Value Li-Party Computation Part 2

Claudio Orlandi, Aarhus University

Plan for the next 3 hours...

Part 1: Secure Computation with a Trusted Dealer

- Warmup: One-Time Truth Tables
- Evaluating Circuits with Beaver's trick
- MAC-then-Compute for Active Security

Part 2: Oblivious Transfer

- OT: Definitions and Applications
- Passive Secure OT Extension
- OT Protocols from DDH (Naor-Pinkas/PVW)

Part 3: Garbled Circuits

- GC: Definitions and Applications
- Garbling gate-by-gate: Basic and optimizations
- Active security 101: simple-cut-and choose, dual-execution

Circuit Evaluation (Online phase)

3) Multiplication?

How to compute [z]=[xy]?

Alice, Bob should compute $z_A + z_B = (x_A + x_B)(y_A + y_B)$ $= (x_A + x_B)(y_A + x_A + x_B)(y_A + x_B)$ Alice can compute this

Part 2: Oblivious Transfer

OT: Definition, Applications (Gilboa's protocol)

Passive Secure OT Extension

OT Protocols from DDH (Naor-Pinkas/PVW)

1-2 OT

Receiver Sender

- Receiver does not learn m_{1-b}
- Sender does not learn b

1-2 OT

Receiver

Sender

- $m_b = (1-b) m_0 + b m_1$
- $m_b = m_0 + b (m_1 m_0)$

1-n OT

Receiver

Sender

2PC via 1-n OT

Receiver

Sender

Oblivious Transfer

bit multiplication

Sender

GILBOA'S PROTOCOL

n OTs = Arith. Multiplication

Receiver $b=(b_0,b_1,...,b_{n-1})$

Sender a (n bit number)

$$c_0 + ... + c_{n-1} = c$$

$$d_0+...+d_{n-1}=a(b_0+2b_1+...+2^{n-1}b_{n-1})+(c_0+...+c_{n-1})=ab+c$$

Part 2: Oblivious Transfer

OT definition, applications (Gilboa's protocol)

Passive Secure OT Extension (IKNP03)

OT Protocols from DDH (Naor-Pinkas/PVW)

Efficiency

 Problem: OT requires public key primitives, inherently efficient

The Crypto Toolbox

Weaker assumption

Stronger assumption

OTP >> SKE >> PKE >> FHE >> Obfuscation

Less efficient

Efficiency

 Problem: OT requires public key primitives, inherently efficient

- Solution: OT extension
 - Like hybrid encryption!
 - Start with few (expensive) OT based on PKE
 - Get many (inexpensive) OT using only SKE

WARMUP: USEFUL OT PROPERTIES

Short OT → Long OT

Sender

b

k-bit strings

$$(u_0, u_1) = (prg(k_0) + m_0, prg(k_1) + m_1)$$

poly(k)-bit strings

m_o,m

$$m_b = prg(k_b) + u_b$$

Random OT = OT

 m_0, m_1 $r_0 r_1$ c,rc ROT

 $(x_0, x_1) = ((r_0 + m_0), (r_1 + m_1))$ $m_b = r_c + x_b$

if b=c

Random OT = OT

 m_0, m_1

$$r_0, r_1$$
 ROT r_0, r_1

$$d = p + c$$

$$(x_{0}, x_{1}) = (r_{0+d} + m_{0}),$$

 $(r_{1+d} + m_{1}))$

$$m_b = r_c + x_b$$

Exercise: check that it works!

(R)OT is symmetric

 r_0, r_1

bits

s₀,s₁

ROT

$$b,y=s_b$$

$$c = s_0 + s_1$$
$$z = s_0$$

$$r_0 = y$$

$$r_1 = b + r_0$$

$$c_r z = r_c$$

No communication!

Exercise: check that it works

OT Extension

OT pro(v/b)ably requires public-key primitivies

– OT extension ≈ hybrid encryption

Start from k "real" OTs

 Turn them into poly(k) OTs using only few symmetric primitives per OT

OT Extension, Pictorially

Condition for OT extension

OT Extension, Pictorially

OT Extension, Pictorially

OT Extension, Turn your head!

OT Extension, Pictorially

OT Extension, Pictorially

Break the correlation!

