
Programming with Dependent types

(based on a presentation by Matthieu Sozeau)

Danil Annenkov and Bas Spitters

November 15, 2021.

Aarhus University

Equations in Coq

Equations: function definitions by dependent
pattern-matching and recursion

• A plugin for the Coq proof assistant.

• Developed in INRIA, France.

• Features powerful (dependent) pattern-matching.

• Derives (generates) useful reasoning principles for definitions.

1

Equations vs match

Equality of natural numbers in Haskell (Agda, Idris)

equal :: Nat → Nat → Bool

equal O O = True

equal (S m’) (S n’) = equal m’ n’

equal _ _ = False

2

Equations vs match

Equality of natural numbers in Haskell (Agda, Idris)

equal :: Nat → Nat → Bool

equal O O = True

equal (S m’) (S n’) = equal m’ n’

equal _ _ = False

Equality of natural numbers in Coq (basic match ... with)

Fixpoint fix_equal (m n : nat) : bool :=

match m with

| O ⇒ match n with

| O ⇒ true

| S n’ ⇒ false

end

| S m’ ⇒ match n with

| O ⇒ false

| S n’ ⇒ fix_equal m’ n’

end

end.

2

Equations vs match

Equality of natural numbers in Haskell (Agda, Idris)

equal :: Nat → Nat → Bool

equal O O = True

equal (S m’) (S n’) = equal m’ n’

equal _ _ = False

Equality of natural numbers in Coq (with Equations)

Equations equal (m n : nat) : bool :=

equal O O := true ;

equal (S m) (S n) := equal m n ;

equal _ _ := false.

2

Equations vs match, cont.

• The “native” pattern-matching in Coq match ... with is simple.

⇒ easier to implement

⇒ smaller trusted computing base

⇒ less bugs in the implementation

• Issues: hard to use with dependent types.

3

Equations vs match, cont.

• The “native” pattern-matching in Coq match ... with is simple.

⇒ easier to implement

⇒ smaller trusted computing base

⇒ less bugs in the implementation

• Issues: hard to use with dependent types.

3

Equations: features

Equations equal (m n : nat) : bool :=

equal O O := true ;

equal (S m) (S n) := equal m n ;

equal _ _ := false.

• An equational presentation of functions rather than a computational

one: each “case” becomes an equation (a lemma in Coq)

equal_equation_1 : equal O O = true

...

equal_equation_4 : forall n m : nat, equal (S n) (S m) = equal n m

• Use equations to simplify the goal by automated rewriting with simp.

• Rewriting gives better control in the presence of dependent types.

• Equations support convenient definitions by well-founded recursion.

• Computational representation can be recovered through

pattern-matching compilation.

4

Equations: pattern-matching and unification

• The Equations plugin builds a case splitting tree.

• The tree is built using unification.

• pattern ≡ expr result

• Unify a pattern S x with S (S O):

“find out what x is if we know that S x = S (S O)”

• What is the answer?

• S x ≡ S (S O) Success [x:=S O] (with a substitution [x:=S O])

• S x ≡ O Fail (impossible to unify)

• S x ≡ m Stuck m (we don’t know what the variable m is)

• The unification algorithm can be formalised as a collection of

inference rules.x

5

Equations: pattern-matching and unification

• The Equations plugin builds a case splitting tree.

• The tree is built using unification.

• pattern ≡ expr result

• Unify a pattern S x with S (S O):

“find out what x is if we know that S x = S (S O)”

• What is the answer?

• S x ≡ S (S O) Success [x:=S O] (with a substitution [x:=S O])

• S x ≡ O Fail (impossible to unify)

• S x ≡ m Stuck m (we don’t know what the variable m is)

• The unification algorithm can be formalised as a collection of

inference rules.x

5

Equations: pattern-matching and unification

• The Equations plugin builds a case splitting tree.

• The tree is built using unification.

