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Abstract. We study operators with located graph in Bishop-style constructive mathemat-
ics. It is shown that a bounded operator has an adjoint if and only if its graph is located.
Locatedness of the graph is a necessary and sufficient condition for an unbounded normal
operator to have a spectral decomposition. These results suggest that located operators are
the right generalization of bounded operators with an adjoint.
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1 Introduction

Unbounded operators are a natural and important extension of bounded operators.
They occur in most places where bounded operators are used. As unbounded opera-
tors are discontinuous, one might be tempted to think that they can not be handled
in constructive mathematics [10][9][3][11]. If this were the case, it would be a serious
problem for the application of constructive mathematics in quantum mechanics, as the
unbounded operators f(x) 7→ f ′(x) and f(x) 7→ xf(x) on L2(R) play a fundamental
role in quantum mechanics.

In constructive mathematics discontinuous functions are usually handled as par-
tial functions. Since unbounded operators are partial functions, it is not a priori
impossible to treat unbounded operators in constructive mathematics, but the chal-
lenge to give a good theory of unbounded operators still stands. Ye [16] developed a
theory for unbounded self-adjoint operators, giving constructive proofs for the spec-
tral theorem and Stone’s theorem. For Ye a densely defined operator T is self-adjoint
if T is symmetric (T ⊂ T ∗) and Ran(T ± iI) = H. He did not seem to know if this
definition was really stronger than the usual one: T = T ∗. We found that it is. In
fact, when T = T ∗, the hypothesis Ran(T ± iI) = H is equivalent to the locatedness
of the graph of T (section 3). It turns out that locatedness of the graph is a very
useful property for general unbounded operators.
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c© WILEY-VCH Verlag Berlin GmbH, 13086 Berlin, 2001 0942-5616/01/4610-0211 $ 17.50+.50/0



212 Bas Spitters

The two main results in this article are that a bounded operator has an adjoint
if and only if its graph is located (section 3), and that locatedness of the graph is
a necessary and sufficient condition for an unbounded normal operator to have a
spectral decomposition (section 4). These results suggest that operators with located
graphs are the right generalization of bounded operators with adjoints.

2 Preliminaries

In this section we introduce some notations and quote several theorems from the liter-
ature. The main references for the constructive theory are Bishop and Bridges [1]
and Bridges and Ishihara [4]; we used Pedersen [12] and Rudin [14] for the
classical theory.

All our arguments are constructive, and we do not use axioms that are classically
false. This means that our results are acceptable in Bishop-style mathematics and
intuitionistic mathematics, and also have a straightforward interpretation in recursive
mathematics.

In this article H will denote a separable Hilbert space and en an orthonormal basis
of H. If it is not known whether the Hilbert space is finite or infinite dimensional, we
must allow 0 as a basis vector. In the examples H will always be infinite dimensional.

A subset M ⊂ H is located if for all x ∈ H, the distance

ρ(x,M) := inf{‖x−m‖ : m ∈M}

can be computed. A subspace is located if and only if it is the range of a projection.
Locatedness is a fundamental concept in constructive mathematics.

An operator is a partial linear map from a Hilbert space to itself. An operator T
is bounded if it is total and there is M ∈ R such that, for all x ∈ H, ‖Tx‖ ≤M‖x‖.
Unbounded operators are operators which we do not require to be totally defined. In
this terminology a bounded operator is unbounded. An operator T is located if its
graph, G(T ), is located.

Write 0 for the subspace {0}. Let T be an operator such that (DomT )⊥ = 0. The
adjoint T ∗ of the operator T is the operator defined as follows. DomT ∗ consists of
those y such that there is y∗ with 〈Tx, y〉 = 〈x, y∗〉. Because (DomT )⊥ = 0, there
can be only one such y∗ and for y ∈ Dom(T ∗), we define T ∗y := y∗. Classically
‘(DomT )⊥ = 0’ is equivalent to ‘T is densely defined’, but constructively the latter
is stronger, as we shall see in example 3.5.

If T is bounded by M , then for all x in H, ‖T ∗x‖ ≤ M‖x‖. We can not prove
in general that T ∗ is densely defined, but if it is, T ∗ is totally defined and hence a
bounded operator.

Let A,A1, A2, . . . be a sequence of bounded operators. We say that the sequence
An converges to A in norm, if there is a sequence of real numbers Mn ↓ 0, such that
for all x ∈ H, ‖Anx−Ax‖ ≤Mn‖x‖. Let B,B1, B2, . . . be a sequence of unbounded
operators. We say that Bn converges strongly to B, Bn →s B, if DomB = {x :
limBnx exists} and Bx = limBnx on DomB.

Let A be bounded; define the resolvent

R(A) := {λ ∈ C : A− λ has a total bounded inverse}
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and the spectrum σ(A) := {λ ∈ C : λ 6= ν, for all ν ∈ R(A)}. Here and in the rest of
the article 6= denotes apartness, that is if (X, ρ) is a metric space and a, b ∈ X, then
a 6= b if and only if ρ(a, b) > 0.

For n ∈ N, let πn be the map (xk) 7→ xn of Π∞1 [−1, 1] to [−1, 1]. A polyno-
mial is a function generated from the constant function 1 and finitely many functions
πn1 , . . . , πnk , by addition and multiplication. Let An be a sequence of commuting
Hermitian operators. Define the polynomial map Ψ as the unique algebra homo-
morphism from the polynomials to the Hermitian operators such that Ψ(1) = I and
Ψ(πn) = An.

Let µ be a measure. Then L∞R (µ) and L∞C (µ) denote the spaces of real and complex
bounded µ-measurable functions, respectively. When it is clear which measure is
meant we just write L∞R and L∞C . Two measurable functions are equal if they are
equal almost everywhere. All maps on the measurable functions should respect this
relation, see [1, p68, p226].