Breaking the correlation

Using a correlation robust hash function H s.t.

```
1. \{a_0, ..., a_n, H(a_0 + r), ..., H(a_n + r)\} // (a_i's, r random)
```

2.
$$\{a_0, ..., a_n, b_0, ..., b_n\}$$
 // $(a_i's,b_i's random)$

are computationally indistinguishable

OT Extension, Pictorially

Recap

- 0. Strech **k OTs** from k- to poly(k)=n-bitlong strings
- 1. Send correction for each pair of messages x_0^i, x_1^i s.t. $x_0^i \oplus x_1^i = c$
- 2. Turn your head (S/R swap roles)
- 3. The bits of c are the new choice bits
- 4. Break the correlation: $y_0^j = H(u^j)$, $y_1^j = H(u^j \oplus b)$
- Not secure against active adversaries

Part 2: Oblivious Transfer

OT definition, applications (Gilboa's protocol)

Passive Secure OT Extension

OT Protocols from DDH (Naor-Pinkas/PVW)

Receiver(b)

$pk_b \leftarrow G(sk)$ $pk_{1-b} \leftarrow Rand()$

Passive Secure OT

Sender (m_0, m_1)

Receiver privacy: Real pk ≈ "random" pk

 (pk_0,pk_1)

$$c_0 = E(pk_0, m_0), c_1 = E(pk_1, m_1)$$

$$m_b = D(sk,c_b)$$

Sender privacy: encryption is secure (Alice does not have sk)

Passive Secure OT

Sender (m_0, m_1)

$$pk_0 \leftarrow G(sk_0)$$

$$pk_1 \leftarrow G(sk_1)$$

$$(pk_0,pk_1)$$

$$c_0 = E(pk_0, m_0), c_1 = E(pk_1, m_1)$$

$$m_0 \leftarrow D(sk_0, c_0)$$

 $m_1 \leftarrow D(sk_1, c_1)$

Active Secure OT

Sender (m_0, m_1)

crs

$$mpk \leftarrow f(crs,sk,b)$$

 $(pk_0,pk_1)=G(mpk,crs)$

$$c_0 = E(pk_0, m_0), c_1 = E(pk_1, m_1)$$

$$m_b = D(sk,c_b)$$

Keys are correlated,
Receiver cannot learn
the sk for both

Naor-Pinkas OT

(a la Chou-Orlandi)

Sender (m_0, m_1)

crs (single group element)

$$mpk = crs^b g^{sk}$$

 $pk_0 = mpk$ $pk_1 = mpk/crs$

$$c_0 = E(pk_0, m_0), c_1 = E(pk_1, m_1)$$

$$m_b = D(sk,c_b)$$

Encryption is ElGamal

PVW OT

Sender (m_0, m_1)

$$crs=(g_0,h_0,g_1,h_1)$$

$$(\mathbf{u},\mathbf{v})=(\mathbf{g}_{\mathbf{b}}^{\mathbf{s}\mathbf{k}},\mathbf{h}_{\mathbf{b}}^{\mathbf{s}\mathbf{k}})$$

$$c_0 = E(pk_0, m_0), c_1 = E(pk_1, m_1)$$
 $pk_1 = (g_1, h_1, u, v)$

$$pk_0 = (g_0, h_0, u, v)$$

 $pk_1 = (g_1, h_1, u, v)$

$$m_b = D(sk,c_b)$$

Encryption is "Double ElGamal"

Security for Receiver

- Random crs \rightarrow (g₀,h₀,g₁,h₁) is **not** DDH tuple
- Then:

```
- pk_b 	 is DDH tuple 
 (g_b,h_b,u,v)=(g_b,h_b,g_b^{sk},h_b^{sk})
```

```
- pk_{1-b} is ¬DDH tuple (check)

(g_{1-b}, h_{1-b}, u, v) = (g_{1-b}, h_{1-b}, g_b^{sk}, h_b^{sk})
```

- DDH assumption says Bob cannot learn b
- (knowing the DLs in the crs the simulator can extract b)

Security for Sender

ElGamal Encryption

• Public key $u=g^x$ and secret key x $(c,d)=(g^r,u^rm) \rightarrow m=dc^{-x}$

Security for Sender

"Double ElGamal Encryption"

Public key (u,v)=(g^x,h^x) and secret key x
 (c,d)=(g^rh^s,u^rv^sm)

$$DDH: (g,h,u,v)=(g,h,g^x,h^x)$$

$$\rightarrow dc^{-x}=m$$

$$\neg DDH : (g,h,u,v)=(g,h,g^x,g^y)$$

 \rightarrow (c,d) unif. random pair

- Random crs \rightarrow (g₀,h₀,g₁,h₁) is \neg DDH
 - → For all (u,v) : (g_0,h_0,u,v) OR (g_1,h_1,u,v) is ¬ DDH
 - \rightarrow m_{1-b} is statistically hidden

In the proof simulator can set $(g_0,h_0,g_1,h_1) = DDH$ (ind. from real world)

 \rightarrow Both pk₀ and pk₁ are DDH and simulator can extract both messages

Recap of Part 2

- OT: building block for 2PC
 - − Requires PKE ⊗
 - − OT Extension (using only SKE) [©]
 - Can be combined with protocols from part 1 for 2PC without a trusted dealer (using computational assumptions) ©
 - #rounds = depth of the circuit ⊕

Coming up next...

OT + Garbled Circuits -> Constant round 2PC!

...aka layman fully-homomorphic encryption