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Abstract We study the problem of how to efficiently outsource a sensitive computation on secret
inputs to a number of untrusted workers, under the assumption that at least one worker is honest.
In our setting there is a number of clients C1, . . . , Cn with inputs x1, . . . , xn. The clients want to
delegate a secure computation of f(x1, . . . , xn) to a set of untrusted workers W1, . . . ,Wm. We want
do so in such a way that as long at there is at least one honest worker (and everyone else might be
actively corrupted) the following holds 1) the privacy of the inputs is preserved 2) the output of the
computation is correct (in particular workers cannot change the inputs of honest clients). We propose a
solution where the clients’ work is minimal and the interaction pattern simple (one message to upload
inputs, one to receive results), while at the same time reducing the overhead for the workers to a
minimum. Our solution is generic and can be instantiated with any underlying reactive MPC protocol
where linear operations are “for free”. In contrast previous solutions were less generic and could only
be instantiated for specific numbers of clients/workers.

1 Introduction

In this paper we will use the term Secure Multiparty Computation (MPC) to refer to any problem where a
number of parties wants to compute a function f on inputs x1, . . . , xn while guaranteeing interesting security
properties such as the privacy of the inputs and the correctness of the outputs. In particular we will consider
the setting where n parties (the clients) provide inputs and receive outputs, in the presence of m additional
parties (the workers) who act as helpers to reduce the computational burden on the clients. Clients do not
trust each other, and they wish to trust the workers as little as they have to.

A notable example is the case of verifiable delegation of computation [GGP10,PHGR13,BSCG+13,BFR13,
BFR13] where one (or more) computationally bounded clients want to perform a computation on an untrusted
cloud provider, and therefore wish to perform this computation in a way that the work required to verify the
correctness of the result is much less than the work needed to compute the function itself, while also protecting
the privacy of the inputs. Traditionally, the problem of verifiable delegation of computation is studied in the
presence of a single untrusted worker. However in this case the only known way of protecting the privacy of
the inputs is by using fully-homomorphic encryption schemes. This introduces a huge computational overhead
for the worker. (If one is interested only in verifying the correctness of the output, recent studies show that
using SNARKs (succinct non-interactive arguments of knowledge) can be made much more practical than
expected a few years ago [PHGR13,BSCG+13]).

Another important application is large-scale secure computation, where one wants to run a secure com-
putation on thousands or millions of secure inputs. In this setting a (significant) number of clients C1, . . . , Cn
with inputs x1, . . . , xn, want to securely evaluate f(x1, . . . , xn). However running any existing MPC proto-
cols for general functionalities between all the clients would require that all parties are online at the same
time [HLP11], and the communication overhead of every practical protocol for dishonest majority scales
quadratically with the number of parties. Instead, the clients can delegate their computation to a (small)
set of untrusted workers W1, . . . ,Wm. This is a relevant scenario in practice, and many real-world uses of
secure computation follow this paradigm e.g., the Danish sugar beet auction [BCD+09], Sharemind [BLW08],
MEVAL [CMF+14], etc. A limitation of these solutions is that they require a majority of the workers to
be honest and only guarantee security against passive corruptions (in particular, a dishonest worker can
arbitrarily change the input of an honest client).



Here instead we want to tolerate that all but one of the workers might be corrupted: this allows to use
less workers to achieve the same security, which might be important in practice as the main cost of the
system (probably) will be the price to rent computing time on the workers. Since we want to tolerate that
all but one of the workers can be corrupted, we cannot use a protocol that guarantees termination. In fact,
if we want to tolerate that all but one worker might be corrupted, it must provably be the case that a single
worker can deadlock the system. This, however, can be detected and then other workers can be rented next
time. However, our protocol guarantees termination whenever all workers are honest, independently of how
many clients are corrupted.

There is a lot of prior work looking at this and related problems, both in terms of concrete [KMR11,
KMR12,PTK13,CLT14,KMRS14] and asymptotic efficiency [Gen09,BV11,LTV12,GHRW14]. We will com-
pare to related work of the first kind after presenting our protocol. The latter kind of work heavily relies
on advanced cryptographic tools such as fully-homomorphic encryption: while this “Swiss Army knife” of
cryptography allows for wonderful and surprising results in terms of feasibility and asymptotic complexity,
it introduces a huge computational overhead for the workers and therefore it is worth studying alternative
solutions that can be used in practice.

2 Technical Overview

We describe here the main idea of our framework. It will be instructive to think of a simple 3-party setting a
la Salus [KMR12], where a client, running on a computationally limited device (e.g., a mobile phone) wants
to engage in a computation with a server, and outsource most of the work to a worker (e.g., a cloud provider)
which he does not fully trust. The client has input x and the server has input y. At the end of the protocol
the client is supposed to learn z = f(x, y) for some function f agreed upon by the parties (and nothing else
about y). The server and the worker should not learn anything.

Ideally, we would like a protocol that satisfies the security requirements even if all but one party are
(actively) corrupted. At the same time, as the client is computationally limited, we want to make sure
that the work performed by the client is minimal – in particular independent of the size of the function
to be computed. As already discussed, this is possible (and with optimal asymptotic efficiency) using fully-
homomorphic encryption. However this will incur a huge computational overhead for the worker and the
server. So, following the approach of [KMR11, KMR12, PTK13, CLT14] we seek for a protocol where the
client has to trust that at least one among the worker and the server is honest.

Instead of designing a specific protocol to solve the problem, we propose a more generic approach to this
problem, which can be instantiated using different building blocks depending on the particular application.
This gives more flexibility and allows for a greater range of applications (for instance, solutions based on
garbled circuits are typically limited to two parties).

Our main building block will be a protocol for reactive secure computation (that is, a protocol where it
is possible to open intermediate values) and where linear operations are for free. Many protocols of this kind
are known (e.g., [DO10,BDOZ11,NNOB12,DPSZ12,DKL+13])1.

It is clear that the overall efficiency will be highly impacted by the efficiency of the underlying protocol,
and in this paper we do not try to improve on this (but there is plenty of ongoing research on the subject).
Instead, we consider only the (somewhat orthogonal) problem of how to let clients provide inputs to the
workers in such a way that the clients’ work is minimal and the overhead induced on the underlying MPC
protocol is as limited as possible. We believe this modular approach is useful, both from a conceptual point
of view, and also from a practical point of view e.g., one can imagine that improvements on the underlying
MPC protocols for the workers would not require one to update the software on the client side.

2.1 A Simple but Inefficient Solution

We first note that there exists a simple solution to the problem of outsourcing computation, namely we
can let the client additively secret share his input between the worker and the server. We will refer to the

1 Also Yao’s protocol can be made to fit this framework using standard techniques [HL10].
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worker and the server as W1 and W2, as the role of the worker and the server is almost symmetrical (the
only difference is that, in this application, W2 also has an input y). Then the client C picks random x1, x2
such that x1 + x2 = x and sends xi to Wi. In addition, to make sure neither W1,W2 learn the output of the
function, we let C send one-time pads r1, r2 to W1,W2.

Now W1,W2 run their favorite secure computation protocol (which guarantees security against actively
corrupted parties) to securely evaluate the function

g((x1, r1), (x2, r2, y)) = f(x1 + x2, y) + r1 + r2

and send the output to C who can reconstruct the output by removing the masks. Note that under the
assumption that linear operations are “for free” securely evaluating g is as efficient as securely evaluating f .

