
OBJECT-ORIENTED
PROGRAMMING

IN
THE BETA

PROGRAMMING
LANGUAGE

Ole Lehrmann Madsen

Aarhus University

Birger Møller-Pedersen

Ericsson Research, Applied Research Center, Oslo

Kristen Nygaard

University of Oslo

Copyright c© 1993 by Ole Lehrmann Madsen, Birger Møller-Pedersen,
and Kristen Nygaard. All rights reserved. No part of this book may
be copied or distributed without the prior written permission of the
authors

Preface

This is a book on object-oriented programming and the BETA program-
ming language. Object-oriented programming originated with the Simula
languages developed at the Norwegian Computing Center, Oslo, in the
1960s. The first Simula language, Simula I, was intended for writing
simulation programs. Simula I was later used as a basis for defining a
general purpose programming language, Simula 67. In addition to be-
ing a programming language, Simula1 was also designed as a language
for describing and communicating about systems in general. Simula has
been used by a relatively small community for many years, although it
has had a major impact on research in computer science. The real break-
through for object-oriented programming came with the development of
Smalltalk. Since then, a large number of programming languages based
on Simula concepts have appeared. C++ is the language that has had
the greatest influence on the use of object-oriented programming in indus-
try. Object-oriented programming has also been the subject of intensive
research, resulting in a large number of important contributions.

The authors of this book, together with Bent Bruun Kristensen, have
been involved in the BETA project since 1975, the aim of which is to
develop concepts, constructs and tools for programming. The BETA
language is one main result of this project, the various stages of which
have been described in many different reports and articles (Kristensen
et al., 1976; 1983a,b; 1985; 1987a,b; 1988; Madsen, 1987; Madsen and
Møller-Pedersen, 1988; 1989a,b; 1992; Madsen et al., 1983). This book
contains a description of the BETA language together with the conceptual
framework on which BETA has been based.

The Mjølner2 BETA System is a programming environment sup-
porting object-oriented programming in BETA. The Mjølner BETA
System has been developed by the Mjølner project (Dahle et al., 1986;
Knudsen et al., 1992), which was a cooperative Nordic project with par-
ticipants from Sweden, Norway, Finland and Denmark. The Mjølner

1Simula 67 was later renamed to just Simula, which is used in this book.
2The name Mjølner is taken from Nordic mythology, where Mjølner is the name

of the god Thor’s hammer. According to mythology, this hammer is the perfect tool
that cannot fail, grows with the task, and always comes back to Thor’s hand.

v

vi PREFACE

BETA System includes an implementation of BETA and a large num-
ber of libraries and application frameworks. It also includes a Hyper
Structure Editor and an object-oriented CASE tool for supporting design
using BETA. The system is a commercial product marketed by Mjølner
Informatics A/S. Appendix B contains a more detailed description of the
Mjølner BETA System. Readers should consult the Mjølner manuals
for further details before trying to run the examples in this book. The
Mjølner BETA System is currently available for the Macintosh, and for a
number of UNIX-based workstations runnning X-Window Systems.

Draft versions of this book and pre-releases of the Mjølner BETA
System have been used for teaching object-oriented programming at the
Department of Information and Media Sciences (IMV) and the Computer
Science Department (DAIMI), both at Aarhus University. At IMV, BETA
is used for introductory programming and at DAIMI it is used as a sec-
ond year course in programming languages. They have also been used for
teaching at a number of other places, including the Universities of Copen-
hagen, Oslo, Bergen and Odense. Draft versions have also been used
for BETA tutorials given at the OOPSLA ’89, ’90 and ’91 conferences
(Object-Oriented Programming, Languages, System and Applications),
at the TOOLS ’91 and ’92 conferences (Technology of Object-Oriented
Languages and Systems), and at EastEurOOPe ’91 (East European Con-
ference on Object-Oriented Programming).

The book is organized as follows: Chapters 1 and 2 introduce the
basic concepts of object-oriented programming; Chapters 3–12 are a de-
scription of subjects such as objects, patterns, sequential execution, the
virtual concept, block structure and procedural programming. The multi-
sequential aspects of BETA, including coroutines and concurrency, are
described in Chapters 13–15. Chapter 16 deals with exception handling,
Chapter 17 describes the modularization of large programs, and Chap-
ter 18 presents the conceptual framework underlying BETA. Appendix A
includes a grammar for BETA, and Appendix B gives a description of the
Mjølner BETA System.

When reading the book, there are three main subject areas that should
be covered at the same time:

• The BETA language, Chapters 3–16

• Modularization, Chapter 17

• The conceptual framework, Chapters 2 and 18.

It is recommended that readers start with Chapters 1–6; Chapter 2 in-
troduces part of the conceptual framework, and Chapters 3–6 introduce
part of BETA.

PREFACE vii

Chapter 18, the main chapter on the conceptual framework, may then
be read before reading Chapters 7–16. Depending on the reader’s previous
experience, it may be difficult to grasp Chapter 18 on a first reading, so
it is recommended that this is read again after having read the book’s
remaining chapters. In a teaching situation it is recommended that the
concepts detailed in Chapter 18 are discussed while reading the remaining
chapters of the book.

Chapter 17, on modularization, may be read after Chapters 3–6. In
a teaching situation it is recommended that it is read as soon as the stu-
dents have to write other than just trivial programs. Experience shows
that, from the beginning, students should be trained in splitting a pro-
gram into convenient modules, including the separation of interface and
implementation.

Acknowledgements

The BETA project was initiated in 1976 as part of what was then called
The Joint Language Project. People from The Regional Computing Cen-
ter and Computer Science Department at Aarhus University, the Institute
for Electronic Systems at Aalborg University Centre, and the Norwegian
Computing Center, Oslo participated in that project. The initiative for
the project was taken in the autumn of 1975 by Bjarner Svejgaard, Di-
rector of The Regional Computing Center.

The BETA language was developed by the authors together with Bent
Bruun Kristensen. In addition, a large number of people have been in-
volved in the development of BETA and the Mjølner BETA System, in-
cluding colleagues and students at Aarhus University, The Norwegian
Computing Center, Oslo University, Aalborg University, and Mjølner In-
formatics. In particular, the contributions of Dag Belsnes and Jørgen
Lindskov Knudsen are acknowledged.

Development of the Mjølner BETA System in the Nordic Mjølner
project has been supported by The Nordic Fund for Technology and Re-
search. Participants in the Mjølner Project come from Lund University,
Telesoft, EB Technology, The Norwegian Computing Center, Telenokia,
Sysware ApS, Aalborg University and Aarhus University. The main im-
plementors of the Mjølner BETA System are Peter Andersen, Lars Bak,
Jørgen Lindskov Knudsen, Ole Lehrmann Madsen, Kim Jensen Møller,
Claus Nørgaard, and Elmer Sandvad. In addition, Karen Borup, Søren
Brandt, Jørgen Nørgaard, Claus H. Pedersen, Tommy Thorn, Per Fack
Sørensen and Peter Ørbæk have participated in various parts of the im-
plementation.

The development of the Mjølner BETA System has been supported
through a contract with Apple Computer Europe, Paris. We are grateful

viii PREFACE

to Larry Taylor for the great support he has provided for BETA. Devel-
opment of the system has also been supported by a contract with Apollo
Computer, Finland, and by the donation of workstations from Hewlett-
Packard.

The development of BETA and the Mjølner BETA System has been
supported by the Danish Natural Science Research Council, grant. no.
11-3106, FTU 5.17.5.1.25, the Danish Natural Research Council, grant.
no. 11-8285, the Danish Research Programme for Informatics, grant
nos. 5.26.18.29. (the Devise Project), The Royal Norwegian Council
for Scientific and Industrial Research, grant no. ED 0223.16641 (the
Scala project), and through the European Commission’s Esprit Euro-
CoOp (5303) and EuroCODE (6155) projects.

We would like to thank colleagues and students for valuable comments,
inspiring criticisms, and the discovery of errors in preliminary versions of
this book. Kim Halskov Madsen and Randell Trigg deserve special thanks
for their use of preliminary versions of the book in teaching at IMV; their
experience and comments have had a large influence. Other useful com-
ments have been provided by Birger Andersen, Peter Andersen, Lars Bak,
Lone Faber, Carsten Hansen, Dag Helstad, Anette Hviid, Jørgen Lind-
skov Knudsen, Kim Jensen Møller, Elmer Sandvad, Alexandre Valente
Sousa, Kristine Stougaard Thomsen, and the many students who have
been exposed to previous versions of the book.

We would like to thank Peter Wegner for his useful comments and en-
couragement to write this book and Simon Plumtree of Addison-Wesley
for his patience. During the preparation of the manuscript we received
great help from Susanne Brøndberg, Karen Kjær Møller and the produc-
tion staff at Addison-Wesley.

The authors would like to thank their families (Ole: Marianne, Chris-
tian, Anne Sofie; Birger: Kirsten, Kamilla, Kristine; Kristen: Johanna
and to a moderate extent children and grandchildren). The BETA project
would not have been the same and this book would not have come into
existence without their patience and understanding, and without their
participation in many lively gatherings3 throughout the years.

Ole Lehrmann Madsen
Birger Møller-Pedersen

Kristen Nygaard

May 1993

3We also thank the white wine producers in Germany, France, Italy and California.

Contents

Preface v

1 Introduction 1

1.1 Benefits of object-orientation 1

1.2 Object-oriented programming and BETA 3

1.3 Notes . 8

2 Introduction to Basic Concepts 11

2.1 Perspectives on programming 12

2.1.1 Procedural programming 12

2.1.2 Functional and constraint programming 15

2.2 Object-oriented programming 16

2.2.1 Manual systems . 16

2.2.2 Computerized physical models 18

2.3 Exercises . 22

2.4 Notes . 22

3 Objects and Patterns 25

3.1 Overview . 25

3.1.1 Summary . 30

3.2 Reference attributes . 33

3.2.1 Static references . 33

3.2.2 Dynamic references 34

3.2.3 Dynamic generation of objects 36

3.2.4 Example of using dynamic references 36

3.2.5 Qualified references and remote access 37

3.3 Pattern attributes . 39

3.3.1 Self-reference . 40

3.3.2 Procedure, function and class patterns 42

3.3.3 Basic patterns . 44

3.4 Exercises . 46

3.5 Notes . 46

ix

x CONTENTS

4 Repetitions 49

4.1 Reallocation, assignment and slice 51

4.2 The text pattern . 53

4.3 Exercises . 54

4.4 Notes . 54

5 Imperatives 57

5.1 Introduction to evaluations 57

5.2 For-imperative . 59

5.3 If-imperative . 60

5.4 Labels and jump imperatives 62

5.5 A large example . 63

5.6 Assignment and equality 64

5.6.1 Equality . 69

5.6.2 Basic patterns . 70

5.7 Computed references and computed remote name 70

5.8 Detailed description of evaluations 72

5.8.1 Object evaluation 73

5.8.2 Evaluation list . 74

5.8.3 Assignment evaluation 75

5.8.4 Value relations . 76

5.9 Block structure and scope rules 77

5.10 Object kinds and construction modes 79

5.10.1 Object kinds . 79

5.10.2 Construction modes and inserted objects 79

5.10.3 Summary of construction modes 81

5.11 Exercises . 82

5.12 Notes . 83

6 Sub-patterns 85

6.1 Specialization by simple inheritance 85

6.2 Specialization of actions 94

6.3 Enter/exit-parts for sub-patterns 99

6.4 The object pattern . 100

6.5 Summary . 102

6.6 Qualifications and scope rules 103

6.6.1 Qualification . 103

6.6.2 Scope rules . 104

6.7 Exercises . 105

6.8 Notes . 106

CONTENTS xi

7 Virtual Procedure Patterns 109

7.1 Motivation . 110

7.2 Declaration of virtual pattern 113

7.3 Direct qualification of virtual patterns 117

7.4 Continued extension of a virtual pattern 118

7.5 More examples of using virtual patterns 119

7.5.1 Specialization of initialization patterns 119

7.5.2 Computation of salary for different job types 120

7.5.3 Geometric figures 120

7.5.4 Defining control abstractions 120

7.5.5 Arithmetic expressions 123

7.6 Benefits of virtual patterns 124

7.7 Summary . 126

7.8 Exercises . 127

7.9 Notes . 127

8 Block Structure 131

8.1 Simple block structure . 131

8.2 Class grammar . 132

8.3 Flight reservation example 135

8.4 Exercises . 138

8.5 Notes . 139

9 Virtual Class Patterns 143

9.1 Directly qualified virtual class patterns 143

9.2 General parameterized class patterns 145

9.3 Notes . 147

10 Part Objects and Reference Attributes 149

10.1 Part objects . 149

10.1.1 Independent and dependent parts 151

10.2 Reference attributes . 153

10.3 Exercises . 155

10.4 Notes . 156

11 Pattern Variables 159

11.1 Declaration of pattern variables 159

11.2 Example . 162

11.3 Exercises . 163

11.4 Notes . 164

xii CONTENTS

12 Procedural Programming 167
12.1 Functional classes . 168
12.2 Higher order procedure patterns 173
12.3 Virtual classes and genericity 174

12.3.1 Pure object-oriented definition of class Ring 175
12.3.2 Functional definition of class Ring 175
12.3.3 Class attributes versus type attributes 178
12.3.4 More on extending virtual classes 179

12.4 Notes . 180

13 Deterministic Alternation 181
13.1 Execution stacks . 184

13.1.1 Language constructs for basic coroutine sequencing 187
13.2 Generators . 190
13.3 Components and recursive procedure patterns 191
13.4 Abstract super-patterns 195

13.4.1 Symmetric coroutines 196
13.4.2 Quasi-parallel systems 197

13.5 Exercises . 201
13.6 Notes . 202

14 Concurrency 205
14.1 Concurrent execution of components 206

14.1.1 Simple synchronization 206
14.2 Monitors . 210

14.2.1 Monitor conditions 211
14.3 Direct communication between components 213

14.3.1 Synchronized communication between components . 213
14.3.2 Ports controlling several operations 216
14.3.3 Restricted acceptance 216

14.4 Compound systems . 219
14.4.1 Indirect communication between internal systems . 220
14.4.2 Communication with internal systems 222

14.5 Readers and writers problem 222
14.6 Exercises . 225
14.7 Notes . 227

15 Nondeterministic Alternation 229
15.1 Alternating execution of components 230
15.2 A distributed calendar . 232
15.3 Bounded buffer . 235
15.4 A simple game . 236
15.5 Notes . 239

CONTENTS xiii

16 Exception Handling 241
16.1 Simple exceptions . 244
16.2 Recovery . 247
16.3 Partial recovery . 248
16.4 Handlers for procedure patterns 248
16.5 System exceptions . 250
16.6 Language-defined exceptions 253
16.7 Advanced design of exception patterns 254
16.8 Exercises . 257
16.9 Notes . 258

17 Modularization 261
17.1 Fragments . 262

17.1.1 Forms . 263
17.1.2 Slots . 264
17.1.3 Fragment-form . 265
17.1.4 Fragment-group . 266
17.1.5 Fragment library 266
17.1.6 Origin of a fragment-group 268
17.1.7 The basic environment 268
17.1.8 Include . 270
17.1.9 Body . 271

17.2 Separation of interface and implementation 274
17.2.1 Abstract data types 278

17.3 Alternative implementations 281
17.4 Program variants . 283
17.5 Using several libraries . 285
17.6 Visibility and binding rules 285
17.7 Exercises . 287
17.8 Notes . 288

18 Conceptual Framework 289
18.1 Physical modeling . 290
18.2 Information processes . 293
18.3 Concepts and abstraction 296

18.3.1 Phenomena and concepts 297
18.3.2 Aristotelian view 299
18.3.3 Prototypical view 300
18.3.4 Other views of concepts 301
18.3.5 Representing concepts in BETA 301

18.4 The abstraction process 302
18.5 Classification and composition 303

18.5.1 Classification . 304

xiv CONTENTS

18.5.2 Composition . 307
18.6 Relations . 310
18.7 Representative elements of a description 311
18.8 Graphical notation . 314
18.9 Elements of a method . 316

18.9.1 General approach 316
18.9.2 Analysis . 318
18.9.3 Design . 318
18.9.4 Implementation . 320

18.10Exercises . 320
18.11Notes . 321

A Grammar for BETA 323

B The MjØlner BETA System 329

Bibliography 331

Index 341

Trademark notice

MacintoshTM is a registered trademark of Apple Computer, Inc.

UNIXTM is a registered trademark of AT&T Bell Laboratories.

The X Window System is a registered trademark of MIT.

Design/OA is a registered trademark of Meta Software Corporation,

Cambridge MA, USA.

SimulaTM is a trademark of a.s. Simula.

Chapter 1

Introduction

This is first and foremost a book on the programming language BETA,
but it is also a book on object-oriented programming, and issues such as
object-oriented analysis and design are also covered.

Introducing a programming language is not just a matter of introduc-
ing language constructs and giving guidelines and hints on how to use
them. It is also a matter of introducing a way of thinking that is asso-
ciated with the underlying conceptual framework. For languages based
on well established underlying concepts such as functions, relations or
equations, the way of thinking may be obtained from other sources, and
will often be part of the background and education of the prospective
programmers. For object-oriented programming there is no well estab-
lished theory or conceptual framework. Furthermore, there is no estab-
lished consensus on what object-orientation is. Despite this, a large
number of programmers practice object-oriented programming. They
use a number of different languages such as Simula (Dahl et al., 1968),
Smalltalk (Goldberg and Robson, 1989), C++ (Stroustrup, 1991), Eiffel
(Meyer, 1988), and CLOS (Keene, 1989). These languages have a com-
mon core of language constructs which to some extent make them look
alike.

1.1 Benefits of object-orientation

It is difficult to discuss the benefits of object-orientation without first
defining it. Before introducing the BETA approach, however, we shall
briefly discuss what the benefits of object-orientation are considered to
be. There are three main benefits: real world apprehension, stability of
design and reusability of both designs and implementations. When people
disagree about what object-orientation is, it is often because they attach
different levels of importance to these aspects. We consider all three
aspects to be important, though perhaps not equally so.

1

2 INTRODUCTION

Real world apprehension

One of the reasons that object-oriented programming has become so
widely accepted is that object-orientation is close to our own natural per-
ception of the real world. (Krogdahl and Olsen, 1986) (translated from
Norwegian) put it this way:

‘The basic philosophy underlying object-oriented program-
ming is to make the programs as far as possible reflect that
part of the reality they are going to treat. It is then often
easier to understand and to get an overview of what is de-
scribed in programs. The reason is that human beings from
the outset are used to and trained in the perception of what
is going on in the real world. The closer it is possible to use
this way of thinking in programming, the easier it is to write
and understand programs.’

In (Coad and Yourdon, 1990) it is stated in the following way:

‘Object-oriented analysis is based upon concepts that we first
learned in kindergarten: objects and attributes, classes and
members, wholes and parts.’

Both of these quotations stress that one important aspect of program de-
velopment is to understand, describe and communicate about phenomena
and concepts of the application domain. Object-oriented programming
has turned out to be particularly well suited for doing this.

Stability of design

The principle behind the Jackson System Development (JSD) method,
(Jackson, 1983) also reflects one of the benefits of object-orientation. In-
stead of focusing on the functionality of a system, the first step in the
system’s development according to JSD is to make a physical model of the
real world with which the system is concerned. This model then forms
the basis for the different functions that the system may have. Functions
may later be changed, and new functions may be added without changing
the underlying model.

As we shall see later, the notion of a physical model as introduced
by JSD is central to object-orientation as described in this book. The
concepts and techniques used by the JSD method to develop a physical
model, and to subsequently implement it on a computer are, however,
quite different from the concepts and techniques of object-oriented pro-
gramming as presented in this book. As mentioned above, object-oriented
programming provides a natural framework for modeling the application
domain.

1.2 OBJECT-ORIENTED PROGRAMMING AND BETA 3

Reusability

One well known problem with software development is being able to reuse
existing software components when developing new ones. The function-
ality of an existing component is often very similar to one needed for a
new system. There may, however, be important differences which make
it impossible to reuse the existing component. For this reason, the new
component is often implemented by copying and modifying the existing
component, but this means that it must be tested again. More problem-
atic, however, is that the relations between the old and new components
may be lost: if an error is detected in one, it must be corrected in both.
Also, changes to common parts of the system may have to be performed
in both components.

One of the benefits of object-oriented programming languages is that
they have strong constructs for supporting incremental program modifica-
tion. It is possible to define a new component as an incremental extension
of an existing one, thus preserving the relations between the two com-
ponents. Most object-oriented languages are based on the class/subclass
mechanism (inheritance) which first appeared in Simula. One of the main
contributions of Smalltalk was that these language constructs were com-
bined with the flexibility of Lisp systems.

Even without the flexibility of Smalltalk, the ability to create pro-
grams by means of incremental extension is considered to be the main
advantage of object-oriented programming by many programmers. The
disadvantage of incremental modification is that the library of compo-
nents reflects the historic development of those components. In addition,
the relations between components are mainly dictated by maximal code
sharing, often conflicting with the modeling requirements discussed above.
These potential conflicts between requirements will be discussed later.

1.2 Object-oriented programming and

BETA

To program is to understand: The development of an information
system is not just a matter of writing a program that does the job. It is
of the utmost importance that development of this program has revealed
an in-depth understanding of the application domain; otherwise, the in-
formation system will probably not fit into the organization. During the
development of such systems it is important that descriptions of the ap-
plication domain are communicated between system specialists and the
organization.

The approach to object-oriented programming presented in this book

4 INTRODUCTION

emphasizes the modeling capabilities. Most treatments of object-oriented
programming are concerned with language constructs, and those familiar
with the literature will know that concepts like inheritance and message
passing are important considerations. There is, however, more to object-
oriented programming than language constructs (this should be true for
any programming language). The underlying conceptual framework or
semantics is just as important as the language.

Other programming perspectives are based on some mathematical
theory or model, giving them a sound theoretical basis, but object-
oriented programming lacks a profound theoretical basis. For object-
oriented programming, the initial observation of how people understand
the world has to be formulated in a theory or conceptual framework.
For the benefit of designing a programming language, and for the ben-
efit of conveying an understanding of these basic concepts as part of a
book on the language, this model does not have to be formal. In fact,
the model underlying object-orientation is by its very nature informal,
although part of the model has been formalized in terms of programming
languages. This is necessary in order to create descriptions that may be
executed on a computer. BETA may be seen as a formal notation for
describing those parts of the application domain that can be formalized:
BETA is formal in the sense that descriptions made in it have a precise
meaning when executed on a computer. Often, a programming language
is defined in terms of a mathematical model, yet such a model has not
been constructed for BETA, although it might be useful for the purpose
of consistency checking and formal verification.

This book attempts to go beyond language mechanisms and contribute
a conceptual framework for object-oriented programming. This frame-
work, however, needs further development.

We shall introduce the notions of physical modeling, to capture
modeling of parts of the world based upon the identification of phenomena
and concepts, and the notion of the physical model, to denote the
models that are created in this process.

The use of informal concepts in the system development process is
important, however, there is a tendency to put a greater emphasis on the
concepts that can be formulated in terms of a programming language.
The reason is clear, since the system development process eventually has
to result in a description that can be executed on a computer. This
book also emphasizes concepts that can be described in BETA. Below we
briefly summarize the role of BETA in the system development process.
Traditionally, system development is organized into analysis, design and
implementation, and the concepts of object-orientation may be applied
to all of these activities.

• Analysis. The primary goal of analysis is to understand the application

1.2 OBJECT-ORIENTED PROGRAMMING AND BETA 5

domain. In this activity, relevant concepts and phenomena from the
application domain must be identified and described, usually involving
the system to be developed. For this reason, it is important that the
concepts and phenomena identified can be communicated. In this pro-
cess it is useful to use a high number of informal descriptions, since it
would otherwise be quite difficult to communicate those descriptions
to non computer specialists. The informal descriptions may consist of
a mixture of text, graphics, and sometimes also incomplete program
fragments. The use of graphics in system descriptions is important,
particularly in analysis as it might be important to use graphical nota-
tion for part of the descriptions.

• Design. The design activity is concerned with constructing a precise
description that can be refined into an executable program. Here the
informal concepts developed in the analysis activity have to be made
into formal concepts that can be described by a programming language
like BETA. At this level the object-oriented program will be a descrip-
tion of phenomena and concepts from the application domain. Such
a program will be fairly abstract, since it will include a number of el-
ements that need further refinement before it can be executed. It is,
however, important that the description is relevant for the application
domain.

Graphical notation may also be useful in the design activity. Most pro-
gramming languages like BETA have a textual syntax, but it may often
be advantageous to use graphical notations for part of the program in-
stead of textual representation. Later we shall discuss how the same
underlying language principles may be presented both graphically and
textually.

Analysis and design are similar in the sense that the descriptions must
be meaningful in terms of the application domain. They are different
with respect to their use of informal and formal descriptions.

• Implementation. This is concerned with implementing the design de-
scription on a computer, i.e. elements representing concepts and phe-
nomena from the application domain must be described in terms of
concepts that can be executed on the computer. These computer con-
cepts do not represent concepts and phenomena from the application
domain, i.e. the program is extended with details that are meaningless
in the application domain. The basic principles of the two levels are
the same; it is programming, but at different levels.

Design and implementation are similar in the sense that a programming
language is used for the descriptions. They differ in the sense that the
elements of a design description must be meaningful in terms of the

6 INTRODUCTION

application domain, whereas this is not the case for an implementation
description.

System development methods

The above description of analysis, design and implementation may give
the impression that these activities are ordered in time (i.e. first analysis,
then design, and finally implementation), but this is not the case. In
some situations these activities may be intermixed, and the developer
may not be conscious of them. There are various methods of organizing
the system development process which differ in a number ways. The
object-oriented framework presented in this book is not associated with
any specific method, although it is not completely independent (we return
to this in Chapter 18).

