
APPROXIMATING INTEGRABLE SETS BY COMPACTS

CONSTRUCTIVELY

BAS SPITTERS

Abstract. In locally compact spaces, (Borel-)measurable sets can be approx-
imated by compact sets. Ulam extended this result to complete separable met-
ric spaces. We give a constructive proof of Ulam’s theorem. It is first proved
intuitionistically and then, using a logical ‘trick’ due to Ishihara, a proof ac-
ceptable in Bishop-style mathematics is obtained. We feel this proof provides
some insight into Ishihara’s trick. Finally, we show how several intuitionistic
measure theoretic theorems can be extended to regular integration spaces, that
is integration spaces where integrable sets can be approximated by compacts.
These results may help to understand Bishop’s choice of definitions.

1. Introduction

When developing measure theory constructively, one often wants to know
whether measurable sets can be approximated by compact sets. In fact, for
Brouwer [Hey56, Bro75] this is part of the definition of a (Lebesgue-)measurable
set. In Bishop’s more abstract approach to integration theory one can prove that
an integrable set, with respect to a positive measure on a locally compact space,
can be approximated by a compact set, see Theorem 6.6.7 in [BB85].

In this article we will extend this result to integrals defined on complete sep-
arable metric spaces. We will work constructively, in the sense of Bishop, that
is using intuitionistic logic. However, sometimes one of Brouwer’s principles is
used as an extra axiom. We will always make clear when we use such axioms.
This treatment is similar to that of Bridges and Richman [BR87], who consider
Brouwer’s intuitionistic mathematics as an extension of Bishop’s constructive
mathematics. It should be noted that we do not work within a fixed formal
system, but there have been various proposals for formalizing Bishop-style math-
ematics. See for instance [Bee85, TvD88].

This article is organized as follows. In section 2 we recall some standard result
form the constructive literature. Section 3 gives an overview of the Bishop/Cheng
integration theory. In section 4 we give a constructive proof of Ulam’s theorem1.
Finally, in section 5, we show how several intuitionistic measure theoretic theo-
rems can be extended to regular integration spaces

1Billingsley [Bil68] refers to Ulam for this result. Unfortunately, I have been unable to find
a concrete reference to Ulam’s work.

1
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2. Preliminaries

We will now recall some results and fix some notations, most of them are
standard in the literature on constructivism, see for instance [Bee85, TvD88].

Definition 2.1. Let Seq(N) be the set of finite sequences of natural numbers.
The concatenation of two finite sequences is denoted by ∗ and we write a ∗ n for
a∗{n}, when a ∈ Seq(N) and n ∈ N. Define the map · : NN×N → Seq(N) such
that for all α ∈ NN and n ∈ N, αn is the initial segment of α which has length
n. When a is an initial segment of a finite sequence b we write a ⊂ b. When a is
an initial segment of an infinite sequence α, we write α ∈ a.

Let d be the metric on NN defined by

d(α, β) := inf{2−n : αn = βn}.

We will sometimes implicitly consider NN as the metric space (NN, d) without
mentioning it.

Definition 2.2. A spread S is a decidable subtree of Seq(N) such that

(1) when there exists n ∈ N such that a ∗ n ∈ S, then a ∈ S and
(2) if a ∈ S, then a ∗ n ∈ S, for some n.

A spread S can also be seen closed subset of NN by considering the set {α ∈
NN : ∀n[αn ∈ S]}. In this case we also write α ∈ S, for α ∈ NN. A fan is a
spread F which is finitely branching. Let S be a spread. A bar B for S is a set
of finite sequences of natural numbers such that for all infinite sequences σ ∈ S
there is b ∈ B such that σ ∈ b. A subbar of a bar B is a subset of B that is a bar.