This solution only works if at most one of W1,W2 is passively corrupted, as a malicious adversary can
input a share x∗i = xi + ε to the secure computation, thus being able to add an error ε to the client’s input.
This can be easily fixed by having the client send a (shared) MAC together with his shares. That is, now
the client picks a key k, computes a MAC t = Tagk(x) and secret shares the MAC between the server and
the worker, who now securely compute the function:

g′( (x1, t1, k1, r1), (x2, t2, k2, r2, y) )

:=

{
f(x, y) + r, if Verk(t, x) = 1

abort, else

Unfortunately this requires that the MAC is verified by the secure computation protocol, and this will
increase the circuit size significantly. Even using simple, information theoretic MACs of the form t = a ·x+ b
(where k = (a, b)) might add a significant number of multiplications (e.g., if one uses garbled circuits as the
underlying protocol, then we need to add a number of garbled gates quadratic in the size of the inputs and
linear in the number of clients.).

2.2 Our Solution

Our solution relies on the following observation: in the previous protocol MACs and keys are only required
to check that the worker and the server do not lie about the client’s inputs. After those values are given as
input to the secure computation protocol, they are essentially “committed” and cannot be changed anymore.
Therefore, at this point the key can simply be revealed, which together with a careful choice of MAC scheme
will turn the MAC verification into a linear computation which does not have any significant impact on the
efficiency of the overall protocol. Here is a high level description of our protocol:

Client Input Phase: Let K be a sufficiently large finite field, which is efficient to compute in securely
using the underlying MPC protocol.2 Assume that all inputs are from K. (If not, simply parse the input
as several elements from K and continue as follows for each element.) The client C, on input x ∈ K,
picks a random key k ∈ K and computes a simple algebraic tag3 t = Tagk(x) = k · x; The client also
picks a uniformly random mask r ∈ K and sends additive secret shares of the input, the key, the tag and
the mask to the workers. The addition is over K.

Workers Computation Phase: The workers W1,W2 input the shares they receive to the MPC protocol,
then they “open” the key k and check that the tag is correct i.e., they compute (and open) the output of
Verk(x, t). If the output is false, output abort; Else, they compute and open the “encrypted output”

c = f(x, y) + r ;

2 By K being efficient to compute in we mean that taking a multiplication between a secret value and a public value
should be very efficient. As an example, if the underlying protocol is Yao garbled circuits, we can take K = GF (2k).
Then multiplication with a public value will just be taking XOR of some of the bits of the secret value, which is
essentially for free using the free XOR technique [KS08]: no communication and no additional data storage. If the
underlying protocol is based on secret sharing or encrypted data over some field, then K can be taken to be that
field.

3 Or an AMD code as introduced in [CDF+08].
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Client Output Phase: Finally each worker sends the output to the client. If the client receives the same
output from all workers, he outputs the unmasked value z = c− r, else output abort.

The protocol is secure for the client as long as at most one of W1,W2 is (actively) corrupted: in a
nutshell, a corrupted Wi cannot change its share without breaking the security of the MAC scheme. Of
course, a corrupted worker can make the protocol abort and prevent termination, but this is unavoidable in
the dishonest majority setting.4 Note that revealing the key of the MAC has no impact on the security, as
by that time a corrupted worker has already committed to his share of the input and the MAC. Moreover,
no (selective failure) attacks can be mounted: using a wrong key as input to the protocol always makes the
protocol abort. Finally, as the output is masked, the workers do not learn any information about it. Note
that a corrupted worker might try to modify the output value by sending ci 6= c to the client during the
output phase – this could be solved by adding a MAC to the output, but in fact a simpler way exist, namely
having the client simply check that the two outputs he receives are the same (remember, at least one of
W1,W2 is honest). Of course a malicious worker can then prevent the client from getting the output, but this
is possible anyway as we assume that all but one worker might be corrupted, in which case it is impossible
to guarantee termination of the secure multiparty computation protocol run between the workers. Hence a
malicious worker might just make the secure computation deadlock, which would have the same effect of the
client not getting its output.

In terms of efficiency, the Workers Computation Phase requires only (on top of the complexity of securely
computing f) 5 secure additions, 2 secure openings and the cost of computing Verk(x, t). However, as
described above, given that the key k is public this can be done by generating a random shared value s and
computing β = s · (t − k · x). Now β = 0 iff5 the MAC is correct and a uniformly random value otherwise.
As k is a public value at this stage, this requires only one additional multiplication of secret values.

The framework can be used in several settings, choosing appropriate number of clients and workers.
As discussed earlier, the single-client/many-workers setting can be used for private and verifiable delega-
tion of computation. This is to be compared with single-server verifiable delegation of computation proto-
cols [PHGR13,BSCG+13], which is getting extremely close to practice if one is only interested in correctness
of the result, but requires the use of FHE to achieve input privacy. In addition, current solutions do not ex-
tend to the case of multiple clients, while our solutions naturally generalizes. The multiple-client/few-workers
setting can be used for large-scale secure computation. As we will show in Section 3.4, using our framework
we can even guarantee termination in the relevant setting where a malicious client is trying to make the
computation abort by using an invalid input. This is particularly relevant when the numbers of clients is
much bigger than the number of workers, and it therefore is undesirable that a single, corrupted client can
make the whole computation abort. Think e.g., of an electronic election: a single invalid vote should not
prevent all honest parties from reaching a consensus, instead it should be counted as a void vote. This of
course introduces new challenges, as a malicious worker should not be able to claim that a client is corrupted
and therefore replace the input of a honest party.

The main idea behind our solution is the following: If multiple clients are present, we check that all of the
MACs are valid using a single multiplication. If β 6= 0 we recursively split the MACs in half and we search for
the incorrect MACs. This takes log n multiplications times the number of incorrect MACs. Once we identify
the set of incorrect MACs, we need to decide whether this is due to a corrupted worker or a corrupted client.
Note that this is not trivial: one might think that it is enough to let clients sign their messages, but then a
malicious worker could claim he did not receive the message. See Section 3.4 for our solution.

Finally, we note that while it is clear that it is not possible to achieve any privacy if all workers are
corrupted, it is possible to achieve (a flavour of) correctness by combining the techniques of this paper with
those in [BDO14].

4 In a later section, we will discuss how to distinguish between a cheating client and a cheating worker. This will be
useful in the multi-client setting.

5 There is a negligible probability of error of 1/|K| ≤ 2−k.
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2.3 Eventual Output Consensus

One problem with the above protocol is that it might happen that some honest clients learn their outputs
and some other honest clients do not learn their outputs. This can be provoked by a single malicious worker.
If the outputs are used as input in a later protocol (for instance, a later execution of the outsourcing protocol
itself), this might cause some of the honest clients to start the later protocol while some other honest clients
will never start the later protocol. This might lead to problems with functionality, deadlock and also security
problems, as it might wash out the fraction of honest clients participating in the ensuring computation.

We will describe a generic and efficient way to achieve a property which we call eventual output consensus,
meaning that either no honest clients receive an output or all honest clients will eventually receive their
output. This will, e.g., ensure that either no honest clients will continue with a later protocol, or all honest
clients will eventually start executing the later protocol.