Logical versus physical system structure

BETA is a language for describing a system (program execution) con-
sisting of objects and patterns, some of which represent phenomena and
concepts from the application domain, and others which are for imple-
mentation purposes. The BETA objects and patterns provide the logical
structure of a system; the BETA language provides mechanisms for de-
scribing this logical structure.

A BETA program (or BETA description) is usually constructed in the
form of text in one or more files. The program may exist in a number of
variants for different computers, and it may exist in various versions. Part
of it may consist of modules included from a library; part may be used in
many different programs. The BETA language does not have mechanisms
for describing the physical organization of a BETA program in terms of
files, variants, and versions, etc., because the physical structure of the
program text is considered to be independent of the logical structure of
the program. Some languages provide language elements for handling
the physical structure, e.g. modules are often divided into interface and
implementation modules. Such mechanisms are not a part of BETA.
Instead, a language-independent technique for organizing the physical
structure of a program text has been developed. This technique is based
on the context free grammar of the language, where any correct sequence
of terminal and nonterminal symbols (a so-called sentential form) of
the grammar can be a module. This technique can be used for languages
other than BETA. Chapter 17 describes techniques for organizing the
physical structure of a BETA program.

There are aspects of the physical structure other than organization
of the program text. A BETA system consists of a number of objects

1.2 OBJECT-ORIENTED PROGRAMMING AND BETA 7

executing actions, and the actions executed by objects may take place
concurrently.

Some of the objects of a BETA system are transient in the sense
that they only exist while the program is executing. Other objects are
persistent in the sense that they may be stored on secondary storage
such as a disk and survive the program that created them. They may
then be read and used by other programs. The separation of objects into
transient and persistent objects is not part of the BETA language, but
is handled by the Mjølner BETA System. An object-oriented database
system supporting client and servers is currently being developed on top
of the persistent object store of the Mjølner BETA System.

Modern computer hardware often consists of a large number of pro-
cessors connected through some communication media, an example being
a set of workstations connected through a local area network. The con-
currency described in a BETA program may be realized through time
sharing on a single processor, or by distributing the active BETA ob-
jects on a number of processors. BETA has constructs for describing the
logical structure of concurrent objects, and the physical structure of map-
ping concurrent objects onto several processors is considered independent
of the language. The Mjølner BETA System contains some support for
distributed computing in BETA.

For the physical structure, only modularization is described in this
book. The mapping of a BETA system onto a process generator (com-
puter hardware) in terms of splitting objects into transient and persistent
objects, and the distribution of objects onto several processors, is not
dealt with in this book (see the Mjølner BETA System manuals for the
current status of this).

Although the main emphasis in this book is on the logical structure
of a system, the design and implementation of the physical structure is
equally important. During design and implementation, the programmer
must be explicit about the physical organization of the program text, as
described in Chapter 17, and should be concerned with the organization
of persistent and distributed objects.

BETA

BETA is a modern language in the Simula tradition. It supports the
object-oriented perspective on programming and contains comprehensive
facilities for procedural and functional programming. Research is going
on with the aim of including constraint-oriented constructs.

BETA replaces classes, procedures, functions and types by a single
abstraction mechanism called the pattern. It generalizes virtual proce-
dures to virtual patterns, streamlines linguistic notions such as nesting

8 INTRODUCTION

and block structure, and provides a unified framework for sequential,
coroutine and concurrent execution. The resulting language is smaller
than Simula in spite of being considerably more expressive.

The Mjølner BETA System is a software development environment
supporting the BETA language which includes an implementation of the
BETA language as described in this book. In addition, the system in-
cludes a number of other tools, and a large collection of libraries and
frameworks that greatly enhance BETA’s usability by providing a large
number of predefined patterns and objects. (The libraries and frame-
works are not described in this book, though a short introduction is given
in Appendix B. For a detailed description see the Mjølner BETA System
manuals.)

The Mjølner BETA System was originally developed as part of the
Nordic Mjølner project, which has also produced a large number of other
results. (Knudsen et al., 1992) is a collection of the project’s main results.

1.3 Notes

In the early 1960s, the Simula I language was introduced with the purpose
of writing simulation programs. In the late 1960s, a general programming
language, Simula 67, was defined, the important contribution of which
was the introduction of the class and sub-class concepts and the notion
of virtual procedures. These constructs have become the core of most
object-oriented languages. Whereas Simula I was a simulation language,
Simula 67 is a general programming language that supports simulation
by means of a general set of classes. This demonstrated the power of
the Simula concepts. Instances of Simula classes behave like coroutines,
making it possible to simulate concurrency, which was heavily used in
the simulation package. Despite the usefulness of coroutines and quasi-
parallel sequencing for modeling real-life phenomena, these concepts have
not yet found their way into most object-oriented languages. For a further
description of the history of Simula, see (Nygaard and Dahl, 1981).

Simula has been used by a relatively small community for many years.
In the early 1970s, the class/sub-class concepts were used in the de-
sign of the Smalltalk language, leading in turn to a major breakthrough
for object-oriented programming. The Smalltalk style of programming
has particularly caught on in Lisp communities, resulting in a num-
ber of substantial contributions like Flavors (Cannon, 1982), and Loops
(Bobrow and Stefik, 1983).

The object-oriented ideas have also started to impact on traditional
software construction, the most influential seeming to be C++. Another
contribution is Eiffel.

1.3 NOTES 9

In the 1970s, much attention was given to the notion of structured
programming. The discussions of object-oriented programming in the
literature may be compared to that of structured programming. Struc-
tured programming was often associated with avoiding goto’s when pro-
gramming, yet there is clearly more to structured programming than
avoiding goto’s, just as there is more to object-oriented programming
than inheritance and message passing.

The label ‘object-orientation’ is attached to many things. People
talk about object-oriented programming, object-oriented design, object-
oriented implementation, object-oriented languages, object-oriented
databases, etc. Object-orientation has started to be applied to these
activities, i.e. concepts such as object-oriented analysis, object-oriented
design and object-oriented implementation have arrived. Often, object-
oriented programming is associated with object-oriented implementation.
The reason for this is that object-orientation originated from program-
ming languages such as Simula and Smalltalk. In this book, object-
oriented programming is meant to cover object-oriented analysis, object-
oriented design and object-oriented implementation.

Object-orientation has also generated particular interest in the area
of database systems. A book on object-oriented databases should cover
the same material as this book, since the basic principles are the same.
A database book might pay more attention to the handling of large sets
of information. Database design and programming are both related to
modeling/representing real world phenomena.

A programming language is often characterized as an object-oriented
language, a functional language, a procedural language, etc. Also, the
term multi-perspective (or multi-paradigm) language is used for
languages supporting more than one perspective. Often the term ‘object-
oriented language’ is used exclusively for languages that only support
object-orientation. In this book, an object-oriented language is a pro-
gramming language that supports object-oriented programming, and a
pure object-oriented language is a programming language that only
supports object-orientation. The same definitions apply to other perspec-
tives.

10 INTRODUCTION

Chapter 2

Introduction to Basic
Concepts

In this chapter we briefly and informally introduce some of the basic
concepts underlying object-oriented programming. They are further ex-
plained during the introduction of the BETA language in subsequent
chapters, and a more detailed treatment is given in Chapter 18.

A computer executing a program generates a process consisting of
various phenomena (an example of a phenomenon is an object representing
a bank account of some customer). Such an object represents certain
properties of the real bank account, like its balance, and a list of deposits
and withdrawals performed on the account. The objects reside in the
computer’s memory.

In the real world, customers and bank clerks perform actions that
change the state of the various bank accounts. At a certain point, the
balance of a given account may be DKK 5000, but a deposit of DKK 105
will change its balance to DKK 5105. A deposit is one example of an
action performed in a bank; other examples are the withdrawal of money,
the computation of interest, opening and closing of accounts, etc. It is
important to be aware of the fact that actions are ordered in time – in
most banks you have to deposit some money before you can carry out a
withdrawal.

The process generated by the computer has phenomena representing
these actions and states. The state of a bank account is represented by
the object representing the bank account, and actions changing the state
of the bank account are represented by actions executed by the computer.

For a set of objects representing a bank system, we may be inter-
ested in measuring part of the state of several accounts, which could,
for instance, consist of computing the balance of all a given customer’s
accounts.

A process generated by a computer executing a program is called a

11

12 INTRODUCTION TO BASIC CONCEPTS

program execution. Program executions belong to a class of processes
called information processes. The production process of cars in a factory,
the processing of customer orders in a company, and the money flow
between banks may be viewed as information processes.

The study of informatics or computer science is concerned with the
study of information processes. This book will develop a conceptual
framework for understanding and describing information processes, in
particular being concerned with program executions. In Chapter 18 we
return to the more general notion of information processes.

BETA is a programming language for describing program executions,
and the main part of this book is about BETA.

2.1 Perspectives on programming

To understand object-oriented programming it is necessary to understand
how it relates to other perspectives on programming. The purpose of this
section is to give a short introduction to some of the most generally ac-
cepted perspectives, though it is not intended to be a complete description
of the subject. Readers are encouraged to consult other references for this
purpose.

In the literature, a large number of programming perspectives, such
as process, type system and event perspectives are discussed, because
programmers have different perspectives on programming (in principle,
each programmer may have his own perspective). Also, the definitions
of perspectives given below might not coincide with what other people
understand by these perspectives.

2.1.1 Procedural programming

When computers were invented they were viewed as programmable cal-
culators and many people still hold this view.

Consider a simple calculator. It may consist of a register for storing
a value, and a number of operations such as add, sub, mult and div. It
is possible to enter a number into the register and then modify this value
using the operations. The following is a list of possible operations for a
simple calculator:

enter V

add V

sub V

mult V

div V

result

2.1 PERSPECTIVES ON PROGRAMMING 13

The operations enter, add, sub, mult, div and result correspond
to buttons on the calculator; V corresponds to a number entered through
a number pad. We are not concerned with the physical layout of the
calculator here as we are only interested in its functionality.

Instead of one register the calculator may have several registers, thus
intermediate results of a calculation may be stored in these registers –
with only one register the user would have to write down intermediate
results on paper. Assume that our calculator is extended with registers
R0, R1, R2, ... Rn, and that the previous operations operate on R0.
We have the following new operations:

enter V Ri

add Ri Rj

sub Ri Rj

mult Ri Rj

div Ri Rj

copy Ri Rj

The operands Ri and Rj correspond to buttons for selecting a register.
A calculator with a fixed number of registers and operations has a

limited scope of applications. Often the user has to carry out the same
procedure over and over again on different data, perhaps carrying out the
same sequence of operations. This lead to the idea of a programmable
calculator. In addition to data registers and operations, a programmable
calculator has a store where a sequence of operations may be stored:

define Pi Op1; Op2; ... end

call Pi

The define and call operations correspond to buttons for defining and
calling procedures. Pi could be a number or another unique identification
of the procedure being defined. Our programmable calculator could be
used in the following way:

define P1: copy R0 R1; mult R0 2; add R0 R1 end

enter 100

call P1

return

The store used for storing procedures may also be used for storing values,
i.e. it is possible to move a value from a register to the store, and vice
versa. In this way, it is possible to save a large number of intermediate
results.

In the above examples it was possible to define a procedure by means
of a sequence of operations, but for many types of calculations this is too

14 INTRODUCTION TO BASIC CONCEPTS

primitive. The operations may be extended with control flow operations,
making it possible to select from between sub-sequences of operations and
to repeat the execution of a sub-sequence. The following is an example
of possible control flow operations:

L:

goto L

if Ri=0 goto L

The first computers were just advanced programmable calculators with
a large number of registers, a large store for saving procedures and a
suitable set of basic operations.

With programmable calculators it is possible to solve large calcula-
tions; with computers, even larger ones can be solved.

One problem with our programmable calculator is that the program-
mer must keep track of which part of the store is used for values and
which part for procedures. To help, a symbolic assembler may be used,
where it is possible to declare a number of variables by means of names.
The assembler allocates a memory cell corresponding to each variable, so
the programmer can then refer to a variable/register by name instead of
by a number.

It is, however, difficult and time consuming to write procedures using
the simple language of the computer. Instead, a high-level programming
language may be used. A compiler is used to translate a program written
in the programming language into the language of the computer. The
first programming languages had facilities for defining variables and pro-
cedures (variables are simply registers). Instead of a fixed number of
registers, the programmer may define the number of variables needed,
which is, of course, limited by the size of the store. We do not go into
further detail about programming languages here, since this will be dealt
with in the rest of the book.

Despite the fact that there is a huge difference between simple cal-
culators and modern computers, a computer is still viewed by most pro-
grammers as an advanced calculator. When writing a program, the pro-
grammer thinks of defining a set of variables and a set of procedures
for manipulating these variables. This perspective on programming is
called procedural (or imperative) programming. In summary, procedural
programming may be defined as follows:

Procedural programming. A program execution is regarded as a (par-
tially ordered) sequence of procedure calls manipulating variables.

As mentioned above, procedural programming is still the most com-
mon perspective on programming, supported by languages like Al-
gol (Naur, 1962), Pascal (Jensen and Wirth, 1975), C (Kernighan and

2.1 PERSPECTIVES ON PROGRAMMING 15

Ritchie, 1978) and Ada (US Department of Defense, 1980). It is in no
way obsolete, still being useful for writing small procedures and, as we
shall see later, it may be used together with object-oriented programming.

2.1.2 Functional and constraint programming

Since the mid-1960s, a large research effort has been directed towards
giving a mathematical definition of programming languages. One main
result of this is the notion of functional or (applicative) programming.
When trying to give a mathematical definition of programming languages,
it turned out that the notions of ‘variable’ and ‘assignment’ were the
main bottlenecks. In practice, many programmers have realized that
when writing large programs it is difficult to handle the large number
of variables. One response to this is functional programming, in which
a program is viewed as a mathematical function. A program is then a
combination of mathematical functions.

A language supporting functional programming must, then, include
facilities for defining mathematical functions, including higher order func-
tions, i.e. functions that may have functions as parameters and return
functions as results. In addition, such a language should include data
types corresponding to mathematical domains.

Lisp is an example of a language with excellent support for functional
programming. However, Lisp is not a pure functional programming lan-
guage as it supports other perspectives as well, including procedural and
object-oriented programming. ML and Miranda are examples of pure
functional languages.

The most prominent property of the functional perspective is that
there are no variables and no notion of state. A variable may only be
bound once to a value, and it is not possible to assign a new value to a
variable.

To summarize, functional programming may be defined as follows:

Functional programming. A program is regarded as a mathematical
function, describing a relation between input and output.

Like procedural programming, functional programming should be seen
as a supplement to procedural and object-oriented programming. It is
useful for describing state transitions where the intermediate results are
irrelevant.

The notion of functional programming has been generalized further.
A function is a relation which is unique in its first element. Instead of
just viewing a program as a functional relation, it might as well be viewed
as a general relation (or a set of equations). This is the idea of so-called

16 INTRODUCTION TO BASIC CONCEPTS

logic programming, rule-based programming, or as we shall call it here,
constraint programming:

Constraint programming. A program is regarded as a set of equations
describing relations between input and output.

This constraint-oriented perspective is supported by, for example, Prolog.
We shall not go into further details on functional- and constraint-

oriented programming (readers are encouraged to consult (Wikstrm, 1987;
Leler, 1987). It is important to stress that different perspectives should
not exclude each other – they are each useful for different purposes, and a
programmer should have the possibility of using a given perspective when
relevant. The ideal programming language should integrate the different
perspectives. It is important to be aware that this should not be done by
designing a language consisting of features from various procedural, func-
tional and object-oriented languages. A programming language should
be based on a conceptual framework, and the language constructs should
be designed with respect to this framework.

2.2 Object-oriented programming

This section gives an informal introduction to object-oriented program-
ming, defined as follows:

Object-oriented programming. A program execution is regarded as a
physical model, simulating the behavior of either a real or imaginary
part of the world.

The notion of a physical model should be taken literally. Most people can
imagine the construction of physical models by means of, for example,
Lego bricks. In the same way, a program execution may be viewed as
a physical model. Other perspectives on programming are made precise
by some underlying model defining equations, relations, predicates, etc.
For object-oriented programming, however, we have to elaborate on the
concept of physical models.

Physical models are not just relevant for computers. In the following
we give examples of physical models where computers are not involved.

2.2.1 Manual systems

In many areas it is common to make a physical model of some construction
so as to observe some properties before the ‘real thing’ is constructed.
This is the case with buildings: before constructing a large building, a

2.2 OBJECT-ORIENTED PROGRAMMING 17

Carriage no. 16 Carriage no. 17

Figure 2.1 Manual seat reservation system.

model is usually made to check various properties of the design. This is
also the case for bridges, cars, trains, aeroplanes, etc.

When building a railway system it is common to model it using a
model train set. Such a model may simulate many of the properties of
the ‘real’ train system. The following is a description of how manual
train seat reservation was handled in Norway (and probably in other
countries as well) before computers were invented. Manual train seat
reservations were based on a number of sheets representing the wagons
in the train. The upper part of Figure 2.1 shows the collection of sheets,
and the lower part shows examples of two such sheets. The seats could
be checked, or the part of the trip where the seat was occupied could
be indicated. Travelers were given small tickets indicating the details of
their reservation.

Such a train reservation system is an example of what we consider to
be a physical model. Each wagon in a train is represented by a sheet,

18 INTRODUCTION TO BASIC CONCEPTS

which includes those properties of the wagon that are essential for seat
reservation. The system was flexible in terms of the kinds of services which
could be supplied, e.g. the reservation of a seat next to another seat, the
reservation of a seat close to the door, etc., were all possible. Entries were
of course written in pencil to allow easy updating. The reservation sheets
were kept at the train’s departure station so they could be sent with the
guard.

Hospitals provide another such example. At a hospital a medical
record corresponding to each patient keeps track of the relevant infor-
mation related to that patient. This record may be considered to be a
representation of the patient.

2.2.2 Computerized physical models

In the above examples, different kinds of physical material are used for
constructing the physical model. In computerized physical models, ob-
jects are the material used for representing physical phenomena from the
application domain. Objects are thus considered as similar to cardboard,
sheets, Lego bricks, etc., in the sense that objects are physical material
that may be used for representing (or modeling) physical phenomena. Ob-
jects are computerized material. In this way, objects differ from material
such as cardboard, paper, Lego bricks, etc.

An object is a piece of physical material that may be used to repre-
sent (or model) a real or imaginary phenomenon from the application
domain. Sometimes we say that an object represents a phenomenon from
the application domain, and sometimes we say that an object models a
phenomenon.

In the following we present examples of different kinds of properties
used to characterize phenomena, and explain how they are represented as
objects.

Object attributes

Objects are characterized by various attributes, which represent/model a
property of the phenomenon being modeled. There are different kinds of
attributes which may be associated with objects. In the following some
examples are given.

In a flight reservation system there will typically be an object repre-
senting each reservation. The properties of a reservation may include the
date for the flight, a reference to the customer, the source and destina-
tion of the flight, etc. An object representing a reservation will then have
attributes corresponding to these properties. An object corresponding to
a medical record will typically include attributes representing properties

2.2 OBJECT-ORIENTED PROGRAMMING 19

such as the temperature and blood pressure of the patient, etc. Properties
like these are called measurable properties.

A measurable property may vary with time. The temperature of a
patient may be different at different points in time. An object must thus
be able to represent this variation, i.e. at different points in time the
attribute modeling measurable properties must result in different values.
An object is said to have a state. The state of an object varies with time.

Object actions

Many real world systems are characterized by consisting of phenomena
that perform their sequences of actions concurrently. The flight reserva-
tion system consists of several concurrent phenomena, e.g. flights and
agents. Each agent performs its task concurrently with other agents.
Flights will register the reservation of seats and ensure that no seats are
reserved by two agents at the same time. Note that this kind of con-
currency is an inherent property of the reality being modeled; it is not
concurrency used to speed up computations.

Complex tasks such as those of the agents are often considered to
consist of several more or less independent activities. This is so even
though they constitute only one sequence of actions, and do not include
concurrency. As an example, consider the activities ‘tour planning’, ‘cus-
tomer service’ and ‘invoicing’, where each of these consists of a sequence
of actions.

A single agent will not have concurrent activities, but alternates be-
tween different activities. The shifts will not only be determined by the
agents themselves, but will be triggered by, for example, communication
with other objects. An agent will, for instance, shift from tour planning
to customer service (prompted by the telephone ringing), and resume tour
planning when the customer service is completed.

The action sequence of an agent may often be decomposed into partial
action sequences which correspond to certain routines carried out several
times as part of an activity. As an example, the invoicing activity may
contain partial action sequences, each for writing a single invoice.

Concepts and abstraction

In the real world we create concepts to capture the complexity of the
world around us – we make abstractions. We all perceive the world in
terms of concepts: for people we use concepts like person, male, female,
boy and girl; in biology we use concepts like animal, mammal, predator,
fish and dog.

A concept is a generalized idea of a collection of phenomena, based on
knowledge of common properties of instances in the collection. Concepts

20 INTRODUCTION TO BASIC CONCEPTS

are used to concentrate on those properties which are shared by a set
of phenomena in the application domain, and to ignore the differences
between them.

When talking about concepts, it is useful to identify the following
characteristics:

• The extension of a concept is the collection of phenomena covered by
the concept.

• The intension of a concept is a collection of properties that in some
way characterize the phenomena in the extension of the concept.

• The designation of a concept is the collection of names by which the
concept is known.

The extension of the concept predator contains all lions, tigers, cats, etc.
The intension includes a property such as ‘eating meat.’

We use the term pattern for a concept belonging to a computerized
model. A pattern is thus a representation of a concept in our computer-
ized model.

Organization of knowledge

People constantly use the following three fundamental methods of knowl-
edge organization for understanding the real world:

• Identification of phenomena and their properties As a first step in un-
derstanding a complex collection of phenomena, individual phenomena
and their properties are recognized. An object may be observed to con-
sist of certain parts, have a certain size and weight, a certain color, etc.
Similarities between different phenomena may not be realized, just as
a systematic understanding of the individual phenomena may not be
obtained.

• Classification Classification is the means by which we form and dis-
tinguish between different classes of phenomena. Phenomena and con-
cepts with similar properties are grouped into classes corresponding to
extensions of concepts. This process leads to classification hierarchies.

In Figure 2.2, a hierarchy of concepts relating to biology is shown. The
concept of an animal may be viewed as more general than the concepts
of mammal, fish, bird and reptile, since all mammals, fishes, birds and
reptiles are also animals. The concept animal is said to be a general-
ization of mammal, fish, bird and reptile. Similarly, mammal is a more
general concept than predator and rodent, so mammal is a generaliza-
tion of rodent and predator. A concept like mammal is also said to

2.2 OBJECT-ORIENTED PROGRAMMING 21

animal

mammal fish bird reptile

predator rodent

lion tiger

Figure 2.2 Part of a classification hierarchy for animals.

Man

Head LeftArm RightArm LeftLeg RightLeg

LeftHand RightHand LeftFoot RightFoot

Figure 2.3 Whole/part hierarchy for a stick figure.

be a specialization of animal. Similarly, predator is a specialization of
mammal.

Classification hierarchies are useful for understanding the relevant prop-
erties of a set of phenomena. For the concept animal we may associate
properties common to all animals. We may associate the properties
common to all mammals for the concept mammal as for the other con-
cepts. Since a mammal, fish, bird or reptile is also an animal, we have
isolated their common properties with the concept of animal.

• Composition In many situations it is useful to consider a phenomena
or concept as a composition of other phenomena and concepts. One
example of composition is to consider a whole as constructed from parts.
The parts may again consist of smaller, simpler parts. The notion of
a whole/part composition is an important means of understanding and
organizing complex phenomena and concepts.

Figure 2.3 shows an example of a whole/part hierarchy for a stick fig-

22 INTRODUCTION TO BASIC CONCEPTS

Jim

Jane Mary Joe Mr. Smith

mother father

wife boss

Figure 2.4 Example of reference composition.

ure consisting of parts like head, body, arms and legs. In turn, the
legs consist of lower leg, foot, etc. A car may similarly be viewed as
consisting of a body, an engine, four wheels, etc.

An object representing a person may also have properties such as
spouse, father, boss, etc. Such properties are not physical parts of
a person. Instead, we may view a person object as composed of ref-
erences to other objects. This form of composition is called reference
composition, illustrated in Figure 2.4.

As mentioned before, the conceptual framework is discussed further in
Chapter 18.

2.3 Exercises

(1) Design a calculator corresponding to the abstract calculator described
above.

(2) Give other examples of physical models not involving computers.

(3) Develop a classification hierarchy for vehicles.

(4) Develop a whole/part hierarchy for a tree.

(5) Design a simple train reservation system.

2.4 Notes

The conceptual framework for object-oriented programming presented
here and in Chapter 18 is a result of the BETA project, and

2.4 NOTES 23

has formed the basis for the design of BETA. It evolved over
many years, and was influenced by several sources, including Simula,
(Holbæk-Hanssen et al., 1975), (Knudsen and Thomsen, 1985), and a
large number of student theses carried out in Aarhus and Oslo. The
Norwegian train example is from (Sørgaard, 1988), and the stick figure
example is from (Blake and Cook, 1987).

Other important contributions to a framework for object-oriented pro-
gramming may be found in (Stefik and Bobrow, 1984), (Booch, 1986),
(Shriver and Wegner, 1987), (ECOOP 1987–1992) and (OOPSLA 1986–
1992).

24 INTRODUCTION TO BASIC CONCEPTS

Chapter 3

Objects and Patterns

The most fundamental elements of BETA are objects and patterns. This
chapter introduces language constructs for describing objects and pat-
terns.

