Programming with Dependent types
 (based on a presentation by Matthieu Sozeau)

Danil Annenkov and Bas Spitters
November 15, 2021.
Aarhus University

Equations in Coq

EqUATIONS: function definitions by dependent pattern-matching and recursion

- A plugin for the Coq proof assistant.
- Developed in INRIA, France.
- Features powerful (dependent) pattern-matching.
- Derives (generates) useful reasoning principles for definitions.

Equations vs match

Equality of natural numbers in Haskell (Agda, Idris)

```
equal :: Nat }->\mathrm{ Nat }->\mathrm{ Bool
equal 00 = True
equal (S m') (S n') = equal m' n'
equal _ _ = False
```


Equations vs match

Equality of natural numbers in Haskell (Agda, Idris)

```
equal :: Nat }->\mathrm{ Nat }->\mathrm{ Bool
equal 00 = True
equal (S m') (S n') = equal m' n'
equal _ _ = False
```

Equality of natural numbers in Coq (basic match ... with)

```
Fixpoint fix_equal (m n : nat) : bool :=
    match m with
    \(0 \Rightarrow\) match n with
    | \(0 \Rightarrow\) true
        | \(\mathrm{S} \mathrm{n}^{\prime} \Rightarrow\) false
        end
    \(\mathrm{S} \mathrm{m}^{\prime} \Rightarrow\) match n with
        \(\left\lvert\, \begin{aligned} & 0 \Rightarrow \text { false } \\ & \\ & \text { } S n^{\prime} \Rightarrow \text { fix_equal m' n' } \\ & \text { end }\end{aligned}\right.\)
    end.
```


Equations vs match

Equality of natural numbers in Haskell (Agda, Idris)

```
equal :: Nat }->\mathrm{ Nat }->\mathrm{ Bool
equal 00 = True
equal (S m') (S n') = equal m' n'
equal _ _ = False
```

Equality of natural numbers in Coq (with Equations)
Equations equal (m n : nat) : bool :=
equal $00:=$ true ;
equal (Sm) (S n) := equal mn; equal _ _ $:=$ false.

Equations vs match, cont.

- The "native" pattern-matching in Coq match ... with is simple.
\Rightarrow easier to implement
\Rightarrow smaller trusted computing base
\Rightarrow less bugs in the implementation

Equations vs match, cont.

- The "native" pattern-matching in Coq match ... with is simple. \Rightarrow easier to implement
\Rightarrow smaller trusted computing base
\Rightarrow less bugs in the implementation
- Issues: hard to use with dependent types.

Equations: features

Equations equal (m n : nat) : bool :=
equal $00:=$ true ;
equal (Sm) (S n) := equal $m \mathrm{n}$;
equal _ _ $:=$ false.

- An equational presentation of functions rather than a computational one: each "case" becomes an equation (a lemma in Coq)

```
equal_equation_1 : equal 00 = true
equal_equation_4: forall n m : nat, equal (S n) (S m) = equal n m
```

- Use equations to simplify the goal by automated rewriting with simp.
- Rewriting gives better control in the presence of dependent types.
- Equations support convenient definitions by well-founded recursion.
- Computational representation can be recovered through pattern-matching compilation.

Equations: pattern-matching and unification

- The Equations plugin builds a case splitting tree.
- The tree is built using unification.

Equations: pattern-matching and unification

- The Equations plugin builds a case splitting tree.
- The tree is built using unification.
- pattern $\equiv \operatorname{expr} \rightsquigarrow$ result
- Unify a pattern $\mathrm{s} x$ with s (S 0):
"find out what x is if we know that $\mathrm{s} x=\mathrm{S}(\mathrm{S} 0)$ "
- What is the answer?