We have the following constructive spectral theorem [1, p378].
T h e o r e m 2.1. Let An be a sequence of commuting Hermitian operators, with

common bound 1. There is a measure µ on Π∞1 [−1, 1], concentrated on Π∞n=1σ(An),
and a bound preserving homomorphism Ψ from L∞R to an algebra of commuting Her-
mitian operators, extending the polynomial map. Moreover, if φn is a uniformly
bounded sequence in L∞R and φn → φ ∈ L∞R in measure, then Ψ(φn)→ Ψ(φ) strongly.

The fact that µ is concentrated on Π∞n=1σ(An) follows from [4, Prop 2.7] applied
to µn(f) := µ(f ◦ πn).

Ye [16] proved the following spectral theorem for (unbounded) self-adjoint oper-
ators.

T h e o r e m 2.2. Let A be a self-adjoint operator; then there is a set Λ ⊂ R and
a family of projections {Eλ : λ ∈ Λ} such that

A =

∫ ∞
−∞

λdEλ,

and any bounded operator B commutes with every Eλ if and only if B commutes with
A, i.e. BA ⊂ AB.

The characteristic function, or indicator, of a set A is denoted by χA. Let µ
be a measure and let f be µ-integrable. When, for a real number y > 0, the sets
[f > y] := {x : f(x) > y} and [f ≥ y] are integrable, then y is called admissible.
There is a countable set A ⊂ R+ such that, if y 6= t for all t ∈ A, then y is admissible
for µ. The upshot is that there are enough integrable sets.

Let T be a bounded operator. Define the spectral measure for T by

µ(f) :=

∞∑
n=1

2−n 〈f(T )en, en〉 ,

for all f ∈ C(R). This measure depends on the basis en. If ν is the spectral measure
associated with another basis, then µ and ν are equivalent, see [4]. We say that t is
admissible for T if it is admissible for the identity function id on R and some spectral
measure of T .
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T h e o r e m 2.3. [2, thm 4.6]Let T be a bounded Hermitian operator and µT its
spectral measure. Then RanT is located if and only if {0} is µT -measurable. In
particular, if KerT = 0 and {0} is µT -measurable, then RanT is dense.

3 Locatedness of the graph

In this section some basic theory of located operators is developed.
The following theorem gives necessary and sufficient conditions for the classical

theorem stated as condition 1.
Recall that an operator is called closed if its graph is closed. Define V : H2 → H2

by V (x, y) = (−y, x).
T h e o r e m 3.1. Let T be a closed operator such that (DomT )⊥ = 0. The follow-

ing are equivalent:

(1) H ×H = VG(T )⊕G(T ∗)

(2) For all a, b in H, the system{
−Tx+ y = a
x+ T ∗y = b

has a unique solution, with x in DomT and y in DomT ∗.

(3) The operator T is located, that is G(T ) is located.

(4) Ran(T ∗T + I) = H and Ran(TT ∗ + I) = H.

P r o o f. The equivalence of 1 and 2 follows directly from the definitions.
1 ⇔ 3 A closed linear set M ⊂ H2 is located if and only if M ⊕M⊥ = H2. The

sets VG(T ) and G(T ∗) are orthogonal. So the statement follows from the observation
that G(T ) is located if and only if VG(T ) is located.

2⇒ 4 The solution for (0, z) shows that z ∈ Ran(T ∗T + I), the solution for (z, 0)
shows that z ∈ Ran(TT ∗ + I).

4 ⇒ 2 Observe that the operators T ∗T + I and TT ∗ + I are injective. Let
B be the right-inverse of T ∗T + I and let B′ the right-inverse of TT ∗ + I. Now
(−T ∗B′a+Bb,B′a+ TBb) is a solution of the system. �

Suppose that Ran(T ∗T + I) is dense. We claim that Ran(T ∗T + I) = H. Observe
that T ∗T + I is injective. The partial inverse B : Ran(T ∗T + I)→ H is bounded by
1, because

‖x‖2 = ‖(T ∗T + I)Bx‖2

= 〈(T ∗T + I)Bx, (T ∗T + I)Bx〉
= 〈T ∗TBx, T ∗TBx〉+ 〈T ∗TBx,Bx〉

+ 〈Bx, T ∗TBx〉+ 〈Bx,Bx〉
= ‖T ∗TBx‖2 + 2‖TBx‖2 + ‖Bx‖2

≥ ‖Bx‖2.

Hence B can be uniquely extended to H. Observe that (Bx, x) ∈ G(T ∗T + I), for all
x ∈ RanT ∗T + I. In fact it holds for all x ∈ H, because B is bounded, G(T ∗T + I)
is closed and RanT ∗T + I is dense. We conclude that if Ran(T ∗T + I) is dense, then
Ran(T ∗T + I) = H. A similar statement holds for TT ∗ + I.
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One can prove classically that if T is closed and densely defined, then T ∗ is densely
defined and T ∗∗ = T. The constructive content of this theorem is as follows. If T is
closed, located and (DomT )⊥ = 0, then (DomT ∗)⊥ = 0, T ∗ is located and (T ∗)∗ = T .
Example 3.5 shows that T ∗ is in general not densely defined even if T is.

Let T = T ∗; then T ∗T + I = T 2 + I = (T + i)(T − i) = (T − i)(T + i). So
Ran(T ± iI) = H if and only if Ran(T 2 + I) = H.