• pattern ≡ expr result

• Unify a pattern S x with S (S O):

“find out what x is if we know that S x = S (S O)”

• What is the answer?

• S x ≡ S (S O) Success [x:=S O] (with a substitution [x:=S O])

• S x ≡ O Fail (impossible to unify)

• S x ≡ m Stuck m (we don’t know what the variable m is)

• The unification algorithm can be formalised as a collection of

inference rules.x

5

Equations: pattern-matching and unification

• The Equations plugin builds a case splitting tree.

• The tree is built using unification.

• pattern ≡ expr result

• Unify a pattern S x with S (S O):

“find out what x is if we know that S x = S (S O)”

• What is the answer?

• S x ≡ S (S O) Success [x:=S O] (with a substitution [x:=S O])

• S x ≡ O Fail (impossible to unify)

• S x ≡ m Stuck m (we don’t know what the variable m is)

• The unification algorithm can be formalised as a collection of

inference rules.x

5

Equations: pattern-matching and unification

• The Equations plugin builds a case splitting tree.

• The tree is built using unification.

• pattern ≡ expr result

• Unify a pattern S x with S (S O):

“find out what x is if we know that S x = S (S O)”

• What is the answer?

• S x ≡ S (S O) Success [x:=S O] (with a substitution [x:=S O])

• S x ≡ O Fail (impossible to unify)

• S x ≡ m Stuck m (we don’t know what the variable m is)

• The unification algorithm can be formalised as a collection of

inference rules.x

5

Equations: a splitting tree

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters.

For our example program

Equations equal (m n : nat) : bool :=

equal O O := true ;

equal (S m’) (S n’) := equal m’ n’ ;

equal _ _ := false.

Signature to cover: m n : nat.

6

Equations: a splitting tree

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters.

For our example program

Equations equal (m n : nat) : bool :=

equal O O := true ;

equal (S m’) (S n’) := equal m’ n’ ;

equal _ _ := false.

Signature to cover: m n : nat.

cover(m n : nat ` m n : (m n : nat))

6

Equations: a splitting tree

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters.

For our example program

Equations equal (m n : nat) : bool :=

equal O O := true ;

equal (S m’) (S n’) := equal m’ n’ ;

equal _ _ := false.

Signature to cover: m n : nat.

cover(m n : nat ` m n) → O O ≡ m n Stuck m

6

Equations: a splitting tree

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters.

For our example program

Equations equal (m n : nat) : bool :=

equal O O := true ;

equal (S m’) (S n’) := equal m’ n’ ;

equal _ _ := false.

Signature to cover: m n : nat.

Split(m n : nat ` m n, m, [...])

6

Equations: a splitting tree

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters.

For our example program

Equations equal (m n : nat) : bool :=

equal O O := true ;

equal (S m’) (S n’) := equal m’ n’ ;

equal _ _ := false.

Signature to cover: m n : nat.

Split(m n : nat ` m n, m, [

cover(n : nat ` O n)

cover(m’ n : nat ` (S m’) n)])

6

Equations: a splitting tree

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters.

For our example program

Equations equal (m n : nat) : bool :=

equal O O := true ;

equal (S m’) (S n’) := equal m’ n’ ;

equal _ _ := false.

Signature to cover: m n : nat.

Split(m n : nat ` m n, m, [

Split(n : nat ` O n, n, [

Compute(` O O ⇒ true),

Compute(n’ : nat ` O (S n’) ⇒ false)]),

cover(m’ n : nat ` (S m’) n)])

6

Equations: a splitting tree

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters.

For our example program

Equations equal (m n : nat) : bool :=

equal O O := true ;

equal (S m’) (S n’) := equal m’ n’ ;

equal _ _ := false.

Signature to cover: m n : nat.

