ECRYPT.NET Cloud Summer School

Mi-Party Computation
Part 2

Claudio Orlandi, Aarhus University

Plan for the next 3 hours...

* Part 1: Secure Computation with a Trusted Dealer
— Warmup: One-Time Truth Tables
— Evaluating Circuits with Beaver’s trick
— MAC-then-Compute for Active Security
* Part 2: Oblivious Transfer
— OT: Definitions and Applications
— Passive Secure OT Extension
— OT Protocols from DDH (Naor-Pinkas/PVW)
* Part 3: Garbled Circuits
— GC: Definitions and Applications
— Garbling gate-by-gate: Basic and optimizations
— Active security 101: simple-cut-and choose, dual-execution

| -
@
(48]
Q
()
©
Q
)
(V)
>
| -
|_

guissadsoudald aseyd auljup

™
3) Multiplication?
How to compute [z]=[xy] ?

Circuit Evaluation
(Online phase)

How do we compute this?

Alice, Bob should compute
Zp+ 2p = (Xa) (Ya+Ye)

Alice can compute
this

Bob can compute this

Part 2: Oblivious Transfer

e OT: Definition, Applications (Gilboa’s protocol)
* Passive Secure OT Extension

e OT Protocols from DDH (Naor-Pinkas/PVW)

M

~—

Receiver Sender

1-2 OT

b Mo, M,

1-2 OT

my,

* Receiver does not learn m,

e Sender does not learn b

M

~—

1-2 OT

g

Receiver Sender

b Mo, M;

1-2 OT

my,

* m,=(1-b)my + b m,

*my,=mg +b(m-mg)

M

~—

1-n OT

"

Receiver

1-n OT

b
2PCvia 1-n OT

.’\

Receiver Sender

X - H(1,y)e.fnyy)
1-n OT

Af(x,y)

~—

=

Receiver

) Oblivious Transfer

bit multiplication

ab +c

1-2 OT

Sender

~ (c,a+c)

GILBOA’S PROTOCOL

Ay

- n OTs =
‘ Arith. Multiplication
Receiver Sender
b=(b0,b1,...,bn_1) d (n bit number)
CotentCpg=C
bi (Cila2i+ci)
1-2 OT

d=a(2'b;) + ¢,

dot...+d, =a(by+2b+...42™1b_ ,)+(c +...4+C,)=ab+c

Part 2: Oblivious Transfer

e OT definition, applications (Gilboa’s protocol)
* Passive Secure OT Extension (IKNPO3)

e OT Protocols from DDH (Naor-Pinkas/PVW)

Efficiency

* Problem: OT requires public key primitives,
inherently efficient

The Crypto Toolbox

——

| WANT TO
BELIEVE

Weaker assumption Stronger assumption

<€

OTP >> SKE >> PKE >> FHE >> Obfuscation

More efficient Less efficient

<€

Efficiency

* Problem: OT requires public key primitives,
inherently efficient

* Solution: OT extension
— Like hybrid encryption!
— Start with few (expensive) OT based on PKE

— Get many (inexpensive) OT using only SKE

WARMUP: USEFUL OT PROPERTIES

R

v

Receiver

b >

2 Short OT © Long OT Q

k-bit strings

mb:prg(kb)_l_ub

b _ ko
1-2 OT

(uo, u1)=(prg(ko)+mo, prg(k;)+m;)

Sender

« Mp,M;

poly(k)-bit
strings

Random OT = OT

my=r. + X,

c,r

ROT

rOlrl

:(Xo, x1)=((rg + mg), (r; + my))

Random OT = OT

b
' C,f. ROT ol
d=b +c
(X0, X1)= (ro4q™ mo),
_ (rieg T my))
my=r. + X,

B]

(R)OT is symmetric

S0sS1 ROT b,y —>b

r'Olrl
>

No communication!

Exercise: check that it
works

OT Extension
* OT pro(v/b)ably requires public-key primitivies
— OT extension = hybrid encryption
— Start from k “real” OTs

— Turn them into poly(k) OTs using only few
symmetric primitives per OT

23

OT Extension, Pictorially

(" Remember:
OT stretching
(see “Short OT - Long OT”

_ slide earlier)

24

Condition for OT extension

Remember:
“Random OT - OT”

_J

Zz—

Problem for active security!

OT Extension, Pictorially

k
| I
CROTs
- 1/ \ I
| f

(" n=poly(k)

“Correlated OTs”

26

OT Extension, Pictorially

(b®c)ij=b;- ¢

OT Extension, Turn your head!