3.1 Overview

A BETA program execution consists of a collection of objects and pat-
terns. An object is some computerized material characterized by a set of
attributes and an action part. Some objects in a program execution will
represent phenomena from the application domain, whereas other objects
are just part of the implementation.

An object representing a bank account may be described in the fol-
lowing way:

(# balance: ... ;

Deposit: ... ;

Withdraw: ... ;

#)

The bank account object is characterized by the attributes balance,

Deposit and Withdraw. The attribute balance1 represents the current
balance of the account, Deposit represents the actions performed when
money is placed in the account, and Withdraw represents the withdrawals
performed. The dots ... indicate some details that have been left out
of the description. All other parts of the description have a meaning in
BETA. The syntactic construct (# ... #) is called an object-descriptor,
which describes the structure of an object. Part of the structure of an ob-
ject is its attributes like balance, Deposit and Withdraw. Later we shall
see that the structure of an object may include more than its attributes.

1See also Section 18.7 for a discussion of how to represent properties like balance.

25

26 OBJECTS AND PATTERNS

Singularly defined objects

A person programming his own private financial system may have only
one bank account. In this case, there is only a need to represent one bank
account in the system, described as follows:

myAccount: @

(# balance: ... ;

Deposit: ... ;

Withdraw: ... ;

#);

The above description has three parts:

(1) myAccount is the name that may be used to refer to the object rep-
resenting the account,

(2) the symbol @ shows that myAccount is the name of an object, and

(3) the object-descriptor (# ... #) describes the structure of the ob-
ject.

The myAccount name may be used to denote the attributes of the bank
account object. The remote-name2 myAccount.balance denotes the bal-
ance attribute. The other attributes may be denoted in a similar way.

The myAccount object is called a singular object, since the object
descriptor (# ... #) is only used for describing a single object.

Patterns

In a banking system there is clearly a need to represent several bank
accounts, thus the system includes a pattern representing the concept of
a bank account. The objects representing the actual bank accounts may
then be described as instances of this pattern. The pattern representing
the concept of a bank account may be described as follows:

Account:

(# balance: ... ;

Deposit: ... ;

Withdraw: ... ;

#);

The pattern description has two elements:

(1) Account is the name of the pattern, and

2See also Section 3.2.5.

3.1 OVERVIEW 27

(2) the object-descriptor (# ... #) describing the structure of each of
the bank account instances.

The difference between the description of the myAccount object and the
Account pattern is the use of the symbol @ after :. The presence of @ after
: means that an object is described. When there is no symbol between
: and (# ... #), a pattern is described.

Pattern-defined objects

The Account pattern may, for instance, be used to describe three bank
accounts:

account1: @Account;

account2: @Account;

account3: @Account;

The description of each bank account has three elements that are similar
to those for the description of myAccount. The difference is the use of the
Account pattern instead of (# ... #) to describe the structure of the
account objects. The names account1, account2 and account3 may all
be used like myAccount. It is, for example, possible to denote the balance
of account1 using the remote-name account1.balance.

The distinction between describing a singular object such as
myAccount and describing a pattern representing a concept like Account

is important. In the former, one is dealing with a situation where there is
only one single object to consider. In the latter, there is a whole class of
similar objects which may naturally be classified using a concept. From a
technical point of view, it is convenient to avoid inventing a pattern name
when there is only a singular object.

When making descriptions in BETA there is a large number of pat-
terns available for describing objects. The integer pattern is one exam-
ple. Instances of the integer pattern describe objects that may represent
integer numbers. In the bank account example, the attribute balance

could be represented as an instance of the integer pattern:

balance: @integer

Declarations

The syntactic element for describing attributes is called a declaration.
The following are examples of declarations used above:

Account: (# ... #);

account1: @Account;

balance: @integer

28 OBJECTS AND PATTERNS

In general, the syntactic construct : signals a declaration of some kind,
i.e. a name being associated with some entity.

Description of actions

The Deposit and Withdraw attributes represent the depositing and with-
drawing actions, respectively, performed on an account. These attributes
may be described as follows:

Account:

(# balance: @integer;

Deposit:

(# amount: @integer

enter amount

do balance+amount->balance

exit balance

#);

Withdraw:

(# amount: @integer

enter amount

do balance-amount->balance

exit balance

#);

#)

Deposit and Withdraw are patterns. Deposit represents a concept cover-
ing all possible deposit actions. The execution of an instance of Deposit
represents an actual deposit action. An instance of Deposit is an object
consisting of one amount attribute representing the amount of money to
be put into the account. The deposit action is described by enter amount

do ... exit balance.
An action representing a deposit into the account1 account may be

described as follows:

500->&account1.Deposit->newBalance

This describes that an instance of account1’s Deposit attribute is gener-
ated (described by &account1.Deposit). The value 500 is assigned to the
amount attribute (described by enter amount), then the value of amount
is added to balance (described by do balance+amount->balance), and
finally, the value of balance is returned (described by exit balance)
and assigned to the object newBalance.

3.1 OVERVIEW 29

The symbol & means new, and the expression &account1.Deposit

means that a new instance of the pattern account1.Deposit is created
and executed. Creation of an instance of a pattern and executing it is
often called procedure invocation.

Withdraw works like Deposit.

Imperatives

An imperative is a syntactic element for describing an action, of which
the following are examples:

balance+amount->balance;

500->&account1.Deposit->newbalance

Complete programs

Until now, various elements of BETA descriptions have been shown. The
example in Figure 3.1 shows how to combine some of these elements
into one compound description in the form of an object-descriptor having
Account, account1, account2 and account3 as attributes. In addition,
the attributes K1, K2 and K3 have been added. The do-part of the object-
descriptor consists of a sequence of actions performing various deposits
and withdrawals on the accounts. This object-descriptor may be compiled
and executed by a BETA processor.3 An object-descriptor that may be
executed is often called a program.

An abbreviated syntax for declaring account1, account2 and
account3 has been used.

A text enclosed by the brackets { and } is a comment.4

State and state transitions

The state of an object at a given point in time is the value of its attributes,
and execution of actions may change the state of an object. The state
of a program execution at a given point in time is the objects existing at
that point in time and their states.

In Figure 3.2, the state of the execution of the program from Figure 3.1
is shown. The comments {L1}, {L2} and {L3} indicate three points
corresponding to the states shown in the figure. At {L1} the value of all
integer objects is 0 (zero). (All integer objects will initially have the value
0.) At {L2} the state diagram shows that values have been deposited

3The Mjølner BETA System may be used for this. See the relevant manuals for
further information.

4Note that { and } cannot be used in the Mjølner BETA System. Instead, (* and
*) must be used.

30 OBJECTS AND PATTERNS

(# Account:

(# balance: @integer;

Deposit:

(# amount: @integer

enter amount

do balance+amount->balance

exit balance

#);

Withdraw:

(# amount: @integer

enter amount

do balance-amount->balance

exit balance

#);

#);

account1, account2, account3: @Account;

K1,K2,K3: @integer;

do {L1}

100->&account1.Deposit;

200->&account2.Deposit;

300->&account3.Deposit;

{L2}

150->&account1.Deposit->K1;

90->&account3.Withdraw->K3;

90->&account2.Deposit->K2;

80->&account3.Withdraw->K3;

{L3}

#)

Figure 3.1 Account program.

in the three accounts. Finally, at {L3} the final state of the program
execution is shown.

3.1.1 Summary

We can now summarize the syntactic elements for describing objects and
patterns.

3.1 OVERVIEW 31

K1: 0
K2: 0
K3: 0

account3:

balance: 0

account2:

balance: 0

account1:

balance: 0

At L3:

At L2:

At L1:

K1: 250
K2: 290
K3: 130

account3:

balance: 130

account2:

balance: 290

account1:

balance: 250

K1: 0
K2: 0
K3: 0

account3:

balance: 300

account2:

balance: 200

account1:

balance: 100

Figure 3.2 Snapshots of states during execution of the account pro-
gram.

Object-descriptor

The syntactic element for describing an object is called an object-
descriptor, and has the form:

(# Decl1; Decl2; ...; Decln

enter In

do Imp

exit Out

#)

The elements of an object-descriptor have the meanings:

• Decl1; Decl2; ... ;Decln is a list of attribute declarations that de-
scribes the attribute-part of the object. The possible kinds of attributes

32 OBJECTS AND PATTERNS

are further described below.

• In is a description of the enter-part of the object. The enter-part is a
list of input parameters which may be entered prior to execution of the
object.

• Imp is the do-part of the object. The do-part is an imperative that
describes the actions to be performed when the object is executed.
An object may, for instance, be executed as a procedure, a coroutine,
or as a concurrent process. In Chapters 13–15, the use of objects as
coroutines and concurrent processes is described.

• Out is a description of the exit-part of the object. The exit-part is a list
of output parameters which may be produced as a result of execution
of the object.

The enter-, do- and exit-parts are together called the action-part of the
object. An object-descriptor may have additional parts, which will be
introduced in subsequent chapters.

The object-descriptor is the basic syntactic construct in BETA. It
may be used to describe a pattern like Account, and it may be used to
describe a single object like myAccount. An object-descriptor is often
part of a larger description, and a BETA program is an object-descriptor.
Chapter 17 describes how a large number of object-descriptors may be
combined into a complete program that can be compiled and executed.

Singular objects

A singular object may be described directly using an object-descriptor:

S: @(# Decl1; Decl2; ...; Decln

enter In

do Imp

exit Out

#)

The object myAccount described at the beginning of this chapter is an
example of a singular object.

Pattern declaration

In BETA, a concept is represented by a pattern, a pattern being defined
by associating a name with an object-descriptor:

P: (# Decl1; Decl2; ...; Decln

enter In

do Imp

3.2 REFERENCE ATTRIBUTES 33

exit Out

#)

Patterns serve as templates for generating objects (instances). The ob-
jects generated as instances of P will all have the same structure, i.e. the
same set of attributes, the same enter-part, the same do-part and the
same exit-part.

The intension of the concept being modeled is given by the object de-
scriptor, while the objects that are generated according to this descriptor
constitute the extension. The pattern name is part of the designation of
the concept. By means of virtual patterns (see Chapters 7 and 9) and
renaming, the pattern may also be designated by other names.

Pattern-defined objects

An instance of a pattern may be described as follows:

aP: @P

3.2 Reference attributes

The attribute balance of Account is an example of a reference attribute.
A reference denotes an object, and may be either dynamic or static. A
static reference constantly denotes the same object, whereas a dynamic
reference is a variable which may denote different objects. The balance

attribute is a static reference.

3.2.1 Static references

A static reference is declared in the following way:

X: @T

where X is the name of the reference and T is a pattern. An instance
of T is generated as part of the generation of the object containing the
declaration: the static reference X will constantly denote this T-object. An
object generated in this way is called a static object, or also a part-object,
since it is a permanent part of the object containing the declaration.

A singular static/part-object is declared in the following way:

Y: @(# ... #)

Static objects are useful for modeling part hierarchies, i.e. objects which
consist of part-objects.

The following example describes objects that represent points (e.g. on
a screen). Such objects may have two integer attributes:

34 OBJECTS AND PATTERNS

LowerLeft

UpperLeft x

x

y

2

2

1

1

Rectangle

y

Figure 3.3 Diagrammatic representation of a Rectangle object.

Point: (# x,y: @integer #)

The Point pattern has empty enter-, do- and exit-parts and a single decla-
ration that uses the predefined integer pattern. Given this pattern, two
Point-objects may be generated by the following attribute declaration:

P1,P2: @Point

The Point pattern may in turn be used to describe attributes of other
objects. Consider the following pattern declaration:

Rectangle: (# UpperLeft, LowerRight: @Point #)

The generation of an instance of the Rectangle pattern implies the gen-
eration of two instances of the Point pattern, one denoted by UpperLeft

and one by LowerRight. The two Point instances will be a permanent
part of this Rectangle object. Figure 3.3 illustrates a Rectangle object.

3.2.2 Dynamic references

A static reference is constant since it always denotes the same static
object. It is necessary to be able to model that an object may have
references to other objects which are not part of itself. In addition, it
must be possible to model that such references are variable in the sense
that they may denote different objects at different points in time. Both
may be done by means of a dynamic reference (or variable reference), as
declared in the following way:

A: ^T

where A is the name of the reference and T is a pattern name. A dynamic
reference may at different points in time denote different objects. Initially,
it denotes NONE, which represents ‘no object.’

Consider the two attributes:

3.2 REFERENCE ATTRIBUTES 35

R3

R1

R2

Account

Figure 3.4 Illustration of dynamic references.

A1,A2: ^Account

A1 and A2 are dynamic references which may denote instances of the
Account pattern. A dynamic reference may be given a value by means of
a reference assignment. Consider the static reference:

A3: @Account

A reference assignment of the form:

A3[]->A1[]

implies that the object denoted by A3 will also be denoted by A1. A
similar assignment:

A1[]->A2[]

implies that the object denoted by A1 is also denoted by A2. After this
A1, A2 and A3 will all refer to the same object, illustrated in Figure 3.4.

A dynamic reference will initially have the value NONE , which means
that it refers to no object. A dynamic reference may also explicitly be
assigned the value NONE:

NONE->A1[]

Since a NONE reference refers to no object, it has no meaning to attempt
to access an object using a NONE reference. If A1 has the value NONE, then
an evaluation of the form:

120->&A1.Deposit

is illegal, and execution of the program is terminated.5

5This is an example of a run-time error.

36 OBJECTS AND PATTERNS

3.2.3 Dynamic generation of objects

It is possible to create objects dynamically by the execution of actions.
The following evaluation creates an instance of the Account pattern, and
the result of the evaluation is a reference to the newly created object:

&Account[]

As for procedure invocation, the symbol & means new. The symbol []
means that a reference to the object is returned as the result of the
evaluation.

A dynamic generation may be part of a reference assignment:

&Account[]->A1[]

The result of this assignment evaluation is that a new instance of Account
is created and a reference to this new object is assigned to A1.

The difference between &P and &P[] is very important: the expression
&P means ‘generate a new instance of P and execute it’; the expression
&P[] means ‘generate a new instance of P without executing it and return
a reference to the new object.’ This is discussed further later. An object
generated in one of these ways is called a dynamic object.

Dynamic generation of objects is needed to describe systems where
new objects are generated during program execution, as is often the case
when modeling real life phenomena. From a technical point of view,
recursive procedures and recursive data structures give rise to the dynamic
generation of objects.

3.2.4 Example of using dynamic references

In a banking system, each account should have an identification of the
owner of the account. For this reason we add an owner attribute to the
Account pattern. The owner should not be a part of the account since
several accounts may have the same owner. We therefore represent the
owner of an account as a dynamic reference to an object representing the
owner. Consider the following revised description of Account:

Account:

(# owner: ^Customer;

balance: ... ;

Deposit: ... ;

Withdraw: ... ;

#);

3.2 REFERENCE ATTRIBUTES 37

Owner is a dynamic reference to an instance of the Customer pattern.
Instances of the Customer pattern have attributes representing various
properties of a customer such as name and address:

Customer:

(# name: ...;

address: ...;

#)

We shall not go into Customer in further detail.
The following object generates two customers and three accounts.

Two of the accounts have the same owner. The resulting objects are
depicted in Figure 3.5:

(# A1: ^Account;

C1: ^Customer;

A2: ^Account;

C2: ^Customer;

A3: ^Account;

do &Customer[]->C1[]; &Customer[]->C2[];

&Account[]->A1[]; C1[]->A1.owner[];

&Account[]->A2[]; C1[]->A2.owner[];

&Account[]->A3[]; C2[]->A3.owner[];

#)

3.2.5 Qualified references and remote access

A reference is qualified (typed) by means of a pattern name. The qualifi-
cation of a reference restricts the set of objects that may be denoted by
the reference. A reference declared as:

R1: ^Rectangle

may only denote instances of the Rectangle pattern. Rectangle is called
the qualification or the qualifying pattern of R1.

Attributes in objects may be denoted by remote access, which has the
form:

reference.attribute

The qualification of a reference determines which attributes may be de-
noted by remote access. For a reference like R1, the attributes UpperLeft
and LowerRight may be denoted:

R1.Upperleft R1.LowerRight

38 OBJECTS AND PATTERNS

a1

a2

a3

c1

c2

Deposit

Withdraw

Owner

balance

Account

Deposit

Withdraw

Owner

balance

Account
name

address

Customer

name

address

Customer

Deposit

Withdraw

Owner

balance

Account

Figure 3.5 Account objects and customer objects.

Since R1 is qualified by Rectangle, R1 cannot be assigned a reference
to an instance of the Point pattern. Also, it is not possible to refer to
non-existing attributes. Illegal assignments and access of non-existing at-
tributes give rise to many errors in languages without qualified references.
In a typed language like BETA, such errors may be detected by the com-
piler. The disadvantage of qualified references is less flexibility for the
programmer. In Smalltalk and most object-oriented extensions of Lisp,
such errors are first caught at run-time. However, when constructing in-
dustrial software, it is a great advantage to have the compiler catch as

3.3 PATTERN ATTRIBUTES 39

many errors as possible. Note that a static reference will automatically
denote an instance of the qualifying pattern.

3.3 Pattern attributes

The declaration of a pattern attribute has the form:

P: (# ... #)

The meaning of a pattern attribute has been described in Section 3.1.
Several examples of pattern attributes have already been shown, including
Account, Deposit and Withdraw.

In the next version of the Point pattern, a pattern attribute Move has
been added. Move describes how Point objects may be moved around:

Point:

(# x,y: @integer; {two reference attributes}

Move: {a pattern attribute}

(# dx,dy: @integer

enter(dx,dy)

do x+dx->x;

y+dy->y

#)

#)

A Point object P1 may be ‘moved’ by executing an instance of P1’s Move-
attribute:

(11,22)->&P1.Move

which describes an execution of P1.Move with parameters (11,22). A
Point object has two reference attributes and a pattern attribute, but no
enter-, do- or exit-parts.

The do-part is invoked by invoking a pattern name as in &P1.Move,
which invokes the do-part of the Move-pattern in P1 as a procedure.
&P1.Move describes that an instance of the Move-pattern will be created,
and causes the do-part of this instance to be executed. The symbol &
reads new.

It is important that each instance of Point has its own set of at-
tributes. Figure 3.6 represents the objects P1 and P2. The Move at-
tributes denote objects representing the structure of pattern Move. Such
a structure object has a reference pointing back to the object of which the

40 OBJECTS AND PATTERNS

P1 P2

Move

x

Point

y

Move

x

Point

y

111

222

333

444

struc (# ... #)

Move

origin

Move Move

struc (# ... #)

Move

origin

Figure 3.6 Diagrammatic representation of Point objects.

pattern is an attribute. This reference is called the origin of the pat-
tern. Each instance of P1.Move will have a copy of the origin reference
of the structure object corresponding to the Move attribute of P1, and
the same is true for instances of P2.Move. Figure 3.7 shows instances
of P1.Move and P2.Move. Notice the difference between the structure
objects in Figure 3.6 describing the pattern attributes Move and the
objects in Figure 3.7 representing instances of Move.

The origin reference is used when an object-descriptor refers to a non-
local (global) attribute. In Move the global attributes x and y are referred.
An evaluation like:

x+dx->x

is then interpreted as:

origin.x+dx->origin.x

If P1.Move is executed, the origin reference of the Move object will refer
to P1. If P2.Move is executed, the origin reference of the Move object will
refer to P2.

3.3.1 Self-reference

It is often useful to be able to refer directly to an enclosing object. This
is possible using the construct:

3.3 PATTERN ATTRIBUTES 41

P1 P2

Move

x

Point

y

Move

x

Point

y

111

222

333

444

Move Move

Move

origin

dx

dy

1

2

Move

origin

dx

dy

1

2

Figure 3.7 Point objects and Move objects.

this(P)

which is legal in the object-descriptor for P, i.e. this(P) may only appear
inside a P pattern:

P: (# ... this(P) ... #)

this(P) is an explicit name for the enclosing P object. The pattern Point

can be described using this(P) in the following way:

Point:

(# x,y: @integer; {two reference attributes}

Move: {a pattern attribute}

(# dx,dy: @integer

enter(dx,dy)

do this(Point).x+dx->this(Point).x;

this(Point).y+dy->this(Point).y

#)

#)

Explict use of this(P) may make it easier to read a program when refer-
ring to global names.

The construct this(P) is often used to obtain a reference to an en-
closing P object:

this(P)[]

We shall see examples of this later.

42 OBJECTS AND PATTERNS

3.3.2 Procedure, function and class patterns

The above examples have shown two fundamentally different ways of using
a pattern: (1) The Account pattern has been used as a template for
generating objects that have a state which changes over time; (2) the
Deposit pattern has been used as a template for generating an action-
sequence.

In general, a pattern is a generalization of abstraction mechanisms
such as class, type, procedure, function, etc. The fact that BETA has
only one abstraction mechanism does not mean that it is not useful to
distinguish between different kinds of patterns. In the following we shall
refer to concepts like class pattern, procedure pattern and function pattern
for patterns that are used as classes, procedures and functions, respec-
tively. In later chapters some additional concepts will be introduced.
Note, however, that technically there is no distinction in BETA between
such pattern kinds. In the rest of this section we shall elaborate further
on some of the most useful pattern kinds.

Procedure patterns

The Deposit pattern is used for generating an action-sequence. To repre-
sent temporary state information during this action-sequence, an instance
of Deposit is generated. Such a pattern is usually called a procedure.
Assume that Deposit is a traditional (Pascal) procedure. A procedure
invocation of Deposit gives rise to the generation of an activation record,
which is used for storing parameters and local variables of the invocation.
The instance of the BETA pattern Deposit being generated plays the
role of the procedure activation.

From a modeling point of view, the Deposit procedure and the
Deposit pattern are used to generate action-sequences. The activation
record and the object are only generated to represent temporary state
information. However, from an implementation point of view these ob-
jects must be considered, since they take up space during the program
execution.

The Deposit pattern is used as a procedure in the following way:

500->&account1.Deposit->newBalance

As described above, an instance of account1.Deposit will be created
and executed.

Since patterns may be used as procedures, it is possible to express
procedural programming in BETA as in Pascal, Modula-2, Ada or C. This
style of programming is not recommended in general, but often a minor
part of a system may be expressed more elegantly by using procedural
programming rather than object-oriented programming.

3.3 PATTERN ATTRIBUTES 43

Function patterns

Patterns may also be used as functions: the Interest pattern is an ex-
ample of a function pattern. Interest computes the interest on a given
sum of money:

Interest:

(# sum,interestRate,res: @integer

enter(sum,interestRate)

do (sum*interestRate) div 100->res

exit res

#)

Interest may be used in the following way:

(1100,3)->&Interest->V

The value of V is then 3% of 1100.
What is actually meant by a function pattern? Here a function pattern

means a pattern intended for computing a value on the basis of a set of
input parameters. The input values are entered through the enter-part,
and the computed value is returned via the exit-part. The computed
value depends solely on the input values. In addition, the computation
of the value does not change the state of any other object (there are no
side-effects).

Consider instead the following pattern, which computes the sum of
the balances of three accounts:

TotalBalance:

(# sum: @integer

do account1.balance->sum;

sum+account2.balance->sum;

sum+account3.balance->sum;

exit sum

#)

Here the value computed by TotalBalance depends on the state of
the objects account1, account2 and account3, i.e. different calls of
TotalBalance may return different values.

Class patterns

The Account pattern is used as a template for generating objects that
have a state which changes over time. An instance of Account models a
real physical object in the form of a bank account. A pattern describing

44 OBJECTS AND PATTERNS

Link: {Link describes a linked list}

(# succ: ^Link; {tail of this Link}

elm: @integer; {content element of this Link}

Insert: {Insert an element after this Link}

(# E: @integer; R: ^Link;

enter E

do &Link[]->R[]; {R denotes a new instance of Link}

E->R.elm; {E=R.elm}

succ[]->R.succ[]; {tail of this Link = tail of R}

R[]->succ[]; {R=tail of this Link}

#)

#)

Figure 3.8 Class pattern describing a recursive data structure.

such objects has traditionally been called a class. Account is thus an
example of a class pattern.

Figure 3.8 shows another example of a class pattern which describes
a linked list of integers. Elements may be inserted in the list by means of
the procedure pattern Insert. The following object creates a list of four
numbers:

(# head: @Link

do 1 ->head.Insert;

2 ->head.Insert;

6 ->head.Insert;

24->head.Insert;

{head = (0 24 6 2 1) }

#)

The object denoted by Head is just used for representing the head of the
list, i.e. it is not part of the list.

Some class patterns like Rectangle only include reference attributes.
A pattern used in this way is similar to a record type in Pascal, i.e. a
pattern may also be used as a record type.

3.3.3 Basic patterns

A number of predefined basic patterns for commonly used data types such
as integer, boolean, char and real and their operations are available.

3.3 PATTERN ATTRIBUTES 45

For the integer pattern, the functional patterns +, -, *, div and
mod are available, corresponding to the usual arithmetic functions. Div is
integer division with truncation; Mod is the modulus function computing
the remainder of an integer division. Consider the following declaration
of three integer-objects:

I,J,K: @integer

The standard infix notation for integer expressions can be used:

1+I->I; (I*J)+12->K

In principle, it corresponds to the following evaluation using function
calls:

(1,I)->+->I; ((I,J)->*,12)->+->K

It is, however, not possible to use the above function call syntax. Only
the infix notation can be used.

For the real pattern, the arithmetic operations +, -, * and / are
defined. For the boolean pattern, the functional patterns and, or and not

are defined. In addition, the patterns false and true describe objects
representing the boolean values false and true.

The char pattern is a representation of the ASCII character set. Each
character in the ASCII character set has an associated value in the interval
[0, 255]. The printable ASCII characters may be denoted in the following
way:

’a’ ’b’ ... ’0’ ’1’ ... ’!’ ’@’ ...