Split(m n : nat ` m n, m, [

Split(n : nat ` O n, n, [

Compute(` O O ⇒ true),

Compute(n’ : nat ` O (S n’) ⇒ false)]),

Split(m’ n : nat ` (S m’) n, n, [

Compute(m’ : nat ` (S m’) O ⇒ false),

Compute(m’ n’ : nat ` (S m’) (S n’) ⇒ equal m’ n’)])])

6

Equations: a splitting tree

Covering a signature:

build a splitting tree exhaustively covering all cases for input parameters.

For our example program

Equations equal (m n : nat) : bool :=

equal O O := true ;

equal (S m’) (S n’) := equal m’ n’ ;

equal _ _ := false.

Signature to cover: m n : nat.

Split(m n : nat ` m n, m, [

Split(n : nat ` O n, n, [

Compute(` O O ⇒ true),

Compute(n’ : nat ` O (S n’) ⇒ false)]),

Split(m’ n : nat ` (S m’) n, n, [

Compute(m’ : nat ` (S m’) O ⇒ false),

Compute(m’ n’ : nat ` (S m’) (S n’) ⇒ equal m’ n’)])])

• Compile the splitting tree to match ... with

• If patterns overlap, the first match takes precedence.

6

Equations: dependent pattern-matching

The Equations plugin is particularly tailored towards programming with

dependent types.

Vectors: lists that keep track of the length in the type.

Inductive vector (A : Type) : nat → Type :=

| nil : vector A 0

| cons {n : nat} : A → vector A n → vector A (S n).

Taking a tail of a non-empty vector:

Equations tail {A n} (v : vector A (S n)) : vector A n :=

tail (cons _ v) := v .

Why there is only one case in the definition?

7

Equations: dependent pattern-matching

The Equations plugin is particularly tailored towards programming with

dependent types.

Vectors: lists that keep track of the length in the type.

Inductive vector (A : Type) : nat → Type :=

| nil : vector A 0

| cons {n : nat} : A → vector A n → vector A (S n).

Taking a tail of a non-empty vector:

Equations tail {A n} (v : vector A (S n)) : vector A n :=

tail (cons _ v) := v .

Why there is only one case in the definition?

7

Equations: dependent pattern-matching

The Equations plugin is particularly tailored towards programming with

dependent types.

Vectors: lists that keep track of the length in the type.

Inductive vector (A : Type) : nat → Type :=

| nil : vector A 0

| cons {n : nat} : A → vector A n → vector A (S n).

Taking a tail of a non-empty vector:

Equations tail {A n} (v : vector A (S n)) : vector A n :=

tail (cons _ v) := v .

Why there is only one case in the definition?

7

Equations: dependent pattern-matching

The Equations plugin is particularly tailored towards programming with

dependent types.

Vectors: lists that keep track of the length in the type.

Inductive vector (A : Type) : nat → Type :=

| nil : vector A 0

| cons {n : nat} : A → vector A n → vector A (S n).

Taking a tail of a non-empty vector:

Equations tail {A n} (v : vector A (S n)) : vector A n :=

tail (cons _ v) := v .

Why there is only one case in the definition?

cover(A n v : vector A (S n) ` A n v)

7

Equations: dependent pattern-matching

The Equations plugin is particularly tailored towards programming with

dependent types.

Vectors: lists that keep track of the length in the type.

Inductive vector (A : Type) : nat → Type :=

| nil : vector A 0

| cons {n : nat} : A → vector A n → vector A (S n).

Taking a tail of a non-empty vector:

Equations tail {A n} (v : vector A (S n)) : vector A n :=

tail (cons _ v) := v .

Why there is only one case in the definition?

Split(A n (v : vector A (S n)) ` A n v, v, [

(* the type of [nil] is not unifiable with the type of [v]: S n 6= O *)

vector A (S n) ≡ vector A O Fail;

Compute(A n’ a (v’ : vector A n’) ` A n’ (@cons ?(n’) a v’) ⇒ v’)])

The splitting tree contains only one Compute node:

unification helps to determine the impossible cases. 7

DEMO

DEMO

8