We now describe our solution. As a first modification, all workers will send c = (c1, . . . , cn) to all clients,
the workers will sign the value c, and the clients will accept only if they receive the same c from all workers
along with valid signatures from all workers. If so, the client Cj will retrieve cj from c and output zj = cj−rj
as usual. Whenever a client Cj outputs a value cj , it will forward c to all other clients, along with the
signatures of all workers. If a client Cj has not yet given output and receives such a c signed by all workers,
it will in turn retrieve cj from c, output zj = cj − rj , and forward c to all clients along with the signatures.
It is easy to see that this is secure under the assumptions that at least one worker is honest, as all values
used to determine outputs are signed by all workers and therefore also the honest worker.

One might wonder if we can do better than eventual agreement on the output. It turns out that we
can not. In our model all but one worker can be corrupted and any number of clients can be corrupted.
This means that all-in-all more than half of the participants might be corrupted. It is well-known that in
a setting without honest majority, generic MPC cannot guarantee termination or fairness. I.e., we cannot
ensure that all honest clients will learn their outputs and we cannot even ensure that it does not happen
that the corrupted clients learn their outputs and no honest clients learn their outputs. The best we can
hope for is therefore that at least the honest clients have consensus on whether outputs were gotten or not.
Since we consider asynchronous communication, where we assume that all messages between honest clients
are eventually delivered but has no upper bound on the communication delay, we can only hope for this
consensus to eventually arise, which is exactly what our protocol achieves.

3 Our Framework

3.1 Notation and Preliminaries

We write x← K to say that x is sampled uniformly from a finite field K. When we write x+ y, the addition
refers to the finite field K (therefore, k ← K, c = x+ k is a “one-time-pad” of x). We divide our parties into
clients C1, . . . , Cn with inputs x1, . . . , xn ∈ K respectively, and workers W1, . . . ,Wm with no input. Note
that clients and workers need not be disjoint sets, as in the example in the previous section. The clients
send a single message (to each worker), then the workers securely evaluate the function f : Kn → Kn on
the clients’ inputs, and at the end they send one single message to each client. Therefore the communication
pattern for the clients is optimal: one message to provide input, one to receive output.

We require in addition that the workload of the clients should not depend on the size of the function
f to be evaluated. We only assume that at least one of the workers is honest. In particular, clients are not
assumed to be honest. We only consider static corruptions. We prove security in the UC framework [Can01].

3.2 The Underlying MPC Protocol

As discussed before, our framework can be instantiated with any secure computation protocol that allows
for reactive computation and where linear operations (additions) are “for free” that is, their efficiency can
be essentially ignored when considering the overall complexity of the protocol. In order to keep generality,
we will describe our protocol assuming that the workers have access to an ideal functionality for reactive
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computation as in Figure 1. Thanks to the UC composition theorem, one can replace the functionality with
any protocol that UC-implements it, and the overall protocol will still be secure. This allows for a modular
presentation and to separate the issues of the clients interacting with the workers (giving inputs and receiving
outputs) without worrying about which specific protocol is used by the workers.

Functionality FMPC

The functionality is for the parties W1, . . . ,Wm.

Rand: On input (rand , Pi, vid) from all parties Pi, with vid a fresh identifier, the functionality outputs
(rand , vid) to the adversary. On a later input (complete, vid) from the adversary, the functionality sam-
ples r ← K, stores (vid , r) and outputs (complete, vid) to all parties.

Input: On input (input ,Wi, vid , x ∈ K) from Wi and (input ,Wi, vid , ?) from all other parties, with vid a fresh
identifier, the functionality outputs (input ,Wi, vid , ?) to the adversary. On a later input (complete, vid) from
the adversary, the functionality stores (vid , x) and outputs (complete, vid) to all parties.

Secret Eval: On command
(eval , vid1, . . . , vidp, f, vidp+1, . . . , vidp+q)

from all parties (if vidp+1, . . . , vidp+q are present in memory and vid1, . . . , vidp are not), the functionality
outputs (eval , vid1, . . . , vidp, f, vidp+1, . . . , vidp+q) to the adversary. On a later input

(complete, vid1, . . . , vidp, f, vidp+1, . . . , vidp+q)

from the adversary, the functionality retrieves (vidp+1, x1), . . . , (vidp+q, xq), computes
(z1, . . . , zp) ← f(x1, . . . , xq) and stores (vid1, z1), . . . , (vidp, xp). Then it outputs
(complete, vid1, . . . , vidp, f, vidp+1, . . . , vidp+q) to all parties.

Output: On input (output ,Wi, vid) from all parties (if vid is present in memory), the functionality outputs
(output ,Wi, vid) to the adversary. On a later input (complete, vid) from the adversary, the functionality
retrieves (vid , x) and outputs it to Wi.

Further adversarial behavior: All the completion messages are delivered at the will of the adversary only,
i.e., a message like (complete, . . .) is not delivered to an honest party until the adversary signals that it
should be delivered, and the adversary might deliver to different parties at different times.

Figure 1. The ideal functionality for reactive MPC.

We use some short-hand notation: [x] is a secret representation of [x], i.e., a value uploaded to the ideal
functionality using the Input command or computed via the Secret Eval command. The representation is
assumed to be cheap to compute on using linear operations on elements from K, so we will write [ax+ by] =
a[x] + b[y] for publicly known a, b ∈ K and secrets x, y ∈ K, and we will not count these operations towards
the complexity of the protocol. We assume that K has size at least 2k, where k is the security parameter.
We use this notation:

Input: [x] ← Input(Pi, x) allows party Pi to input the value x ∈ K to the computation; We also define a
command [r] ← Rand() which can be simply implemented by [ri] ← Input(Pi, ri); for all i and random
ri ∈ K and [r] =

∑
i[ri];

Eval: ([z1], . . . , [zp]) ← f([x1], . . . , [xq]) allows to compute an agreed upon function f of q inputs and p
outputs on secret representations, producing again secret representations. This is done via the Secret
Eval command.

Linear: For public a, b ∈ K and secret x, y ∈ K the command [z] ← a[x] + b[y] allows parties to compute
a linear combination in K. This is a special case of Secret Eval, but we single it out for notational
convenience and because the command is assumed to be essentially for free for our framework to make
sense.
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Multiplication: [z]← Mul([x], [y]) allows parties to compute a representation of z = x · y. This is a special
case of Secret Eval, but we single it out for notational convenience and because the command is assumed
to be not too expensive for our framework to make sense.

Open: x← Open([x]) publicly reveals the value inside [x]; We also define x← OpenTo(Pi, [x]) which allows
to reveal a value only to party Pi, and can always be implemented doing [r] ← Input(Pi, r) for uniform
random r chosen by Pi and c← Open([k + r]), and then party Pi outputs x = c− r;

All algebraic notation denotes operations in K.

Clients Input Phase: Each client Cj with input xj :

1. Pick random {xji}
m
i=1 from K s.t.,

∑m
i=1 x

j
i = xj ;

2. Pick random {kji }
m
i=1 from K; let kj =

∑m
i=1 k

j
i ;

3. Pick random {rji }
m
i=1 from K; let rj =

∑m
i=1 r

j
i ;

4. Compute tj = Tagkj (xj) = kj · xj ;
5. Pick random {tji}

m
i=1 from K s.t.,

∑m
i=1 t

j
i = tj ;

6. Send the values vji = (xji , t
j
i , k

j
i , r

j
i ) to Wi for i ∈ 1, . . . ,m.