T
U ®
@
> @ C =
n

b2

OT Extension, Pictorially

1-2
CROTs

! n=poly(k

29

OT Extension, Pictorially

1-2

CROTs

o |
S
k

30

Break the correlation!

31

Breaking the correlation

* Using a correlation robust hash function H s.t.
1. {ay, ..., a,, H(ag*+r), ..., H(a,+ r)}// (as, r random)
2. {ag, ..., @, by, ..., b} // (a’s,b.’s random)

are computationally indistinguishable

32

OT Extension, Pictorially

< < <
- o P
= |Fss . <

1-2 ROTs

33

u

(3)A|od

Recap

0. Strech k OTs from k- to poly(k)=n-bitlong strings

1. Send correction for each pair of messages x'y,x!,

2. Turn your head (S/R swap roles)
3. The bits of c are the new choice bits
4. Break the correlation: ylp;=H(u!), yl;=H(u' ® b)

* Not secure against active adversaries

34

Part 2: Oblivious Transfer

e OT definition, applications (Gilboa’s protocol)
* Passive Secure OT Extension

* OT Protocols from DDH (Naor-Pinkas/PVW)

Passive Secure
OoT

Receiver(b) Sender(mg,m;)

Receiver privacy:

pk, & G(sk) Real pk = “random” pk
pk,., € Rand()

(Pkospk;)

co=E(pko,mg), ¢;=E(pk;,m;)

m, = D(sk,c,)
Sender privacy:

encryption is secure
(Alice does not have sk)

Passive Secure

oT
Receiver(b) Sender(mg,m;)
pko € Gisko)
Py & Glsk) (Pkospk,)

co=E(pko,mg), ¢;=E(pk;,m;)

m; €< D(sk;, ¢;)

my € D(skg, ¢o)

Active Secure
OoT

Receiver(b) Sender(mgy,m;)

e

Crs

mpk < f(crs,sk,b)
mpk

(Pkoipky)=G(mpk,crs)
co=E(pko,mg), ¢;=E(pk;,m;)

m, = D(sk,c,) Keys are correlated,

Receiver cannot learn
the sk for both

Naor-Pinkas OT

Receiver(b) Sender(mg,m;)

crs (single group element)

mpk = crsPg

mpk
pko=mpk
pk,=mpk/crs

co=E(pko,mg), ¢;=E(pk;,m;)

my, = D(Sk,Cb)

Encryption

is EIGamal

PVW OT

Receiver(b) Sender(mg,m;)

Crs:(gOIhOIg] lh1)

(UIV) :(g bSklhbSk) (U V)

pkO:(gOIhOIUIV)
CO:E(pkOImO)I c;=E(pk;,m;) pk;=(g;,h;,u,v)

my, = D(Sk,Cb)

Encryption is

“Double EIGamal”

Security for Receiver

 Then:
— pk, is DDH tuple
(gb,hb,U,V)=(gb,hb,ngk,hbSk)

— pkyy is -DDH tuple (check)
(81.6N1.6/UV)=(81.1,011,8,%,hp™)

 DDH assumption says Bob cannot learn b
* (knowing the DLs in the crs the simulator can extract b)

Security for Sender
ElGamal Encryption

* Public key u=g*and secret key x
(c,d)=(g",u'm) 2 m=dc*

Security for Sender
“Double EIGamal Encryption”

* Public key (u,v)=(g*,h*) and secret key x

(c,d)=(g"h*,u'v°m)

DDH : (g,h,u,v)=(g,h,g* h¥)

2> dc*=m

-~ DDH : (g,h,u,v)=(g,h,9%¢")

- (c,d) unif. random pair

In the proof simulator can set (g,,hy,8,,h,) = DDH (ind. from real world)

—> Both pk, and pk, are DDH and simulator can extract both messages

Recap of Part 2 g EE R

i Mul. triples l
' i g Part 1 % i ’

w
(%]
@

<

a
w

=

c

o

e OT: building block for 2PC
— Requires PKE ®

— Can be combined with protocols from part 1 for
(using computational
assumptions)

44

Coming up next...

 OT + Garbled Circuits =

X Y X Y
Ny x2rru3dOFW O $
ﬂ > 4 -; 8dx2rru3dOFWS

3 | E
o ‘
‘ x88Tqk 520 ux88TqkA4l
f(x,y) f(x,y)