E x a m p l e 3.2. We give an example of a densely defined, closed operator T such
that T = T ∗ and T is not located. That is there is no constructive proof that the
operator is located. Let P be a decidable property of the natural numbers such that
P (k) holds for at most one natural number k, but we do not know if such k exists.
Define

Ten =


2n−1en−1 + 2nen+1, if for all k ≤ n, not P (k);
2k−1en−1 + 2ken+1, if P (k) and n = k;
2ken−1 + 2ken+1 if P (k) and n > k.

or in matrix form
0 2 0
2 0 4 0
0 4 0 8 0

0 8 0 16 0
. . .

 .

By Lemma 6.2 this matrix uniquely defines a self-adjoint operator. If for all k, P (k)
does not hold, then T ( 1

2e2−
1
4e4 + 1

8e6−· · · ) = e1 and ‖ 12e2−
1
4e4 + 1

8e6−· · · ‖ <
1√
2
,

so ρ((0, e1),G(T )) < 1√
2
. If P (k), then ‖Tx − e1‖ ≥ 1, for all x ∈ H, with ‖x‖ ≤ 1,

so ρ((0, e1),G(T )) ≥ 1. So, we are unable to compute the distance from (0, e1) to
G(T ). We conclude that G(T ), and hence T, is not located.

3.1 Adjoints

The following lemma follows easily from the definitions.
L e m m a 3.3. Let T and S be operators such that 0 = (DomT )⊥ = (DomS)⊥ =

Dom(ST )⊥; then T ∗S∗ ⊂ (ST )∗. If S is bounded and S∗ is total, then T ∗S∗ = (ST )∗.
Remark that, even when S = I, we can not conclude that (ST )∗ is densely defined.

(See 3.5.)
We now define a class of operators that is useful to prove locatedness of other

operators.
Let T be a closed operator with (DomT )⊥ = 0. Following Pedersen [12, p195]

we define Sλ(T ) := (I + λT ∗T )−1 whenever I + λT ∗T is invertible, and similarly

S̃λ(T ) := (I + λTT ∗)−1. We write S(T ) := S1(T ) and S̃(T ) := S̃1(T ). We may drop
the T when no confusion is possible.

If T is located, then S(T ) is bounded (Theorem 3.1) and

(1) I + λT ∗T = (I − (1− λ)T ∗TS(T ))(I + T ∗T ).
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Recall that for all z ∈ C with |z| < 1, 1
1−z =

∑∞
k=0 z

k. Because T ∗TS(T ) is a bounded

operator with bound 1, we see that for all λ with |1− λ| < 1,

(I − (1− λ)T ∗TS(T ))−1 =

∞∑
k=0

[(1− λ)T ∗TS(T )]k.

Hence, it follows from Formula 1 that

Sλ(T ) = S(T )

∞∑
k=0

[(1− λ)T ∗TS(T )]k.

So Sλ(T ) is a (total) bounded operator. In a similar way we see that S̃λ(T ) is well-
defined and bounded. Remark that S(λT ) = S|λ|2(T ). It follows from Theorem 3.1

that λT is located for all λ with |1− |λ|2| < 1.
The following theorem is important in the construction of the absolute value of an

operator and in the spectral theorem. As classically, we can prove that (DomT ∗T )⊥ =
0, when T satisfies the conditions of the theorem, but as we observed earlier, this is
not enough constructively.

T h e o r e m 3.4. If T is densely defined, located and closed, then T ∗T is densely
defined.

P r o o f. Write Q := T ∗T + I; then S(T ) = Q−1 is Hermitian. Let Ψ be the
spectral map for S := S(T ), and let α, β ∈ (0, 1] be admissible for S and α < β.
Write P = Pαβ = Ψχ[α,β]

= Ψ(χ[α,β]). Let f(t) := t−1χ[α,β](t). Observe that for all t,

f(t)− β−1χ[α,β](t) ≥ 0 and SΨ(f) = P , so Ψ(f) = QP . Hence for all x in H,

〈(Q− β−1I)Px, Px〉 = 〈P (Q− β−1I)Px, x〉 ≥ 0.

Observe that ST ⊂ TS, so that PT ⊂ TP . It follows that for x in DomT ⊂
DomTP , ‖Tx‖ ≥ ‖PTx‖ = ‖TPx‖, and hence

‖Tx‖2 + ‖x‖2 ≥ ‖TPx‖2 + ‖Px‖2 = 〈QPx, Px〉 ≥ β−1‖Px‖2.

This shows that ‖Px‖2 ≤ β(‖Tx‖2 + ‖x‖2). This estimate is independent of α, so
if we take admissible βn ↓ 0, then for all m < n,

0 ≤ ‖Ψχ[βn,1]
x−Ψχ[βm,1]

x‖2 ≤ ‖Ψχ[βn,βm]
x‖2 ≤ βm(‖Tx‖2 + ‖x‖2).

Therefore y = limn Ψχ[βn,1]
x exists. Because ‖S(I − Ψχ[βn,1]

)‖ ≤ βn, we see that

S(x − y) = 0; it follows that x = y. As Ran Ψχ[βn,1]
⊂ DomT ∗T , we see that

DomT ∗T is dense in DomT , and hence in H. �

Theorem 3.10 implies that T ∗T is also located.
E x a m p l e 3.5. There exists a densely defined, located and closed operator T such

that T ∗ (and therefore TT ∗) is not densely defined.
Suppose that P (n) is decidable and holds for at most one n, but we do not know

if such n exists; define, by Theorem 6.1, the matrix operator

Ten =

{
0 if ¬P (n);
ne1 if P (n).

We claim that T is located, closed and densely defined.
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To see that T is located; observe that if P (n), then

(I + T ∗T )−1ej =

{
1/(1 + n2)e1 if j = 1;
ej if j 6= 1.

and

(I + TT ∗)−1ej =

{
1/(1 + n2)en if j = n;
ej if j 6= n.