The fan theorem and the continuity principle are two of the most character-
istic principles of intuitionistic mathematics. Brouwer considered them to be
theorems. Bishop and Bridges [BB85, p.76] seem to believe that these princi-
ples hold, but they do not consider them to be mathematical theorems. They
avoid using these principles by adapting their definitions. The most well-known
example of this is their definition of continuity. They define a function on a lo-
cally compact space to be continuous precisely when it is uniformly continuous
on compacts. For Bishop a subset of a metric space is compact, if it is totally
bounded and complete. This is also the definition we will use.

We think that the intuitionists have made it clear that it is worthwhile to
find out what the consequences of these statements are, so we will treat these
principles as axioms. We will always make it clear when we use these axioms.

Axiom 2.3. The continuity principle(CP): Let S be a spread and let A ⊂ S×N.
If for all α ∈ S there is an n ∈ N such that A(α, n), then for each α ∈ S, there
are n, m ∈ N such that if β ∈ S and βm = αm, then A(β, n).

The axiom CP is also know as WC-N. This principle also holds when interpreted
in Markov’s recursive mathematics.
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Axiom 2.4. The fan theorem(FAN): Let F be a fan and B a decidable bar for
F, then there is a finite subbar B ′ ⊂ B which is also a bar for F.

Note that the fan theorem also holds when read classically.

Axiom 2.5. The extended fan theorem(FANext): Let F be a fan and let A ⊂
F × N. If for all α ∈ F there is n ∈ N such that A(α, n), then there is N ∈ N

such that for all α ∈ F there is an n ≤ N such that A(α, n).

The following theorems are useful for later reference. They can be found for
instance as Corollary 5.2.4, Corollary 5.3.7 and Theorem 5.3.6 in [BR87].

Theorem 2.6. [CP] Every function on a complete separable metric space is
(pointwise) continuous.

Theorem 2.7. [FAN] Let h be a continuous function on [0, 1] such that for all
x ∈ [0, 1], h(x) > 0. Then there is ε > 0 such that h(x) > ε, for all x ∈ [0, 1].

Theorem 2.8. [FAN] Every pointwise continuous function on a compact space
is uniformly continuous.

2.1. Ishihara’s trick. We will now present what we feel is the essence of what
has come to be known as Ishihara’s trick, see for instance in [Ish91, BvDI03].
The trick provides a way to find a proof which is acceptable in Bishop-style
mathematics for certain statements for which we have both an intuitionistic and
a classical proof. This technique rests on two observations. First, many theorems
in classical analysis can be proved in Bishop-style mathematics assuming only
LPO, instead of the full form of the law of excluded middle. Here LPO denotes
the ‘limited principle of omniscience’,

∀α ∈ NN[∃n[α(n) 6= 0] ∨ ∀n[α(n) = 0]].

Second, given a discontinuous function on a complete metric space we can prove
LPO. In view of theorem 2.6 no such function exist in intuitionistic mathematics.

A precise statement of Ishihara’s trick is the following.

Theorem 2.9. Let (X, d) be a complete metric space. Let f be a strongly exten-
sional map from X to a metric space (Y, ρ), and let (xn)n∈N be a sequence in X
converging to a point x ∈ X. Then for all ε > 0, either LPO or ρ(f(xn), f(x)) ≤ ε
for all sufficiently large n.

A map f between a metric space X and a metric space Y is called strongly
extensional when f(x) 6= f(y), whenever x, y in X and x 6= y. Here we use
Bishop’s notation where a 6= b denotes that a is apart from b, that is the distance
between a and b is positive. Every continuous function is strongly extensional.

It should be noted that the theorem is trivial in classical, intuitionistic and re-
cursive mathematics. Indeed, in classical mathematics LPO holds. In intuition-
istic and recursive mathematics every function on a complete separable metric
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space is pointwise continuous, so one can consider a complete separable subspace
of X containing the sequence (xn)n∈N.

We now outline a proof of Ishihara’s trick in three lemmas. Let (X, d) be a
complete metric space. Let f be a strongly extensional map from X to a metric
space (Y, ρ), let ε > 0 and let (xn)n∈N be a sequence in X converging to a point
x ∈ X.