Workers Computation Phase: The workers W1, . . . ,Wm do:

1. Each worker Wi, for i ∈ 1, . . . ,m, waits until receiving input (eval) and then proceeds as below.
2. Each worker Wi, for i ∈ 1, . . . ,m: [xji ] ← Input(Wi, x

j
i ); [tji ] ← Input(Wi, t

j
i ); [kji ] ← Input(Wi, k

j
i ); [rji ] ←

Input(Wi, r
j
i );

3. Compute: [xj ] =
∑m

i=1[xji ] for all j ∈ 1, . . . , n;
4. Compute: [tj ] =

∑m
i=1[tji ] for all j ∈ 1, . . . , n;

5. Compute: [kj ] =
∑m

i=1[kji ] for all j ∈ 1, . . . , n;
6. Compute: [rj ] =

∑m
i=1[rji ] for all j ∈ 1, . . . , n;

7. kj ← Open([kj ]) for all j ∈ 1, . . . , n;
8. [αj ] = [tj ]− kj · [xj ] for all j ∈ 1, . . . , n;
9. [s]← Rand();

10. [β] = [s] · [
∑

j∈1,...,n α
j ];

11. β ← Open([β]); If β 6= 0 output abort, else continue;
12. Compute: ([z1], . . . , [zn]) = f([x1], . . . , [xn]);
13. Compute: [cj ] = [zj ] + [rj ] for all j ∈ 1, . . . , n;
14. cj ← Open([cj ]) for all j ∈ 1, . . . , n;

Client Output Phase:

1. (Each worker Wj) Send cj to Cj ;
2. Let cji be the output that Cj receives from Wi;
3. If the vector (cj1, . . . , c

j
n) is not constant, Cj outputs abort, else let cj be the constant value;

4. Cj outputs zj = cj − rj .

Figure 2. The protocol.

3.3 Protocol Analysis

The protocol is given in Figure 2 (see Section 2 for a high-level description of the protocol).

Theorem 1. Let π be the protocol in Figure 2. We prove that π securely implements the ideal functionality
FfFE against any static adversary corrupting any number of clients and at most m− 1 workers.
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Functionality Ff
FE

The functionality is for the parties C1, . . . , Cn,W1, . . . ,Wm.

Input: On input (input , Ci, x
i) from Ci and (input , Ci, ?) from all Wj , the functionality outputs (input , Ci, ?)

to the adversary. On a later input (complete, Ci) from the adversary, the functionality stores (input , Ci, x
i)

and outputs (complete, input , Ci) to all Wj .
Eval: On command (eval) from all Wj at a point where (input , Ci, x

i) is stored for all i ∈ 1, . . . , n, compute
(z1, . . . , zn) = f(x1, . . . , xn) and store (output , Ci, z

i) for all i ∈ 1, . . . , n. Then output (eval , {zj}j∈J) to the
adversary, where J is the set of indices of corrupted parties.

Output: On command (deliver , Ci) from the adversary, at a point where (output , Ci, z
i) is stored, output zi to

Ci and delete (output , Ci, z
i).

Figure 3. The ideal functionality for function evaluation of f .

We do the proof in the UC framework [Can01]. We prove static security against an adversary corrupting
any number of clients and up to all but one of the workers. Recall that we have the following proof burden.

There is a real world where we run the protocol. The parties of the protocol has access to secure point-
to-point channels (which can in turn be implemented using cryptography) plus a copy of FMPC. In the real
world there is an adversary A attacking the protocol. It is the adversary A which controls the corrupted
parties, i.e., it sends messages on behalf of the corrupted parties and sees all messages sent to the corrupted
parties, including the messages to and from FMPC. In addition the adversary has access to the adversarial
behavior allowed by FMPC, like deciding when messages are delivered. There is also an environment Z. It is
the environment which provides the inputs to the honest parties of the protocol and which sees the outputs of
the honest parties of the protocol. The environment Z can also interact with A, in any way that they desire
and at any time. The interaction is via exchanging messages. At the end of the interaction, the environment
outputs a bit. We denote the distribution of this bit by Execπ,A,Z(k), where k is the security parameter.
Both A and Z are restricted to poly-time computations.

In the ideal process there are three entities, the ideal functionality FfFE, the adversary S and the environ-

ment Z. It is the environment which provides inputs to FfFE via the (dummy) honest parties, and it sees their

outputs from FfFE. It is the adversary S which provides inputs to FfFE on behalf of the corrupted parties, and

it sees the outputs to the corrupted parties from FfFE. In addition it has access to the adversarial behavior

allowed by FfFE. Besides this, Z and S can interact by exchanging messages. At the end of the execution, Z
will output a bit. We use ExecFf

FE,S,Z
(k) to denote the distribution of this bit. Both S and Z are restricted

to poly-time computations.
To prove security of the protocol we have to construct for all adversaries A for the real world an adversary

S for the ideal process such that no Z can guess whether it interacts with π and A or FfFE and S. We also
call this adversary S a simulator. Technically we require that for all A there exists S such that for all Z the
value |Pr[Execπ,A,Z(k) = 1]− Pr[ExecFf

FE,S,Z
(k) = 1]| goes to 0 faster than any inverse polynomial in k.

We proceed to the proof. Assume we are given any A. The simulator S works as follows:

Simulated Protocol S runs internally a copy of π, i.e., a copy of each party C1, . . . , Cn,W1, . . . ,Wm along
with a copy of FMPC. We call this the simulated protocol. To distinguish the simulated parties from the
corresponding parties in the real execution we write C̃1, . . . , C̃n, W̃1, . . . , W̃m and F̃MPC for the parties
and the ideal functionality and π̃ for the simulated protocol as a whole.

Simulated Adversary S also runs internally a copy of A, we call this the simulated adversary and denote
it by Ã.

Monitor Corrupted Parties S lets the simulated adversary Ã and the simulated parties interact exactly
as in the real execution, i.e., whenever Ã instructs a corrupted party to send a given message, the
simulator performs this command in the simulated protocol, and whenever a corrupted simulated party
receives a message in the execution of the simulated protocol, S gives this message to A. Notice that as
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a consequence of this simulation strategy, S knows all messages sent and received by corrupted parties,
including the messages to and from F̃MPC. The simulator also knows the internal state of F̃MPC, as it is
S which runs the copy F̃MPC. We use these facts later.

Relay Between Adversary and Environment S lets the simulated adversary A and Z interact exactly
as in the real execution, i.e., whenever Ã sends a message to its environment S passes it on to Z, and
whenever Z sends a message to S, the simulator just passes it on to A.

Dummy Honest Inputs Whenever Z gives an input xi to an honest Ci, the simulator S is given (input , Ci, ?).
It then picks a dummy input x̃i for C̃i, e.g., x̃i = 0 or some other legal input. Then it simply runs π̃
according to the protocol, but with this dummy input x̃i to C̃i instead of the correct input xi (which is
unknown to S by the rules of the game).

Eval Whenever Z gives an input (eval) to an honest Wi, the simulator S is given (eval ,Wi). It then simply
inputs (eval) to W̃i in the simulated protocol and then runs W̃i according to the protocol.

