holds
for sequential continuity.

Proposition 1. An operator on H that has an adjoint is sequentially continuous in
the sense that if xn → 0, then Txn → 0.

Moreover, in connection with the question at the start of this paper, we have the following
result [6].

Proposition 2. Let T be an operator on H with an adjoint, and suppose that T is
sequentially open in the following sense: for each sequence (xn) in H such that (Txn)
converges to 0, there exists a sequence (yn) in ker(T ) such that xn +yn → 0. Then ran(T )
is located.

The following definition introduces a notion related to, but weaker than, sequential
openness. We say that an operator T on a Hilbert space H is decent if for any bounded

sequence (xn) such that Txn → 0, there exists a sequence (yn) in ker(T ) such that
xn + yn ⇀ 0 (where, as usual, ⇀ denotes weak convergence—that is, 〈xn + yn, z〉 → 0 for
all z ∈ H). Clearly, sequential openness implies decency.

1For Bishop, an operator is bounded, by definition; we do not require that our operators be bounded.
Note that even a bounded operator on a Hilbert space need not have an adjoint (see [14] and [11]).
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If T has an adjoint and is decent, then T ∗T is also decent. For if (xn) is a bounded
sequence in H such that T ∗Txn → 0, and if c > 0 is a bound for the sequence (‖xn‖) ,
then

‖Txn‖
2

= 〈T ∗Txn, xn〉 ≤ c ‖T ∗Txn‖ → 0.

Hence there exists a sequence (yn) in ker (T ) = ker (T ∗T ) such that xn + yn ⇀ 0.
A linear mapping T between normed spaces X and Y is said to be well–behaved if

Tx 6= 0 2 whenever x ∈ X and x 6= x′ for all x′ ∈ ker (T ). The notion of well–behavedness
was introduced in [5], where it was shown that a linear mapping onto a Banach space is
well–behaved. The following proposition relates well–behavedness and decency.

Proposition 3. Let H be a Hilbert space, and T a decent operator on H with located
kernel. Then T is well–behaved.

Proof. Let P be the projection of H on ker (T ) , and consider any x ∈ H such
that x 6= y for all y ∈ ker (T ) (so, in particular, x 6= Px). Construct an increasing binary
sequence (λn) such that

λn = 0 ⇒ ‖Tx‖ < 1/n,
λn = 1 ⇒ ‖Tx‖ > 1/ (n + 1) .

We may assume that λ1 = 0. If λn = 0, set xn = x − Px; if λn = 1, set xn = 0. Then
‖Txn‖ < 1/n for each n, so Txn → 0. Since T is decent, there exists a sequence (yn) in
ker (T ) such that xn + yn ⇀ 0. In particular,

〈xn, x − Px〉 = 〈(I − P ) (xn + yn) , x − Px〉

= 〈xn + yn, x − Px〉 → 0,

and we can find N such that |〈xN , x − Px〉| < ‖x − Px‖
2
. If λN = 0, then |〈xN , x − Px〉| =

‖x − Px‖
2
, a contradiction. Hence λN = 1 and therefore Tx 6= 0.

Proposition 4. Let H be a Hilbert space, and T an operator on H with an adjoint, such
that ran(T ∗) is located. Then T is decent.

Proof. Let P be the projection of H onto the closure of ran (T ∗) , let (xn) be a

sequence in H such that Txn → 0, and set yn = Pxn−xn. Then yn ∈ ran (T ∗)
⊥

= ker (T ).
For each z ∈ H we have

〈xn + yn, T ∗z〉 = 〈Pxn, T ∗z〉 = 〈xn, PT ∗z〉 = 〈xn, T ∗z〉 = 〈Txn, z〉 → 0,

so 〈xn + yn, P z〉 → 0 and therefore

〈xn + yn, z〉 = 〈xn + yn, P z〉 + 〈Pxn, (I − P ) z〉 → 0.

Note that we do not require the sequence (xn) to be bounded in the proof of the
foregoing proposition.

Theorem 5. Let H be a Hilbert space, and T a decent operator on H with an adjoint
and located kernel. Then ran(T ∗) is located.