Equations: pattern-matching and unification

- The Equations plugin builds a case splitting tree.
- The tree is built using unification.
- pattern \equiv expr \rightsquigarrow result
- Unify a pattern $\mathrm{s} x$ with $\mathrm{s}(\mathrm{s} 0)$:
"find out what x is if we know that $\mathrm{S} x=\mathrm{S}(\mathrm{S} 0)$ "
- What is the answer?
- $\mathrm{Sx} \equiv \mathrm{S}(\mathrm{So}) \rightsquigarrow$ Success $[\mathrm{x}:=\mathrm{S} 0$ ((with a substitution $[\mathrm{x}:=\mathrm{S} 0]$)

Equations: pattern-matching and unification

- The Equations plugin builds a case splitting tree.
- The tree is built using unification.
- pattern \equiv expr \rightsquigarrow result
- Unify a pattern $\mathrm{s} x$ with $\mathrm{s}(\mathrm{s} 0)$:
"find out what x is if we know that $\mathrm{S} x=\mathrm{S}(\mathrm{S} 0)$ "
- What is the answer?
- $\mathrm{Sx} \equiv \mathrm{S}(\mathrm{So}) \rightsquigarrow$ Success $[\mathrm{x}:=\mathrm{S} 0$ ((with a substitution $[\mathrm{x}:=\mathrm{S} 0]$)
- $S x \equiv 0 \rightsquigarrow$ Fail (impossible to unify)
- $S \mathrm{x} \equiv \mathrm{m} \rightsquigarrow$ Stuck m (we don't know what the variable m is)

Equations: pattern-matching and unification

- The Equations plugin builds a case splitting tree.
- The tree is built using unification.
- pattern \equiv expr \rightsquigarrow result
- Unify a pattern $\mathrm{s} x$ with $\mathrm{s}(\mathrm{s} 0)$:
"find out what x is if we know that $\mathrm{S} x=\mathrm{S}(\mathrm{S} 0)$ "
- What is the answer?
- $\mathrm{St} \equiv \mathrm{S}(\mathrm{S} 0) \rightsquigarrow$ Success $[\mathrm{x}:=\mathrm{S} 0]$ (with a substitution $[\mathrm{x}:=\mathrm{S} 0]$)
- $S \mathrm{x} \equiv 0 \rightsquigarrow$ Fail (impossible to unify)
- $S \mathrm{x} \equiv \mathrm{m} \rightsquigarrow$ Stuck m (we don't know what the variable m is)
- The unification algorithm can be formalised as a collection of inference rules.x

Equations: a splitting tree

Covering a signature:
build a splitting tree exhaustively covering all cases for input parameters.

Equations: a splitting tree

Covering a signature:
build a splitting tree exhaustively covering all cases for input parameters.
For our example program
Equations equal (m n : nat) : bool := equal $00:=$ true ;
equal (S m') (S n') := equal m' n' ; equal _ _ : false.

Signature to cover: mn: nat.
$\operatorname{cover}(\mathrm{m} \mathrm{n}:$ nat $\vdash \mathrm{m} \mathrm{n}:(\mathrm{m} \mathrm{n}:$ nat $))$

Equations: a splitting tree

Covering a signature:
build a splitting tree exhaustively covering all cases for input parameters.
For our example program
Equations equal (m n : nat) : bool := equal $00:=$ true ;
equal ($\mathrm{S} \mathrm{m}^{\prime}$) ($\mathrm{S} \mathrm{n}^{\prime}$) $:=$ equal $\mathrm{m}^{\prime} \mathrm{n}^{\prime}$; equal _ _ := false.

Signature to cover: mn: nat.
$\operatorname{cover}(\mathrm{mn}:$ nat $\vdash \mathrm{mn}) \rightarrow 00 \equiv \mathrm{mn} \rightsquigarrow$ Stuck m

Equations: a splitting tree

Covering a signature:
build a splitting tree exhaustively covering all cases for input parameters.
For our example program
Equations equal (m n : nat) : bool := equal $00:=$ true ;
equal (S m') (S n') := equal m' n' ; equal _ _ := false.

