Verified Implementation of Exact Real Arithmetic in Type Theory

Bas Spitters EU STREP-FET ForMath

Dec 9th 2013
Computable Analysis and Rigorous Numerics

Rigorous Numerics through Computable Analysis

Constructive analysis as an internal language for TTE Type theory as a language for constructive mathematics
Type theory as a framework for computer proofs
Computer verified implementation of exact analysis

Dependent type theory

- Dependent type theory makes Bishop's notion of operation/construction precise.
- Gives a functional programming language like haskell, SML, OCaml with very expressive type system.
- Framework for proofs
- Implementations: Coq, agda, epigram, Idris, ...
- Extensional DTT is an abstract language for TTE via realizability. Locally Cartesian closed category, ПW-pretopos.

Picard-Lindelöf Theorem

Consider the initial value problem

$$
y^{\prime}(x)=v(x, y(x)), \quad y\left(x_{0}\right)=y_{0}
$$

where

- $v:\left[x_{0}-a, x_{0}+a\right] \times\left[y_{0}-K, y_{0}+K\right] \underset{y_{\uparrow}}{\rightarrow} \mathbf{R}$
- v is continuous
- v is Lipschitz continuous in y : $\left|v(x, y)-v\left(x, y^{\prime}\right)\right| \leq L\left|y-y^{\prime}\right|$ for some $L>0$
- $|v(x, y)| \leq M$
- $a L<1$
- $a M \leq K$

Such problem has a unique solution on $\left[x_{0}-a, x_{0}+a\right]$.

Proof Idea

$$
y^{\prime}(x)=v(x, y(x)), \quad y\left(x_{0}\right)=y_{0}
$$

is equivalent to

$$
y(x)=y\left(x_{0}\right)+\int_{x_{0}}^{x} v(t, y(t)) d t
$$

Define

$$
\begin{aligned}
(T f)(x) & =y_{0}+\int_{x_{0}}^{x} F(t, f(t)) d t \\
f_{0}(x) & =y_{0} \\
f_{n+1} & =T f_{n}
\end{aligned}
$$

Under the assumptions, T is a contraction on $C\left(\left[x_{0}-a, x_{0}+a\right],\left[y_{0}-K, y_{0}+K\right]\right)$.
By the Banach fixpoint theorem, T has a fixpoint f and $f_{n} \rightarrow f$.
Formalization: Makarov, S - The Picard Algorithm for Ordinary Differential Equations in Coq

Metric Spaces

Let (X, d) where $d: X \rightarrow X \rightarrow \mathbf{R}$ be a metric space.
Let Brxy denote $d(x, y) \leq r$.
A function $f: \mathrm{Q}^{+} \rightarrow X$ is called regular (Strongly Cauchy) if $\forall \varepsilon_{1} \varepsilon_{2}: \mathbf{Q}^{+}, B\left(\varepsilon_{1}+\varepsilon_{2}\right)\left(f \varepsilon_{1}\right)\left(f \varepsilon_{2}\right)$.
The completion $\mathfrak{C} X$ of X is the set of regular functions.
Let X and Y be metric spaces. A function $f: X \rightarrow Y$ is called uniformly continuous with modulus μ if
$\forall \varepsilon: \mathbf{Q}^{+} \forall x_{1} x_{2}: X, B(\mu \varepsilon) x_{1} x_{2} \rightarrow B \varepsilon\left(f x_{1}\right)\left(f x_{2}\right)$.
For $x_{1}, x_{2}: \mathfrak{C} X$, the metric on the completion $B_{\mathbb{C} X} \varepsilon x_{1} x_{2}:=\forall \varepsilon_{1} \varepsilon_{2}: \mathbf{Q}^{+}, B_{X}\left(\varepsilon_{1}+\varepsilon+\varepsilon_{2}\right)\left(x_{1} \varepsilon_{1}\right)\left(x_{2} \varepsilon_{2}\right)$.
Metric spaces with uniformly continuous functions form a category.
Completion forms a monad in the category of metric spaces and uniformly continuous functions.
R. O'Connor, extending work by E. Bishop.

Completion as a Monad

unit : $X \rightarrow \mathfrak{C} X:=\lambda x \lambda \varepsilon, x$
join : $\mathfrak{C} \mathfrak{C} X \rightarrow \mathfrak{C} X:=\lambda x \lambda \varepsilon, x(\varepsilon / 2)(\varepsilon / 2)$
map $:(X \rightarrow Y) \rightarrow(\mathfrak{C} X \rightarrow \mathfrak{C} Y):=\lambda f \lambda x, f \circ x \circ \mu_{f}$
bind : $(X \rightarrow \mathfrak{C} Y) \rightarrow(\mathfrak{C} X \rightarrow \mathfrak{C} Y):=$ join \circ map
Define functions $\mathrm{Q} \rightarrow \mathrm{Q}$; lift to $\mathfrak{C} \mathrm{Q} \rightarrow \mathfrak{C} \mathbf{Q}$.

Type Classes

Organize the library using, so-called type classes.
Type classes are parametric record types.
Coq searches for terms of these types automatically during unification. Logic programming at the type level automates many mathematical reflexes.