2We use x 6= y to signify that ‖x‖ > 0.
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Proof. Let P be the projection of H on ker (T ). It suffices to show that for each
x ∈ H, x − Px is in the closure ran (T ∗) of ran (T ∗); for then ρ (x, ran (T ∗)) = ‖Px‖.
To this end, fix a vector x in H and ε > 0. For convenience, for each positive integer n
denote the closed ball with centre 0 and radius n by Bn. Since T ∗(Bn) is located in H
[17], we can construct an increasing binary sequence (λn) such that

λn = 0 ⇒ ρ (x − Px, T ∗(Bn)) > ε/2,
λn = 1 ⇒ ρ (x − Px, T ∗(Bn)) < ε.

Without loss of generality, λ1 = 0. If λn = 0, then by the separation theorem [13] and the
Riesz representation theorem, there exists a unit vector yn such that for each u ∈ Bn,

〈x − Px, yn〉 > |〈T ∗u, yn〉| +
ε

2
= |〈u, Tyn〉| +

ε

2
.

Taking u = nTyn, we obtain

ε

2
+ n ‖Tyn‖ < 〈x − Px, yn〉 ≤ ‖x‖ ,

and so ‖Tyn‖ < ‖x‖ /n. On the other hand, if λn = 1− λn−1, we set yk = 0 for all k ≥ n.
Clearly, the sequence (Tyn) converges to 0. But T is decent, so there exists a sequence
(zn) in ker(T ) such that yn + zn ⇀ 0. Choosing N such that

|〈x − Px, yn〉| = |〈x − Px, yn + zn〉| < ε/2

for all n ≥ N, we see that λn = 1 for some n ≤ N. Since ε > 0 is arbitrary, it follows that
x − Px ∈ ran(T ∗).

It is shown in [18] that if T is an operator on H with an adjoint, and if both ran(I+T ∗T )
and ran(I + TT ∗) are located, then the graph of T,

G(T ) = {(x, Tx) : x ∈ H},

is located in H × H.

Lemma 6. Let T be an operator with an adjoint. Then G(T ) is located in H × H.

Proof. By the foregoing remark, it suffices to show that ran(I + T ∗T ) and ran(I +
TT ∗) are located. Clearly ker(I + T ∗T ) is {0} and is therefore located. As

‖(I + T ∗T )x‖2 = ‖x‖2 + ‖T ∗Tx‖2 + 2‖Tx‖2,

it follows that ‖(I + T ∗T )x‖ ≥ ‖x‖; whence I + T ∗T is decent. So, by Theorem 5,
ran(I + T ∗T ) is located. Interchanging the roles of T and T ∗, we see that ran(I + TT ∗)
is located.

Before applying Lemma 6, we note some results found on pages 250–252 of [11]. If
T is an operator with an adjoint, then its absolute value |T | exists, and is uniquely

defined by the equation |T |
2

= T ∗T. If also ran (T ) is located, then T has an exact polar
decomposition T = U |T | where U is an isometry from ran(|T |) onto ran(T ) and U is
0 on the orthogonal complement of ran (T ) . Such a mapping U is said to be a partial

isometry with initial space ran(|T |) and final space ran(T ).
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Lemma 7. Let T be an operator with an adjoint; then ran(T ) is located if and only if
ran (T ∗) is located.

Proof. If ran(T ) is located, then by Lemma 2 of [8], so is ran(TT ∗). Since T ∗ has
an adjoint, |T ∗| exists. The range of |T ∗| is located, because it contains ran(TT ∗) as a
located dense subset. So T ∗ has an exact polar decomposition T ∗ = U |T ∗|, where U is
a partial isometry whose initial space is the closure of ran(|T ∗|) and whose final space is
ran(T ∗). Since ran(T ∗) is the range of the projection UU ∗, it is located; hence ran(T ∗)
itself is located. Interchanging the roles of T and T ∗ completes the proof.

Let T be a operator with an adjoint, then the following four statements are equivalent:

Theorem 8. (i) ran(T ) is located.

(ii) ran(T ∗) is located.

(iii) ker(T ) is located and T is decent.

(iv) ker(T ∗) is located and T ∗ is decent.

Proof. Since 〈T ∗x, y〉 = 〈x, Ty〉 , we have ran (T ∗)
⊥

= ker(T ). If ran(T ∗) is located,

then the projection P on ran(T ∗) exists; since I−P is the projection of H onto ran (T ∗)
⊥

,
we see that ker(T ) is located. Moreover, by Proposition 4, T is decent. Thus (ii) ⇒ (iii).
It follows from Theorem 5 that (ii) ⇔ (iii). Interchanging T and T ∗, we now see that (i)
⇔ (iv). Since (i) ⇔ (ii) by Lemma 7, we conclude that (i)–(iv) are equivalent.