This tells us how to define (I + T ∗T )−1 in general. By theorem 3.1 T is located.
To see that T is closed suppose that xn → x ∈ DomT and Txn → y. If y 6= Tx,

then y 6= 0 or Tx 6= 0. In either case we can compute n with P (n) and show that
y 6= Tx is impossible.

Now suppose that T ∗ is densely defined. In particular, there is x ∈ DomT ∗

close to e1, in fact we can make sure that 〈x, e1〉 = 1. Suppose that P (n); then
‖T ∗x‖ ≥ 〈en, T ∗x〉 = 〈Ten, x〉 = 〈Ten, e1〉 = n, so we would have an upper bound for
n.

T h e o r e m 3.6. Let T be a (total) bounded operator. Then T is located if and
only if DomT ∗ = H.

P r o o f. Suppose that T is located; then S̃λ(T ) → I in norm as λ ↓ 0. It follows

that Ran S̃λ = DomTT ∗ is dense and hence T ∗ is total.
Conversely, if DomT ∗ = H, then T ∗T and TT ∗ are Hermitian. So it follows

from the spectral theorem for bounded Hermitian operators that (I + T ∗T )−1 and
(I + TT ∗)−1 exist. Hence T is located. �

E x a m p l e 3.7. Richman [13] showed that, for a bounded operator T , DomT ∗ =
H if and only if the image of the unit ball is located. Theorem 3.6 implies that in this
case T is also located. In the unbounded case, it is possible that the image of the ball
is located and the adjoint is densely defined, but T is not located. Indeed, define
the matrix operator T such that for all n ∈ N, T en = nen. Let v = e1 + 1

2e2 + · · ·.
Let P be some unsolved problem. Let Tv be the extension of T defined as follows. If
P holds define Tv = e1. So DomTv = Span(DomT ∪ {v : P}).

To see that Tv is closed, suppose that there are xn ∈ DomTv and x, y ∈ H
with xn → x and Tvxn → y. The elements xn are of the form an,vv +

∑
an,mem.

Observe that for m ≥ 2, an,v + an,m → 〈x, em〉 and an,m → 1
m 〈y, em〉 := am.

So, an,v → 〈x, e2〉 − 1
2a2 := av. Finally an,1 → 〈x, e1〉 − av := a1. It follows that

x = avv +
∑
amem and y = ave1 +

∑
mamem. So x ∈ DomTv and y = Tvx.

Remark that for all n ∈ N, en ∈ DomT ∗, so T ∗ is densely defined.
Now Tv(B1 ∩DomTv) is located, but ρ((v, e1),G(Tv)) can not be computed.
We prove some basic properties of self-adjoint operators.
D e f i n i t i o n 3.8. An operator T is self-adjoint if T is densely defined, located

and T = T ∗. A set A is a core for an operator T if the closure of the graph of T |A is
equal to the graph of T .

It follows from Theorem 3.1 and the discussion following it that our definition of
self-adjointness is equivalent with Ye’s definition.

T h e o r e m 3.9. If T is self-adjoint, injective and has dense range, then T−1 has
the same properties.

P r o o f. Recall that V (x, y) := (−y, x) and observe that VG(−T ) = G(T−1). �
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Classically the hypothesis that T has dense range is not necessary, as it follows
from the fact that T is injective. But there is a recursive example of an injective
bounded Hermitian operator that does not have a dense range (See [7]). So the extra
hypothesis is necessary constructively.

T h e o r e m 3.10. If T is densely defined, closed and located, then T ∗T is self-
adjoint and DomT ∗T is a core for T .

P r o o f. The operator (I + T ∗T )−1 is positive and bounded, so by the previous
theorem I + T ∗T is self-adjoint. Hence T ∗T is self-adjoint.

It is not hard to prove that Sλ(T )x →s x, when λ tends to 0. Moreover, for all

x ∈ DomT, TSλx = S̃λTx → Tx. So DomT ∗T is a core for T, because RanSλ =
DomT ∗T . See [12, Thm 5.1.9] for a more detailed proof. �

3.2 The absolute value

We show that a densely defined closed located operator has an absolute value.
An operator T is positive if it is self-adjoint and for all x ∈ DomT, 〈Tx, x〉 ≥ 0.
L e m m a 3.11. Let A be a positive operator and let {Eλ : λ ∈ Λ} be a spectral

family for A, i.e. A =
∫∞
−∞ λdEλ. Then Eκ = 0 for all κ < 0.

P r o o f. Let λ < 0 and x ∈ H; then

0 ≤ 〈AEλx,Eλx〉 =

∫ λ

−∞
κd 〈Eκx,Eκx〉 ≤ 0

and hence ‖Eκx‖2 = 0 for all x ∈ H and all κ < λ. �

T h e o r e m 3.12. Let T be densely defined, closed and located. There is a unique
positive operator, denoted by |T |, such that |T |2 = T ∗T and Dom |T | = DomT .
Moreover ‖Tx‖ = ‖|T |x‖ for all x ∈ DomT.

P r o o f. The operator T ∗T is positive, so |T | = (T ∗T )1/2 is well-defined, by the
spectral theorem 2.2 and Lemma 3.11. Because T ∗T = |T |∗|T |, it follows from
Theorem 3.10 that the set DomT ∗T is a core for both T and |T |. Because for
all x ∈ DomT ∗T ,

‖Tx‖2 = 〈T ∗Tx, x〉 = ‖|T |x‖2.
It follows that DomT = Dom |T | and ‖Tx‖ = ‖|T |x‖, for all x ∈ DomT .