Extracting Corrupted Inputs Recall that it is S which must provide input to FfFE on behalf of the

corrupted parties. It must try to make these inputs consist with the “input” of the corrupted C̃j . Note

that C̃j has no explicit input, it is defined via its behavior in the protocol. The job of the simulator is

hence to extract this implicit input. The simulator extracts the input xj of a corrupted C̃j as follows: It

waits until all workers has input the values x̃ji , t̃
j
i , k̃

j
i , r̃

j
i to F̃MPC. Then it computes x̃j =

∑m
i=1 x̃

j
i and

r̃j =
∑m
i=1 r̃

j
i . Then it inputs xj = x̃j to FfFE on behalf of the corrupted Cj . It saves r̃j for later use.

Patching Corrupted Outputs Recall that A sees the outputs of corrupted parties in the simulated proto-
col and can talk to Z which sees the inputs and outputs of of FfFE. Hence it is important that the outputs

in the simulated protocol are consistent with the inputs and outputs of FfFE. This is not necessarily the
case, as we ran the simulated protocol on dummy inputs for all honest parties. The simulator deals with
this as follows. Assume that the simulated protocol reaches Step 14 in the Workers Computation Phase.
Before executing this step, the simulator S will modify the value of cj inside F̃MPC for each corrupted C̃j
before executing Step 14. Observe that if the simulated protocol reaches Step 14, then all parties in the
simulated protocol must have given inputs, or the simulated protocol would not have passed Step 2 in the
Workers Computation Phase. Hence S will have given an input xj to FfFE on behalf of each corrupted Cj
at this point. Furthermore, since it is S which gives (dummy) inputs to the honest C̃j in the simulated

protocol and since S only does so when Z gives input to the corresponding Cj on FfFE, we can conclude

that when π̃ reaches Step 14, the environment gave input to FfFE on behalf of all honest Cj . So, all in all,

when the simulated protocol reaches Step 14, all Cj received an input xj in FfFE. Using a similar line of

reasoning we see that if π̃ reaches Step 14, then Z must have input (eval) to all honest Wi on FfFE. So, now

S can input (eval) to all corrupted Wi on FfFE. In response FfFE computes (z1, . . . , zn) = f(x1, . . . , xn)
and outputs (eval, {zj}j∈J) to S, where J is the set of corrupted parties. Now S computes c̃j = zj + r̃j ,
where r̃j was computed and stored in Extracting Corrupted Inputs. Then S changes the internal state
of F̃MPC to hold the value cj = c̃j . Then it simply runs the simulated protocol according to the protocol.

Honest Output Delivery Whenever an honest client C̃i reaches Step 4 in Client Output Phase, the sim-
ulator inputs (deliver , Ci) to FMPC, which makes FMPC output zi to Z on behalf of Ci.

That completes the description of the simulator. We now prove that

|Pr[Execπ,A,Z(k) = 1]− Pr[ExecFf
FE,S,Z

(k) = 1]| ≤ 2−k+1 .

Let E be the event that some client Cj has its input replaced, i.e., Cj runs with input xj , but after Step 2

in Workers Computation phase it holds for the values xji in FMPC that xj 6=
∑m
i=1 x

j
i . We can also define E

in the simulation, but via the (dummy) input x̃j and the values x̃ji in F̃MPC and say that E occurs when

x̃j 6=
∑m
i=1 x̃

j
i . Let Ē denote the event that E did not occur. We clearly have that

Pr[Execπ,A,Z(k) = 1] =

Pr[E] Pr[Execπ,A,Z(k) = 1|E]+

(1− Pr[E]) Pr[Execπ,A,Z(k) = 1|Ē]
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and

Pr[ExecFf
FE,S,Z

(k) = 1] =

Pr[E] Pr[ExecFf
FE,S,Z

(k) = 1|E]+

(1− Pr[E]) Pr[ExecFf
FE,S,Z

(k) = 1|Ē] .

We will first show Claim 1 : the probability Pr[E] is the same in the real execution and in the ideal process.
We will also prove Claim 2 : Pr[E] ≤ 2−k+1. Then we show Claim 3 : It holds that

Pr[ExecFf
FE,S,Z

(k) = 1|Ē] = Pr[Execπ,A,Z(k) = 1|Ē] .

From these three claims it follows that

|Pr[Execπ,A,Z(k) = 1]− Pr[ExecFf
FE,S,Z

(k) = 1]|

≤ |Pr[E] Pr[Execπ,A,Z(k) = 1|E]−
Pr[E] Pr[ExecFf

FE,S,Z
(k) = 1|E]|

≤Pr[E] ≤ 2−k+1

as desired.

Proof of Claims 1 and 2 We prove that if the adversary uses values xji such that xj 6=
∑m
i=1 x

j
i , then

β 6= 0 with probability ≤ 2−k+1, and the probability is independent of xj . The same proof applies to the
simulation, as the simulation is just a run of the real protocol but on different inputs. From this Claims 1
and 2 then follows.

Let α =
∑
j α

j . There are two (non-disjoint) ways it can happen that β = 0, namely α = 0 and s = 0.

Since Pr[s = 0] = 2−k, independently of xj , it is sufficient to prove that Pr[α = 0] ≤ 2−k and that the
probability is independent of xj .

If all clients are corrupted, there is nothing to prove. So, since corrupting more parties gives the adversary
strictly more powers and since the role of all clients is symmetric, let us assume without loss of generality
that all clients except C1 are corrupted. Our model assumes that at least one worker is honest. Since the
role of all workers are symmetric, let us assume without loss of generality that all workers except W1 are
corrupted. Finally, if x1 =

∑m
i=1 x

1
i there is nothing to prove, so assume that this is not the case. Finally,

since Z and A can communicate, we cannot assume that A does not know x1, and since getting x1 clearly
cannot make A worse off, let us assume without loss of generality that A knows x1. To distinguish between
the correct values of x1i and the wrong ones chosen by corrupted workers, use x1i to denote the values chosen
by C1 and use x̄1i to denote the values in FMPC. Note that x̄11 = x11. We use similar notation for the values

kji and tji .
Notice that for i > 1 the adversary knows both x1i and x̄1i , as it received x1i and it chose x̄1i . Hence it also

knows the relative error X1
i = x̄1i −x1i . Notice that x̄1i = x1i +X1

i . I.e., the adversary inputs the correct input
plus some known error. Similarly we can write k̄1i = k1i +K1

i and t̄1i = t1i + T 1
i for values K1

i and T 1
i known

by the adversary. We use X1 =
∑m
i=2X

1
i to denote the sum of relative errors. Note that X1 is known by the

adversary. Similarly, let T 1 =
∑m
i=2 T

1
i and let K1 =

∑m
i=2K

1
i . Note that x̃1 = x1 + X1, t̃1 = t1 + T 1, and

k̃1 = k1 +K1. We have that t1 − k1x1 = 0, by design. Hence t̃1 − k̃1x̃1 = t1 + T 1 − (k1 +K1)(x1 +X1) =
t1 − k1x1 − k1X1 − K1x1 + T 1 = −k1X1 − (K1x1 + T 1). Since we assume that A knows x1, the value
K1x1 + T 1 is known by the adversary. Finally, observe that α̃ = α̃1 +