The value of a char object is the integer corresponding to the char in
the ASCII character set, meaning that it is possible to perform integer
operations on chars. The evaluation:

’a’+1->b

will assign the ASCII value of ’a’ plus one to the variable b. Since the
ASCII value of ’a’ is 97 and the ASCII value of ’b’ is 98, b will have
the ASCII value of ’b’.

The real pattern is a representation of floating point numbers.6

6In the current implementations of the Mjølner BETA System, a 64-bit represen-
tation of floating numbers is used. For details consult the Mjølner BETA System
manuals.

46 OBJECTS AND PATTERNS

Relational operators The functional patterns =, <>, <, <=, > and
>= corresponding to the standard relational functions equal, not equal,
less than, less than or equal, greater than and greater than or equal are
available for integer, boolean, char and real objects. For boolean, the
false pattern describes objects which are less than and not equal to
objects described by True. For char objects, the ASCII ordering is used.

Initial values Instances of basic patterns will have a default value:
Integer objects will have the value 0; char objects will have the value 0
corresponding to the null character; boolean objects will have the value
false; and real objects will have the value 0.0.

Restrictions In the Mjølner BETA System there are a few pragmatic
restrictions on the usage of basic patterns. It is not possible to declare
dynamic references to instances of such patterns. Also, a basic pattern
cannot be used as a super-pattern (see Chapter 6). BETA is a very gen-
eral language, and sometimes this generality makes it hard to obtain an
efficient implementation. The above restrictions are imposed for efficiency
reasons. There is no logical motivation for these restrictions.

3.4 Exercises

(1) Use the Mjølner BETA System to execute the account program in
Figure 3.1.

(2) Define the name and address attributes of the Customer pattern in
Section 3.2.4. An address should consist of street, street number, city,
zip code and country.

(3) Define patterns representing a point, line, segment, polygon, rectang-
le, square and rhombus. A segment is a list of lines where the end
point of one line is the starting point of the next line.

It should be possible to create objects of these patterns, move the
objects, change one of the coordinates of a point, change the start
(or end) point of a line, change the start (or end) point of a line in a
segment or polygon, add a new line to a segment, and add a segment
to a segment (consider what this could mean).

3.5 Notes

A pattern is a unification of abstraction mechanisms like class, type, pro-
cedure, function, generic package, etc. It is a further generalization of the
Simula class construct.

3.5 NOTES 47

Patterns may also be compared to classes in Smalltalk. Pattern
attributes of a pattern correspond to interface operations in Smalltalk
classes, and reference attributes correspond to instance variables. The
do-part of an object has no counterpart in Smalltalk, and is used when
the object is executed as a procedure, coroutine or process. Compared to
Smalltalk, the do-part of an object represents a very important extension
of the notion of objects that allows patterns to be executed as procedures,
and to be used in modeling ongoing processes and in system simulation.

A dynamic reference is similar to a reference in Simula and an instance
variable in Smalltalk. It resembles Simula in the sense that a BETA ref-
erence is qualified. Instance variables are not qualified in Smalltalk. The
advantage of qualified references is (1) the compiler may detect illegal ac-
cess of attributes, (2) the compiler may generate more efficient code, and
(3) the qualification improves the readability of the code. The price for
this is, of course, less flexibility for the programmer. For implementing
industrial software, a typed language like BETA will lead to more robust
and safe programs.

Generation of dynamic objects with subsequent assignment of the ref-
erence to a dynamic reference variable &P[]->R[] corresponds to R ← P

New in Smalltalk.

The framework for BETA presented in Chapter 2 makes a distinction
between phenomena and concepts, and this is reflected in the language:
objects model phenomena and patterns model concepts – a pattern is not
an object. In contrast to this distinction between objects and patterns,
Smalltalk-like languages treat classes as objects. Concepts are thus both
phenomena and they are used to classify phenomena. In the BETA frame-
work, patterns may be treated as objects, but that is in the programming
process. The objects manipulated in a programming environment will be
fragments (e.g. patterns) of the program being developed.

There are object-oriented languages that do not have a notion cor-
responding to patterns; such languages are called classless or prototype-
based. Instead of generating objects as instances of patterns (classes),
an object is generated as a clone of another object. The object being
cloned is considered as a prototype to be used for generating similar ob-
jects. The generated object will have the same properties as the object
from which it is generated, but it may modify some of the properties and
add new ones. The most well known example of such a language is Self
(Ungar and Smith, 1987).

BETA is a language belonging to the Algol family with respect to block
structure, scope rules and type checking. In Algol and Simula a procedure
or block may have local procedures and/or blocks. With respect to scope
rules, BETA also follows the Algol tradition, since all names in textually
enclosing object descriptors are visible. In addition to the Algol scope

48 OBJECTS AND PATTERNS

rules, most languages supporting classes have a rule that protects certain
attributes of an object from being accessed remotely. In Simula this
is handled by the hidden/protected mechanism; in Smalltalk, instance
variables cannot be accessed from outside the object. BETA contains
no such protection mechanism; instead, the modularization described in
Chapter 17 is used.

Chapter 4

Repetitions

It is possible to declare a repetition of static or dynamic references. A
repetition of static references is declared in the following way:

A: [eval] @P;

A is the name of a repetition of static references and P is a pattern de-
scribing the static instances. eval is an evaluation resulting in an integer
number called the range of the repetition. The range of a repetition may
be denoted by A.range. This repetition describes the following set of
static references:

A[1], A[2], ..., A[A.range]

An element in the repetition may be denoted by an expression A[exp],
where exp is an integer evaluation that must result in a value in the
interval [1,A.range].

The example in Figure 4.1 illustrates the use of a repetition of static
references. A repetition of integers has been added to the Account pat-
tern. The repetition transactions keeps track of the sequence of trans-
actions that have been made on the account. When 50 transactions have
been made,1 a statement of the transactions is sent to the customer (only
indicated by a comment), the repetition is cleared, and the recording of
transactions is begun again.

A repetition may also consist of dynamic references:

A: [eval] ^P

Here each element in the repetition is a dynamic reference.
The example in Figure 4.2 illustrates the use of a repetition of dynamic

references. The object BankSystem includes two repetitions of dynamic

1For a description of the if-imperative see Chapter 5.

49

50 REPETITIONS

Account:

(# ...

transactions: [50] @integer; Top: @integer;

Deposit:

(# amount: @integer

enter amount

do balance+amount->balance;

amount->&SaveTransaction

exit balance

#);

Withdraw:

(# amount: @integer

enter amount

do balance-amount->balance;

-amount->&SaveTransaction

exit balance

#);

SaveTransaction:

(# amount: @integer

enter amount

do (if (top+1->top)>transactions.range // true then

{Send statement of transactions to the customer}

1->top

if);

amount->transactions[top]

#)

#)

Figure 4.1 Recording of transactions.

references for keeping track of all accounts and customers handled by
the bank. The bank may have at most 200 accounts and 100 customers.
The integer object noOfAccounts keeps track of the current number of
existing accounts. The references AccountFile[1], AccountFile[2], ...,
AccountFile[noOfAccounts] are the currently existing accounts. The
pattern NewAccount generates a new account and adds it to the file.
Customers are handled in a similar way.

If aCustomer is a reference to a customer, then a new account for this
customer may be generated using NewAccount, as in:

aCustomer[]-> BankSystem.NewAccount->anAccount[]

4.1 REALLOCATION, ASSIGNMENT AND SLICE 51

BankSystem: @

(# Account: (# ... #);

Customer: (# ... #);

AccountFile: [200] ^Account;

noOfAccounts: @integer;

CustomerFile: [100] ^Customer;

noOfCustomers: @integer;

NewAccount:

(# C: ^Customer; rA: ^Account

enter C[]

do noOfAccounts+1->noOfAccounts;

&Account[]->rA[]->AccountFile[noOfAccounts][];

C[]->AccountFile[noOfAccounts].owner[]

exit rA[]

#)

NewCustomer: (# ... #)

#)

Figure 4.2 Banking system.

The reference anAccount will then refer to the new account.

4.1 Reallocation, assignment and slice

The banking system in Figure 4.2 may hold at most 200 accounts and
100 customers. In practice, it is not acceptable that such limitations are
hard-coded into a program: it must be possible to dynamically expand
the size of a repetition. In BETA it is possible to extend the range of a
repetition. Consider a declaration:

R: [16] @integer

Execution of the imperative

10->R.extend

extends the size of R by 10 elements. Since R.range=16 before the as-
signment, R.range=26 after the assignment. The elements R[1], R[2],
.... R[16] have the same values as before the assignment. The elements

52 REPETITIONS

R[17], R[18], ... R[26] have the default value for integer objects (which
is zero).

It is also possible to make a complete new allocation of a repetition.
Execution of

25->R.new

will allocate a new repetition of 25 elements. The previous elements are
inaccessible; the new elements will have the default value of the element
pattern integer.

The extend and new operations are defined for all repetitions.
Assignment is defined for repetitions in general. Consider declarations:

R1: [18] @integer;

R2: [12] @integer

An assignment

R1->R2

has the following effect:

R1.range->R2.new;

R1[1]->R2[1]; R1[2]->R2[2]; ...;

R1[R1.range]->R2[R2.range]

Or expressed using the for-imperative:2

R1.range->R2.new;

(for i: R1.range repeat R1[i]->R2[i] for)

Since the range of a repetition may be changed by using assignment, new
and extend, one should always use the range attribute to refer to the
range. Instead of

(for i: 12 repeat sum+R2[i]->R2[i] for)

it is usually better to use:

(for i: R2.range repeat sum+R2[i]->R2[i] for)

It is possible to assign part of a repetition to another repetition by using
a repetition slice, which has the form:

R2[3:9]

Such a slice can be used in an assignment like:

2See Chapter 5.

4.2 THE TEXT PATTERN 53

R2[3:9]->R1

which is similar to R2->R1 except that the source repetition only has
9-3+1=7 elements. The bounds in a slice can be arbitrary evaluations
yielding an integer value:

R2[e1:e2]->R1

which means

e2-e1+1->R1.new;

R2[e1]->R1[1]; R2[e1+1]->R1[2]; ...; R2[e2]->R1[R1.range]

4.2 The text pattern

A predefined pattern for representing a text concept is available, though
it is not a basic pattern like integer, boolean, char and real. The
restrictions for the basic patterns mentioned in Section 3.3.3 do not apply
to text objects. It is thus possible to create dynamic references to text

objects and to use the text pattern as a super-pattern (see Chapter 6).
There are, however, a few built-in language features that are special for
the text pattern. The following is an example of using the text pattern:

(# T1,T2: @text; T3: ^text

do ’Hello’->T1; ’World’->T2; T2[]->T1.append;

&text[]->T3[]; T1->T3;

#)

A text object may be generated and used as any other object. As may be
seen, a text object may be assigned a text constant (like ’Hello’), and
one text object may be assigned to another text object (as in T1->T3).
A text object has a number of attributes (like append) which are not
predefined, but are part of the basic library defined for the Mjølner BETA
System.

Basically, a text object is represented by a repetition of char objects:

text:

(# R: [16] @char;

...

#)

It is possible to assign a text constant to a char repetition:

’Hello’->R

The effect of this is that:

54 REPETITIONS

R[1]=’H’, R[2]=’e’, R[3]=’l’, R[4]=’l’, R[5]=’o’

and that:

R.range = 5

The assignment has the effect that the previous content of the repetition
is overwritten.

A text object can hold an arbitrary number of char objects. This is
implemented by means of R.extend whenever the size of the text object
needs to be enlarged.

4.3 Exercises

You may have to read Chapter 5 to solve the exercises below.

(1) Complete the text pattern by giving a complete implementation and
defining a suitable set of operations. A text object should be able to
hold a text of an arbitrary length.

Discuss the strategy for extending the size of the text. Should a text-
object be extended with a fixed size every time, n% of its current size
or double its size?

(2) Complete the banking system in Figure 4.2.

Use the Customer pattern developed in Exercise 2 in Chapter 3. Add
procedure patterns for removing accounts and customers.

Change the recording of transactions to keep track of the latest 50
transactions. For each 50 transactions send out a statement to the
customer.

Modify the Account pattern such that an account may have several
owners.

The bank system should not be restricted to handle a limited number
of customers and accounts.

4.4 Notes

The repetition construct (often called an array) has been known since the
early days of programming languages, and is present in languages such
as FORTRAN and Algol 60. Algol 60 introduced the notion of dynamic
arrays where the size of the array is computed at run-time. After an array
is created its size cannot be changed. One of the successors to Algol 60,
Pascal, imposed the limitation on arrays that their size must be known at

4.4 NOTES 55

compile-time, which means that only constants may be used to specify the
size of Pascal arrays. The motivation for this restriction was efficeincy.

The possibility of extending the size of an array after it has been
created is known from a number of other languages, including Algol 68.
Extending the size of an array is an expensive operation, since it usually
implies allocation of a new array object and copying of the old values to
the new area.

56 REPETITIONS

Chapter 5

Imperatives

The do-part of an object is a sequence of imperatives that describes ac-
tions to be executed. Until now we have seen various examples of imper-
atives:

x+dx->x; {assignment}

(11,22)->&P1.Move; {procedure invocation}

R1[]->R2[]; {reference assignment}

&Rectangle[]->R1[]; {dynamic generation and}

{reference assignment}

The first four imperatives are examples of the evaluation imperative,
which will be further described in the next sub-section. In addition,
BETA has a few imperatives for controlling the flow of executions, called
control structures, which will also be described below.

5.1 Introduction to evaluations

The basic mechanism for specifying sequences of object execution steps
is called an evaluation. An evaluation is an imperative that may cause
changes in state and/or produce a value when it is executed. The notion
of an evaluation provides a unified approach to assignment, function-call
and procedure-call. Examples of evaluations are:

(11,22)->&P1.Move;

x+dx->x

The evaluation:

x+dx->x

specifies an ordinary assignment (the assignment of x+dx to x). An eval-
uation may specify multiple assignment, as in:

57

58 IMPERATIVES

(#

Power: {Compute X^n where n>0}

(# X,Y: @real; n: @integer;

enter(X,n)

do 1->Y;

(for inx: n repeat Y*X->Y for)

exit Y

#);

Reciproc: {Compute (Q,1/Q)}

(# Q,R: @real

enter Q

do (if Q // 0 then 0->R

else (1 div Q)->R

if)

exit(Q,R)

#);

A,B: @real

do (3.14,2)->&Power->&Reciproc->(A,B);

{A=3.14*3.14, B=1/A}

#)

Figure 5.1 Example of using patterns as procedures/functions.

3->I->J

where 3 is assigned to I and the value of I is assigned to J. The evaluation:

(11,22)->&P1.move

specifies a procedure-call. The value (11,22) is assigned to the enter-part
of P1.Move, and P1.Move is then executed with these enter parameters.
Note that the pattern P1.Move is invoked as an instance.

As shown above, an evaluation may specify multiple assignment of
values. The multiple assignment form may also be used to combine ex-
ecution of objects. Consider the example in Figure 5.1. The program
contains the declaration of two patterns, Power and Reciproc, and two
objects of the pattern real, A and B. The do-part of the program consists
of the evaluation-imperative:

(3.14,2)->&Power->&Reciproc->(A,B)

5.2 FOR-IMPERATIVE 59

The execution of this evaluation-imperative takes place as follows: The
values 3.14 and 2 are assigned to the input parameters X, n of Power

(described by enter(X,n)), the do-part of Power is executed, the output
parameter Y of Power (described by exit Y) is assigned to the input
parameter Q of Reciproc, the do-part of Reciproc is executed, and finally,
the output-parameters Q, R of Reciproc are assigned to A,B.

The do-part of Power consists of two imperatives: an evaluation-
imperative assigning Y the value 1; and a for-imperative. The index-
variable inx steps through the values 1,2, ... ,n. The do-part of the
Reciproc pattern consists of an if-imperative.

Note that a function-pattern may return a list of values like the
Reciproc pattern. The result of a pattern returning a list may be entered
directly into another pattern that has a compatible enter-part. Assume
that the pattern Max has an enter-part consisting of two reals. Reciproc
and Max may then be combined in the following way:

exp->&Reciproc->&Max->M

The previous examples have shown examples of evaluations describing
the generation of objects as instances of patterns. It is also possible to
use singular objects in the action part, as shown in the following example:

(# Y,V,W: @real

do ...;

{Singular object:}

(# X: @real

do Y->&Reciproc->(V,W);

(V,3)-> &Power->V;

(W,5)-> &Power->W;

#);

...

#)

The action part of the above object descriptor includes a singular ob-
ject. Singular objects in the action part are useful when there is a need
for declaring some local objects (like X above) which are only needed
for intermediate computations. In general, it is possible to arbitrarily
nest object-descriptors, including singular objects and patterns (see Sec-
tion 5.9).

5.2 For-imperative

The iteration control structure of BETA is called a for-imperative and
has the following form:

60 IMPERATIVES

(for Index: Range repeat Imperative-list for)

where Index is the name of an integer-object and Range is an integer-
evaluation. Range is evaluated prior to the execution of the for-impe-
rative, and determines the number of times that Imperative-list is
executed. Index will step through the values [1, 2, ..., Range]. The
name Index is only visible in the Imperative-list. It is not possible to
assign to Index. The following example illustrates the for-imperative:

(# V: [100] @integer

do (for i: V.range repeat i->V[i] for);

0->sum;

(for i: V.range repeat sum+V[i]->sum for)

#)

The for-imperative describes that the imperative:

i->V[i]

is executed V.range number of times, i.e. 100 times. The index variable
i will step through the values [1,2,...,100]. The for-imperative thus
describes an execution of:

1->V[1];

2->V[2];

...

100->V[100]

Often it is desirable to step through an index set which does not start
with 1, and which uses 1 to increment the index variable. An example of
such an index set is [-4, -2 ,0, 2, 4]. In Chapter 6 an example will
be given of how to define new control structures using patterns. BETA
has only a few predefined control structures – the idea is that most control
structures should be defined using patterns.

5.3 If-imperative

The selection control structure is called an if-imperative and has the fol-
lowing form:

(if E0

// E1 then I1

// E2 then I2

...

// En then In

else I

if)

5.3 IF-IMPERATIVE 61

where E0, E1, E2, ..., En are evaluations and I1, I2, ..., In and I are
imperatives. The else part (else I) is optional. E0 is first evaluated,
and that value is tested for equality with E1, E2, ..., En in an arbitrary
order. If E0 = Ej then Ij may be selected for execution. If one or
more alternatives are selectable, then one of these is chosen randomly.
If no alternative can be selected, then the possible else part is executed;
otherwise, the execution continues after the if-imperative.

In the following example the integer object x is tested for equality
with some integer evaluations:

(if x

// 17 then ...

// 33 then ...

// y+3 then ...

else ...

if);

The next example shows how to select on the basis of a boolean value.
The false case may also be handled by an else part:

(if (x>0) and (y<0)

// True then ...

// False then ...

if)

The next example shows how to select on the basis of a number of boolean
conditions:

(if true

// (x<0) and (y=0) then ...

// (x=0) and (y=0) then ...

// x>=0 then ...

if)

It is also possible to select by comparing references. Assume that R0, R1,
R2 and R3 are references to Point objects. The following if-imperative
tests whether or not R0 denotes the same object as one of R1, R2 and R3:

(if R0[]

// R1[] then ...

// R2[] then ...

// R3[] then ...

if)

62 IMPERATIVES

In the above example, R0 and R1 may denote different Point objects,
but the x and y attributes of these objects may still be identical. In this
case, the two objects have the same state or value. In BETA there is
clear distinction between reference equality and value equality. In the if-
imperative above the references are tested for reference equality. It is also
possible to test whether the two point objects are identical with respect to
the values of their attributes x and y. In BETA, value equality is not just
a bit by bit comparison of the two objects; the description of a pattern
must explicitly describe how value equality is carried out. Assuming that
this has been done, an if-imperative testing for value equality of the Point
objects may look as follows:

(if R0

// R1 then ...

// R2 then ...

// R3 then ...

if)

Here it is tested whether or not the state of the object denoted by R0 is
identical to the state of some of the other objects.

Note that it is the presence of the symbol [] which indicates reference
equality instead of value equality. This is the same usage of [] as for
dynamic generation and reference assignment (Section 3.2.3).

5.4 Labels and jump imperatives

A labeled imperative has one of the following forms:

L: Imperative

(L: Imp1; Imp2; ... Impn :L)

where L is a name. In the first case, the scope of the label is the
Imperative to which the label is attached, i.e. L may only be referred
to within the Imperative. In the second case, the scope of the label
is the imperatives Imp1; Imp2; ... Impn. The execution of a labeled
imperative may be terminated by executing a leave- or restart-imperative
within it: if leave L is executed, the execution continues after the imper-
ative labeled by L; if restart L is executed, the execution continues at
the imperative labeled by L, i.e. the execution of the labeled imperative
is repeated.

Consider the following example:

5.5 A LARGE EXAMPLE 63

(L: (if ... if);

M: {2}

(for ... repeat

(if ...

// ... then leave L

// ... then restart M

if)

for);

X->Y

:L) {1}

An execution of leave L implies that execution continues at {1} . An
execution of restart M implies that execution continues at {2} .

5.5 A large example

The Register pattern in Figure 5.2 describes a category of objects.
Each Register-object consists of the attributes Table, Top, Init,

Has, Insert and Remove. Table is an indexed collection of static refer-
ences denoting 100 integer-objects.

The Register pattern may be used as follows:

(# R: @Register

do &R.Init;

(for inx: 6 repeat

inx*inx->&R.Insert

for);

(for elm: 100 repeat

(if (elm->&R.Has) // True then

{elm is in R} ...

if)for)

#)

The imperative &R.Init has the effect of initializing R. Then the square
of the numbers 1-6 are inserted into R. Finally, it tests which integers
from 1 to 100 are members of R.

The operations of a Register object are defined by the pattern
attributes Init, Has, Insert and Remove. The representation of a
Register object is the reference attributes Table and Top. A Register

object should only be accessed via its operations. The above description
of the Register pattern does not prevent access to the representation –
mechanisms for doing this are described in Chapter 17.

64 IMPERATIVES

Register:

(# Table: [100] @integer; Top: @integer;

Init: (#do 0->Top #);

Has: {Test if Key in Table[1:Top]}

(# Key: @integer; Result: @boolean;

enter Key

do False->Result;

Search:

(for inx: Top Repeat

(if ((Table[inx]=Key)->Result) // True

then leave Search

if)for)

exit Result

#);

Insert: {Insert New in Table}

(# New: @integer

enter New

do (if (New->&Has) {Check if New is in Table}

// False then {New is not in Table}

Top+1->Top

(if (Top<=Table.Range) {Table.Range=100}

// True then New->Table[Top]

// False then {Overflow}

if)if)#);

Remove: {Remove Key from Table}

(# Key: @integer

enter key

do Search:

(for inx: Top repeat

(if Table[inx] // Key then

(for i: Top-inx repeat

Table[inx+i]->Table[inx+i-1]

for);

Top-1->Top;

leave Search

if)for)#);

#)

Figure 5.2 Pattern Register.

5.6 Assignment and equality

One of the fundamental concepts in programming is the distinction be-
tween the address of a memory location and the content (state) of a

5.6 ASSIGNMENT AND EQUALITY 65

memory location – it is a common programming error to confuse these
two issues. In object-oriented programming this distinction is the differ-
ence between the reference to an object and the state of an object. In
some languages this difference is not made explicit in the syntax, imply-
ing that the programmer may not be aware of whether a reference or the
state of an object is being manipulated. In the BETA syntax there is an
explicit distinction between manipulation of a reference and manipulation
of the state of an object. Consider the following object:

(# R1,R2: @Point;

R3,R4: ^Point

do &Point[]->R3[]; &Point[]->R4[];

(1,1)->(R1.x,R1.y); (2,2)->(R2.x,R2.y);

(3,3)->(R3.x,R3.y); (4,4)->(R4.x,R4.y);

L1:

R3[]->R4[]; R1[]->R3[];

L2:

(100,200)->&R1.Move

L3:

#)

Figure 5.3 shows the state of the object at the points L1, L2 and L3,
respectively.

R1 and R2 denote part objects, whereas R3 and R4 denote separate
objects. At L2 it can be seen that execution of the reference assignments
implies that R1 and R3 denote the same object. At L3 it can be seen that
the imperative (100,200)->&R1.Move also affects the object denoted by
R3.

Next we consider assignment of integer objects:

(# a,b,c: @integer

do 111->a; 222->b; 333->c;

L1:

a->b;

L2:

c->b;

L3:

#)

Figure 5.4 shows the state of the above object at L1, L2 and L3 respec-
tively. Note that a, b and c are not references to values, but are objects
having a state corresponding to the values 111, 222 and 333. At L2 it
can be seen that a and b have the same value (state); at L3 it can be seen
that a is not affected by a new assignment to b.

66 IMPERATIVES

R2

at L1

R3

R4

R1 x

y

x

y

2

2

at L3

R3

R4

R2

R1 x

y

x

y

y

x

y

x 4

4

3

3

y

x

y

x

3

3

4

4

2

2

101

201

1

1

at L2

R3

R4

R2

R1 x

y

x

y

y

x

y

x

3

3

4

4

1

1

2

2

Figure 5.3 Illustration of reference assignment.

This example shows that integer objects and the assignment of inte-
ger objects behave like ordinary variables and assignment in traditional
procedural programming languages, i.e. assigning object a to object b

5.6 ASSIGNMENT AND EQUALITY 67

at L1 at L2

a

b

111

222

333c

at L3

a

b

c

a

b

c

111

333

333

111

111

333

Figure 5.4 Basic value assignment.

consists of copying the state of a to b. This form of assignment is called
value assignment.