To see that |T | is unique, suppose that A is positive, A2 = T ∗T = |T |2 and
DomA = DomT . Theorem 2.2 supplies spectral projections Eλ such that∫ ∞

0

λdEλ = A.

So T ∗T =
∫
λ2dEλ. Fix λ ∈ R+ and let Pλ := Eλ − E−λ; then T ∗T commutes with

Pλ, and hence so does |T |. So (|T |Pλ)2 = T ∗TPλ = (APλ)2. Because the absolute
value is unique for bounded operators, |T |Pλ is equal to APλ, for all λ ∈ R+. So for
all x ∈ DomA, |T |x = lim |T |Pλx = limAPλx = Ax. �

4 The spectral theorem

In this section we prove the spectral theorem for unbounded normal operators. A
bounded operator N is called normal if its adjoint is a total and N∗N = NN∗.
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We can extend the homomorphism Ψ in the spectral theorem to complex measur-
able functions in the following way.

T h e o r e m 4.1. Let N1, N2, N3, . . . be a commuting sequence of normal operators
with a common bound 1. There is a measure µ on Π∞1 [−1, 1]2, concentrated on
Π∞i=1σ(Ni) and a homomorphism Ψ from L∞C (µ) to an algebra of commuting normal
operators, extending the polynomial map. Moreover, if φn is a uniformly bounded
sequence in L∞C and φn → φ ∈ L∞C in measure, then Ψ(φn)→ Ψ(φ) strongly.

P r o o f. By the Fuglede-Putnam-Rosenblum theorem [14, 12.16] we see that for
all n,m, NnN

∗
m = N∗mNn. Write Nn = Nr

n + iN i
n, where Nr

n := 1
2 (N∗n + Nn) and

N i
n := 1

2 i(N
∗
n−Nn) are commuting Hermitian operators. Apply the spectral theorem

for Hermitian operators to the sequence Nr
1 , N

i
1, N

r
2 . . . We identify [−1, 1]2 with a

subset of C. For f ∈ L∞C define ΨC(f) := ΨR(Re f) + iΨR(Im f). Observe that
ΨC(z̄) = ΨC(z)∗. The fact that µ is concentrated on Π∞n=1σ(Nn) follows from care-
fully substituting squares for intervals in [4, Lemma 2.3 to 2.7]. �

Recall that a bounded operator T is positive if for all x ∈ H, 〈Tx, x〉 ≥ 0.
R e m a r k 4.2. Let N be bounded and normal. If N is self-adjoint, then σ(N) ⊂ R

and if N is positive, then σ(N) ⊂ R+ (see [4, Cor. 3.3]). The converse is also true:
if σ(N) ⊂ R+, then the functions x 7→ x and x 7→ |x| are equal almost everywhere.
So N = |N | is positive.

D e f i n i t i o n 4.3. Two self-adjoint operators commute if all their spectral projec-
tions commute.

T h e o r e m 4.4. For a densely defined, located, closed operator T , the following
conditions are equivalent:

(1) Dom(T ) = Dom(T ∗), and ‖Tx‖ = ‖T ∗x‖ for every x in Dom(T ).

(2) T ∗T = TT ∗.

(3) There are commuting, self-adjoint operators A and B such that T = A + iB,
T ∗ = A− iB, and ‖Tx‖2 = ‖Ax‖2 + ‖Bx‖2 for every x in DomT .

P r o o f. Pedersen’s proof [12, 5.1.10] is constructive. We give a sketch.
1⇒ 2: Fix x ∈ DomT ∗T and y ∈ DomT . Then

4〈T ∗Tx, y〉 = 4

3∑
k=0

ik‖T (x+ iky)‖2

= 4

3∑
k=0

ik‖T ∗(x+ iky)‖2 = 〈T ∗x, T ∗y〉.

So T ∗x ∈ DomT ∗∗ = DomT and TT ∗x = T ∗Tx. Hence T ∗T ⊂ TT ∗; the other
inclusion is obtained by a symmetry argument.

2 ⇒ 1: For all x ∈ DomT ∗T, ‖Tx‖2 = ‖T ∗x‖2. So DomT ⊂ DomT ∗, because
T ∗ is closed and for x ∈ DomT and ε ↓ 0: Sεx → x , TSεx → Tx. The converse
inclusion follows from a symmetry argument.

1⇒ 3 and 3⇒ 1 follow from long, but not very difficult computations. �

Let T be densely defined, closed and located. If T satisfies the conditions in
Theorem 4.4, we say that T is normal. Note that in this case T ∗ is densely defined.
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When T is bounded, it follows from Theorem 4.4 that this definition of ‘normal’
is equivalent with the definition at the beginning of this section.

R e m a r k 4.5. A normal operator is maximally normal, i.e. if N and T are normal
and T ⊂ N , then T = N . Indeed, T ⊂ N , so N∗ ⊂ T ∗, hence DomT = DomT ∗ ⊃
DomN∗ = DomN ⊃ DomT , i.e. T = N .

The following theorem extends the spectral theorem to unbounded measurable
functions. We need a lemma first.

L e m m a 4.6. Let µ be a spectral measure and let f be a measurable function.
Suppose that there are sequences fn, gn ∈ L∞ such that fn → f in measure, gn → f
in measure and for all n ∈ N, |fn| ≤ |f | and |gn| ≤ |f |. Let x ∈ H. Suppose that
y := limn Ψ(fn)x exists; then lim Ψ(gn)x exists and equals y.

P r o o f. There is a increasing sequence Am of measurable sets such that χAm → 1
in measure and for all m, there is Nm such that: if n ≥ Nm, then |f − fn|χAm < 2−m

and |f − gn|χAm < 2−m. Note that f is bounded on Am.
Define for all m, χm := χAm , Qm := Ψ(χm) and Pm := Ψ(χm−χm−1). Note that

for all z ∈ H, z = limQmz and z =
∑
Pmz.