∑
i>1 α̃

i, where α̃i is known to A
for i > 1. Hence, α̃ = −k1X1 − (K1x1 + T 1) +

∑
i>1 α̃

i, where −(K1x1 + T 1) +
∑
i>1 α̃

i is known to A.
Notice then that α̃ = 0 iff k1X1 = −(K1x1 +T 1) +

∑
i>1 α̃

i. Since k1 is uniformly random and independent
of the view of A and −(K1x1 + T 1) +

∑
i>1 α̃

i is known to A and X1 6= 0 by assumption, it follows that

k1X1 = −(K1x1 + T 1) +
∑
i>1 α̃

i with probability exactly 2−k, independently of the value of X1.
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Proof of Claim 3 First consider the following mind game. Consider an execution ExecFf
FE,S

1,Z(k), which

runs exactly as the execution ExecFf
FE,S,Z

(k), except that each time where S is about to use a dummy

input x̃i = 0 on behalf of honest Ci, it instead cheats and inspects FfFE to get the real value xi and then
it uses x̃i = xi. Besides this cheat, everything runs as in the simulation. Note that in a simulation S is
of course not allowed to perform the above cheat. However, we are here only defining a random variable
ExecFf

FE,S
1,Z(k) for sake of the proof, and we are of course free to define it as we want. We claim that

|Pr[ExecFf
FE,S,Z

(k) = 1|Ē] − Pr[ExecFf
FE,S

1,Z(k) = 1|Ē]| = 0. The reason is that the views of A and Z do

not depend on the dummy inputs at all. To see this notice that x̃i is input to F̃MPC and is not used anywhere
else. And, the only values leaked by F̃MPC which might depend on x̃i are the values cj . As for the value
cj for all corrupted Cj , note that it is patched to c̃j before it is output from F̃MPC, hence it has the same
distribution no matter whether S uses x̃j = 0 or x̃j = xj . As for the value cj for all honest Cj , note that
cj = z̃j +rj for a uniformly random value rj . Hence, even though z̃j might depend on whether S uses x̃j = 0
or x̃j = xj , the value cj does not, as it is one-time pad encrypted with rj which is known only to the honest
Cj .

Consider then the mind game ExecFf
FE,S

2,Z(k), which runs exactly as the previous mind game ExecFf
FE,S

1,Z(k),

except that we change the step Patching Corrupted Outputs such that S does not perform the patching
cj = c̃j . Instead it just runs the simulated protocol with the value cj already inside F̃MPC. We claim that
|Pr[ExecFf

FE,S
1,Z(k) = 1|Ē]− Pr[ExecFf

FE,S
2,Z(k) = 1|Ē] = 0. Notice that in ExecFf

FE,S
2,Z(k) each honest

C̃i is run with input x̃i = xi, where xi is the input to Ci on FfFE. Then for each corrupted C̃i define x̃i

as in Extracting Corrupted Inputs. Then it follows from the fact that E does not happen that the values
(z1, . . . , zn) computed by F̃MPC are equal to f(x̃1, . . . , x̃n), as no honest party has its input replaced. Since

the input to FfFE is xi = x̃i for the honest party (qua the cheat) and xi = x̃i for the corrupted party (by

design of Extracting Corrupted Inputs), it follows that the values (z1, . . . , zn) computed by F̃MPC are equal

to the values (z1, . . . , zn) computed by FfFE. Furthermore, when the values (z1, . . . , zn) computed by F̃MPC

are equal to the values (z1, . . . , zn) computed by FfFE, the patching cj = c̃j clearly has no effect as cj = zj+r̃j

and c̃j = zj + r̃j . Ergo, it does not matter whether we do the patching or not.

We finally claim that the following holds

|Pr[ExecFf
FE,S

2,Z(k) = 1|Ē]− Pr[Execπ,A,Z(k) = 1|Ē]| = 0 .

Notice that after replacing dummy inputs by true inputs and dropping the patching of corrupted outputs,
the “simulated” protocol run by S2 is actually just a correct run of π on exactly the same inputs xi given to
FfFE by Z. I.e., S is internally running π exactly as it is being run in Execπ,A,Z(k). There might, however,
still be a difference in the view of Z: In ExecFf

FE,S
2,Z(k) the output of an honest client Ci to Z is the value

zi output by FfFE. In Execπ,A,Z(k) the output of an honest client Ci to Z is the value zi output by Ci.

We hence need to argue that in ExecFf
FE,S

2,Z(k) the output of an honest client C̃i is identical to the value

zi output by FfFE. To see this, recall that we argued above that the values (z1, . . . , zn) computed by F̃MPC

are equal to the values (z1, . . . , zn) computed by FfFE. Hence, all we have to argue is that the output of an

honest client C̃i is identical to the value zi computed by FMPC. This is so, as ci = zi + ri and the correct
value of ci is sent to Ci by at least one honest worker, so Ci only accepts ci, and then it outputs ci− ri = zi.

3.4 Coping with Malicious Clients

In the previous protocol a malicious client can force the entire protocol to abort by using an invalid input
(e.g., providing a MAC that is not consistent). As a result it will happen that β 6= 0 and the computation
will abort. In an application where there are thousands or millions of clients it is undesirable that a single
malicious (or faulty) client can prevent the whole computation from terminating. We therefore want a
protocol which guarantees termination whenever all workers are honest. The problem is that when β 6= 0
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we cannot see if it happened because of a malicious worker or a malicious client. We therefore need to add
extra mechanisms for detecting who was cheating and for recovering when it was a client.

The high-level idea of our solution is to identify clients which provided invalid inputs and replace their
inputs with a default value. This means that all attacks possible by a client are equivalent to choosing an
alternative input, which is of course an allowed option for even an honest party. The only difference is that
in case of cheating, all workers will learn that the client cheated, and all workers will learn the (alternative)
input of the client. This should deter clients from cheating at all. “Cheating” might, however, also happen
because a client is faulty, so we should expect a few cheating parties occasionally. Since we want to consider
cases where n is huge, we will therefore present a solution optimized for the case where there are very few
cheating parties relative to the size of n.

The first step is to identify the troublesome clients. Note that
∑
j∈1,...,n α

j 6= 0 just shows that some

αj 6= 0. We can find it by securely computing
∑n/2
j=1 α

j and
∑n
j=n/2+1 α

j and revealing blinded values to

check which of them is non-zero, possibly both. Then continue like this recursively, until all j for which αj 6= 0
are known. At the point where O(n) sums have been computed, blinded and opened, switch to a mode where
we simply open blinded versions of all αj . This way we never use more than O(n) multiplications, and if there
is a constant number of non-zero αj , then we use only O(log n) multiplications. Let I be the set of indices
j such that αj 6= 0. The above strategy finds I except with negligible probability. Now we must for each
j ∈ I find out whether Cj is corrupted or whether some worker input a different value to the computation
than the one provided by Cj . Assume for now that 1) a worker can reveal which values it received from Cj
without the worker being able to reveal a value different from the ones actually received from Cj and 2) it is
OK to reveal the input xj of Cj . In that case the solution is trivial: for each j ∈ I each worker Wi will reveal

the values (xji , t
j
i , k

j
i ) received from Ci and the workers will open the values [xj ], [tj ] and [kj ] to check that

Wi uploaded the right values to FMPC. If not, Wi is corrupted, and the protocol is terminated. Otherwise,
it must be the case that tj 6= Tagkj (xj), as αj 6= 0. So, since all the uploaded values were the ones received
from the client, it follows that Cj is corrupted. In that case the protocol continues, using, e.g., xj = 0 as
input on behalf of Cj .We now discuss how to get rid of the two assumptions.