Lemma 2.10. Either for all n, |f(x)−f(xn)| < 2ε or there exists an n such that
|f(x) − f(xn)| > ε.

Proof. Define an increasing binary sequence such that

λ(n) = 0 ⇒ |f(x) − f(xn)| < 2ε;

λ(n) = 1 ⇒ |f(x) − f(xm)| > ε, for some m ≤ n.

Define yn = xn when λ(n) = 0 and yn = xn0
when n0 ≤ n is the first m such that

λ(m) = 1. The sequence yn converges to a limit y. If |f(y) − f(x)| < ε, then for
all n, |f(x) − f(xn)| < 2ε. If on the other hand |f(y) − f(x)| > ε/2, then there
exists an n such that |f(x) − f(xn)| > ε. �

Lemma. Either for sufficiently large n, |f(x)−f(xn)| < 2ε or there are infinitely
n such that |f(x) − f(xn)| > ε.

Proof. Using the previous lemma we define an increasing binary sequence such
that

λ(n) = 0 ⇒ there exists m > n, |f(x) − f(xm)| > ε;

λ(n) = 1 ⇒ for all m > n, |f(x) − f(xm)| < 2ε.

Define yn = xn when λ(n) = 0 and yn = xn0
when n0 ≤ n is the first m such

that λ(m) = 1. The sequence yn converges to a limit y. If |f(y)−f(x)| < ε, then
here are infinitely many n such that |f(x) − f(xn)| > ε. If |f(x) − f(y)| > ε/2
then for sufficiently large n, |f(x) − f(xn)| < 2ε. �

Corollary. Either for sufficiently large n, |f(x) − f(xn)| < 2ε or LPO.

3. Integration theory

In this section we recall some results from Bishop and Cheng’s constructive
version of the Daniell’s integration theory [BC72, BB85].

A triple (X, L, I) is an integration space if X is an inhabited set with an
apartness relation 6=, L a set of strongly extensional partial functions, and I is
a mapping from L into R, called the integral, such that the following properties
hold.

(1) If f, g ∈ L and α, β ∈ R, then αf + βg, |f | and f ∧ 1 belong to L, and
I(αf + βg) = αI(f) + βI(g).
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(2) If f ∈ L and (fn)n∈N is a sequence of nonnegative functions in L such
that

∑∞

n=1 I(fn) converges and
∑∞

n=1 I(fn) < I(f), then there exists x in
X such that

∑∞

n=1 fn(x) converges and
∑∞

n=1 fn(x) < f(x).
(3) There exists a function p in L with I(p) = 1.
(4) For each f in L, limn→∞ I(f ∧ n) = I(f) and limn→∞ I(|f | ∧ n−1) = 0.

When R denotes the Riemann integral, then ([0, 1], C[0, 1], R) is an example of
an integration space. More generally, let X be a locally compact space and I
any nonzero positive linear functional on the space of test functions C(X); then
(X, C(X), I) is an integration space. A linear functional I on C(X) is called
positive if I(f) ≥ 0 whenever f ≥ 0. Such a positive linear functional is also
called a positive measure.

There is a general completion construction for integration spaces, which allows
us to carry out all the usual measure theoretic constructions. The elements of
the completion are, almost everywhere defined, partial functions. When this
completion is applied to the Riemann integral one obtains the Lebesgue integral.

Intuitively, an integrable set is identified with its characteristic function χA.
To make this work nicely, one has to consider what is called a complemented set,
that is a pair (A1, A0) such that for all a1 ∈ A1 and a0 ∈ A0, a1 6= a0. When µ is
an integral and A a µ-integrable (complemented) set we will usually write µ(A)
instead of µ(χA). Similarly, we will sometimes use the notation

∫
fdµ instead

µ(f).
The following theorem is a fundamental result in integration theory. Let f be

an integrable function and let α > 0. Define the complemented sets

[f ≥ α] := ({x : f(x) ≥ α}, {x : f(x) < α}) and

[f > α] := ({x : f(x) > α}, {x : f(x) ≤ α}).