Suppose that A is a measurable set on which f is bounded. Then |f |2χA ≥
|gn|2χA. In fact this holds for every measurable set A. So, it follows from Remark 4.2
and Lemma 3.11 that for all z ∈ H,〈

Ψ(|f |2χA − |gn|2χA|)z, z
〉
≥ 0,〈

Ψ(|f |2χA)z, z
〉
≥
〈
Ψ(|gn|2χA|)z, z

〉
,

(2) ‖Ψ(fχA)z‖2 ≥ ‖Ψ(gnχA)z‖2.
Fix ε > 0. Choose m such that ‖Qmy − y‖ < ε. Choose N such that for all n ≥ N,
‖Ψ(gnχm)x−Ψ(fχm)x‖ < ε. Remark that

Qmy = Qm lim Ψ(fn)x = lim
n

Ψ(fnχm)x = Ψ(fχm)x

and Ψ(gnχm)x = QmΨ(χm)x. So ‖QmΨ(gn)x−Qmy‖ < ε. Note that

Ψ(gn)x−Ψ(gn)Qmx =
∑
k>m

PkΨ(gn)x

and y − Qmy =
∑
k>m Pny. Moreover for all k ∈ N, ‖PkΨ(gn)x‖ ≤ ‖Pky‖, by (2).

So ‖Ψ(gn)x−QmΨ(gn)x‖ ≤ ‖y −Qmy‖ ≤ ε. It follows that for all n ≥ N,

‖Ψ(gn)x− y‖ ≤ ‖Ψ(gn)x−Ψ(gn)Qmx‖
+‖Ψ(gn)Qmx−Qmy‖
+‖Qmy − y‖

≤ 3ε.

Hence lim Ψ(gn)x = y. �

R e m a r k 4.7. In the previous lemma the hypothesis that for all n ∈ N, |fn| ≤ |f |
is necessary. Indeed, define the multiplication operator Mh on L2[0, 1] by Mhg =
h · g. Consider the spectral map Ψ for the Hermitian operator Mid, where id is the
identity map. Note that fn := nχ[0,1/n] converges to 0 in measure. But the operators
Ψ(fn) = Mfn do not converge to M0 in the strong topology.
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T h e o r e m 4.8. Let An be a sequence of commuting normal operators bounded
by 1. The homomorphism in the spectral theorem can be extended to the unbounded
measurable functions. This map has the following properties. If f is measurable, then
Ψ(f) is a normal operator. If f, g are measurable, then Ψ(f̄) = Ψ(f)∗, Ψ(f)+Ψ(g) ⊂
Ψ(f + g), Ψ(f)Ψ(g) ⊂ Ψ(fg) and Dom(Ψ(f)Ψ(g)) = Dom Ψ(g) ∩Dom Ψ(fg).

P r o o f. Let f be a measurable function. Choose a sequence fn ∈ L∞, such that
fn → f in measure and for all n ∈ N, |fn| ≤ |f |. Define

Dom Ψ(f) := {x : lim Ψ(fn)x exists}

and Ψ(f)x := lim Ψ(fn)x. Lemma 4.6 implies that this definition does not depend on
the choice of the sequence fn.

We claim that Ψ(f) is densely defined. Indeed, choose αn ↑ ∞ such that χn :=
χ[|f |≤αn] is measurable. Note that χn → 1 in measure, so Qn := Ψ(χn)→s I, by [1,
8.22]. Finally observe that for all n ∈ N, RanQn ⊂ Dom Ψ(f).

Let g be measurable. We claim that Ψ(f)Ψ(g) ⊂ Ψ(fg) and Dom(Ψ(f)Ψ(g)) =
DomΨ(g)∩DomΨ(fg). Indeed, let x ∈ Dom Ψ(g)∩Dom Ψ(fg) and choose sequences
fn, gn ∈ L∞ such that fn → f in measure, gn → g in measure and for all n, |fn| ≤ |f |
and |gn| ≤ |g|. Then |fngm| ≤ |fg| and

|fg − fngm| ≤ |fg − fng|+ |fng − fngm|
≤ |f − fn||g|+ |fn||g − gm|
≤ |f − fn||g|+ |f ||g − gm|,

which converges to 0 in measure when n,m→∞. So

Ψ(fg)x = lim
n,m

Ψ(fngm)x

= lim
n,m

Ψ(fn)Ψ(gm)x

= lim
n

Ψ(fn)Ψ(g)x.

This implies that Ψ(g)x ∈ Dom Ψ(f), so Dom Ψ(g) ∩ Dom Ψ(fg) ⊂ Dom Ψ(f)Ψ(g).
The other inclusion is straightforward.

The reader is invited to check that Ψ(f) + Ψ(g) ⊂ Ψ(f + g).
To show that Ψ(f) is closed we show that Ψ(f̄) = Ψ(f)∗. For all n, Ψ(fχn) is

normal and Ψ(f̄χn) = Ψ(fχn)∗, so for all x ∈ H,

‖Ψ(fχn)x‖ = ‖Ψ(fχn)∗x‖ = ‖Ψ(f̄χn)x‖.

Hence Dom Ψ(f) = Dom Ψ(f̄) and Ψ(f̄) ⊂ Ψ(f)∗. It follows from Lemma 3.3 that
QnΨ(f)∗ ⊂ (Ψ(f)Qn)∗ = Ψ(fχn)∗ = Ψ(f̄χn). For all z ∈ Dom Ψ(f)∗, QnΨ(f)∗z =
Ψ(f̄χn)z, whence z ∈ Dom Ψ(f̄).