As for the second assumption, we will simply let each Cj split the input xj into two random shares yj,1

and yj,2 for which xj = yj,1 + yj,2. E.g., pick yj,1 uniformly at random and let yj,2 = xj − yj,1. Then proceed
as before, but let Cj give both of the inputs yj,1 and yj,1 as above, i.e., with separate keys and MACs. Now,
if any one of them turns out to be troublesome, open it and find out who was cheating. If it was Cj , use a
default value. If it was Wi, terminate. Then compute (z1, . . . , zn) = f(y1,1 + y1,2, . . . , yn,1 + yn,2). Note that
there is never a need to reveal both yj,1 and yj,2: if they are both troublesome, simple reveal yj,1 and use
that value to make the decision. Furthermore, revealing a single of the values yj,1 or yj,2 is secure, as they
are individually uniformly random and independent of xj .

As for the first assumption, notice that it is not enough to ask Cj to sign the values it sends to Wi:
The client might simply not send a signature, and when Wi complains that Cj did not send a signature, it
might be Wi that is lying. In fact, any solution where the client sends something over a secure channel will
fall prey to this problem: The client might refuse to send the value, but it might also by the worker lying
about not having received that value. We therefore need a solution where clients only sends public values.
Furthermore, since all but one worker might be corrupted, any public value not sent to all workers, might
still fall prey to the above attack: the m− 1 workers seeing the value might refuse to have received it. Hence
we might essentially restrict ourselves to solutions where the client sends one public values and sends it to
all workers.

We describe one such solution. Assume that each Wi has a public encryption key ei for a public-key
encryption scheme and that only Wi knows the decryption key di. We need that this encryption scheme
is secure against chosen-ciphertext attack (IND-CCA2) and that decryption yields the message plus the
randomness used to encrypt, and that IND-CCA2 security holds even if the decryption oracle returns this
randomness. In the random oracle model, RSA-OAEP is such an encryption scheme, assuming that the
RSA function is one-way. Our solution then proceeds as follows: Use vji to denote the value that a client

Cj should send secretly to Wi. The client will compute an encryption γji = Eei((i, j, v
j
i ); s

j
i ), where sji is

the randomness used by the encryption algorithm. Then C broadcasts (γj1, . . . , γ
j
n) to all workers. Then Wi
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computes (i′, j′, vji , s
j
i ) = Ddi(γ

j
i ). If i′ 6= i or j′ 6= j, then Wi broadcasts (i′, j′, vji , s

j
i ) and all workers check

that γji = Eei((i
′, j′, vji ); s

j
i ) and that i′ 6= i or j′ 6= j. If this is the case, use a default input for Cj . If it is

not the case, then Wi is cheating. In that case, terminate the protocol. If Wi is later asked to reveal vji , Wi

broadcasts (vji , s
j
i ) and all workers check that γji = Eei((i, j, v

j
i ); s

j
i ).

It is also possible to get a solution not using the random oracle model. Each key ei is the parameters for
an identity-based encryption scheme and di is the master secret key. The client will compute an encryption
γji ← Eei,(i,j,sid)(v

j
i ), i.e., encrypt vji under the identity (i, j, sid), where sid is a session identifier which is

fresh for each run of the protocol. If Wi is later asked to reveal vji , Wi generates and broadcasts the secret

key di,j,sid for identity (i, j, sid). Then all workers compute vji = Ddi,j,sid(γji ).
We are then left with the problem of how the client broadcasts to the servers. Note that we can use a

standard authenticated broadcast protocol like Dolev-Strong broadcast [DS83], as this protocol require the
sender to send just a single message to each of the other participant, here the workers.

Client
Protocol n m Security Based on Work Interaction Notes

This any > 1 Active any m · sizeinp (fo) N

PTK [PTK13] any 2 Passive Paillier sizeinp (pk) N

Whitewash [CLT14] 1 2 Active GC sizeinp (sk) N

CMTB [CMTB13] 1 2 Active GC sizeinp (pk) Y Non-collusion

Salus [KMR12] any 2 Active GC sizeinp (sk) Y Non-collusion

Table 1. Comparison with previous work. n,m are the number of allowed clients and workers respectively. In the
Client Work column, (fo/sk/pk) indicate whether the client needs to perform public key operations, secret key opera-
tions or simple field operations. The Interaction column states N if clients interaction is limited to sending/receiving
one message to/from the workers or Y otherwise. The work of the client in our solution is linear in m, but in all other
rows m is a constant.

Note that the above solution requires that the client be able to sign messages. We would ideally like a
solution which works under the sole assumption that the clients have an authenticated channel to each of
the workers, as this is strictly more general and better models practice, where clients might authenticate
themselves towards the computation providers using a simple password mechanism on top of a server au-
thenticated secure transport layer. However, such a solution is not possible. It is well-known that broadcast
among m parties without the use of signatures, requires that > m/2 of the parties are honest, and we want
to tolerate that all but one worker is corrupted. We must therefore settle for a solution where clients need
to have public keys for a signature scheme.

We finally note that the security property that we are trying to achieve in this section i.e., how to
make sure that a single faulty client cannot make the computation stall, cannot be captured in the UC
framework: since the adversary fully controls the network and the delivery of messages, in the UC framework
the adversary can make the computation stall even if no parties are corrupted.

The resulting protocol, dealing with malicious clients, can be found in Appendix A.

4 Relationship To Previous Work

Here we discuss the relationship with some of the most relevant work in this area. Kamara et al. [KMR11]
studied the problem of server-aided secure computation with relaxed security guarantees (i.e., non-collusion
between corrupted parties). In their solution one of the clients also acts as a worker (i.e., it performs com-
putation linear in the circuit size), therefore we interpret this as a setting with two workers (where one of
the two happens to have an input as well). They also show how to transform protocols for secure delega-
tion of computation into protocols in the server-aided model, but also this requires clients interacting with
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each other. The server-aided model with non-colluding parties was also studied in [KMR12], which gives an
efficient protocol based on Yao garbled circuits in this setting. The protocol still requires some interaction
between the clients. Subsequently Carter et al. [CMTB13] claimed a number of improvements over Kamara
et al., but also in their solution the clients need to interact further than the simple upload input/download
output pattern of our scheme, and also require additional non-collusion assumptions. A recent work known
as Whitewash [CLT14] improves this by presenting a protocol that is secure when the client and one of
the workers collude. We do not see how to modify Whitewash to allow for multiple clients or workers. In
addition, the output message of Whitewash has an extra factor k overhead, whereas in our protocol the
output message from the workers to the clients is of the same size as the output of the function. Finally
Peter et al. [PTK13] propose a protocol based on a variant of Paillier encryption for the setting of many
clients and two workers. However the PTK protocol only offers passive security, and it is not clear whether
it can be extended to more than 2 workers.