- Gives uniform notation
- Algebra hierarchy, abstractions, diamond inheritance
- Abstract interfaces (like haskell).

S, van der Weegen, Type Classes for Mathematics in Type Theory.

Type Classes for Mathematical Structures

```
Class AppRationals AQ {e plus mult zero one inv} '{Apart AQ}
    '{Le AQ} '{Lt AQ}
        {AQtoQ : Cast AQ Q_as_MetricSpace}
        '{!AppInverse AQtoQ} {ZtoAQ : Cast Z AQ}
        '{!AppDiv AQ} '{!AppApprox AQ}
        '{!Abs AQ} '{!Pow AQ N} '{!ShiftL AQ Z}
        '{}\forall\textrm{x}y y : AQ, Decision (x = y)
        '{\forall x y : AQ, Decision (x \leq y)} : Prop := {
        aq_ring :> @Ring AQ e plus mult zero one inv ;
        aq_trivial_apart :> TrivialApart AQ ;
        aq_order_embed :> OrderEmbedding AQtoQ ;
        aq_strict_order_embed :> StrictOrderEmbedding AQtoQ ;
        aq_ring_morphism :> SemiRing_Morphism AQtoQ ;
        aq_dense_embedding :> DenseEmbedding AQtoQ ;
        aq_div : \forall x y k, ball (2 ^ k) ('app_div x y k) ('x / 'y) ;
        aq_compress : }\forall\textrm{x k}\mathrm{ , ball (2 ^ k) ('app_approx x k) ('x) ;
    aq_shift :> ShiftLSpec AQ Z (<<) ;
    aq_nat_pow :> NatPowSpec AQ N (^) ;
    aq_ints_mor :> SemiRing_Morphism ZtoAQ
}.
```

S, Krebbers, Type classes for efficient exact real arithmetic in Coq

Instances of Approximate Rationals

Record Dyadic Z := dyadic \{ mant: Z; expo: Z \}.
Represents mant $\cdot 2^{\text {expo }}$
Instance dy_mult: Mult Dyadic := $\lambda \mathrm{x} y$, dyadic (mant $\mathrm{x} *$ mant y$)(\operatorname{expo} \mathrm{x}+\operatorname{expo} \mathrm{y})$.

Instance : AppRationals (Dyadic bigZ).

Instance : AppRationals bigQ.

Instance : AppRationals Q.
Waiting for MPFR/Coq interval/floqc ...

Efficient Reals

Coq < Check Complete.
Complete : MetricSpace -> MetricSpace
Coq < Check Q_as_MetricSpace.
Q_as_MetricSpace : MetricSpace

Coq < Check AQ_as_MetricSpace.
AQ_as_MetricSpace :
\forall (AQ : Type) ..., AppRationals AQ -> MetricSpace

Coq < Definition CR := Complete Q_as_MetricSpace.
Coq < Definition AR := Complete AQ_as_MetricSpace.
AR is an instance of Le, Field, SemiRingOrder, etc., from the MathClasses library.

Integral

Following M. Bridger, Real Analysis: A Constructive Approach.

```
Class Integral (f: Q -> CR) :=
    integrate: forall (from: Q) (w: QnonNeg), CR.
```

Notation " \int " := integrate.
Class Integrable '\{!Integral f\}: Prop := \{
integral_additive:
forall ($\mathrm{a}: \mathrm{Q}$) b c, $\int \mathrm{f} a \mathrm{~b}+\int \mathrm{f}(\mathrm{a}+\mathrm{b}) \mathrm{c}==\int \mathrm{f} a(\mathrm{~b}+\mathrm{c})$;
integral_bounded_prim: forall (from: Q) (width: Qpos) (mid: Q)
(forall x, from <= x <= from + width -> ball r (f x) mid) ->
ball (width * r) (\int f from width) (width $*$ mid);
\}.
Earlier (abstract, but slower) implementation of integral by O'Connor and S

Complexity

Rectangle rule:
$\left|\int_{a}^{b} f(x) d x-f(a)(b-a)\right| \leq \frac{(b-a)^{3}}{24} M$
where $\left|f^{\prime \prime}(x)\right| \leq M$ for $a \leq x \leq b$.
Number of intervals to have the error $\leq \varepsilon: \geq \sqrt{\frac{(b-a)^{3} M}{24 \varepsilon}}$
Simpson's rule:
$\left|\int_{a}^{b} f(x) d x-\frac{b-a}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right)\right| \leq \frac{(b-a)^{5}}{2880} M$
where $\left|f^{(4)}(x)\right| \leq M$ for $a \leq x \leq b$.
Number of intervals: $\geq \sqrt[4]{\frac{(b-a)^{5} M}{2880 \varepsilon}}$
Coquand, S A constructive proof of Simpson's Rule, 2012:
Replace mean value theorem with law of bounded change Use divided differences, Hermite-Genocci

Conclusions

- Computer verified implementation of simple ODE solver.
- Computing with exact functions.
- May be seen as an executable specification, speed up with refinement.