It is also possible to define value assignment for patterns like Point.
The Point pattern may be redefined such that value assignment of Point
objects is possible, as in the following object:

{Note:the current definition of the Point pattern must}

{be revised in order for this example to be legal!}

{For purposes of discussion only.}

(# R1,R2: @Point;

R3,R4: ^Point

do &Point[]-> R3[]; &Point[]->R4;

(1,1)->R1; (2,2)->R2; (3,3)->R3; (4,4)->R4;

L1:

R1->R3; R2->R4;

L2:

R3->R2; (5,5)->R1

L3:

#)

The meaning of the above assignments may be interpreted as follows: an
assignment like:

(1,1)->R1

assigns the value 1 to x and y. An assignment of the form:

R1->R3

assigns the x and y attributes of R1 to the x and y attributes of R3. Fig-
ure 5.5 shows the state of the above object at L1, L2 and L3, respectively.
The difference from Figure 5.3 may be observed.

68 IMPERATIVES

R2

at L1

R3

R4

R1 x

y

x

y

2

2

at L3

R3

R4

R2

R1 x

y

x

y

y

x

y

x 4

4

3

3

y

x

y

x

1

1

2

2

1

1

5

5

1

1

at L2

R3

R4

R2

R1 x

y

x

y

y

x

y

x

1

1

2

2

1

1

2

2

Figure 5.5 Illustration of value assignment.

Value assignment for non-basic objects could be defined as a pure copy
of the state of the object. This would be sufficient for the above example.
Most languages define value assignment as a pure copy. The state of

5.6 ASSIGNMENT AND EQUALITY 69

an object is, however, a representation of an abstract value capturing the
interesting properties of the object’s state. It is often the case that two or
more different states represent the same abstract value. For this reason,
the programmer should be able to define the meaning of assignment and
equality.

The first example shows how assignment may be defined for the Point
pattern:

Point:

(# x,y: @integer

enter(x,y)

exit(x,y)

#)

Assignment (and as we shall see later, equality also) is defined by means
of the enter and exit parts. Consider the following assignments:

(11,22)->R1; {1}

R1->R2; {2}

In line 1, the values 11 and 22 are assigned to the enter part of R1, i.e.
x and y are assigned. In line 2, the elements of the exit-list of R1 are
assigned to the corresponding elements of the enter-list of R2. As can be
seen, there is technically no difference between assignment and parameter
transfer in a procedure invocation. The Point pattern may have a do-
part, as in the following example:

Point:

(# x,y,count: @integer

enter(x,y)

do count+1->count

exit(x,y)

#)

As for procedure invocation, the do-part will be executed each time a
Point object is assigned from and/or to. The number of times this hap-
pens for each object is counted in the Count variable. By making Count

global to Point, the total number of accesses to Point objects could be
counted.

5.6.1 Equality

As there is a distinction between reference assignment and value assign-
ment, there is also a distinction between reference equality and value
equality. Consider the following example:

70 IMPERATIVES

(# a,b: @integer;

R1, R2: ^Point;

B1,B2,B3: @boolean

do ...

(a = b)->B1; {1}

(R1[] = R2[])->B2; {2}

(R1 = R2)->B3 {3}

#)

In line 1, a value comparison between two integer objects is described.
Value equality for the basic pattern, like integer, works in the usual way.
Line 2 describes a reference comparison: the comparison is true if the two
references denote the same object.

Line 3 describes a value comparison between two point objects: this
comparison is true if the ‘value’ of the two objects is the same. Value
equality here means that elements of the exit list of R1 are compared to
corresponding elements of the exit list of R2, i.e. the exit part is also used
for describing what to compare in a value equality.

If a do-part is present it will be executed prior to comparison of the
exit lists. The Count variable in Point will also count the number of
comparisons.

It should now be possible to understand the details of all the examples
of if-imperatives from Section 5.3 involving value equality.

Further details of assignment and equality are described in Section 5.8.

5.6.2 Basic patterns

Reference assignment and equality are not available for basic patterns
like integer. In principle, there is no reason for this restriction; the
restriction is only dictated by efficiency reasons. If it was possible to
have general references to, say, integer objects, then memory management
would be more expensive. However, in practice there does not seem to be
any need for this.

5.7 Computed references and computed re-

mote name

Consider the banking example in Figure 4.2 with the following proce-
dure pattern added. It finds the account of a given customer, and if the
customer does not have an account, a new one is created.

GetAccount:

(# C: ^Customer; rA: ^Account

5.7 COMPUTED REFERENCES AND COMPUTED REMOTE NAME 71

enter C[]

do (for i: noOfCustomers repeat

(if C.name[]->CustomerFile[i].name.equal

//true then AccountFile[i][]->rA[]

if)

for);

(if rA[]//NONE then C[]->NewAccount->rA[] if)

exit rA[]

#)

This pattern may be used as:

Joe: ^Customer; acc: ^Account; bal: @integer

...

Joe[]->BankSystem.getAccount->acc[];

acc.balance->bal

If we are simply interested in the balance of Joe’s account, we may use
a computed reference to access the balance and avoid introducing the
reference variable acc:

(Joe[]->BankSystem.getAccount).balance->bal

The result of the evaluation Joe[]->BankSystem.getAccount is a dy-
namic reference to an Account. The evaluation is said to be a computed
reference, since it is the result of an evaluation of a proceure pattern. A
procedure pattern computes a reference if its exit-list has one element
which must be a dynamic reference. A computed reference may be used
in a computed remote name, which has the form:

(ComputedReference).name

The result of ComputedReference must be a reference R. Let R be qual-
ified by T. The name must be an attribute of T. The computed remote
name (ComputedRemote).name denotes the attribute name of the object
referenced by R.

Since Joe[]->BankSystem.getAccount computes a reference to the
Account object of Joe, the computed remote name:

(Joe[]->BankSystem.getAccount).balance

denotes the balance account of Joe’s account.

72 IMPERATIVES

5.8 Detailed description of evaluations

In Chapter 2, different kinds of properties that may be used to charac-
terize phenomena were briefly mentioned. Among these were measurable
properties of phenomena. A measurable property may be obtained by ob-
serving the state of one or more objects. To perform such an observation
it is necessary to perform a measurement, which is an action-sequence
that results in a measurement.1 A measurement may be described by a
value and/or compared to other measurements. A value is an abstrac-
tion which classifies measurements. In the following we shall say that a
measurement produces a value.

In BETA a measurable property is reflected by an object that produces
a value as a result of executing the object. The representation of a value is
described by the exit-part of the object being executed. Since measuring
involves a computation, the resulting value may depend upon the state
of several objects.

The notion of assignment is dual to measurement. Assignment means
enforcing a value upon the state of one or more objects.

An evaluation is the basic mechanism for specifying an action se-
quence that may cause state changes and/or produce a value. The notion
of an evaluation is a unified approach to assignment, function-call and
procedure-call. An evaluation may specify either an imperative, a mea-
surement, an assignment or a transformation:

• An evaluation-imperative (or just evaluation) describes an action se-
quence.

• An evaluation specifying a measurement describes an action sequence
that computes a value.

• An evaluation specifying an assignment describes an action sequence
that enforces a value on the state of some objects.

• An evaluation specifying a transformation describes an action sequence
that enforces a value on the state of some objects and computes a
value. A transformation is thus a combination of an assignment and a
measurement.

Consider the following object:

X: @

(#

enter E0

1Note that measurement here is both used as an action and as the result of an
action. According to Webster: 1. The act of measuring or condition of being measured.
2. Extent, size, etc. as determined by this.

5.8 DETAILED DESCRIPTION OF EVALUATIONS 73

do E1->E2->E3

exit E4

#)

The whole evaluation E1->E2->E3 describes an evaluation imperative, E4
and E1 describe measurements, E2 describes a transformation, and E3 and
E0 describe assignments. This will be further elaborated below.

An evaluation may be described as an object, an evaluation list, or as
an assignment evaluation. In the following, the meanings of these three
evaluation forms are described.

5.8.1 Object evaluation

An evaluation may be described as an object evaluation. The object may
be obtained by means of a reference or a generation using a pattern. It
may specify an evaluation in one of the following ways:

• Imperative The result of executing the do-part of the object.

• Measurement The result of executing the do-part of the object fol-
lowed by evaluating the exit-part of the object. The value produced is
the measurement produced by the exit-part.

• Assignment The object may be assigned a value. The value is assigned
to the enter part of the object followed by executing the do-part of the
object.

• Transformation A value is enforced upon the assignment described
in the enter-part of the object, followed by executing the do-part of
the object, followed by evaluating the measurement described in the
exit-part of the object.

In the following, example X is the object defined above:

• Imperative An object evaluation used as an imperative may be spec-
ified as follows:

X

The result of this is that E1->E2->E3 is executed.

• Measurement An object evaluation used as a measurement may be
specified as follows:

X->...

74 IMPERATIVES

The result of this is that E1->E2->E3 is executed followed by the exe-
cution of E4. The value produced by E4 will be assigned to whatever
the dots (...) stand for.

• Assignment An object evaluation used as an assignment may be spec-
ified as follows:

...->X

The result of this is that the value produced by whatever the dots stand
for is assigned to E0, whereafter E1->E2->E3 is executed.

• Transformation An object evaluation used as a transformation may
be specified as follows:

...->X->...

The result of this is that the value produced by the left-most dots is
assigned to E0, then E1->E2->E3 is executed, and finally E4 is executed,
and the value produced is assigned to the right-most dots.

5.8.2 Evaluation list

An evaluation list has the form:

(E1,E2,...,En)

An evaluation list may specify an evaluation in one of the following
ways:

• Imperative The n imperatives En are evaluated in some order.

• Measurement Describes a compound value (M1,M2,...,Mn), where
each Mi is described by Ei.

• Assignment Describes assignment of a compound value (M1,M2,...,Mn),
where each Mi is assigned to Ei.

• Transformation Describes a transformation of a compound value
(M1,M2,...,Mn) into another compound value (Q1,Q2,...,Qn), where
each transformation Ei describes the transformation from Mi to Qi.

Consider the following example:

(# x,y,z: @integer;

A,B: @

(# i,j,k: @integer

enter(i,j,k)

5.8 DETAILED DESCRIPTION OF EVALUATIONS 75

do i+2->i; j+3->j; k+4->k

exit(k,j,i)

#)

do 111->x; 222->y; 333->z;

(x,y,z); {1}

(x,y,z)->A; {2: A.i=113, A.j=225, A.k=337}

A->(x,y,z); {3: A.k=x=341, A.j=y=228, A.i=z=115}

A->(x,y,z)->B; {4: A.k=345=x, B.i=347,

A.j=231=y, B.j=234,

A.i=117=z, B.k=121}

#)

• Imperative {1} above is an example of an evaluation list used as an
imperative. This example is not interesting, since execution of x, y and
z has no effect.

• Measurement {2} is an example of an evaluation list used as a mea-
surement: the evaluation (x,y,z) describes a measurement producing
the compound value (111,222,333), which is assigned to A.

• Assignment {3} is an example of an evaluation list used as an assign-
ment: the compound value produced by A ((341,228,115)) is assigned
to (x,y,z).

• Transformation {4} is an example of an evaluation list used as a
transformation: the compound value (345,231,117) is assigned to
(x,y,z), which is subsequently assigned to B.

5.8.3 Assignment evaluation

An assignment evaluation has the form:

E1->E2->...->En

It may specify an evaluation in one of the following ways:

• Imperative

– E1 describes a measurement producing the value M1

– E2 describes a transformation being assigned the value M1 and pro-
ducing the value M2

– ...

– En describes an assignment being assigned the value Mn-1

• Measurement Identical to imperative, except that En describes a
transformation which, in addition to being assigned Mn-1, also pro-
duces Mn.

76 IMPERATIVES

• Assignment Identical to imperative, except that E1 describes a trans-
formation which is assigned some measurement M0 and produces M1.

• Transformation Identical to imperative, except that E1 describes a
transformation which is assigned some value M0 and En describes a
transformation producing some value Mn

Consider the following example:

(# a,b,c,d,e,f,g: @integer

enter a->b {1}

do b->c->d->e {2}

exit f->g {3}

#)

• Imperative {2} is an example of an assignment evaluation used as an
imperative.

• Measurement {3} is an example of an assignment evaluation used as
a measurement.

• Assignment {1} is an example of an assignment evaluation used as
an assignment.

• Transformation c->d within {2} is an example of an assignment eval-
uation used as a transformation.

Note that the recursive definition of assignment means that the do-part
of objects being assigned during a value-transfer are also executed.

5.8.4 Value relations

Values (measurements) can be compared using the relational operators =,
<>, etc. In addition, the if-imperative makes use of value equality.

Let E1 and E2 be two evaluations specifying measurements. E1 and
E2 are equal if the two measurements M1 and M2 produced by evaluating
E1 and E2, respectively, are identical.

For the basic patterns integer, char, boolean and real we have that
integer-objects are assignable to integer-objects, etc. As described in
Section 3.3.3, it is also possible to assign char objects to integer objects,
etc.

It is also possible to assign integer objects to real objects, and vice
versa:

I: @integer; X: @real

...

I->X; X->I; 13->X; 3.14->I

5.9 BLOCK STRUCTURE AND SCOPE RULES 77

Such assignments imply the usual conversion between integer numbers
and floating point numbers.

As also mentioned in Section 3.3.3, it is also possible to compare in-
stances of the basic patterns using relational operators.

As mentioned in Section 4.2, it is possible to assign a text constant
and a text object to another text object. It is, however, not possible to
compare text objects using the relational operators. The text pattern
defined in the Mjølner BETA System has various attributes for comparing
text objects, including an operation that tests for the equality of two
text objects:

T1[]->T2.equal

5.9 Block structure and scope rules

The difference between the declaration of a name and the application of
a name is a fundamental issue. Consider the following object:

(# R1: @Point; {1}

R2: ^Point {2}

do R1[]->R2[] {3}

#)

Line 1 contains a declaration of the name R1 and an application of the
name Point. The application of Point refers to a declaration of Point
somewhere else in the program. Line 2 has a declaration of R2 and an
application of Point. The names used in line 3 are both applications
referring to the declarations in lines 1 and 2.

Most programming languages have a unit in which all declarations of
names must be different, i.e. the same name may not be declared more
than once. In addition, each declared name has a scope, which is that
part of the program text where applications of the same name refer to
the declaration.

In BETA, all names declared in the attribute part of an object descrip-
tor must be unique. The scope of a declared name is the object descriptor
in which it is declared. Since object descriptors may be textually nested, a
declaration in an internal object descriptor may hide a declaration in the
enclosing object descriptor. Also, the index variable of a for-imperative
and the label of a labeled imperative may hide names declared in the en-
closing program text. In the following example, an identifier of the form
a 1 refers to the a declared in line 1, etc.:

(# a: ...; b:...; i:...; {1}

P: (# a:...; c: ... {2}

78 IMPERATIVES

do (for i: ... repeat {3}

{Visible names:

b_1,a_2,c_2,i_3}

for)

#)

do (# b: ... {8}

{visible names a_1,i_1,b_8}

#)

#)

The above scope rules are the traditional block structure rules from Algol
60 and Pascal, but they do not cover remote identifiers like R1.Move.
Consider the declaration:

R: @T

Any attribute, say a, declared in T may be accessed using a remote iden-
tifier of the form:

R.a

In BETA, object descriptors may be textually nested. The examples so
far have shown up to three levels of textually nested object descriptors:
the program, a pattern (like Point) and operations (like Move). In fact,
object descriptors may be textually nested to an arbitrary depth: this is
known as block structure.

Block structure is an important mechanism for structuring individual
components of a large program, and is a means for providing locality of
declarations. For more examples of using block structure, see Chapter 8.

We have previously mentioned the origin attribute used to access
global attributes. In fact, all objects have an origin attribute referring
to its enclosing block. Consider the following example:

(# a: @integer;

P: (# b: @integer;

T: (# c: @integer

do a+b->c;

#)

do a * 2->b

#);

do 1->a; &P

#)

The use of global attributes is handled by using origin as follows:

5.10 OBJECT KINDS AND CONSTRUCTION MODES 79

(# a: @integer;

P: (# b: @integer;

T: (# c: @integer

do origin.origin.a+origin.b->c;

#)

do origin.a * 2->b

#);

do 1->a; &P

#)

The above scope rules will later be extended to cover sub-patterns and
virtual patterns, as introduced in Chapters 6, 7 and 9.

5.10 Object kinds and construction modes

This section introduces the notions of object kind and construction mode.
Object kind is used to classify objects as either sequential or multi-
sequential (coroutines or concurrency). Construction mode defines the
different ways for constructing and generating objects.

5.10.1 Object kinds

In this chapter it has been shown how to generate objects corresponding
to class objects, and procedure objects, etc. These objects all relate to
program executions consisting of one sequential action sequence. It is
possible to generate objects which may be executed as coroutines and
as concurrent processes. For this purpose there is a distinction between
different object kinds. BETA has two kinds of objects: component and
item. The kind of an object specifies how the object can be executed.

• A component object (coroutine) may be executed concurrently or al-
ternately with other components.

• An item object is a partial action sequence contained in a component
or item.

In this chapter objects of the item kind have been described. Objects of
the component kind are described in Chapters 13–15.

5.10.2 Construction modes and inserted objects

In the preceding sections two different modes for generating objects have
been shown. Objects may be created statically by declaration, or created

80 IMPERATIVES

dynamically by a ‘new’-imperative. These different ways of creating ob-
jects are called construction modes. The construction mode gives rise to
two sorts of objects, respectively called static and dynamic objects. There
is a third construction mode called inserted object, described in the next
section.

As mentioned previously, the invocation of a pattern as a procedure
gives rise to the generation of an object for representing the action-
sequence being generated by execution of the procedure. This leads to
the generation of a large number of small objects. These objects have
to be generated and removed by the storage management system, which
may be quite expensive. For this reason it is possible to describe that
such procedure objects be generated as a permanent part of the object
invoking the procedure pattern.

As shown previously, a pattern P may be used to generate a procedure
object as follows:

E->&P->A

The generation of an inserted item is done as follows:

E->P->A

The P object (called an inserted item) will be an integral part of the en-
closing object. This inserted item will then be executed when control
reaches the evaluation imperative. The state of this P item will be un-
defined prior to each execution of it. The notion of an inserted item is
similar to an in-line procedure call.

Apart from the allocation, the execution of an inserted item is like the
execution of any other object. In the above case, the execution assigns
the output of E to the enter-part of the inserted P item, and causes the
instance to be executed. Finally, the exit-part of the inserted P instance
is assigned to A.

The evaluation:

(11,22)->P1.Move

specifies an inserted item for the pattern P1.Move. This temporary in-
stance is actually allocated as part of the object executing P1.Move. In
this way, P1.Move describes an in-line allocation of a Move instance.

As already mentioned, inserted objects are allocated in-line in the
calling object. The motivation for inserted objects is a matter of efficiency,
since the compiler may compute the storage requirements of the calling
object. Inserted objects are analogous to static objects in the sense that
they are allocated as part of the enclosing object.

5.10 OBJECT KINDS AND CONSTRUCTION MODES 81

With this semantics of inserted items, it follows that inserted items
cannot be used to describe recursive procedures, since this will lead to
an infinite recursion. This is analogous to static items, which cannot be
used for describing recursive data structures.

5.10.3 Summary of construction modes

As mentioned in the previous section, objects may be of two different
kinds. The objects described in this chapter are of the item kind; below
we summarize the construction modes for objects of this kind:

• Static items The following declarations describe the generation of
static items:

E: @P; {1}

F: @P(# ... #); {2}

G: [...] @P; {3}

H: [...] @(# ... #) {4}

where P is a pattern name, E and F are static references, and G and H

are indexed collections of static references. The static items generated
by lines 1 and 3 are pattern defined, whereas the static items generated
by lines 2 and 4 are singular.

• Dynamic items The following imperatives describe the generation of
dynamic items:

e1->&P->e2; {1}

e3->&P(# ... #)->e4; {2}

&P[]->R1[]; {3}

&(# ... #)[]->R2[] {4}

Lines 1 and 2 describe the generation of dynamic items which are im-
mediately executed as procedure objects. Lines 3 and 4 describe the
generation of dynamic items, where references to the new objects are
assigned to dynamic reference attributes. Lines 1 and 3 describe the
generation of pattern defined objects, whereas lines 2 and 4 describe
the generation of singular objects.

• Inserted items The following imperatives describe the generation of
inserted items:

e1->P->e2; {1}

e3->(# ... #)->e4; {2}

82 IMPERATIVES

(# P: (# I,J: @integer;

enter(I,J)

do I+J->I

exit(J,I)

#);

E: @P; {declaration of a static (part) item}

X: ^P; {declaration of reference to an item}

N,M: @integer;

do {generation of a dynamic P-item and}

{subsequent assignment of the reference X}

&P[]->X[];

{an evaluation using static, inserted and dynamic items}

(3,4)->E->P->E->&P->X->P->(N,M)

#)

Figure 5.6 Example of dynamic items.

Line 1 describes the generation of a pattern defined object, whereas
line 2 describes the generation of a singular object.

In Figure 5.6, examples are given of the three different construction
modes. The last evaluation involves two executions of the static item
E, execution of two different inserted items (specified by the two Ps),
and execution of two different dynamic items, one denoted by X and an
anonymous one generated during the evaluation by &P.

The notions of kind and construction mode are orthogonal, since ob-
jects of the kind component may also be created either statically, inserted
or dynamically.

5.11 Exercises

(1) Write a pattern that transforms a UNIX path of the form:

/users/smith/src/beta

into the corresponding Macintosh form:

:users:smith:src:beta

and vice versa.

5.12 NOTES 83

(2) Modify the banking example from Exercise 2 in Chapter 3. Include
a pattern for computing the sum of the balance of all accounts for
a specific customer, and one for deleting all accounts for a specific
customer.

(3) Write a pattern that computes all prime numbers less than 100 using
the sieve of Eratosthenes. Construct a list of objects containing the
numbers 2, . . . , 100. For each i where 2 <= i <= 100, eliminate all
elements of the list containing a number that is divisible by i. The
remaining list will have all prime numbers less than 100.

Write the pattern in such a way that it is easy to use a value other
than 100, i.e. the value 100 should be a parameter to the pattern.

Make a solution where the list is represented using a repetition, and
one where it is a linked list using references. The prime pattern should
be independent of the actual representation of the list.

(4) Write patterns for standard data structures like stack, queue, deque
and tree.

(5) Design and implement a simple soda machine which ‘dispenses’ two
kinds of drinks, cola and juice. The soda machine should have the
following properties:

1. One or more coins may be inserted.

2. If enough money has been inserted, the appropriate drink plus
change may be obtained.

3. The machine should keep track of the current total amount of
money, and the current number of colas and juices.

4. The customer may reset the machine and get back the money
he/she has inserted.

5. It will be possible to refill the machine and take out the money.

6. It will be possible to adjust the price for the drinks. The price
for a cola and a juice may be different.

5.12 Notes

Imperatives such as assignment, for-imperative, if-imperative and labels
and jump-imperatives have been around since the early programming
languages. In most languages, the BETA assigment:

exp->V

is expressed like

84 IMPERATIVES

V := exp

For BETA it was felt that it is more natural to express an assignment
in the order of evaluation. This is especially the case for multiple as-
signments and combinations of function calls. In BETA it is possible to
combine arbitrary function calls in an evaluation. Consider the following
Algol-like assignment statement, where F, G and H are functions:

var := F(G(exp1),H(exp2,exp3))

This may be expressed in BETA in the following way:

(exp1->G,(exp2,exp3)->H)->F->var

In some languages there is a distinction between a procedure and a func-
tion, in the sense that a function may return a value and be used in
an expression. In most languages, a function may return exactly one
value and not a list of values, as in BETA. The BETA pattern is, among
other things, a unification of procedures and functions, and a proce-
dure/function pattern may return a list of values. As mentioned in Sec-
tion 3.3.2, the important distinction between a procedure pattern and a
function pattern is that the latter should not have side-effects.

We have mentioned the similarities between inserted items and in-line
procedure calls, and between dynamic items and Algol-like procedure
activation records. We also note that a static item may be used as a
static subroutine.

The register example in Figure 5.2 is similar to Hoare’s small integer
set (Hoare, 1972).

Chapter 6

Sub-patterns

As described in Chapter 3, patterns may be used to represent concepts.
The forms of patterns used so far are sufficient as long as the extensions
of the concepts being modeled are disjoint, i.e. the set of objects gener-
ated from different patterns are disjoint. In practice, there are numerous
situations where this is not the case. Consider the classification hierarchy
for animals illustrated in Figure 2.2 in Chapter 2. The extensions for
lion and tiger are clearly disjoint, but the extension for predator includes
the extensions for lion and tiger. In this chapter, language constructs for
representing classification hierarchies like these are introduced.

6.1 Specialization by simple inheritance

Consider a travel agency which handles reservations of several kinds, in-
cluding flight and train reservations. When designing a computer system
for handling reservations, it is thus natural to formulate concepts such
as train reservation and flight reservation. Patterns for representing the
concepts of flight reservation and train reservation may be described in
the following way:

FlightReservation:

(# Date: ...

Customer: ...

ReservedFlight: ...

ReservedSeat: ...

#);

TrainReservation:

(# Date: ...

Customer: ...

ReservedTrain: ...

ReservedCarriage: ...

85

86 SUB-PATTERNS

 Reservation

FlightReservation TrainReservation

Figure 6.1 Classification hierarchy for reservations

ReservedSeat: ...

#)

The above patterns include the properties we may want to model for flight
reservations and train reservations.

Flight and train reservations have some common properties such as the
date of the reservation and the customer who has made the reservation.
They also differ in various ways: a flight reservation includes a reference
to the flight and information about reserved seat, etc.; a train reservation
includes information about the train, the carriage and the seat. In addi-
tion to the flight reservation and train reservation concepts, it is useful to
define a general concept of reservation covering the common properties
of flight and train reservations. This gives rise to a simple classification
hierarchy for reservations, as illustrated in Figure 6.1.