Compared to all above mentioned protocols, we find our solution to be 1) more elegant, as it decouples
the problem of clients providing inputs to the problem of workers performing the computation 2) more
flexible, as it supports any number of client and workers, and it allows the workers to chose the best possible
protocols to perform the secure computation at hand, without having to modify the protocol at the client
side 3) more efficient for the client, as the interaction pattern is minimal and the clients do not need to
perform any cryptographic operations (only simple field operations) 4) more secure, as security holds up to
m− 1 actively corrupted workers and no non-collusion assumptions need to be made (that is, even when the
corrupted parties share data among each other).

It is worth noting that these advantages are achieved without sacrificing the overall efficiency of the
system: interestingly all previous solutions seem to obtain protocols that are essentially as efficient as the
underlying protocol. This is also true in our case, as we only increase the size of the secure computation
circuit by a single secure multiplication when there is no cheating (and log(n) additional multiplications if
detection of corrupted clients is desired).

A summary of this comparison can be found in Table 1.
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A The Protocol

Figure 5 shows our protocol, dealing with malicious clients as explained in Section 3.4. It does not include
the eventual output consensus of Section 2.3, but adding this should be straightforward. Figure 5 assumes
that a public encryption scheme (E,D) has been set up such that each worker Wi holds a private decryption
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Algorithm FIND: Input: ([a1], [a2], . . . , [aq]), a list of q secret shared values.

1. [s]← Rand();
2. [β] = [s] · [

∑
j∈1,...,q aq];

3. β ← Open([β]);
4. If β = 0 return {};
5. Else, if q = 1 return {[a1]};
6. Else, let r = bq/2c and return FIND([a1], . . . , [ar]) ∪ FIND([ar+1], . . . , [aq]).

Figure 4. Algorithm to identify potentially inconsistent client input.

key di while all other parties, workers as well as clients, hold the corresponding public encryption key ei.
Furthermore, Figure 5 assumes a broadcast primitive; we use BROADCAST(id,msg, {Ri}) to denote that a
party P broadcasts msg to a set of receivers {Ri} while msg ← RECEIVE(id, P ) is used by a party to receive
msg broadcast by P . As noted, broadcast can be realized using Dolev-Strong [DS83]. A recursive algorithm
FIND, listed in Figure 4, is used for identifying potentially inconsistent client input. FIND may result in
O(n log n) multiplications. In order to have O(n) multiplications, let e be any constant, e.g. e = 2, and
modify FIND such that a global counter δ is increased for every multiplication (i.e., δ := δ+1 each time Step
2 of FIND is executed). If at some point δ > e · n, abort the entire recursion and compute ∪nj=1FIND([αj,w])
as result instead. The default value used for inconsistent client input is 0.
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All algebraic notation denotes operations in K.

Clients Input Phase: Each client Cj with input xj does:

1. Pick random yj,1. Compute yj,2 = xj − yj,1;
2. For w ∈ {1, 2} do the following:

(a) Pick random {yj,wi }
m
i=1 from K s.t.

∑m
i=1 y

j,w
i = yj,w;

(b) Pick random {kj,wi }
m
i=1 from K; let kj,w :=

∑m
i=1 k

j,w
i ;

(c) Pick random {rj,wi }
m
i=1 from K; let rj,w :=

∑m
i=1 r

j,w
i ;

(d) Compute tj,w = Tagkj,w (xj,w) = kj,w · xj,w;
(e) Pick random {tj,wi }

m
i=1 from K s.t.

∑m
i=1 t

j,w
i = tj,w;

(f) Compute the values vj,wi := (yj,wi , tj,wi , kj,wi , rj,wi ) for i ∈ 1, . . . ,m;
(g) Compute γj,w

i := Eei((i, j, v
j,w
i ); sj,wi ) for i ∈ 1, . . . ,m;

(h) Broadcast γj,w
i to the workers, i.e., invoke BROADCAST(input, (γj,w

i )mi=1, {Wi}mi=1).

Workers Input Phase: Each worker Wi does:

1. Upon (γj,w
1 , γj,w

2 , . . . , γj,w
m )← RECEIVE(input, Cj) do:

(a) Compute (i′, j′, vj,wi , sj,wi ) = Ddi(γ
j,w
i );

(b) If i′ 6= i or j′ 6= j, BROADCAST(bad-input, (i′, j′, vj,wi , sj,wi ), {Wl}ml=1).
2. Upon (l′, j′, vj,wl , sj,wl )← RECEIVE(bad-input,Wl), if γj,w

l = Eel((l
′, j′, vj,wl ); sj,wl ) and if it is also the case

that l′ 6= l or j′ 6= j, set [xj ]← Input(Wi, 0). Otherwise, abort the protocol.

Workers Computation Phase: Upon (eval) each worker Wi does:

1. For w ∈ {1, 2} do:
(a) For all j ∈ {1, . . . , n} do:

i. Compute [yj,wi ] ← Input(Wi, y
j,w
i ); [tj,wi ] ← Input(Wi, t

j,w
i ); [kj,wi ] ← Input(Wi, k

j,w
i ); [rj,wi ] ←

Input(Wi, r
j,w
i );

ii. Compute: [yj,w] :=
∑m

i=1[xj,wi ];
iii. Compute: [tj,w] :=

∑m
i=1[tj,wi ];

iv. Compute: [kj,w] :=
∑m

i=1[kj,wi ];
v. Compute: [rj,w] :=

∑m
i=1[rj,wi ];

vi. kj,w ← Open([kj,w]);
vii. [αj,w] := [tj,w]− kj,w · [yj,w];

(b) Compute Iw := FIND([α1,w], [α2,w], . . . , [αn,w]).
2. Let I := I1 ∪ I2. For j /∈ I, set [xj ] := [yj,1] + [yj,2]. For j ∈ I, do as follows:

(a) If j ∈ I1, let w := 1, else w := 2. Wi now reveals vj,wi := (yj,wi , tj,wi , kj,wi ) as follows:
(b) Wi invokes BROADCAST(reveal, (vj,wi , sj,wi ), {Wl}ml=1);
(c) Upon (vj,wi , sj,wi )← RECEIVE(reveal,Wi), a worker Wl aborts if γj,w

i 6= Eei((i, j, v
j,w
i ); sj,wi );

(d) Upon receiving all vj,wl := (yj,wl , tj,wl , kj,wl ) for l ∈ {1, . . . ,m}, compute yj,w :=
∑

l y
j,w
l , tj,w :=

∑
l t

j,w
l ,

kj,w :=
∑

l k
j,w
l ;

(e) Wi then computes y′j,w ← Open([yj,w]); t′j,w ← Open([tj,w]); k′j,w ← Open([kj,w]);
(f) If (y′j,w, t′j,w, k′j,w) 6= (yj,w, tj,w, kj,w), Wi aborts, otherwise [xj ]← Input(Wi, 0).

3. Compute: ([z1], . . . , [zn]) := f([x1], . . . , [xn]);
4. Compute: [cj ] = [zj ] + [rj ] for all j ∈ {1, . . . , n};
5. cji ← Open([cj ]) for all j ∈ {1, . . . , n};
6. For j ∈ {1, . . . , n} send cji to Cj .

Client Output Phase: Each client Cj does:

1. Once cji have been received from all workers {Wi}mi=1, if cj1, c
j
2, . . . , c

j
m are not all equal, output abort;

2. Else, let cj := cj1 and output zj := cj − rj .

Figure 5. The protocol coping with malicious clients.
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