Finally observe that Ψ(f)Ψ(f)∗ ⊂ Ψ(|f |2) ⊃ Ψ(f)∗Ψ(f), so that S(Ψ(f)) =
Ψ((|f |2 + 1)−1). By Theorem 3.1 Ψ(f) is located and because it satisfies (1) of The-
orem 4.4 it is normal. �

Theorem 4.8 tells us how to go from bounded operators to unbounded operators.
We would also like to have a spectral theorem starting from an unbounded operator.
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Remark that if we would have a spectral theorem, then T ∗T = TT ∗ = Ψ(zz̄) and

(T ∗T + I)−1 = Ψ((|z|2 + 1)−1) = (TT ∗ + I)−1.

So we can only hope to prove the spectral theorem for (located) normal operators.
Let ζ(z) := z(1 − |z|)−1 for z with |z| < 1; then ζ−1(z) := z(1 + |z|)−1. We will

use this function as a substitute for the Cayley transform, which was used in the case
where the operators are self-adjoint. The function ζ−1 maps C into its unit ball.

The proof of the following lemma can be simplified if T has a polar decomposition.
Unfortunately, it can not be proved constructively that every operator has a polar
decomposition [5], not even for bounded operators.

Recall that if T is self-adjoint and T =
∫
λdEλ, then we say that a bounded

operator B commutes with T if BT ⊂ TB, or equivalently EλB = BEλ, for all
λ ∈ R.

L e m m a 4.9. Let T be normal; then ζ−1(T ) := T (I + |T |)−1 is a bounded normal
operator which commutes with the bounded operator (I + |T |)−1, and (I + |T |)−1T ⊂
ζ−1(T ).

P r o o f. The operator T ∗T is self-adjoint, so A := (I + |T |)−1 is a well-defined
bounded operator commuting with T ∗T . We claim that the operator ζ−1(T ) =
TA is bounded. Indeed, RanA = Ran(I + |T |)−1 = Dom(|T |) = DomT, so by
Theorem 3.12, ‖TAx‖ = ‖|T |Ax‖. It follows that TA is a bounded operator, because
|T |A is. We claim that TA is also normal. Indeed, TAT ∗T ⊂ TT ∗TA = T ∗TTA,
so TAE = ETA, for all E in the spectral family of T ∗T , whence TAA = ATA,
as A is a bounded continuous function of T ∗T . This implies that TA = AT on
the dense set RanA = DomT , similarly T ∗A = AT ∗ on DomT ∗ = DomT . Note
that (TA)∗ ⊃ AT ∗ ⊂ T ∗A, so for all x in the dense set DomT ∗, ‖(TA)∗x‖ =
‖T ∗Ax‖ = ‖TAx‖. Because TA is bounded and (TA)∗ is closed, (TA)∗ is bounded
and ‖(TA)∗x‖ = ‖TAx‖, for all x ∈ H. �

D e f i n i t i o n 4.10. Unbounded normal operators T and A commute if ζ−1(T )
and ζ−1(A) commute. Define the spectrum σ(T ) of T by σ(T ) := ζ(σ(ζ−1(T ))).

It will follow from the next theorem and Lemma 4.14 that these definitions are
equivalent to other reasonable definitions. In particular with definition 4.3.

T h e o r e m 4.11. Let T1, T2, . . . be a sequence of (unbounded) commuting normal
operators. There is a measure µ on Π∞i=1C, concentrated on Π∞i=1σ(Ti) and a *ho-
momorphism Ψ mapping L∞C (µ) isometrically to an algebra of commuting bounded
normal operators, and mapping measurable functions to normal operators. The map
Ψ extends the polynomial map. It can be extended to all µ-measurable functions such
that the following properties hold. If f ∈ L∞ and fn is a uniformly bounded sequence
in L∞ which converges to f in measure, then Ψ(fn) → Ψ(f) in norm. If fn, f are
measurable, |fn| ≤ |f | and fn → f in measure, then Ψ(fn) →s Ψ(f). Moreover
Ψ(f̄) = Ψ(f)∗, Ψ(f) + Ψ(g) ⊂ Ψ(f + g), Ψ(f)Ψ(g) ⊂ Ψ(fg) and Dom(Ψ(f)Ψ(g)) =
Dom Ψ(g) ∩Dom Ψ(fg).

P r o o f. Denote fζ(x1, x2, . . .) := f(ζ(x1), ζ(x2), . . .). Let ν be the spectral mea-
sure on Π∞i=1[−1, 1]2 for the sequence ζ−1(T1), ζ−1(T2), . . . Define for f on Π∞i=1C,
µ(f) := ν(fζ) and Ψµ(f) = Ψν(fζ). We have to prove that for all i ∈ N, Ψµ(πi) = Ti.



Located Operators 223

Fix i ∈ N. Set T := Ti, A := (I + |T |)−1 and T0 := TA, note that A and T0 are
bounded.

The operators |T0| and |T |A are equal, because the absolute value is unique and
|T0|2 = T ∗0 T0 = T ∗ATA = |T |2A2 = (|T |A)2. So I − |T0| = (I + |T |)A − |T |A = A.
That is A = Ψφ(T0), where φ(t) := 1 − |t|. Let µ0 be a spectral measure for T0 and
let µA(f) := µ0(f ◦ φ).