In general, we will not be able to compute the measure of the set [f > α] for all
α. However, the next theorem states that I([f > α]) can be computed for many
α.

Let T be a countable subset of a metric space X and write X ∼ T for the set
{x ∈ X ; ∀t ∈ T x 6= t}. When a predicate P holds for all x ∈ X ∼ T, we will say
that P holds for all but countably many x.

Theorem 3.1. Let I be an integral and let f be an integrable function; then for
all but countably many α > 0, the sets [f ≥ α] and [f > α] are integrable and
have the same measure. Moreover, for each admissible α > 0 and each ε > 0,
there is δ > 0 with

|I[f ≥ α] − I[f ≥ α′]| < ε,

whenever α′ > 0 is admissible and |α − α′| < δ.

In the context of the previous theorem, α is called admissible for f, if α is
admissible for the property ‘the sets [f ≥ α] and [f > α] are integrable and have
the same measure’. This theorem can be read as a constructive way of stating



APPROXIMATING INTEGRABLE SETS BY COMPACTS CONSTRUCTIVELY 6

that the function α 7→ I[f ≥ α] being non-decreasing, is continuous in all but
countably many points.

It is important to define measurable functions together with an integral. So
the following definition may look different from the ones the reader is used to.

An integration space X is finite when X is integrable and (therefore) µ(X) <
∞. We will not recall the general definition of a full set, but in the special case
when the integration space X is finite, a set A is full when µ(A) = µ(X).

Definition 3.2. A function defined on a full set is measurable if for each inte-
grable set A and each ε > 0, there exist an integrable set B ⊂ A and an integrable
function g such that µ(A − B) < ε and |f − g| < ε on B.

4. Regular measures and Ulam’s theorem

In this section we study regular measures and prove Ulam’s theorem. Regu-
larity is very useful when combined with intuitionistic axioms, as we will show in
section 5.

We want to find a good substitute for the classical notion of a Borel measure on
a complete separable metric space. Classically, a Borel measure is a measure such
that all open sets and hence all Borel sets are measurable. Constructively, even
for Lebesgue measure on [0,1] not all open sets are measurable. For measures on
locally compact spaces a good substitute is to demand that all test functions, and
hence all uniformly continuous functions are measurable. We define a Borel mea-
sure as a measure on a separable metric space such that all uniformly continuous
functions are measurable.

There is an example in recursive mathematics of a pointwise continuous, but
not uniformly continuous, function on [0,1] that is not Lebesgue measurable, see
for instance [BD91, Cor. 1, p.272].

Recall that a total function f on a metric space X is called Lipschitz if there is
a constant L > 0 such that for all x, y ∈ X, |f(x) − f(y)| ≤ Lρ(x, y). Define for
all x ∈ X, the Lipschitz function ρx by ρx(y) := ρ(x, y). Then for all x ∈ X and
ε > 0, B(x, ε) = [ρx < ε]. Using classical logic, it follows that all basic open sets,
and hence all open sets, are measurable. Consequently, the present definition of
Borel measure is equivalent to the usual one in classical mathematics.

Definition 4.1. Let X be a metric space. A measure µ on X is regular if for
every measurable set A ⊂ X and ε > 0 there is a compact integrable set C ⊂ A
such that µ(A − C) < ε. A finite measure µ on X is tight if for each ε > 0 there
is a compact integrable set C ⊂ X such that µ(X − C) < ε.

What we call ‘regular’ is called ‘inner regular for compacts’ by some authors.
Positive measures on locally compact sets are regular [BB85, Thm. 6.6.7]. The-

orem 4.3 states that many more measures are regular.