Signature to cover: mn: nat.
$\operatorname{Split}(\mathrm{m} \mathrm{n}: \operatorname{nat} \vdash \mathrm{m} \mathrm{n}, m,[\ldots])$

Equations: a splitting tree

Covering a signature:
build a splitting tree exhaustively covering all cases for input parameters.
For our example program
Equations equal (m n : nat) : bool := equal $00:=$ true ;
equal ($\mathrm{Sm} \mathrm{m}^{\prime}$) ($\mathrm{S} \mathrm{n}^{\prime}$) $:=$ equal $\mathrm{m}^{\prime} \mathrm{n}^{\prime}$; equal _ _ : false.

Signature to cover: mn: nat.

```
Split(m n : nat }\vdash\textrm{m n},\textrm{m},
    cover(n : nat\vdash0 n)
    cover(m' n : nat }\vdash(S m') n)]
```


Equations: a splitting tree

Covering a signature:
build a splitting tree exhaustively covering all cases for input parameters.
For our example program
Equations equal (m n : nat) : bool :=
equal $00:=$ true ;
equal ($\mathrm{Sm} \mathrm{m}^{\prime}$) ($\mathrm{S} \mathrm{n}^{\prime}$) := equal $\mathrm{m}^{\prime} \mathrm{n}^{\prime}$;
equal _ _ := false.
Signature to cover: mn: nat.

```
Split(m n : nat }\vdash\textrm{m}n, m, [
    Split(n: nat \vdash O n, n, [
        Compute( }\vdash00=>\mathrm{ true),
        Compute(n': nat }\vdash0(S n') => false)])
    cover(m' n : nat }\vdash(S m') n)]
```


Equations: a splitting tree

Covering a signature:
build a splitting tree exhaustively covering all cases for input parameters.
For our example program
Equations equal (m n : nat) : bool :=
equal $00:=$ true ;
equal ($\mathrm{Sm} \mathrm{m}^{\prime}$) ($\mathrm{S} \mathrm{n}^{\prime}$) $:=$ equal $\mathrm{m}^{\prime} \mathrm{n}^{\prime}$;
equal _ _ := false.
Signature to cover: mn: nat.

```
Split(m n : nat \(\vdash\) m n, m, [
    Split(n : nat \(\vdash 0 \mathrm{n}, \mathrm{n}\), [
        Compute \((\vdash 00 \Rightarrow\) true \()\),
        Compute(n' : nat \(\vdash\) ( \(\left.\mathrm{S} \mathrm{n}^{\prime}\right) \Rightarrow\) false)] \()\),
    Split(m'n : nat \(\vdash\left(S m^{\prime}\right) n, n, \quad[\)
        Compute (m' : nat \(\vdash\) (S m') \(0 \Rightarrow\) false),
        \(\operatorname{Compute}\left(\mathrm{m}^{\prime} \mathrm{n}^{\prime}:\right.\) nat \(\vdash\left(\mathrm{S} \mathrm{m}^{\prime}\right)\left(\mathrm{S} \mathrm{n}^{\prime}\right) \Rightarrow\) equal m \(\left.\left.\left.\left.\left.\mathrm{m}^{\prime}\right)\right]\right)\right]\right)\)
```


Equations: a splitting tree

Covering a signature:
build a splitting tree exhaustively covering all cases for input parameters.
For our example program
Equations equal (m n : nat) : bool :=
equal $00:=$ true ;
equal ($\mathrm{Sm} \mathrm{m}^{\prime}$) ($\mathrm{S} \mathrm{n}^{\prime}$) $:=$ equal $\mathrm{m}^{\prime} \mathrm{n}^{\prime}$;
equal _ _ := false.
Signature to cover: mn: nat.

```
Split(mn : nat \(\vdash \mathrm{m}\) n, m, [
    Split(n : nat \(\vdash 0 \mathrm{n}, \mathrm{n}\), [
        Compute \((\vdash 00 \Rightarrow\) true \()\),
        Compute(n' : nat \(\vdash 0\left(S n^{\prime}\right) \Rightarrow\) false \(\left.)\right]\) ),
    Split(m' n : nat \(\vdash\left(S m^{\prime}\right) \mathrm{n}, \mathrm{n}\), [
        Compute(m' : nat \(\vdash\left(S m^{\prime}\right) 0 \Rightarrow\) false \()\),
        Compute(m' n' : nat \(\vdash\left(\mathrm{S}^{\prime} \mathrm{m}^{\prime}\right)\left(\mathrm{S} \mathrm{n}^{\prime}\right) \Rightarrow\) equal m' \(\left.\left.\left.\left.\mathrm{n}^{\prime}\right)\right]\right)\right]\) )
```

- Compile the splitting tree to match ... with
- If patterns overlap, the first match takes precedence.