Suppose that we also want to model the concept reservation, which in-
cludes the common properties of flight reservations and train reservations.
This could be described as:

Reservation:

(# Date: ...

Customer: ...

#)

There are, however, no relations between the pattern Reservation and
the patterns FlightReservation and TrainReservation. The descrip-
tion does not include the property that Reservation is a generalization
of FlightReservation and TrainReservation. The objects created as
instances of the three patterns will form three disjoint sets (have disjoint
extensions). Instances of Reservation bear no relation to instances of
FlightReservation. Finally, the description of common attributes such
as Date and Customer has been repeated three times.

In the real world we consider all flight reservations to be reservations.
Likewise, in our program execution we also want to consider all instances

6.1 SPECIALIZATION BY SIMPLE INHERITANCE 87

of FlightReservation to be instances of Reservation. Similarly, all
instances of TrainReservation should also be considered instances of
Reservation.

For the purpose of representing such classification hierarchies, patterns
may be organized in sub-pattern hierarchies. A sub-pattern is a pattern
which is a specialization of another pattern.

The reservation concepts may be modeled in the following way using
sub-patterns:

Reservation:

(# Date: @DateType;

Customer: ^CustomerRecord

#);

FlightReservation: Reservation

(# ReservedFlight: ^Flight;

ReservedSeat: ^Seat;

#);

TrainReservation: Reservation

(# ReservedTrain: ^Train;

ReservedCarriage: ^Carriage;

ReservedSeat: ^Seat;

#)

By prefixing the object descriptor for FlightReservation by Reservation,
the object descriptor for FlightReservation inherits all the declara-
tions from Reservation, meaning that the attributes Date and Customer

will be inherited from Reservation. Objects generated according to
FlightReservation will have the attributes Date and Customer (from
Reservation), plus ReservedFlight and ReservedSeat.

Similarly, objects generated according to TrainReservation will have
the attributes Date, Customer (from Reservation), ReservedTrain,
ReservedCarriage and ReservedSeat.

This is an example of specialization by simple inheritance of at-
tributes. We say that FlightReservation and TrainReservation are
sub-patterns of Reservation, and that Reservation is the super-pattern
of FlightReservation and TrainReservation.

The reason that a pattern like FlightReservation is called a sub-
pattern of Reservation is that the set of all FlightReservation ob-
jects is a subset of all Reservation objects. Similarly, the set of
all TrainReservation objects is a subset of all Reservation objects.
In addition, the set of FlightReservation objects and the set of
TrainReservation objects are disjoint, illustrated in Figure 6.2. The
same may be expressed in terms of extensions of concepts: the extension
of FlightReservation is a subset of the extension of Reservation.

88 SUB-PATTERNS

Reservation

FlightReservation TrainReservation

Figure 6.2 Subset relations for extensions of reservation patterns

The set of objects generated from a pattern constitutes its exten-
sion. The intension of a concept represented by a pattern is de-
fined by its object-descriptor, which represents the properties of the
object in terms of its attributes and action-part. For example, the
Reservation pattern’s object-descriptor states that elements in the ex-
tension (Reservation objects) all have a Date and a Customer attribute.
For the FlightReservation pattern, additional properties are described:
elements in the extension also have a ReservedFlight and a Customer at-
tribute. When we define a sub-pattern, we define a pattern that has some
additional properties in addition to those of the super-pattern. Adding
new properties restricts the set of possible instances. This may be sum-
marized as follows:

• The intension of a sub-pattern extends the intension of the super-
pattern, since more properties are added.

• The extension of a sub-pattern is a subset of the extension of the
super-pattern, since more properties must be fulfilled.

As already mentioned, the kind of properties that can be added are those
that can be described by an object-descriptor. Examples of such proper-
ties include new attributes, the qualification of the attributes, whether or
not it is a part object or a reference to a separate object, etc. Properties
describing actions executed by an object are another example. Later in
this chapter we present examples of specializing the action-part.

Object generation

The reservation patterns may be used to generate objects:

6.1 SPECIALIZATION BY SIMPLE INHERITANCE 89

T1: @TrainReservation;

F1: @FlightReservation;

T2: ^TrainReservation;

F2: ^FlightReservation;

...

T1[]->T2[]; &FlightReservation[]-> F2[]

It is also possible to generate instances of Reservation:

R1: @Reservation;

R2: ^Reservation

...

&Reservation[]->R2[];

This may not be very useful since our reservation system will handle either
train reservations or flight reservations. Patterns like Reservation that
are just used as super-patterns, but never used for generating instances,
are called abstract super-patterns.

In Section 3.2.5 the notion of a qualified reference was intro-
duced. The references R1,T1,F1 ... are qualified by Reservation,
TrainReservation, FlightReservation, The qualification of a ref-
erence restricts the set of objects that may be referred to by the reference.
In addition, the qualification determines which attributes may be denoted
by remote access. For R1, T1, F1 ... it is possible to access attributes
like:

R1.Date T1.Date T1.ReservedTrain F2.ReservedFlight ...

whereas the following remote identifiers are not legal:

R1.ReservedSeat T2.ReservedFlight F1.ReservedTrain ...

Using super-patterns for qualifying references

Consider the following declarations:

R: ^Reservation;

F: ^FlightReservation;

T: ^TrainReservation

These declarations state that R may refer to Reservation ob-
jects, F may refer to FlightReservation objects, and T may re-
fer to TrainReservation objects. From a conceptual point of view,
FlightReservation objects are also Reservation objects, which means
that R should be allowed to refer to FlightReservation objects, and
that is also the rule. It is possible to perform the following reference
assignment:

90 SUB-PATTERNS

Date

FlightReservation

Customer

ReservedFlight

ReservedSeat

R

F

T

At L1

R

F

T

Date

FlightReservation

Customer

ReservedFlight

ReservedSeat

At L2

Figure 6.3 A Reservation reference may refer to instances of sub-
patterns of Reservation.

L1:

F[]->R[];

L2:

At the label L1 it is assumed that F denotes an instance of
FlightReservation; at the label L2, R will also refer to this instance
of FlightReservation, illustrated in Figure 6.3.

Using R it is possible to refer to the attributes Date and Customer

as described by the Reservation pattern. This means that R.Date and
R.Customer are legal. R refers to a FlightResevation object, but since
R is qualified by Reservation, we may only make use of the general
Reservation properties. It is not possible to refer to the attributes
ReservedFlight and ReservedSeat, even though it is known that R de-
notes a FlightReservation object, because the description of R states
that R may denote arbitrary Reservation objects. This means that it is
not known whether or not R denotes a FlightReservation object or a
TrainReservation object.

Consider an assignment like:

R[]->F[]

6.1 SPECIALIZATION BY SIMPLE INHERITANCE 91

If R denotes a FlightReservation object, then this is meaningful. If,
however, R denotes a TrainReservation object, this is not meaning-
ful, since F is supposed to denote only FlightReservation objects. In
general, it is not possible to infer from the description of R and F and
the assignment whether or not such an assignment is meaningful. When
the program is executing it can be tested whether or not the assign-
ment is meaningful. In BETA the above assignment is considered le-
gal. It may, however, lead to a run-time error1 if R does not refer to a
FlightReservation object.

The use of general super-patterns for qualifying references provides
great flexibility. More examples will be presented later.

Multi-level hierarchies

The classification hierarchy for reservations only includes two levels.
It is possible to model classification hierarchies consisting of an arbi-
trary number of levels, as illustrated by the following example. All
Record, Person, Employee, Student and Book objects may be viewed
as Record objects, and they all have the attribute key. Similarly, Person,
Employee and Student objects may be viewed as Person objects, and
they all have the Person attributes key, name and sex. This sub-pattern
hierarchy is illustrated in Figure 6.4.

Record: (# key: @integer #);

Person: Record(# name: @Text; sex: @SexType #);

Employee: Person

(# salary:@integer; position: @PositionType #);

Student: Person(# status: @StatusType #);

Book: Record(# author: @Person; title: @TitleType #);

Example

Suppose that our travel agency wants to keep a register of all reservations.
A simple version of such a register may be described as follows:2

ReservationRegister:

(# {The reservations are stored in Table[1:top]}

Table: [100] ^Reservation; top: @integer;

1In the Mjølner BETA System the compiler marks all assignments that require a
run-time test.

2The example, like many other examples in this book, has been simplified to
keep it small. In the Insert pattern, it should be tested that top does not exceed
Table.range. Similarly, in GetElm it should be tested that 0<inx<=Top.

92 SUB-PATTERNS

Record

 Key

Person Book

Employee Student

Key

Name

Sex

Key

Author

Title

Key

Name

Sex

Salary

Position

Key

Name

Sex

Status

Figure 6.4 Illustration of sub-pattern hierarchy.

Insert: {Insert a reservation into the register}

(# R: ^Reservation

enter R[]

do R[]->Table[top+1->top][]

#);

NoOfElm:{Return no. of reservations in register}

(# exit top #);

GetElm: {Get reservation no. ’inx’}

(# inx: @integer

6.1 SPECIALIZATION BY SIMPLE INHERITANCE 93

enter inx

exit Table[inx][]

#);

#);

Reservations: @ReservationRegister

The Reservations register may contain instances of FlightReservation
and TrainReservation. This means that reservations may be inserted
into the register in the following way:

F: ^FlightReservation;

T: ^TrainReservation;

...

F[]->Reservations.Insert; ...

T[]->Reservations.Insert; ...

In the description of the ReservationRegister pattern it is not neces-
sary to know whether it is a train reservation or a flight reservation that
gets inserted. For this reason, all references in the ReservationRegister
pattern are qualified by Reservation. Also, the ReservationRegister

pattern will not need to be changed if a new kind of reservation is in-
troduced. If our travel agency wants to extend its business to handle
boat reservations, we could introduce a BoatReservation pattern as a
sub-pattern of Reservation, and thus the ReservationRegister pattern
would not need to be changed.

Suppose that we want to find all reservations made by Mr Olsen and
insert these reservations into a special register containing all reservations
made by Mr Olsen. This could be done as follows:

R: ^Reservation; Olsen: ^CustomerRecord;

OlsensReservations: @ReservationRegister

...

(for i: Reservations.NoOfElm repeat

i->Reservations.GetElm->R[];

(if R.Customer[] // Olsen[] then

R[]->OlsensReservations.Insert

if)

for)

In this example we do not care whether or not the reservations are train
or flight reservations, we are only interested in reservations in general.

Testing pattern membership

Suppose, however, that we are interested in counting the number of flight
reservations and the number of train reservations. Then we would need

94 SUB-PATTERNS

to know for each element in the register whether or not it is an instance
of TrainReservation or FlightReservation. Thus we need to test the
class membership of an object. This may be done as follows:

R: ^Reservation; Olsen: ^Customer; NTR,NFR: @integer

...

(for i: Reservations.NoOfElm repeat

i->Reservations.GetElm->R[];

(if R##

// TrainReservation## then NTR+1->NTR

// FlightReservation## then NFR+1->NFR

if)

for)

The expression R## denotes the pattern of the object referred by R.
Similarly, the expression ’TrainReservation##’ denotes the pattern
TrainReservation. (Remember that the expression TrainReservation

without ## describes the generation of a TrainReservation object.)
The first branch of the if-imperative is taken if the expression:

R## = TrainReservation##

is true. This is the case if R refers to an instance of TrainReservation.
Similarly, the second branch of the if-imperative is taken if R denotes an
instance of the pattern FlightReservation. As we shall see later, it is
rarely necessary to use this form of testing, and it should be avoided, as
demonstrated in the next chapter on virtual patterns.

6.2 Specialization of actions

Patterns may also be used to model concepts where the extension con-
sists of sequences of actions. We have previously referred to such pat-
terns as procedure patterns. By means of sub-patterns it is possible to
model classification hierarchies for action sequences. Consider the con-
cept HandleReservation: an element in the extension of this concept is
an action-sequence performed by an agent when making a reservation.
This concept may have specializations like HandleFlightReservation

and HandleTrainReservation. To model such classification hierarchies,
it is necessary to be able to combine the action part of a super-pattern
with the action part of a sub-pattern.

Consider the following example:

C: (# a,b: @integer

do 11->a;

6.2 SPECIALIZATION OF ACTIONS 95

Execution of an instance of C1 starts here

C1: C(# c: @integer do 22->c #)

C: (# a,b: @integer do 11->a; inner C; 33->b #)

OBS. The printed version does not look like the drawing
Therefore the arrows have to be placed left to
the position where they should appear

Figure 6.5 Illustration of inner.

inner C

33->b

#);

C1: C (# c: @integer do 22->c #)

Instances of C1 have the attributes a, b, c. The execution of a C1 object
starts by execution of the imperatives described in C. Each execution of
inner C during the execution of these imperatives implies an execution
of the imperatives described by C1. An execution of a C1 object implies
execution of:

11->a,

22->c and

33->b.

illustrated in Figure 6.5.
Executing an instance of the C-pattern will result in execution of

11->a, followed by 33->b, i.e. execution of inner C is the empty action.
The imperative inner C is only legal in the do-part of the pattern C.
The inner construct is the mechanism that is provided for specializa-

tion of actions, which may be obtained in two ways: as a specialization
of the effect of the general action, or as a specialization of the partially
ordered sequence of part-actions that constitute the general action. The
inner mechanism supports the latter form of specialization.

Here is another example illustrating the usefulness of specialization of
action-parts:

Cycle: (#do (Loop: inner Cycle; restart Loop :Loop) #)

96 SUB-PATTERNS

The Cycle pattern repeatedly executes an inner-imperative, and may be
used as a cycle control structure:

...; Cycle(#do Keyboard.get->Screen.put #); ...

This construct is an example of a singular inserted item. As mentioned
in Section 3.1.1, a singular item (object) in the action part corresponds
to an anonymous procedure. The execution of Cycle implies that inner

Cycle is executed forever. Each execution of inner Cycle implies that
Keyboard.get->screen.put is executed. Of course, it is possible to exit
the body of such a cycle by executing a leave:

(# F,G: @File

do {Open the files F and G}

L: Cycle {Copy F to G}

(#

do (if F.eos {end-of-stream}

// true then leave L

if);

F.get->G.put

#);

{Close the files F and G}

#)

It is possible to further specialize Cycle:

CountCycle: Cycle

(# inx: @integer

enter inx

do inner CountCycle;

inx + 1-> inx ;

#);

The CountCycle pattern is a sub-pattern of Cycle. This has the effect
that when executing an instance of CountCycle, its do-part will also be
repeatedly executed. The CountCycle pattern is used in the following
evaluation:

...;

L: 1->CountCycle

(# F: @integer

do (if inx // 10 then leave L if);

inx->& Factorial->F;

{Factorial is computed for inx in [1,9]}

#);

...

6.2 SPECIALIZATION OF ACTIONS 97

The effect of using CountCycle may be described by the following evalu-
ation:

L: 1 ->

(# inx: @integer; F: @integer

enter inx

do

(Loop:

(if inx // 10 then leave L if);

inx->& Factorial->F;

inx + 1->inx;

restart Loop :Loop)

#)

The patterns Cycle and CountCycle are examples of using patterns for
defining control structures. Such patterns will be referred to as control
patterns.

Specialization of actions may be used for making general control struc-
tures tailored to specific data structures. Figure 6.6 describes a new ver-
sion of the pattern Register from Chapter 3. The new version describes
a register of Record objects, and a new pattern attribute, ForAll, has
been added. ForAll is a control pattern which scans through the elements
of the register, making it possible to step through all the elements of a
Register and perform an operation upon each element, independently of
how the register is represented.

Notice that inner is an imperative, and as such it may be used wher-
ever an imperative may be used. There may also be more than one inner
in a descriptor, in which case they will cause execution of the same ac-
tions.

The ForAll operation may be used in the following way:

...; R.ForAll (# do Current[]->DoSomething #);...

The construct R.ForAll(# ... #) is another example of a singular in-
serted item. It has the Forall pattern attribute of the object denoted by
R as a super-pattern. Current will then step through the elements of R
and each element will one-by-one be assigned to DoSomething. Sometimes
there is a need for nesting control patterns. In this case, it is inconvenient
that the name of the index variable always has to be Current, since this
makes it impossible to refer to the index variable of the outer control
pattern. This may be changed by adding the pattern attribute Index to
ForAll:

ForAll:

(# Current: ^Record;

98 SUB-PATTERNS

Register:

(# Table: [100] ^Record;

Top: @integer;

Init: (# ... #);

Has: (# key: ^Record enter key[] do ... #);

Insert: (# ... #);

Remove: (# ... #);

ForAll:

(# Current: ^Record

do (for inx: Top repeat

Table[inx][]-> Current[];

inner ForAll

for)

#)

#)

Figure 6.6 Iterator on the Register pattern.

Index: (# exit Current[] #)

do ... {As before} ...

#)

ForAll may now be used as follows (assuming that R1 and R2 are refer-
ences to Register objects):

R1.ForAll

(# I: @Index

do R2.ForAll

(# J: @Index

do (I,J)->DoMore

#)

#)

The attribute I returns the value of Current corresponding to the outer-
most control pattern, and J returns the value of Current corresponding
to the innermost control pattern.

Shorthand notation for inner

Instead of inner P it is possible to write just inner. In this case, inner
refers to the immediate enclosing object-descriptor. Consider the follow-
ing example:

6.3 ENTER/EXIT-PARTS FOR SUB-PATTERNS 99

PP:

(#

do (# P: (# ...

do {1} inner PP; ...

{2} inner P; ...

{3} inner; ...

#)

do {4} inner;

Cycle(#do {5} inner PP; ... {6} inner; ... #)

#)

#)

The inner constructs at 1,2 and 5 are unambiguous, since they explicitly
refer to an enclosing pattern/object-descriptor. The inner at 3 refers do
the pattern/object-descriptor P; the inner at 6 refers to Cycle(# ... #),
since it is the nearest enclosing object-descriptor. This inner will have
no effect, as there is no sub-pattern of this descriptor. In general, inner
has no effect in a singular object-descriptor.

6.3 Enter/exit-parts for sub-patterns

The enter-part of a sub-pattern is a concatenation of the enter-part of the
super-pattern, and the enter-part specified in the sub-pattern and similar
for the exit-part. Consider:

P: (# ... enter(x,y,z) do ... exit u #);

PP: P(# ... enter a do ... exit b #);

PPP: PP(# ... enter(n,m) do ... exit(s,t) #)

The three patterns have the following enter- and exit-parts:

Pattern enter-part exit-part
P (x,y,z) u

PP (x,y,z,a) (u,b)

PPP (x,y,z,a,n,m) (u,b,s,t)

In the concatenation of enter/exit-lists an enter/exit list consisting of
a single element is considered to be a list with one element. In the
above example, exit u, enter a and exit b are interpreted as exit(u),
enter(a) and exit(b).

Consider the specification of a pattern Point:

(# Point:

(# X,Y: @integer;

move:

100 SUB-PATTERNS

(# x1,y1: @integer

enter(x1,y1)

do x1->X; y1->Y; inner

#)

enter (X,Y)

exit (X,Y)

#);

P1,P2: @Point;

do ...; P1->P2; ...; (3,14)->P1.move; ...

#)

Point objects are assignable, and when assigning one Point object to
another, the values of X and Y are transferred.

Consider making a three-dimensional point as a specialization of
Point: for such points to be assignable, the extra attribute Z should
also be transferred in an assignment. This is accomplished by extend-
ing the enter- and exit-parts of Point by enter/exit of Z. In addition, a
sub-pattern move3D of move has been added:3

(# ThreeDpoint: Point

(# Z: @integer;

move3D: move

(# z1: @integer enter z1 do z1->Z; inner #)

enter Z

exit Z

#);

P1,P2: @ThreeDpoint;

do ...; P1->P2; ...; (111,222,333)->P1.move3D

#)

Instances of ThreeDpoint have an enter-part and an exit-part of the form
(X,Y,Z). The enter-part of move3D is (x1,y1,z1).

6.4 The object pattern

There is a predefined pattern

Object: (# ... do inner #)

which is the most general abstract super-pattern. All patterns are sub-
patterns of Object. In an object descriptor without a super-pattern, the
Object pattern is implicitly assumed to be the super-pattern. An object
descriptor of the form:

3A better alternative will be to define move as a virtual pattern (see Chapter 7).

6.4 THE OBJECT PATTERN 101

(# Decl1; Decl2; ...; Decln

enter In

do Imp

exit Out

#)

is interpreted in the following way:

Object

(# Decl1; Decl2; ...; Decln

enter In

do Imp

exit Out

#)

The pattern Object has no attributes. Its action-part consists of an
inner imperative. The main purpose of the Object pattern is to allow
‘unqualified’ references. It is possible to declare references like:

R: ^Object

A reference like R may refer to any object in a program execution. Such
a reference cannot, of course, be used to access attributes of the object
being referred. It may be used to execute the object and to pass object
references around.

Restrictions on basic patterns

As mentioned in Chapter 3, there are certain restrictions on the use of the
basic patterns integer, boolean, char and real in the Mjølner BETA
System. One restriction is that these patterns are not sub-patterns of
Object.

Another restriction is that it is not possible to obtain a dynamic ref-
erence to instances of the basic patterns. In the following example, code
marked by illegal is not accepted by the compiler:

X: @integer; {legal}

R: ^integer; {illegal}

...

X[] {illegal}->...

The reason for these restrictions is efficiency of implementation rather
than any conceptual problem. It is, however, possible to get around these
restrictions by using patterns of the form:

integerObject: (# V: @integer enter V exit V #)

102 SUB-PATTERNS

The pattern integerObject is a sub-pattern of Object, and dynamic
references can be obtained to such objects, as shown in the following
example:

X: @integer;

Y: @integerObject;

Z1,Z2: ^integerObject

...

111->X;

222->Y;

Y[]->Z1[];

333->Z1;

&integerObject[]->Z2[];

444->Z2;

Be aware that an assignment like:

333->Z1

is only legal if Z1 is different from NONE.
The Mjølner BETA System includes predefined patterns like

integerObject. This is conceptually not the best solution, but it works
in practice.

6.5 Summary

In this section a summary of the sub-pattern mechanism will be given. An
object descriptor may include a super-pattern (often called prefix-pattern,
or simply prefix). This specifies that objects generated according to the
description have all the properties described by the super-pattern.

Figure 6.7 shows two patterns, P and P1. P1 is an example of a pattern
that has a super-pattern. The super-pattern of P1 is P; P1 is also said
to be a sub-pattern of P. Any P1-object will have the same properties as
P-objects in addition to those specified between (# ... #), called the
main-part of P1.

A P1-object will have attributes corresponding to the declarations
Decl1, ..., Decln and Decl’1, ..., Decl’m. The enter-part of a P1-
object is a concatenation of In and In’. The exit-part of a P1-object is
a concatenation of Out and Out’.

The action part of a P1-object is a combination of Imp and Imp’. This
combination is controlled by means of the inner: the execution of a P1-
object starts by execution of the imperative Imp in P. Each execution of
an inner during the execution of Imp implies an execution of Imp’. If
there is no inner in Imp, then Imp’ will never be executed.4

4The Mjølner BETA System compiler will give a warning in this case.

6.6 QUALIFICATIONS AND SCOPE RULES 103

P: (# Decl1; Decl2; ... Decln

enter In

do Imp

exit Out

#);

P1: P

(# Decl’1; Decl’2; ... Decl’m

enter In’

do Imp’

exit Out’

#);

Figure 6.7 Sub-pattern Declaration.

In general, the notion of main-part is defined for patterns, object
descriptors and objects: the main-part of a pattern is the part described
between (# ... #) as stated above. The main-part of an object descrip-
tor P(# ... #) is the part between (# ... #). The main-part of an
object X generated according to a descriptor P(# ... #) is the attributes
and actions (including enter/exit parts) described by (# ... #).

6.6 Qualifications and scope rules

We now extend the notions of qualification and scope rules introduced in
Sections 3.2.5 and 5.9 to handle sub-patterns.

6.6.1 Qualification

We first extend the definition of super-pattern and sub-pattern slightly.
Consider the pattern declaration:

B: A(# ... #)

• The pattern A is said to be a direct super-pattern of B.

• A pattern P is a super-pattern of B if it is a direct super-pattern of B,
or if it is a super-pattern of the direct super-pattern of B.

• The pattern B is a direct sub-pattern of A.

• A pattern P is a sub-pattern of B if it is a direct sub-pattern of B, or if
it is a sub-pattern of the direct sub-pattern of B.

104 SUB-PATTERNS

Consider the patterns:

Record: (# ... #);

Person: Record (# ... #);

Employee: Person(# ... #);

Here Employee is a sub-pattern of both Person and Record. It is a direct
sub-pattern of Person. Similarly, Record and Person are super-patterns
of Employee, while Person is a direct super-pattern of Employee.

Reference attributes are qualified using pattern names. Consider a
reference attribute, R, declared as follows:

R: @Record

or

R: ^Record

The attribute R is said to be qualified by Record.
The qualification of a reference restricts the set of objects which may

be referred to by the reference.
A reference attribute may denote instances of its qualification or in-

stances of sub-patterns of its qualification.
Consider:

R: ^Record;

P: ^Person;

E: ^Employee

The reference R is qualified by Record, and it may refer to instances of
Record, Person and Employee. The reference P is qualified by Person,
and it may refer to instances of Person and Employee. Finally, E is
qualified by Employee; it may only refer to instances of Employee.

A reference qualified by Record may refer to objects of all the pat-
terns Record, Person, Employee, Student and Book, while a reference
qualified by Person may only refer to Person, Employee and Student

objects.