Lemma 4.2. A tight finite Borel measure is regular.
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Proof. Let µ be a tight Borel measure on a metric space X and ε > 0. We
may assume that µ(X) = 1. Choose a compact integrable set A ⊂ X such that
µ(A) > µ(X) − ε/2 and apply Theorem 6.6.7 [BB85, p.257] to the restriction of
µ to A. �

Theorem 4.3. [Ulam]Let X be a complete separable metric space and let µ be a
finite Borel measure on X. Then µ is regular.

We will first give a classical proof of this theorem due to Ulam (see [Bil68,
p.10]). We then give an intuitionistic proof using CP, and finally we will use
Ishihara’s trick to remove this hypothesis and obtain a proof which is acceptable
in Bishop-style mathematics.

We assume that µ(X) = 1.

Classical proof. Let Q = {q1, q2, . . .} be a countable dense set in X. Let ε > 0
and m ∈ N. Because X =

⋃∞

n=1 B(qn, 1/m), there is Nm such that

µ(

Nm⋃

n=1

B(qn, 1/m)) > 1 − ε2−m.

Define C :=
⋂

m

⋃Nm

n=1 B(qn, 1/m). Then C is compact and µ(C) ≥ 1 − ε. �

There are two main problems when we try to interpret the previous proof
constructively. First, we can not conclude in general that if (Xn)n∈N is a sequence
of integrable sets and X =

⋃∞

n=1 Xn, then there exists a natural number N such

that µ(
⋃N

n=1 Xn) > 1/2. Secondly, it is not clear constructively that a set like
the set C defined is totally bounded, one has to choose an apropriate subset of
{q1, . . . , qNm

} as an 1/m-net, depending on the choices made for k < m.
We elaborate on the first problem. In recursive mathematics there is a sequence

(In)n∈N of intervals such that [0, 1] =
⋃∞

n=1 In but for all N ∈ N, µ(
⋃N

n=1 In) <
1/2, see for instance [BD91]. Here µ denotes Lebesgue measure, which is regular.
In intuitionistic mathematics, when (Xn)n∈N is a sequence of integrable sets and

X =
⋃∞

n=1 Xn, then there exists a natural number N such that µ(
⋃N

n=1 Xn) > 1/2,
for any measure µ which is regular (see Theorem 5.5). However, regularity is
exactly what we are trying to prove!

With these problems in mind it may seem quite surprising that it is possible to
proof Ulam’s theorem constructively. In fact, the only way we know to do this is
by first given an intuitionistic proof and then use Ishihara’s trick to transform this
into a constructive proof. We will now proceed towards an intuitionistic proof
of Ulam’s theorem. Let N be the completion of N with respect to the metric
d(n, m) := |1/(n + 1) − 1/(m + 1)| and let ∞ be the point at infinity. Remark
that N is a complete separable metric space.

Proof using CP. It follows from Lemma 4.2 that we only need to prove that µ is
tight. To do so we first prove a lemma which contains the key argument of the
proof.
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Lemma. Let X be a complete separable metric space, D a finite subset of X and
µ be a finite Borel measure on X. Then for each ε > 0, there is a closed separable
µ-measurable subset A of X such that there is a finite ε-net for A which contains
D and µ(X) − µ(A) < ε.

Proof of the lemma. Write D = {q1, . . . , qd} and choose a countable dense set
Q = {q1, q2, . . .} in X. Let T := {ρ(x, y) : x, y ∈ Q}, then T is countable. Note
that for all s ∈ X ∼T and x, y ∈ Q, we can decide whether x ∈ B(y, s) or not.
Define for all N ∈ N,

hN(x) := min
n≤N

ρ(x, qn) ∧ 1.

For all N ∈ N and all α ∈ (0, 1]∼T which are admissible for hN ,

[hN < α] = {x : min
n≤N

ρ(x, qn) < α} =
N⋃

n=1

B(qn, α).

Since α is admissible for hN , µ[hN < α] = µ[hN ≤ α] and, because hN is contin-
uous,

[hN ≤ α] ⊃

N⋃

n=1

B(qn, α).