Equations: dependent pattern-matching

The Equations plugin is particularly tailored towards programming with dependent types.

Equations: dependent pattern-matching

The Equations plugin is particularly tailored towards programming with dependent types.
Vectors: lists that keep track of the length in the type.
Inductive vector (A: Type) : nat \rightarrow Type $:=$
nil : vector A 0
cons $\{\mathrm{n}:$ nat $\}: \mathrm{A} \rightarrow$ vector $A \mathrm{n} \rightarrow$ vector $\mathrm{A}(\mathrm{S} n)$.

Equations: dependent pattern-matching

The Equations plugin is particularly tailored towards programming with dependent types.
Vectors: lists that keep track of the length in the type.
Inductive vector (A: Type) : nat \rightarrow Type $:=$
| nil: vector A 0
\mid cons $\{\mathrm{n}:$ nat $\}: \mathrm{A} \rightarrow$ vector $A \mathrm{n} \rightarrow \operatorname{vector} \mathrm{A}(\mathrm{S} n)$.
Taking a tail of a non-empty vector:
Equations tail $\{\mathrm{An}\}(\mathrm{v}$: vector $\mathrm{A}(\mathrm{Sn}))$: vector $\mathrm{A} \mathrm{n}:=$ tail (cons_v) $:=\mathrm{v}$.

Why there is only one case in the definition?

Equations: dependent pattern-matching

The Equations plugin is particularly tailored towards programming with dependent types.
Vectors: lists that keep track of the length in the type.
Inductive vector (A: Type) : nat \rightarrow Type $:=$
| nil : vector A 0
\mid cons $\{\mathrm{n}:$ nat $\}: \mathrm{A} \rightarrow$ vector $\mathrm{A} n \rightarrow \operatorname{vector} \mathrm{~A}(\mathrm{~S} n)$.
Taking a tail of a non-empty vector:
Equations tail $\{\mathrm{An}\}(\mathrm{v}$: vector $\mathrm{A}(\mathrm{Sn}))$: vector $\mathrm{A} \mathrm{n}:=$ tail (cons_v) $:=\mathrm{v}$.

Why there is only one case in the definition?
$\operatorname{cover}(\mathrm{Anv}: \operatorname{vector} \mathrm{A}(\mathrm{S} \mathrm{n}) \vdash \mathrm{Anv})$

Equations: dependent pattern-matching

The Equations plugin is particularly tailored towards programming with dependent types.
Vectors: lists that keep track of the length in the type.
Inductive vector (A: Type) : nat \rightarrow Type $:=$
nil : vector A 0
cons $\{\mathrm{n}:$ nat $\}: \mathrm{A} \rightarrow$ vector $\mathrm{A} n \rightarrow \operatorname{vector} \mathrm{~A}(\mathrm{~S} n)$.
Taking a tail of a non-empty vector:
Equations tail $\{\mathrm{An}\}(\mathrm{v}:$ vector $\mathrm{A}(\mathrm{Sn}))$: vector $\mathrm{An}:=$ tail (cons _ v) $:=\mathrm{v}$.

Why there is only one case in the definition?

```
Split(A n (v : vector A (S n) ) \vdash A n v, v, [
    (* the type of [nil] is not unifiable with the type of [v]: S n f= O*)
    vector A (S n) \equiv vector A O \rightsquigarrow Fail;
    Compute(A n' a (v' : vector A n' ) \vdashA n' (@cons ?(n') a v') = v')])
```

The splitting tree contains only one compute node: unification helps to determine the impossible cases.

DEMO

DEMO