6.6.2 Scope rules

The scope of an attribute declared in a pattern P includes all sub-patterns
of P, i.e. a name declared in P is visible in sub-patterns of P.

A: (# a:...; b:...; c: ...; #);

B: A(# d:...; e:...; f: ...

{a,b,c,d,e,f are visible here}

#)

6.7 EXERCISES 105

Sub-patterns combined with a block structure must also be considered.
The rule is that names inherited from the super-patterns may hide names
declared in the enclosing object descriptors:

(# a: ...; d:...; x:...; {1}

A: (# a:...; b:...; c: ...; #); {2}

B: A(# d:...; e:...; f: ... {3}

{x_1,a_2,b_2,c_2,d_3,e_3,f_3 are visible here}

#)

#)

Given a reference declared as:

X: ^B

all attributes declared in B and in super-patterns of B can be accessed
remotely, i.e. the following remote identifiers are legal:

X.a X.b X.c X.d X.e X.f

Given a reference qualified by Record:

R: ^Record

then only the attributes of Record, i.e. key, are accessible by remote
access:

R.key

This is still true even if R denotes a Person object, i.e. references to
Person attributes name and sex of the form:

R.name;

R.sex;

are illegal.

6.7 Exercises

(1) Redo Exercise 3 in Chapter 3 using sub-patterns.

(2) Modify the banking system constructed in Exercise 2 in Chapter 5
to handle savings accounts and check accounts. For a savings ac-
count, the attributes should include the interest rate and calculation
of interest. For checking accounts, the customer should be charged
a fee for each check they write unless the balance exceeds a certain
threshold, in which case writing checks is free.

Next, modify the banking system such that an owner may be a person,
a company or an organization (e.g. a soccer club).

106 SUB-PATTERNS

(3) Generalize the soda machine developed in Exercise 5 in Chapter 5
by defining a super-pattern called VendingMachine. Make a sub-
pattern of VendingMachine called CandyMachine, which is like a
SodaMachine except that instead of juice and cola it provides chewing
gum, chocolate bars, etc. Attributes common to SodaMachine and
CandyMachine should be defined in VendingMachine.

(4) Define a pattern ForTo that executes an inner ForTo for each ele-
ment in an interval [first,last]. An integer variable index holds
the current index value. The following imperative:

(3,8)->ForTo(#do index->&Factorial #)

should compute 3!,4!,...,8!.

Make similar DownTo and StepTo patterns that may be used like:

(6,2)->DownTo(#do index->&Factorial #)

{computes 6!,5!,...,2!}

(1,3,8)-StepTo(#do index->&Factorial #)

{computes 1!,4!,7!}

6.8 Notes

Patterns and sub-patterns generalize the class and sub-class mechanism
from Simula. Most object-oriented languages have a construct similar
to the sub-class mechanism; the term inheritance is often used for this.
The idea of specializing action-parts by means of inner also originates
in Simula, where it is used for prefixing of classes. (Vaucher, 1975) pro-
poses to extend this idea for prefixing of procedures. In (Thomsen, 1987)
specialization of processes is further discussed.

One of the differences between BETA and Smalltalk is the notion of
‘typing’ object references. In Smalltalk an object reference has no type
and may refer to any object. In BETA an object reference is qualified by
means of a pattern name. The qualification specifies that the reference
may only refer to objects that have been generated according to that
pattern or its sub-patterns.

Testing for class pattern membership as described in Section 6.1 is,
by some people, considered a bad programming style. In Simula and
Smalltalk it is possible to perform these tests. In C++ they have been
deliberately left out, since they are viewed as violating the advantages of
object-orientation.

Multiple inheritance has come up as a generalization of single inheri-
tance. With single inheritance a class may have at most one super-class,

6.8 NOTES 107

whereas multiple inheritance allows a class to have several super-classes.
Inheritance is used for many purposes, including code sharing and hier-
archical classification of concepts. In the BETA language, inheritance is
mainly intended for hierarchical classification. BETA does not have mul-
tiple inheritance, due to the lack of a profound theoretical understanding,
and also because the current proposals seem technically very complicated.

In existing languages with multiple inheritance, the code-sharing part
of the class/sub-class construct dominates. Flavors has a name that di-
rectly reflects what is going on: mixing some classes, so the resulting class
has the desired flavor, i.e. the desired attributes. For the experience of
eating an ice cream cone it is significant whether the vanilla ice cream is
at the bottom and the chocolate on top, or the other way around. Corre-
spondingly, a class that inherits from the classes (A, B) is not the same
as a class that inherits from the classes (B, A).

If, however, multiple inheritance is to be regarded as a generalization
of single inheritance, and thereby as a model of multiple concept classifi-
cation (and it should be in the model presented here), then the order of
the super-classes should be insignificant. When classifying a concept as
a specialization of several concepts, then no order of the general concept
is implied, and that should be supported by the language.

Single inheritance is well suited for modeling a strict hierarchical clas-
sification of concepts, i.e. a hierarchy where the extensions of the special-
izations of a given concept are disjoint. Such hierarchies appear in many
applications, and it is often useful to know that the extensions of, say,
class predator and class rodent are disjoint.

In classifying objects by means of different and independent proper-
ties, several orthogonal strict hierarchies may be constructed. A group
of people may be classified according to their profession, leading to one
hierarchy, and according to their nationality, leading to another hierarchy.
Multiple inheritance is often used for modeling the combination of such
hierarchies. It may, however, be difficult to recognize if such a non-strict
hierarchy is actually a combination of several strict hierarchies.

108 SUB-PATTERNS

Chapter 7

Virtual Procedure Patterns

The pattern/sub-pattern mechanism makes it possible to group common
properties of patterns into general super-patterns. This is sufficient as
long as the general attributes and actions can be completely described in
the super-pattern. By this we mean that attributes in a super-pattern
can be described independently of the sub-patterns. In the travel agency
example, the attributes Date and Customer do not depend on the sub-
patterns TrainReservation and FlightReservation. This is, however,
not always the case.

Consider a pattern A with sub-patterns B and C. The common at-
tributes of B and C are located in A, and the special attributes for B and
C are located in B and C, respectively. Suppose that both B and C have
an attribute f, and that the semantics of f is similar for B and C. If the
descriptions of f in B and C are identical then we can move the description
of f to A. If, however, the descriptions of f in B and C are not identical,
then we cannot move the description of f from B and C to A. Since f is
a property of all B and C objects, we would, however, like to describe
in A that all sub-patterns of A have an f attribute. In many cases, the
descriptions of f in B and C have a common structure and we would like
to move as much as possible of this common structure to A. This may
appear fairly abstract. Consider the following example.

In case of the travel agency, it might be useful to display the at-
tributes of a reservation on a computer screen or print them out on paper.
For TrainReservation we might add a Display attribute that displays
the values of the attributes Date, Customer, ReservedTrain, Reserved-
Carriage and ReservedSeat. For FlightReservation we might simi-
larly have a Display attribute that displays the values of the attributes
Date, Customer, ReservedFlight and ReservedSeat. The property
of having a Display attribute is common to both patterns. In addition,
both Display attributes display the values of Date and Customer. Ideally,
such common properties should be described in the general Reservation

109

110 VIRTUAL PROCEDURE PATTERNS

pattern.
In this chapter the notion of virtual patterns will be introduced. By

using virtual patterns it is possible to describe general properties of a
pattern attribute in a super-pattern, and to specialize this description
in sub-patterns. In this chapter we introduce virtual patterns used as
procedures. In Chapter 9 the use of virtual class patterns is described.
Note, however, that in the same way that patterns can be used either as
classes or procedures, also virtual patterns can be used either as virtual
classes or virtual procedures.

7.1 Motivation

In this section we analyze the example of adding a Display attribute to
the reservation patterns. First we consider the situation where each of
the patterns TrainReservation and FlightReservation has a Display

attribute:

TrainReservation: Reservation

(# ...

Display:

(#

do Date.Display; Customer.Display;

ReservedTrain.Display;

ReservedCarriage.Display;

ReservedSeat.Display

#)

#);

FlightReservation: Reservation

(# ...

Display:

(#

do Date.Display; Customer.Display;

ReservedFlight.Display; ReservedSeat.Display

#)

#);

The dots (...) indicate the attributes Date, Customer, etc. in the same
way as in the previous chapter. We assume that each of the attributes,
Date, Customer, etc. has a Display attribute.

As mentioned above, the property that all Reservation objects have
a Display attribute is not reflected in the description of Reservation. In
addition, the two Display attributes both include the code for displaying
Date and Customer.

7.1 MOTIVATION 111

Before introducing a solution using virtual patterns, we first describe
a partial solution to the problem. Instead of one display attribute we
have one for each pattern. This makes it possible to describe the general
properties of the display attribute in Reservation. In this version of the
Reservation patterns we have implemented a classification hierarchy of
display patterns:

Reservation:

(# ...

DisplayReservation:

(#

do Date.Display; Customer.Display; INNER

#)

#);

TrainReservation: Reservation

(# ...

DisplayTrainReservation: DisplayReservation

(#

do ReservedTrain.Display;

ReservedCarriage.Display;

ReservedSeat.Display;

INNER

#)

#);

FlightReservation: Reservation

(# ...

DisplayFlightReservation: DisplayReservation

(#

do ReservedFlight.Display; ReservedSeat.Display;

INNER

#)

#)

The above patterns describe two parallel classification hierarchies, one
consisting of the reservation patterns and one consisting of their display
attributes, illustrated in Figure 7.1. The hierarchy of display patterns
is an example of using the sub-pattern mechanism for specialization of
actions, as described in Section 6.2.

Consider the references:

F: ^FlightReservation;

T: ^TrainReservation

We can invoke the corresponding display patterns in the following way:

F.DisplayFlightReservation T.DisplayTrainReservation

112 VIRTUAL PROCEDURE PATTERNS

Reservation

FlightReservation TrainReservation

DisplayReservation

DisplayTrainReservation DisplayFlightReservation

Figure 7.1 Parallel classification hierarchies.

As described in Section 6.2, an invocation of F.DisplayFlightReserva-
tion causes execution of the following actions:

(1) The super-pattern F.DisplayReservation is invoked. This implies
execution of

(a) Date.Display

(b) Customer.Display

(c) INNER

Execution of INNER implies:

(2) The main part of F.DisplayFlightReservation is invoked. This
implies execution of:

(a) ReservedFlight.Display

(b) ReservedSeat.Display

(c) INNER, which here is the empty action.

At this point, all reservation objects have a display property. We
have described the general structure of this property using the Dis-

playReservation attribute in the Reservation pattern, and we have
described the specialized attributes DisplayTrainReservation and
DisplayFlightReservation as sub-patterns of DisplayReservation.
There are, however, some problems with this solution:

(1) We have to invent a new name for the display attribute for each
sub-pattern.

(2) Consider a reference qualified by Reservation:

R: ^Reservation

Using this reference we may invoke the general display attribute:

7.2 DECLARATION OF VIRTUAL PATTERN 113

R.DisplayReservation

This will result in the display of the general reservation attributes.
Since Reservation is an abstract super-pattern, R should refer
to an instance of TrainReservation or FlightReservation. If
R refers to an instance of FlightReservation, the invocation
R.DisplayReservation will only display the general attributes
Date and Customer. The special flight reservation attributes
ReservedFlight and ReservedSeat will not be displayed.

Instead, the display attributes of Reservation and its sub-patterns
should have the following properties:

(1) Each of the patterns Reservation, TrainReservation and Flight-

Reservation should have a pattern attribute called Display. When
Display is invoked, the actions described by DisplayReservation

and DisplayTrainReservation or DisplayFlightReservation, re-
spectively, should be executed.

(2) An invocation

R.Display

should invoke the Display attribute of the object denoted by
R. If R denotes an instance of TrainReservation, it should in-
voke the DisplayTrainReservation attribute described in the
TrainReservation pattern. Similarly, if R denotes an instance of
FlightReservation, it should invoke the DisplayFlightReserva-

tion attribute. (In the theoretical case that R denotes an in-
stance of Reservation, it should of course just invoke the Display-

Reservation attribute described in the Reservation pattern.)

7.2 Declaration of virtual pattern

The above properties may be obtained by declaring the Display at-
tribute of Reservation as a virtual pattern, and by extending the
description of Display in the sub-patterns TrainReservation and
FlightReservation. The resulting reservation patterns may be de-
scribed as follows:

Reservation:

(# ...

DisplayReservation:

(#

114 VIRTUAL PROCEDURE PATTERNS

do Date.Display; Customer.Display; INNER

#);

Display:< DisplayReservation

#);

TrainReservation: Reservation

(# ...

DisplayTrainReservation: DisplayReservation

(#

do ReservedTrain.Display;

ReservedCarriage.Display;

ReservedSeat.Display;

INNER

#);

Display::< DisplayTrainReservation

#);

FlightReservation: Reservation

(# ...

DisplayFlightReservation: DisplayReservation

(#

do ReservedFlight.Display; ReservedSeat.Display;

INNER

#);

Display::< DisplayFlightReservation

#)

The construct (called a virtual pattern declaration):

Display:< DisplayReservation

is a declaration of a virtual pattern attribute called Display. The pattern
DisplayReservation is the qualification of the virtual pattern attribute.
For a non-virtual pattern attribute, the complete structure of the pattern
is described. For a virtual pattern attribute, its structure is only partially
described. It is possible to extend the structure of a virtual pattern in
sub-patterns.

A virtual pattern may be extended to any sub-pattern of its qual-
ification, meaning that Display may be extended to sub-patterns of
DisplayReservation. Such a virtual pattern extension may be described
in a sub-pattern of Reservation. The declaration:

Display::< DisplayTrainReservation

states that the Display pattern is extended to be a DisplayTrainReser-

vation. The qualification of Display in TrainReservation is Display-
TrainReservation. A virtual pattern extension is also called a virtual
pattern binding, or just binding.

7.2 DECLARATION OF VIRTUAL PATTERN 115

In the FlightReservation pattern, the Display is extended to
DisplayFlightReservation by:

Display::< DisplayFlightReservation

Figure 7.2 illustrates the different bindings of the Display attribute.
Consider again the references T, F and R qualified by TrainReser-

vation, FlightReservation and Reservation, respectively. Invocation
of:

T.Display

will invoke DisplayTrainReservation of T. An invocation of:

F.Display

will invoke DisplayFlightReservation of T.
It is more interesting to consider an invocation of:

R.Display

Assume that R refers to an instance of TrainReservation. From the
qualification of R we know that R has a Display attribute. Since R refers
to an instance of TrainReservation, the Display attribute has been
extended to be the DisplayTrainReservation pattern, meaning that
R.Display will invoke DisplayTrainReservation.

If instead R refers to an instance of FlightReservation, R.Display
will invoke DisplayFlightReservation.

Virtual pattern attributes provide great flexibility when describing
systems. At the place in the program where an invocation like R.Display
takes place, one need not know the exact type of the object being referred
to, as that object selects the appropriate pattern attribute.

Consider the reservation register from the end of Section 6.1. Suppose
that we want to display all the reservations made by Mr Olsen. This can
be done in the following way:

(for i: Reservations.NoOfElm repeat

i->Reservations.GetElm->R[];

(if R.Customer[] // Olsen[] then R.Display if)

for)

116 VIRTUAL PROCEDURE PATTERNS

virtualhierarchy.v1

ªª

Date

Reservation

Customer

DisplayReservation

Date

TrainReservation

Customer

DisplayTrainReservation

ReservedTrain

ReservedCarriage

ReservedSeat

Display

Display

Date

FlightReservation

Customer

DisplayFlightReservation

ReservedFlight

ReservedSeat

Display

DisplayReservation

DisplayTrainReservation DisplayFlightReservation

Figure 7.2 Reservation patterns with virtual Display attribute.

7.3 DIRECT QUALIFICATION OF VIRTUAL PATTERNS 117

7.3 Direct qualification of virtual patterns

In the above example it may seem inconvenient to have to introduce
names like DisplayTrainReservation. For this reason, it is possible
to use direct qualification of a virtual pattern, which has the following
syntax:

Reservation:

(# ...

Display:<

(#

do Date.Display; Customer.Display; INNER

#)

#);

TrainReservation: Reservation

(# ...

Display::<

(#

do ReservedTrain.Display;

ReservedCarriage.Display;

ReservedSeat.Display;

INNER

#)

#);

FlightReservation: Reservation

(# ...

Display::<

(#

do ReservedFlight.Display; ReservedSeat.Display;

INNER

#)

#)

The virtual declaration:

Display:<

(#

do Date.Display; Customer.Display; INNER

#)

states that Display is qualified by an anonymous pattern associated with
the given descriptor. The extension of Display in FlightReservation:

Display::<

(#

118 VIRTUAL PROCEDURE PATTERNS

do ReservedFlight.Display; ReservedSeat.Display;

INNER

#)

states that Display is extended to a new anonymous pattern which is a
sub-pattern of the anonymous pattern in Reservation. These anony-
mous patterns have the same structure as the DisplayReservation,
DisplayTrainReservation and DisplayFlightReservation patterns.

7.4 Continued extension of a virtual pat-

tern

The extension of a virtual pattern attribute can be continued at arbitrary
levels of sub-patterns. Possible sub-patterns of, say, FlightReservation
might extend the display attribute further. In the following example, we
show how the description of a virtual pattern may be extended through
several levels of sub-patterns. The example used is the classification hi-
erarchy for records:

Record:

(# Key: @integer;

Display:< (#do {Display Key}; INNER #)

#);

Person: Record

(# Name: @text; Sex: @SexType;

Display::< (#do {Display Name,Sex} ; INNER #)

#);

Employee: Person

(# Salary: @integer; Position: @PositionType;

Display::< (#do {Display Salary,Position}; INNER #)

#);

Student: Person

(# Status: @StatusType;

Display::< (#do {Display Status}; INNER #);

#);

Book: Record

(# Author: @Person; Title: @TitleType;

Display::< (#do {Display Author,Title}; INNER #)

#)

Consider references:

R: @Record;

P: @Person;

E: @Employee

7.5 MORE EXAMPLES OF USING VIRTUAL PATTERNS 119

Note that these references denote part objects. This means that instance
R constantly denotes the same instance of Record:

• R.Display invokes the Display attribute described in Record resulting
in execution of Display Key.

• P.Display invokes the combination of the Display in Record and the
Display in Person. This means that Display Key; Display Name

and Sex are executed.

• E.Display invokes the combination of Display as described in Record,
Person and Employee. This means that Display Key; Display Name

and Sex; Display Salary and Position are executed.

7.5 More examples of using virtual pat-

terns

In this section we provide additional examples of virtual patterns.

7.5.1 Specialization of initialization patterns

Virtual patterns are useful for describing the initialization of objects. In
the following example, the virtual pattern attribute Init may be used
to initialize instances of the patterns. Each sub-pattern level extends the
specification of Init.

Consider a pattern defining point objects:

Point:

(# X,Y: @integer;

Init:< (# do 0->X; 0->Y; inner #);

#)

The specification of Init indicates that it is a virtual pattern.
A sub-pattern of Point may bind Init to a descriptor that is a sub-

descriptor of the Init in Point:

ThreeDPoint: Point

(# Z: @integer;

Init::< (# do 0->Z; inner #);

#)

When executing the Init of ThreeDPoint, the actions of its super-pattern
are performed, assigning 0 to both X and Y. Execution of the inner in
Init of Point implies execution of the actions in a possible sub-pattern;

120 VIRTUAL PROCEDURE PATTERNS

in this case, the assignment of 0 to Z. In the case of a ThreeDPoint-
object, the inner following 0->Z is an empty action, but in the case
where ThreeDPoint is used further to define, for example, FourDPoint,
then the inner would cause execution of the specialized initialization of
FourDPoint.

7.5.2 Computation of salary for different job types

Consider a company which has employees working in four kinds of differ-
ent jobs. In two of the job types the employees have permanent positions,
whereas they work on an hour-by-hour basis in the other two job func-
tions. Figure 7.3 shows a set of patterns representing the different job
types. The most general pattern Job includes a set of attributes for com-
puting salary, tax and deductibles for the employee performing that job.
The computation of tax is the same for all jobs, i.e. 45% of the salary
minus deductibles.

The computation of salary and deductibles are, however, different for
the four job types. The patterns for computing salary and deductibles
are therefore virtual patterns. Each employee has a standard deduction
of 10 000 which is handled in the definition of Deductible in pattern
Job. Note that Value is just an auxiliary pattern. In NonPermanentJob

a new virtual pattern, hourlyWage, for computing the hourly wage of the
employee, is defined.

Assume that the company has 100 employees. Staff is a repetition of
references denoting various job objects corresponding to the employees,
i.e. Staff[1] may denote an instance of Job1, Staff[2] may denote an
instance of Job4, etc. The pattern ComputeSalarySum computes the sum
of all salaries for all employees.

7.5.3 Geometric figures

Figure 7.4 shows a classification hierarchy of geometric figures. Suppose
we want to develop a computer system for handling geometric figures. For
all kinds of symbols it should be possible to draw the symbol on a screen,
compute the area of the symbol, rotate the symbol, move the symbol, etc.
Most of these functions cannot be described in a general super-class, but
have to be declared as virtual patterns. We leave it as an exercise for the
reader to fill in the details.

7.5.4 Defining control abstractions

We have previously seen how sub-patterns can be used to define control
abstractions using inner. An example of this is the ForAll pattern in

7.5 MORE EXAMPLES OF USING VIRTUAL PATTERNS 121

Job:

(# name: @text;

Value: (# V: @integer do INNER exit V #);

Tax: Value(#do (Salary-Deductible)*45 div 100 ->V #);

Salary:< Value;

Deductible:< Value(#do 10000->V; INNER#)

#);

PermanentJob: Job(# #);

NonPermanentJob: Job

(# noOfHours: @integer;

Salary::< (# do noOfHours*hourlyWage->V #);

Deductible::<(#do 3000+V->V; INNER #);

hourlyWage:< Value

#);

Job1: PermanentJob

(# Salary::< (#do 35000->V #);

Deductible::< (#do 2000+V->V #)

#)

Job2: PermanentJob

(# Salary::< (#do 45000->V #);

Deductible::< (#do 2500+V->V #)

#);

Job3: NonPermanentJob

(# hourlyWage::< (#do 80->V #); (* 80 pr. hour *)

#);

Job4: NonPermanentJob

(# hourlyWage::< (#do 85->V #); (* 85 pr. hour *)

#);

Staff: [100] ^Job;

ComputeSalarySum:

(# Sum: @integer

do 0->Sum;

(for i: Staff.range repeat Staff[i].salary+sum->sum for)

exit Sum

#)

Figure 7.3 Job hierarchy.

Figure 6.6. This technique may be used to define abstractions that control
execution of one action sequence as executed by inner, but other exam-
ples of abstractions need to control the execution of more than one action

122 VIRTUAL PROCEDURE PATTERNS

 GeometricFigure

Circle Polygon

 Triangle Parallelogram

 Rectangle Rhombus

Figure 7.4 Classification hierarchy for geometric figures.

sequence. An example is a control abstraction Find for the Register

pattern. Find searches for a given record in the register: if the record is
found, one action sequence should be executed; if the record is not found,
another action sequence should be executed. The Find pattern may be
defined using a virtual pattern:

Find:

(# Subject: ^Record;

NotFound:< Object;

index: @integer

enter Subject[] {The Record to be searched}

do 1->index;

Search:

(if (index<=Top) // True then

(if table[index][] // Subject[] then

INNER;

leave Search

if);

index+1->index;

restart Search

else NotFound

if)

#)

This Find pattern may be added as an attribute to the Register pattern.
Find will search for an element identical to Subject. If such an element is
found an inner will be executed, otherwise the virtual pattern NotFound

will be invoked.
Find may be used to implement the pattern Has:

7.5 MORE EXAMPLES OF USING VIRTUAL PATTERNS 123

(# Expression:

(# value:< (# V: @integer do INNER exit V #);

#);

Const: Expression

(# C: @integer;

value::<(#do C->V #)

enter C

exit this(Const)[]

#);

BinOp: Expression

(# E1,E2: ^Expression

enter(E1[],E2[])

exit this(BinOp)[]

#);

Plus: BinOp(# Value::<(#do E1.value+E2.value->V #) #);

Mult: BinOp(# Value::<(#do E1.value*E2.value->V #) #);

E: ^Expression

do {Assign (111+222)*2->E}

((111->Const,222->Const)->Plus,2->Const)->Mult->E[];

E.value->putInt

#)

Figure 7.5 Patterns for representing arithmetic expressions.

Has: Find

(# Result: @boolean;

NotFound::< (#do False->Result #)

do True->Result

exit Result

#)

7.5.5 Arithmetic expressions

Figure 7.5 shows patterns for representing arithmetic expressions. An
expression is composed of integer values and binary operations such as
plus and mult. The virtual pattern value computes the value of an
expression.

124 VIRTUAL PROCEDURE PATTERNS

7.6 Benefits of virtual patterns

Sub-patterns and virtual patterns are powerful abstraction mechanisms.
Consider the above example for computation of salaries and, in particular,
the pattern ComputeSalarySum. This pattern is independent of the actual
job objects. The evaluation:

Staff[i].Salary

invokes the Salary pattern corresponding to the actual job object denoted
by Staff[i].

Suppose that we had to compute the salary without using virtual
patterns. We would then need some mechanism to test the job type of a
job object. One way of doing this is to add a job type attribute to pattern
Job:

Job:

(# name: @text;

jobType: @integer;

...

#)

When creating instances of Job1, Job2, Job3 and Job4 we could then
give jobType the value 1, 2, 3 and 4, respectively. A (functional) pattern,
ComputeSalary, for computing the salary could then be written as shown
in Figure 7.6. In addition, a revised version of ComputeSalarySum is
included. As can be seen, it is necessary to check the job type of each
object in order to compute the corresponding salary. By using virtual
patterns, the computation of salary is defined together with each job
pattern. A (functional) pattern, ComputeDeductible, could be written
in a similar way.