For all n ∈ N, hn is Lipschitz with constant 1. Because Q is dense the sequence
(hn)n∈N converges pointwise to 0. So the map n 7→ hn can be extended from N

to N such that h∞ = 0. Then hβ is Lipschitz with constant 1, for all β ∈ N.

The function f : N → R defined by f(β) := µ(hβ) is continuous, by CP.
Because f(∞) = 0, there is an N such that µ(hN) < ε. For all positive integrable
g and every α > 0 which is admissible for g, αµ[g ≥ α] ≤

∫
g. So for fixed α > 0,

µ[hN ≥ α] → 0.
Choose N ≥ d and α ∈ (0, ε/2]∼T such that α is admissible for hN and

µ[hN < α] > µ(X) − ε. Define A := [hN < α]. We claim that A satisfies the
required properties. We only show that A is separable. Indeed, A is separable,
because for all q ∈ Q, we can decide whether q ∈

⋃N

n=1 B(qn, α) or not. So⋃N

n=1 B(qn, α) is separable and hence A is separable. �

We now complete the intuitionistic proof of Ulam’s theorem by appling the
Lemma to obtain better and better approximations of the compact set.

Let ε > 0. Let A1 be a closed separable µ-measurable subset of X and a finite
ε-net D1 for A1 such that µ(X) − µ(A1) < 2−1ε. Suppose that there are closed
separable µ-measurable subsets A1, . . . , An ⊂ X such that for all i < n, Ai+1 ⊂ Ai

and µ(Ai) − µ(Ai+1) < 2−iε. Moreover, suppose that finite sets D1, . . . , Dn ⊂ X
have been defined such that for all i < n, Di ⊂ Di+1 and for all i ≤ n, Di is
an 2−iε-net for Ai. Remark that An is a complete separable metric space. So
we can apply the lemma to the space An, the set Dn and the restriction of µ
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to An to obtain a closed separable µ-measurable set An+1 ⊂ An and a finite set
Dn+1 ⊂ An+1 such that µ(An) − µ(An+1) < 2−nε, Dn ⊂ Dn+1 and Dn+1 is an
2−(n+1)ε-net for An+1. It follows that A :=

⋂∞

i=1 Ai is a compact set such that
µ(X) − µ(A) < ε. �

To remove the assumption of CP from the proof above we can use Ishihara’s
trick. The function f we defined above is a strongly extensional map on the
complete space N̄, by [BB85, Lemma 6.1.3]. Let ε > 0. By Ishihara’s trick, either
for all sufficiently large n, f(n) < ε or LPO. We assume the latter. In this case
the descending sequence f(n) = µ(hn) of non-negative real numbers converges.
So the sequence (hn)n∈N is Cauchy in L1, and as it converges pointwise to 0, it
converges in L1 to the constant function with value 0. Hence limn→∞ µ(hn) = 0.
We conclude that in both cases we can compute an n ∈ N such that f(n) < ε
and continue as in the proof above.

5. Intuitionistic theorems

Every compact set can be represented as the image of a fan (see for instance
[TvD88, p.363]). This fact can be used to obtain the following four striking
results. Similar results were first proved by van Rootselaar [vR54, Hey56] for
Lebesgue measure on [0, 1]. The first theorem was proved for positive measures
on locally compact spaces by Bridges and Demuth in [BD91]. They also used
intuitionistic axioms.

Theorem 5.1. [FAN,CP] Let µ be a regular measure on a metric space X. Every
µ-a.e. defined function is measurable.

