

Programming with Dependent types (based on a presentation by Matthieu Sozeau)

Danil Annenkov and Bas Spitters

November 15, 2021.

Aarhus University

EQUATIONS: function definitions by dependent pattern-matching and recursion

- A plugin for the Coq proof assistant.
- Developed in INRIA, France.
- Features powerful (dependent) pattern-matching.
- Derives (generates) useful reasoning principles for definitions.

Equations vs match

Equality of natural numbers in Haskell (Agda, Idris)

Equations vs match

Equality of natural numbers in Haskell (Agda, Idris)

Equality of natural numbers in Coq (basic match ... with)

```
Fixpoint fix_equal (m n : nat) : bool :=

match m with

| 0 \Rightarrow match n with

| 0 \Rightarrow true

| S n' \Rightarrow false

end

| S m' \Rightarrow match n with

| 0 \Rightarrow false

| S n' \Rightarrow fix_equal m' n'

end

end.
```

Equations vs match

Equality of natural numbers in Haskell (Agda, Idris)

Equality of natural numbers in Coq (with EQUATIONS)

```
Equations equal (m n : nat) : bool :=
equal 0 0 := true ;
equal (S m) (S n) := equal m n ;
equal _ _ := false.
```

- The "native" pattern-matching in Coq match ... with is simple.
 - \Rightarrow easier to implement
 - \Rightarrow smaller trusted computing base
 - \Rightarrow less bugs in the implementation

- \bullet The "native" pattern-matching in Coq ${\tt match} \ldots$ with is simple.
 - \Rightarrow easier to implement
 - \Rightarrow smaller trusted computing base
 - \Rightarrow less bugs in the implementation
- Issues: hard to use with dependent types.

Equations: features

```
Equations equal (m n : nat): bool :=
equal 0 0 := true;
equal (S m) (S n) := equal m n;
equal _ _ := false.
```

• An equational presentation of functions rather than a computational one: each "case" becomes an equation (a lemma in Coq)

```
equal_equation_1 : equal 0 0 = true
...
equal_equation_4 : forall n m : nat, equal (S n) (S m) = equal n m
```

- Use equations to simplify the goal by automated rewriting with simp.
- Rewriting gives better control in the presence of dependent types.
- Equations support convenient definitions by well-founded recursion.
- Computational representation can be recovered through pattern-matching *compilation*.

- The Equations plugin builds a *case splitting tree*.
- The tree is built using *unification*.

- The Equations plugin builds a case splitting tree.
- The tree is built using *unification*.
- pattern \equiv expr \rightsquigarrow result
- Unify a pattern s x with s (s o):
 "find out what x is if we know that s x = s (s o)"
- What is the answer?

- The Equations plugin builds a case splitting tree.
- The tree is built using *unification*.
- pattern \equiv expr \rightsquigarrow result
- Unify a pattern s x with s (s 0):
 "find out what x is if we know that s x = s (s 0)"
- What is the answer?
- S x \equiv S (S 0) \rightsquigarrow Success [x:=S 0] (with a substitution [x:=S 0])

- The Equations plugin builds a case splitting tree.
- The tree is built using *unification*.
- pattern \equiv expr \rightsquigarrow result
- Unify a pattern s x with s (s o):
 "find out what x is if we know that s x = s (s o)"
- What is the answer?
- S x \equiv S (S 0) \rightsquigarrow Success [x:=S 0] (with a substitution [x:=S 0])
- S x \equiv 0 \rightsquigarrow Fail (impossible to unify)
- S x \equiv m \rightsquigarrow Stuck m (we don't know what the variable m is)

- The Equations plugin builds a case splitting tree.
- The tree is built using *unification*.
- pattern \equiv expr \rightsquigarrow result
- Unify a pattern s x with s (s o):
 "find out what x is if we know that s x = s (s o)"
- What is the answer?
- S x \equiv S (S 0) \rightsquigarrow Success [x:=S 0] (with a substitution [x:=S 0])
- S x \equiv 0 \rightsquigarrow Fail (impossible to unify)
- $S x \equiv m \rightsquigarrow Stuck m$ (we don't know what the variable m is)
- The unification algorithm can be formalised as a collection of inference rules.x

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters.