In [6], Bridges and Ishihara claimed to have a constructive proof that a bounded
operator T with an adjoint on H has a located range if and only if ker(T ∗) is located and
T is well–behaved. The following theorem shows that, although their argument is valid
for operators on a finite–dimensional Hilbert space, their conclusion cannot be obtained
constructively if H is infinite–dimensional and we assume the Church–Markov–Turing
thesis (for more on which, see [10, 19]).

Note that when we refer to an operator T on a Hilbert space H as injective we mean
that ‖x‖ > 0 entails ‖Tx‖ > 0. Since ker(T ) = {0} in that case, T has located kernel and
is well–behaved.

Proposition 9. Assume the Church–Markov–Turing thesis, and let H be a separable
infinite–dimensional Hilbert space. Then there exists a bounded positive operator T on
H that is injective (and hence is well behaved and has located kernel) but whose range is
not located.

Proof. It follows from the Church–Markov–Turing thesis that we can construct a
sequence (In)

∞

n=1
of non–overlapping closed intervals such that [0, 1] ⊂

⋃

∞

n=1
In and such

that
∑

N

n=1
|In| < 1/4 for each N (see [10], Chapter 3). Let fn : R → R be the uniformly

continuous mapping that vanishes outside In, takes the value 1 at the midpoint of In, and
is linear on each half of In. By Theorem 2 of [4], the function

f =

∞
∑

n=1

n−2fn,
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which is strictly positive almost everywhere on [0, 1] , is Lebesgue integrable over [0, 1] .
Let H = L2 [0, 1] (relative to Lebesgue measure), and define a linear operator T on H by

Tg = gf.

This operator is easily seen to be bounded (by 1), selfadjoint, and positive. It is also

injective: for if ‖Tg‖
2

> 0, then
∫

(gf)
2

> 0, and so g2 > 0 on a set of positive measure;
whence, by [2] (page 244, (4.13)), ‖g‖

2
> 0. Thus ker (T ) is trivially located and T is

well–behaved.
Let (en)

∞

n=0
be an orthonormal basis of polynomial functions for H, with e0 = 1. Let

φ 7→ φ (T ) denote the functional calculus for the selfadjoint operator T , and let µ denote
the corresponding functional calculus measure on [0, 1] , given by

µ (φ) =

∞
∑

n=0

2−n 〈φ (T ) en, en〉

([2], page 378, (8.22)). Denote Lebesgue measure by λ. It is relatively straightforward to
prove that

µ (φ) =

∞
∑

n=0

2−n

∫

1

0

(φ ◦ f) |en|
2

dλ =

∫

1

0

(φ ◦ f) gdλ,

where

g =

∞
∑

n=0

2−n |en|
2
∈ L2 [0, 1] .

Note that g(x) ≥ 1 for each x ∈ [0, 1] . Choose a strictly decreasing sequence (rn) of
positive numbers converging to 0 such that (rn, 1] is µ–integrable for each n, and let En

be the complemented set

(

E1

n
, E0

n

)

= ({x : f(x) > rn} , {x : f (x) ≤ rn}) .

The first set in the ordered pair defining En is the classical counterpart of En; the char-
acteristic function of En is the mapping

χEn

: E1

n
∪ E0

n
→ {0, 1}

defined to equal 1 on E1

n
, and 0 on E0

n
. Suppose that ran (T ) is located. Then the proof

of [3] (Theorem 4.6) shows that

∫

g χEn

dλ = µ ((rn, 1]) → µ ([0, 1]) =

∫

1

0

g dλ.

(The locatedness of the range of T is essential for this step in our proof.) By the monotone
convergence theorem ([2], page 267),

(

χEn

g
)∞

n=1
converges λ–almost everywhere to g on

[0, 1] . Since g ≥ 1,
(

χEn

)∞

n=1
converges λ–almost everywhere to 1 on [0, 1] ; whence, again

by the monotone convergence theorem, λ ((rn, 1]) → 1 as n → ∞. Choose ν such that
λ((rν , 1]) > 1/4. Then choose N such that N−2 < rν . Since the intervals In are non–
overlapping,

(rν , 1] ⊂

N
⋃

n=1

In
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and therefore µ((rν , 1]) < 1/4, a contradiction. Thus ran (T ) is not located.

It remains an open and interesting problem to find new conditions equivalent to the
decency of a bounded operator on a Hilbert space.
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