Proof. Let ε > 0. Let f be an a.e. defined function and let A be an integrable
set. Choose a compact integrable set C ⊂ A∩Dom f such that µ(A−C) < ε. By
FAN and CP, f is uniformly continuous on C. Construct by the Tietze extension
theorem [BB85, Thm. 4.6.16] a bounded uniformly continuous extension g of f |C
to X. Then gχC is integrable and f = g on C. So f is measurable. �

A simple, but interesting consequence is the following. If f is measurable on
a regular measure space and g is a measurable function on R, such that f(x) ∈
Dom g for almost all x, then g ◦ f is measurable. In particular, if f > 0, then one
may choose g(x) := x−1 on (0,∞). This should be compared with [BB85, Cor.
6.7.10], where stronger assumptions are necessary to prove that 1/f is measurable.

The hypothesis that f(x) ∈ Dom g for almost all x is necessary, because, in
order to be measurable, the function g ◦ f needs to be defined on a full set.

Definition 5.2. Let (fn)n∈N be a sequence of measurable functions, and f a
function defined on a full set. The sequence (fn)n∈N converges to f almost uni-
formly if to each integrable A and ε > 0, there is an integrable B ⊂ A with
µ(A − B) < ε and the sequence (fn)n∈N converges uniformly on B.
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Theorem 5.3. [Egoroff] Let µ be a regular finite measure on a metric space. If
a sequence (fn)n∈N of measurable functions converges on a full set to f , then the
sequence (fn)n∈N converges almost uniformly.

Proof. [FANext] The sequence (fn)n∈N converges to f on a large compact set. By
the extended fan theorem it converges uniformly on this set. �

Bishop and Bridges [BB85, Thm. 6.8.16] proved the previous theorem with-
out the fan theorem, replacing convergence on a full set by the following strong
definition of convergence a.e.

Definition 5.4. Let (fn)n∈N be a sequence of measurable functions, and f a
function defined on a full set. The sequence (fn)n∈N converges to f almost ev-
erywhere if to each integrable A and ε > 0, there is N ∈ N and an integrable
B ⊂ A with µ(A − B) < ε and |f − fn| < ε on B for all n ≥ N.

The following result motivates this definition of convergence a.e. Again we see
that Bishop avoids the use of intuitionistic axioms by modifying the more familiar
definitions.

Lemma 5.5. [FANext] Let µ be a regular measure. If a sequence (fn)n∈N of
measurable functions converges pointwise on a full set, then the sequence (fn)n∈N

converges almost everywhere.

Proof. Let A be integrable and let ε > 0 compact set C ⊂ A, such that µ(A−C) <
ε. By the extended fan theorem the sequence (fn)n∈N converges uniformly on this
set. �

Note that the fan theorem is crucial here. There is an example in recursive
mathematics [BD91, Cor. 1, p.272] where f is the pointwise limit of uniformly
continuous functions on [0, 1], f is pointwise continuous and bounded, but not
Lebesgue integrable.

Note that Lemma 5.5 can also be proved classically.

Theorem 5.6. [Lusin] Let ε > 0, µ be a regular measure on a metric space and
let A be an integrable set. If f is measurable then there exist an integrable B ⊂ A
such that µ(A − B) < ε and f is uniformly continuous on B.

Proof. [FAN,CP] Choose a large compact set C ⊂ A on which f is defined. By
FAN and CP f is uniformly continuous on C. �

A similar result can also be obtained in Bishop-style mathematics, but then
the proof is somewhat longer:

Theorem 5.7. [Lusin] Let ε > 0, µ be a regular positive measure on a locally
compact space and let A be an integrable set. If f is measurable then there exist
an integrable B ⊂ A such that µ(A − B) < ε and f is uniformly continuous on
B.
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Proof. First assume that f is a characteristic function of an integrable set B =
(B1, B0). Take compact sets B1 ⊂ B1 and B0 ⊂ B0 such that µ(Bi − Bi) < ε/2
for all i ∈ {0, 1} and the distance between B0 and B1 is strictly positive, see
Theorem 6.6.7 in [BB85] for this last fact. The function f is constant on each
Bi and hence uniformly continuous on B0 ∪ B1. When f is a simple function,
we can construct in a similar way a large integrable set on which f is uniformly
continuous. Now let f be the limit of a sequence (fk)k∈N of simple functions.
There is a sequence (Ck)k∈N of measurable sets such that for all k ∈ N, µ(A −
Ck) < ε2−k−1 and fk is uniformly continuous on Ck. By applying Theorem 5.3 to
this sequence of functions we find an integrable set C0 such that µ(A−C0) < ε/4
and the sequence (fn)n∈N converges uniformly on C0. Now there is a measurable
set C ⊂ C0 ∩