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters. For our example program

```
Equations equal (m n : nat) : bool :=
equal 0 0 := true ;
equal (S m') (S n') := equal m' n' ;
equal _ _ := false.
```

Signature to cover: m n : nat.

 $cover(mn: nat \vdash mn: (mn: nat))$

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters. For our example program

Equations equal (m n : nat) : bool := equal 0 0 := true ; equal (S m') (S n') := equal m' n' ; equal _ _ := false.

Signature to cover: m n : nat.

 $\operatorname{cover}(\operatorname{\mathtt{m}}\operatorname{\mathtt{n}}:\operatorname{\mathtt{nat}}\vdash\operatorname{\mathtt{m}}\operatorname{\mathtt{n}})\to\operatorname{\mathtt{O}}\operatorname{\mathtt{O}}\\equiv\operatorname{\mathtt{m}}\operatorname{\mathtt{n}}\xspace{\longrightarrow}\operatorname{\mathtt{Stuck}}\operatorname{\mathtt{m}}$

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters. For our example program

```
Equations equal (m n : nat) : bool :=
equal 0 0 := true ;
equal (S m') (S n') := equal m' n' ;
equal _ _ := false.
```

```
\texttt{Split}(\texttt{mn}:\texttt{nat} \vdash \texttt{mn}, \textbf{m}, [...])
```

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters. For our example program

```
Equations equal (m n : nat) : bool :=
equal 0 0 := true ;
equal (S m') (S n') := equal m' n' ;
equal _ _ := false.
```

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters. For our example program

```
Equations equal (m n : nat) : bool :=
equal 0 0 := true ;
equal (S m') (S n') := equal m' n' ;
equal _ _ := false.
```

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters. For our example program

```
Equations equal (m n : nat) : bool :=
equal 0 0 := true ;
equal (S m') (S n') := equal m' n' ;
equal _ _ := false.
```

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters. For our example program

```
Equations equal (m n : nat) : bool :=
equal 0 0 := true ;
equal (S m') (S n') := equal m' n' ;
equal _ _ := false.
```

- Compile the splitting tree to match ... with
- If patterns overlap, the first match takes precedence.

The Equations plugin is particularly tailored towards programming with dependent types.

The Equations plugin is particularly tailored towards programming with dependent types.

Vectors: lists that keep track of the length in the type.

The Equations plugin is particularly tailored towards programming with dependent types.

Vectors: lists that keep track of the length in the type.

Taking a tail of a non-empty vector:

```
Equations tail {A n} (v : vector A (S n)) : vector A n := tail (cons _ v ) := v .
```

Why there is only one case in the definition?

The Equations plugin is particularly tailored towards programming with dependent types.

Vectors: lists that keep track of the length in the type.

Taking a tail of a non-empty vector:

```
Equations tail {A n} (v : vector A (S n)) : vector A n := tail (cons _ v ) := v .
```

Why there is only one case in the definition?

```
cover(A n v : vector A (S n) \vdash A n v)
```

The Equations plugin is particularly tailored towards programming with dependent types.

Vectors: lists that keep track of the length in the type.

```
\begin{array}{l} \mbox{Inductive vector (A:Type): nat} \rightarrow \mbox{Type} := \\ | \mbox{nil: vector A 0} \\ | \mbox{ cons } \{ \mbox{n: nat} \} : \mbox{A} \rightarrow \mbox{vector A n} \rightarrow \mbox{vector A (S n)}. \end{array}
```

Taking a tail of a non-empty vector:

```
Equations tail {A n} (v : vector A (S n)) : vector A n := tail (cons _ v ) := v .
```

Why there is only one case in the definition?

The splitting tree contains only one Compute node: unification helps to determine the impossible cases.

DEMO