From Theorem 2.3 and the fact that RanA = Dom |T | = DomT is dense, it
follows that {0} is µA-measurable. Hence

µA(0, 1] = 1− µA{0} = 1,

because χ{0}(A) is the projection on the kernel and A is injective.
Choose t0 := 1 and a sequence ti ↓ 0 which is admissible for µA. Define Pi :=

χ(ti,ti−1](A); then for all x ∈ H,
∑
i Pix = x. Define gi(t) = 1

tχ(ti,ti−1](t). Note
that PiT = gi(A)AT ⊂ gi(A)TA = TAgi(A) = TPi, by Lemma 4.9. Similarly
PiT

∗ ⊂ T ∗Pi.
Define ψn(z) := z

φ(z)χ(tn,1](φ(z)). Remark that

n∑
i=1

TPi =

n∑
i=1

T0gi(A) = ψn(T0)

converges to a normal operator, with adjoint
∑

(T0gi(A))∗ =
∑
T ∗Pi. For x ∈

DomT , Tx = T
∑
Pix =

∑
TPix, so T ⊂

∑
TPi, but both T and

∑
TPi are normal

and hence these operators are equal, by Remark 4.5. �

Recall that, when T is bounded, the resolvent is defined as

R(T ) := {λ ∈ C : T − λ has a bounded inverse}.

L e m m a 4.12. If T is bounded by M and f is holomorphic on a region containing
the closed ball BM , then R(f(T )) ⊂ f(R(T )).

P r o o f. This follows easily from the fact that for all λ ∈ C,

f(T )− f(λ) =

∞∑
n=1

an(λnI − Tn) = (λI − T )Aλ,

where f(z) =
∑
anz

n and Aλ is a suitable bounded operator commuting with T . �

D e f i n i t i o n 4.13. For an unbounded normal operator T define

R(T ) := {λ ∈ C : T − λI has a bounded inverse}.

L e m m a 4.14. Let T be normal; then R(T ) = ζ(R(ζ−1(T )).

P r o o f. Define ζn(z) := z
1+ 1

n−|z|
; then ζ−1n (z) =

(1+ 1
n )z

1+|z| . The function ζ−1n maps

the ball with radius n onto the unit-ball and the rest of the complex plane into the
ball with radius 1 + 1

n . The maps ζn and ζ−1n are holomorphic on B1+ 1
2n

and C,

respectively. Let Ψ be the spectral map for T . Define Tn = ΨidχBn
for all admissible

n > 0. Then R(T ) ∩Bn = R(Tn) = ζnR(ζ−1n (Tn)), by the previous lemma. �

Lemma 4.14 shows that our definition of the spectrum coincides with the usual
definition.
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5 Some other approaches to the spectral theorem.

Finally we discuss three classical approaches to the spectral theorem that do not seem
to work constructively.

First consider the classical theorem: Let T be Hermitian; there are a measure µ,
a unitary operator U : H → L2(µ) and a measurable function h, such that for all
x ∈ H, Tx = U−1(h · Ux). Even the 2-dimensional version of this theorem: ‘every
Hermitian matrix is unitarily equivalent to a diagonal matrix’ can not be proved
constructively [6, p21]. This is the constructive analogue of the classical fact that
the eigenvectors do not depend continuously on the elements of the matrix. This
approach was promoted by Halmos [8].

A second approach uses Gelfand theory, see for instance [12]. This approach seems
to work only when all the operators are normable [1, 7.8.28].

Finally, consider the approach used by Rudin [14, Ch. 13]. Roughly, the idea
is as follows. If A is Hermitian, then A =

∫
λdEλ. Define for bounded measurable

functions f, Exy(f) := 〈Ψ(f)x, y〉; then 〈Ax, y〉 = Exy(id). Let f be an unbounded
measurable function. We define Dom(Ψ(f)) := {x : Exx(|f |2) < ∞}. Remark that
for x ∈ Dom(Ψ(f)), y 7→ Exy(f) is a bounded linear functional. So by the Riesz
representation theorem, there exists zx ∈ H such that Exy(f) = 〈zx, y〉. Finally we
define Ψ(f)x := zx.

To generalize this approach to the case where we start with countably many
Hermitian operators. We could use the theorem:

T h e o r e m 5.1. If A1, A2, . . . is a sequence of commuting Hermitian operators,
then there is an operator B and a sequence of continuous functions j1, j2, . . . on σB
such that for all n, jn(B) = An.
Finally, define f(A1, A2, . . .) as f(j1(B), j2(B), . . .).

There are several problems when we want to make this approach constructive.
First, it is difficult in constructive mathematics to define a class of measurable func-
tions without defining a measure simultaneously. Second, in the constructive Riesz
representation theorem, we need the hypothesis that the functional is normable, not
just bounded. Finally, Theorem 5.1 can be proved constructively, but in general f ◦ j
is not measurable in constructive mathematics. For instance, let j = c be constant
and c 6∈ Dom f.

6 Appendix on matrix operators

In this appendix we assume that the Hilbert space H is infinite dimensional.
Recall the following theorem on matrix operators[15, p149].
T h e o r e m 6.1. If ajk is a matrix and

∑
j |ajk|2 < ∞ for all k, and A is the

corresponding matrix operator, then D(A) is dense, A∗ is a restriction of the operator
associated to the adjoint matrix. If

∑
k |ajk|2 <∞ for all j, then A is closed and A∗

is densely defined.
In fact it was proved in [15] that, if

∑
k |ajk|2 < ∞ for all j, then A = (A+

0 )∗.

Here A+ is the operator associated with the adjoint matrix and A+
0 the restriction of

A+ to Span{e1, e2, . . .}. We see that for all n ∈ N, en ∈ DomA∗.
L e m m a 6.2. If ajk is a symmetric real matrix and

∑
j |ajk|2 <∞ for all k, and

A is the corresponding matrix operator, then A is self-adjoint.
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P r o o f. It follows from the previous theorem that A∗ ⊂ A. But from the definition
of A we see that Span{e1, e2, . . .} is a core for A. Hence A = A∗, because A∗ is
closed. �
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