⋂∞

k=1 Ck, such that µ(A − C) < ε. It follows that f is uniformly
continuous on C. �

6. Conclusions

We have shown how to constructively approximate integrable sets by compact
integrable sets. The proof uses an interesting logical detour, the theorem was
first proved intuitionistically and only then these intuitionistic assumptions where
removed to obtain a result acceptable in Bishop’s constructive mathematics.

Finally, it is also possible to develop integration theory algebraically, see for
instance [Spi04]. This seems to be more appropriate for the applications to func-
tional analysis. However, the algebraic approach does not include a notion of
convergence almost everywhere.

Acknowledgement. Some of the results in this article can also be found in the
author’s PhD thesis [Spi02]. The author would like to thank Wim Veldman for
his advise during the PhD project and for remarks on an earlier version of this
paper.

References

[BB85] Errett Bishop and Douglas Bridges, Constructive analysis, Grundlehren der Mathe-
matischen Wissenschaften, vol. 279, Springer-Verlag, 1985.

[BC72] Errett Bishop and Henry Cheng, Constructive measure theory, American Mathematical
Society, Providence, R.I., 1972, Memoirs of the American Mathematical Society, No.
116.

[BD91] Douglas Bridges and Osvald Demuth, On the Lebesgue measurability of continuous

functions in constructive analysis., Bulletin of the American Mathematical Society,
New Series 24 (1991), no. 2, 259–276.

[Bee85] Michael J. Beeson, Foundations of constructive mathematics, Springer-Verlag, Berlin,
Heidelberg, New York, 1985.

[Bil68] Patrick Billingsley, Convergence of probability measures, John Wiley and sons, New
York, 1968.

[BR87] Douglas Bridges and Fred Richman, Varieties in constructive mathematics, London
Mathematical Society Lecture Notes Series, no. 97, Cambridge University Press, 1987
(English).



APPROXIMATING INTEGRABLE SETS BY COMPACTS CONSTRUCTIVELY 12

[Bro75] L.E.J. Brouwer, Collected works, North-Holland, 1975.
[BvDI03] D. Bridges, D. van Dalen, and H. Ishihara, Ishihara’s proof technique in constructive

analysis, Proc. Koninklijke Nederlandse Akad. Wetenschappen (Indag. Math.) N.S. 4

(2003), no. 2, 2749–2752.
[Hey56] Heyting, A., Intuitionism. An introduction., Studies in Logic and the Foundations of

Mathematics, North-Holland Publishing Company, Amsterdam, 1956 (English).
[Ish91] Hajime Ishihara, Continuity and nondiscontinuity in constructive mathematics., Jour-

nal of Symbolic Logic 56 (1991), no. 4, 1349–1354.
[Spi02] Bas Spitters, Constructive and intuitionistic integration theory and functional analysis,

Ph.D. thesis, University of Nijmegen, 2002.
[Spi04] , Constructive algebraic integration theory, Proceedings of the Second Workshop

on Formal Topology, special issue of Annals of Pure and Applied Logic (Giovanni Sam-
bin Bernhard Banaschewski, Thierry Coquand, ed.), 2004.

[TvD88] A.S. Troelstra and D. van Dalen, Constructivism in mathematics. An introduction.

Volume II., Studies in Logic and the Foundations of Mathematics, no. 123, North-
Holland, 1988.

[vR54] B. van Rootselaar, Generalization of the brouwer integral, Ph.D. thesis, Universiteit
van Amsterdam, Amsterdam, 1954.