Instead of introducing the attribute jobType we could have used the
mechanism for testing pattern membership as described in Section 6.1.
The if-imperative of ComputeSalary would then have the following form:

(if R##

// Job1## then ...

// Job2## then ...

// Job3## then ...

// Job4## then ...

if)

The technique of using attributes like jobType has been shown, since this
is often used in procedural programming languages like Pascal and C.

Perhaps the most important advantage of using virtual patterns ap-
pears when a new job type is added. Using virtual patterns, we could add
a new job type by defining a new sub-pattern of, say, PermanentStaff:

7.6 BENEFITS OF VIRTUAL PATTERNS 125

ComputeSalary:

(# R: ^Job; sum: @integer

enter R[]

do (if R.jobType

// 1 then (* Job1 *) sum + 35000->sum

// 2 then (* Job2 *) sum + 45000->sum

// 3 then (* job3 *)

(# S: ^Job3

do R[]->S[]; S.noOfHours*80 + sum->sum

#)

// 4 then (* job4 *)

(# S: ^Job4

do R[]->S[]; S.noOfHours*85 + sum->sum

#)

if)

exit sum

#);

ComputeSalarySum:

(# Sum: @integer

do 0->Sum;

(for i: Staff.range repeat

(Staff[i][]->ComputeSalary)+sum->sum

for)

exit Sum

#);

Figure 7.6 Functional pattern for computing salary.

Job5: PermanentStaff

(# Salary::< (#do 50000->V #);

Deductible::<(#do 1500->V #)

#)

The ComputeSalarySum pattern need not be changed, since it is indepen-
dent of the actual job patterns.

Without virtual patterns we would have to make changes to all pat-
terns like ComputeSalary and ComputeDeductible. In general, we rec-
ommend using virtual patterns in such situations.

126 VIRTUAL PROCEDURE PATTERNS

7.7 Summary

In this section a summary and further details of virtual patterns is given.
A pattern attribute V of pattern P is declared as virtual using one of the
forms:

V1: P: (# V:< Q #)

V2: P: (# V:< Q0(# ... #) #)

V3: P: (# V:< (# ... #) #)

where Q and Q0 are pattern names. Case V3 is identical to case V2 except
that the object-descriptor for V is implicitly assumed to have Object as
a super-pattern.

The pattern Q (case V1), the object-descriptor Q0(#...#) (case V2),
and the object-descriptor (#...#) (case V3) is called the qualification of
V.

In an object descriptor that has P as a super-pattern, the virtual
pattern V may be extended to object descriptors that are sub-patterns of
the qualification. In case V1 this implies that V may be extended to sub-
patterns of Q; in case V2 V may be extended to sub-patterns of Q0(#...#);
and in case V3, V may be extended to sub-patterns of (#...#).

So even though V may be defined differently in different sub-patterns
of P, it is still known in P to be at least a Q, Q0(#...#) or (#...#). The
extensions of a virtual pattern in different sub-patterns are thus enforced
to be specializations of the definition in the super-pattern.

In P-objects and in instances of sub-patterns of P with no extensions
of V, the qualification is the definition of V, so the qualification is also a
default-binding.

The description of a virtual pattern V may be extended in sub-patterns
of P by means of a further binding, which has one of the forms:

E1: P1: P(# V::< Q1 #)

E2: P1: P(# V::< Q1(# ... #) #)

E3: P1: P(# V::< (# ... #) #)

The cases E1, E2 and E3 correspond to the cases V1, V2 and V3 in the
following way:

(1) Cases E1 and E2 can define a further binding of a virtual pattern
defined as in case V1, provided that Q1 is a sub-pattern of Q. Q1 does
not have to be a direct sub-pattern of Q.

7.8 EXERCISES 127

(2) Case E3 can further bind a virtual pattern defined as in cases V1, V2
or V3. The descriptor (#...#) is automatically made a sub-pattern
of the qualification of V in P.

Q1, Q1(#...#) and (#...#) corresponding to the cases E1, E2 and E3,
respectively, are called the extended descriptor.

In instances of P1, the pattern V is bound to the extended descriptor.
Let X be an instance of P1. Instances of X.V will be instances of the
extended descriptor. This is also the case if the generation of X.V is
specified in the super-pattern P of P1.

A further binding as shown above specifies that V is also a virtual
pattern in P1. The qualification of V in P1 is its extended descriptor.
This means that V may be further extended in sub-patterns of P1:

P2: P1 (# V ::< ... #)

It is possible to extend V by a so-called final binding, which has one
of the forms:

F1: P1: P(# V:: Q1 #)

F2: P1: P(# V:: Q1(# ... #) #)

F3: P1: P(# V::(# ... #) #)

A final binding has the same effect as a further binding, except that V

is not virtual in P1. This implies that V may not be further extended in
sub-patterns of P1.

7.8 Exercises

(1) Redo Exercise 3 in Chapter 3 using virtual patterns. Include patterns
for describing the geometric figures in Section 7.5.3.

(2) Redo Exercise 3 in Chapter 6 using virtual patterns.

(3) Redo Exercise 2 in Chapter 6 using virtual patterns.

(4) Discuss the difference between specialization using sub-patterns and
specialization using virtual patterns.

7.9 Notes

The concept of virtual procedures was originally introduced in Simula.
Class, subclass and virtual procedure are often viewed as the most essen-
tial language constructs associated with object-oriented programming. In

128 VIRTUAL PROCEDURE PATTERNS

Simula, C++ and Eiffel, a procedure attribute may either be non-virtual
or virtual, corresponding to pattern attributes in BETA being either non-
virtual or virtual. In Smalltalk, all procedure attributes (called methods)
are virtual. In Chapter 9, further historical notes on the virtual concept
are given.

Object-oriented programming does not necessarily imply late and un-
safe binding of names, which is sometimes claimed to be a weakness of
object-oriented languages. As mentioned above, pattern attributes of
BETA objects and procedures in C++ objects may be specified as non-
virtual, which means that late binding is not used when invoking them.

When a Smalltalk or Flavors object reacts to a message passed to it
with ‘message not understood’, it has nothing to do with Smalltalk or
Flavors being object-oriented, but with the fact that they are untyped
languages.

The combination of qualified (typed) references and virtuals in BETA
implies that it may be checked at compile-time that expressions like
aRef.aMethod will be valid at run-time, provided of course that aRef

denotes an object. A late binding determines which aMethod (of which
sub-pattern) will be executed. Which aMethod to execute depends upon
which object is currently denoted by aRef.

Consider a reference SomeReservation qualified by Reservation.
This means that SomeReservation may denote objects generated ac-
cording to the pattern Reservation or sub-patterns of Reservation. As
Display is declared as a virtual in Reservation, it is assured that:

SomeReservation.Display

is always valid, and that it will lead to the execution of the appropriate
Display. However, the use of untyped references in Smalltalk-like lan-
guages has the benefit that recompilation of a class does not have to take
the rest of the program into consideration.

What makes late binding slow is not only the method look-up. If a
method in Smalltalk has parameters, then the correspondence between
actual and formal parameters must be checked at the time of execution.
Display will, for instance, have a parameter telling how many copies to
display. This will be the same for all specializations of Display, and
should therefore be specified as part of the declaration of Display in
Reservation.

In BETA this is obtained by qualifying virtuals. The fact that Display
will have a parameter is described by a pattern DisplayParameter:

DisplayParameter:

(# NoOfCopies: @integer

enter NoOfCopies

7.9 NOTES 129

do

...

#)

Qualifying the virtual Display with DisplayParameter implies that
all specializations of Display in different sub-patterns of Reservation

must be sub-patterns of DisplayParameter, and thus have the prop-
erties described in DisplayParameter. This implies that Display in
all sub-patterns of Reservation will have an integer NoOfCopies input-
parameter.

If object-oriented programming is to be widely used in real appli-
cations programming, then the provision of typed languages is a must.
As Peter Wegner says in ‘Dimensions of Object-Based Language Design’
(Wegner, 1987):

‘..., the accepted wisdom is that strongly typed object-oriented
languages should be the norm for application programming
and especially for programming in the large.’

As demonstrated above, it does not have to exclude flexibility in special-
ization of methods or late binding.

Since inheritance has been introduced by object-oriented languages,
object-oriented programming is often defined to be programming in lan-
guages that support inheritance. Inheritance may, however, also be sup-
ported by functional languages, where functions, types and values may
be organized in a classification hierarchy.

In object-oriented languages inspired by Smalltalk, classes are special
objects and inheritance is defined by a message-forwarding mechanism.
Objects of sub-classes send (forward) inherited messages that are not
defned by the object to the super-class ‘object’ in order to have them
performed. This approach stresses code sharing: there shall be only one
copy of the super-class, common to all sub-classes. With this definition of
inheritance it is not strange that ‘distribution is inconsistent with inheri-
tance’ (Wegner, 1987) and that ‘This explains why there are no languages
with distributed processes that support inheritance.’

In the model of object-oriented programming presented here, the main
reason for sub-classing (specialization) is the classification of concepts.
The way in which an object inherits a method from a super-class is – or
rather should be – an implementation issue, and it should not be part of
the language definition.

According to the definition of patterns and objects in BETA given
above, patterns are not objects, and in principle every object of pattern
P will have its own descriptor. It is left to the implementation to opti-
mize by having different objects of P share the descriptor. Following this

130 VIRTUAL PROCEDURE PATTERNS

definition of patterns and objects, there is no problem in having two ob-
jects of the same sub-pattern act concurrently, and even be distributed.
The implementation will in this case simply make as many copies of the
pattern as needed, including a possible super-pattern. This does not ex-
clude that a modification of the super-pattern will have an effect on all
sub-patterns.

Chapter 8

Block Structure

Composition is a fundamental means for organizing objects and patterns
in terms of components of other objects and concepts. There are a num-
ber of different forms of composition, one of these being localization. In
BETA, localization is supported by means of block structure, which was
first mentioned in Section 5.9. In this chapter the usefulness of block
structure will be further explored. Composition is discussed in general in
Section 18.5.2.

A programming language supports block structure if procedures,
classes and blocks can be textually nested. BETA supports block struc-
ture since object-descriptors may be arbitrarily nested. This chapter con-
tains a number of examples of using block structure in the form of nested
patterns.

8.1 Simple block structure

Most object descriptors contain a simple form of block structure. One
example is the pattern Register, which has the form

Register:

(# ...

Init: (# ... #);

Has: (# ... #);

Insert: (# ... #);

Remove: (# ... #);

#)

The object descriptors for Init, Has, Insert and Remove are nested
within the object descriptor for Register.

A procedure pattern may have local procedure patterns, as in the
following example:

131

132 BLOCK STRUCTURE

HandleReservations:

{Handle one or more reservations for a customer}

(# GetReservation:

{Get reservation request from customer}

(# ... #);

MakeReservation:

{Perform temporary reservation}

(# ... #);

ReleaseReservation:

{Release a temporary reservation}

(# ... #)

CompleteReservation:

{Book desired reservations}

(# ... #)

do {Investigate one or more possible reservations }

{from customer using GetReservation and }

{MakeReservation. Release reservations not used }

{and finalize desired reservations using }

{ReleaseReservation and CompleteReservation. }

#)

Here the procedure pattern HandleReservations has been decomposed
into a number of simpler procedure patterns. This decomposition of pro-
cedure patterns into smaller procedure patterns is a useful structuring
mechanism for large procedures. Block structure is useful to provide lo-
cality for these patterns.

All these examples show the nesting of procedure patterns. We next
give examples of nested class patterns.

8.2 Class grammar

The first example of nested class patterns is a pattern representing the
concept of a context free grammar. Instances of the Grammar pattern
represent the context free grammar of programming languages such as
Pascal and Simula. A grammar has the associated concept Symbol, i.e. a
grammar defines the symbols of the language being defined by the gram-
mar. Different concrete grammars have different symbols. Pascal symbols
differ from Simula symbols. We would like to reflect this property in the
definition of the Grammar pattern; this can be done using nested class
patterns, as shown in Figure 8.1.

An instance representing a Pascal grammar can be declared as follows:

Pascal: @Grammar

8.2 CLASS GRAMMAR 133

Grammar:

(# noOfRules: @integer;

... {Other attributes for representing a grammar}

Parse:<

(# input: ^text; output: ^AbstractSyntaxTree

enter input[]

do {Parse the input string according to the grammar}

{and produce an abstract syntax tree}

exit output[]

#);

Symbol:

(# id: @integer; printName: @text; ...

isTerminal: (# ... exit aBoolean #);

#);

#)

Figure 8.1 Grammar pattern.

For this instance it is possible to access the attributes as usual:

Pascal.noOfRules someText[]->Pascal.Parse->anAST[]

The pattern Symbol may be used to declare Pascal symbols in the follow-
ing way:

A,B: @Pascal.Symbol

Using A and B, it is possible to access attributes described in the Symbol

pattern:

A.printName B.isTerminal -> aBool

Consider another set of instances:

Simula: @Grammar; X,Y: @Simula.Symbol

Pascal and Simula are both instances of the same pattern Grammar. The
objects A,B and X,Y are, however, not instances of the same pattern; A,B
are instances of the pattern Pascal.Symbol, whereas X,Y are instances
of the pattern Simula.Symbol. Intuitively, this is what we want, since
A,B are Pascal symbols and X,Y are Simula symbols. The two classes of
symbols are clearly different.

The difference between Pascal.Symbol and Simula.Symbol is the
same as the difference between Pascal.Parse and Simula.Parse. The

134 BLOCK STRUCTURE

Pascal

Move

noOfRules

Grammar Grammar

112

Symbol

struc (# ... #)

origin

Parse

struc (# ... #)

origin

struc (# ... #)

origin

struc (# ... #)

origin

Simula

Move

noOfRules 125

Symbol

Parse

Figure 8.2 Diagrammatic representation of Grammar objects.

latter two expressions invoke different Parse instances, since they have
different origins. Figure 8.2 shows a diagram representing the objects
Pascal and Simula.

Figure 8.3 shows the objects Pascal, Simula, A,B,X and Y. Note that
A,B and X,Y have different origins. The structure references for Parse,

Symbol and isTerminal have been omitted.
By declaring Symbol local to the Grammar pattern, we have the pos-

sibility of distinguishing between symbols of different grammars. Also,
since the class Symbol is local to Grammar, a symbol has no existence
without a grammar. From a modeling point of view, this is what we
want.

In the example above the static references A,B,X and Y denote static
objects. It is, of course, also possible to declare dynamic references like:

C: ^Pascal.Symbol; Z: ^Simula.Symbol

The reference C may denote any instance of Pascal.Symbol and Z any
instance of Simula.Symbol. Suppose that we want to declare a reference
that can denote arbitrary symbols. This can be done by declaring a
dynamic reference qualified by Grammar.Symbol:

S: ^Grammar.Symbol

Note the difference from the declaration of A using Pascal.Symbol,
where Pascal is a reference to a Grammar object. In the declaration

8.3 FLIGHT RESERVATION EXAMPLE 135

Pascal

Move

noOfRules

Grammar Grammar

112

Symbol

Parse

Simula

Move

noOfRules 125

Symbol

Parse

origin

isTerminal

printName

id 18

if

origin

isTerminal

printName

id 25

do

origin

isTerminal

printName

id 59

class

origin

isTerminal

printName

id 23

if

Symbol Symbol Symbol Symbol

Figure 8.3 Diagrammatic representation of Grammar and Symbol ob-
jects.

of S, Grammar is a pattern name. S can refer to instances of either
Pascal.Symbol or Simula.Symbol. In fact, the pattern Grammar.Symbol

may be viewed as a generalization of the patterns Pascal.Symbol and
Simula.Symbol. The Grammar.Symbol pattern is then a representation
of the general concept of a symbol of a context free grammar.

8.3 Flight reservation example

In this section we make use of nested class patterns to further extend
the travel agency example. The FlightReservation pattern contains an
attribute declaration:

ReservedFlight: ^Flight

We now consider how to describe the pattern Flight, but before doing
so we need to understand the concept of a flight.

Consider the flight table of Scandinavian Airline Systems (SAS). This
table contains a description of various entries SK273, SK451, SK511, etc.,
corresponding to the various routes served by SAS. An entry like SK273
contains information about the source and destination of the route, and
other properties such as departure, arrival and flying times are given. It

136 BLOCK STRUCTURE

FlightType:

(# source, destination: ^City;

departureTime,

arrivalTime: @TimeOfDay;

flyingTime: @TimePeriod;

Flight:

(# Seats: [NoOfSeats] @Seat

actualDepartureTime,

actualArrivalTime: @TimeOfDay;

actualFlyingTime: @TimePeriod;

DepartureDelay:

(#

exit(actualDepartureTime - departureTime)

#)

#);

DisplayTimeTableEntry: (# ... #);

...

#)

Figure 8.4 The FlightType pattern.

seems obvious to represent these entries as instances of a pattern repre-
senting the concept of a flight entry.

For our flight reservation system more objects are needed. The flight
SK451 between Copenhagen and Los Angeles actually takes place most
days of the year. A table for handling reservations must contain an entry
for each day the flight takes place. Each such entry should include infor-
mation about seat reservations for that day, etc. For a flight entry like
SK451, we can include a concept that classifies all flights corresponding
to SK451.

Patterns representing flight entries and actual flights are shown in
Figure 8.4.

The FlightType pattern is supposed to be used for modeling entries in
a flight timetable. For each entry in the timetable there is an instance of
the FlightType pattern; such instances represent flight entries like SK451
and SK273. A FlightType object includes information about source,
destination, departure time, arrival time, flying time, etc.

8.3 FLIGHT RESERVATION EXAMPLE 137

TimeTable90: @

(# ...

SK451: @FlightType;

SK273: @FlightType;

...

Init:<

(# ...

do ...

’Copenhagen’ -> SK451.source;

’Los Angeles’ -> SK451.destination;

...

#)

#);

ReservationTable90: @

(#

SK451Flights: [365] ^TimeTable90.SK451.Flight

SK273Flights: [365] ^TimeTable90.SK273.Flight

...

#)

Figure 8.5 Patterns TimeTable and ReservationTable.

An attribute like departureTime is actually modeling the scheduled
departure time, which may vary from day to day. A table for handling
reservations must contain an entry for each day the flight takes place.
Each such entry should have information about the reservation of seats
for that day, and it might include information about the actual depar-
ture time, etc. in order to compute various kinds of statistics. Each
FlightType object has a local class pattern Flight, which models the ac-
tual flights taking place. Instances of the Flight pattern have attributes
characterizing a given flight, including a repetition of Seat objects, the
actual departure time, the actual arrival time, and the actual flight time.

Objects representing the timetable and the reservation table for 1990
are shown in Figure 8.5. Note that SK451Flights is a repetition of ref-
erences to instances of the class Flight pattern of the object denoted by
SK451, whereas SK273Flights denotes instances of the Flight pattern
attribute of SK273. The actual flight SK451 taking place at day no. 111
of year 1990 is thus modeled by the object denoted:

ReservationTable90.SK451Flights[111]

Seat no. 48 for the flight of that day may then be reserved by executing:

138 BLOCK STRUCTURE

ReservationTable90.SK451Flights[111].Seats[48].Reserve

assuming that Seat objects have a Reserve attribute. When the flight has
taken place, the actual times for departure, arrival and the flight time can
be entered into the flight object. The difference between the estimated
flight time and the actual flight time can be computed by executing:

ReservationTable90.SK451Flights[111].DepartureDelay

which returns the difference between actualDepartureTime and
departureTime. Note that DepartureDelay refers to the global ref-
erence departureTime in the enclosing FlightType object. This
would not have been possible if Flight were not defined locally to
FlightType. In the example above, Flight is a class pattern at-
tribute of FlightType. In addition, FlightType instances have the
reference attribute destination and the procedure pattern attribute
DisplayTimeTableEntry. For the different instances SK451 and SK273

of the FlightType pattern, the attributes SK451.destination and
SK273.destination are different attributes. Also, SK451.DisplayTime-
TableEntry and SK273.DisplayTimeTableEntry are different procedure
patterns, since they are attributes of different instances. In the same way,
the class patterns SK451.Flight and SK273.Flight are different, since
they are attributes of different FlightType objects.

8.4 Exercises

(1) Write a pattern Document with the following properties:

(a) A document is a sequence of characters numbered from 1.

(b) It is possible to define one or more selections in a document. A
selection identifies an interval of the characters in the document
including a position between two characters. A selection should
be represented by a Selection object.

(c) A document has a current selection which is a reference to a
Selection object.

(d) Text can be inserted by replacing the characters identified by the
current position.

(e) The text identified by the current selection can be deleted.

(f) There is a distinguished document called Clipboard.

(g) A Selection object has the following operations:

• Copy which copies the selected text to the Clipboard.

8.5 NOTES 139

• Cut which deletes the selected text and stores it on the
Clipboard.

• Paste which replaces the selected text with the text on the
Clipboard.

(h) A Selection object is created by giving an interval to a docu-
ment.

(i) The current selection may be replaced by a reference to another
Selection object.

Define the pattern Selection as a local pattern of Document.

(2) Write a HyperText pattern with the following properties:

(a) A hypertext consists of a set of links.

(b) A link consists of a source and a destination, each being a refer-
ence to an anchor of a document.

(c) A hypertext has an operation define link which takes a source-
and destination anchor as parameters.

(d) It has an operation for scanning all links.

Use the Document pattern of the previous exercise and the Selection

pattern for representing the anchor concept.

8.5 Notes

Block structure was first introduced in the Algol-60 programming lan-
guage. An Algol block corresponds to an object descriptor in BETA. The
purpose of this chapter has been to show that block structure as found
in Simula and BETA, but abandoned in Smalltalk-80, is a natural and
powerful mechanism. When modeling phenomena, it is useful to be able
to characterize an object by means of a class. In addition, block structure
is useful for a number of technical problems in programming.

Block structure is not the only way in which Simula and Smalltalk
differ. Simula contains Algol-60 as a subset and supports block struc-
ture, static (lexical) name binding, and compile-time type checking, but
Smalltalk has none of these features. Smalltalk is more in the style of
Lisp, with a flat set of definitions (classes), dynamic name binding and
run-time type checking.

The Scheme language is an example of a Lisp dialect with block struc-
ture and lexical name binding.

In Simula the use of nested classes is limited by a number of restric-
tions. BETA does not have these restrictions.

140 BLOCK STRUCTURE

Block structure is a controversial subject that has given rise to much
discussion in the literature. In what follows we comment on this discus-
sion.

• Locality. The major advantage of block structure is locality. This makes
it possible to restrict the existence of an object and its description to
the environment (object) where it has meaning.

• Scope rules. There are (at least) the following aspects of scope rules
for names declared within an object:

– They only exist when the object exists. This is a consequence of
locality.

– Access to global names and redeclaration of names.

Global names may or may not be seen within a block. In
(Wulf and Shaw, 1973) it is argued that the use of global variables
within nested blocks is a source of errors. It is considered a problem
that a name can be redeclared within an internal block. There is,
however, no reason to allow such redeclaration in a language if it is
found to be a problem.

Also, it has been argued that it may be difficult to see which global
names are being used within an internal block. Again, this is not
inherently tied to block structure and can be avoided. In languages
like Euclid ((Lampson et al., 1977)), a block must explicitly import
from the enclosing block all names being used.

– Access to names within a block from ‘outside’ the block may be re-
stricted. The hidden/protected mechanism of Simula is an example
of this.

• Syntax. In (Hanson, 1981) it is said that:

‘Block structure can make even moderately large programs
difficult to read. The difficulty is due to the physical separa-
tion of procedure-headings from their bodies....’

In (Tennent, 1982) it is demonstrated that this is merely a matter of
syntax. By using the syntax from Landin’s ISWIM it is possible to
place internal procedure declarations after the body of the block.

In the design of BETA, the above-mentioned problems were considered
minor. The reason is that in BETA block structure is not a mechanism
intended for ‘programming in the large’. Block structure should be used
for ‘programming in the small’. In languages such as Algol-60 and Pas-
cal, where block structure is the only structuring mechanism, the above
problems may be more serious.

8.5 NOTES 141

The grammar example is inspired by (Liskov and Zilles, 1974), who
make use of abstract data types in the CLU language. Since CLU
does not have block structure, the Symbol class is declared outside the
Grammar class, which gives problems with restricting the implementa-
tion details of the Grammar class. For a discussion of these problems see
(Liskov and Zilles, 1974; Madsen, 1987)

The flight reservation example is often described as an instance of
what is called the Prototype Abstraction Relation Problem as formulated
by Brian Smith (Smith, 1984). The problem is that a flight entrance like
SK471 (a prototype) may be viewed as an instance of the class of flight
entries and also as a class whose instances are the actual SK471 flights.
To model this it is necessary to be able to describe SK471 both as an
object and as a class. This is not possible in languages like Smalltalk.
The metaclass mechanism of Smalltalk can do some of this, but is not
general enough. The BETA solution describes SK471 as an object with
a class attribute.

142 BLOCK STRUCTURE

Chapter 9

Virtual Class Patterns

Virtual patterns are used to describe the common structure of pattern
attributes in a super-pattern. In Chapter 7 the notion of virtual patterns
was introduced by means of virtual procedure patterns. In this chap-
ter, the virtual concept is further explored by giving examples of virtual
patterns used as classes.

In BETA there is no technical difference between procedure patterns
and class patterns, it is simply a matter of how instances are generated.
For procedure patterns, instances are generated in the action-part and
immediately executed. The instance then becomes inaccessible since no
reference to it is saved. For class patterns, ‘named’ instances are generated
in the sense that a reference to the instance is saved.

9.1 Directly qualified virtual class patterns

As already mentioned, the specification of a virtual class pattern is iden-
tical to the specification of a virtual procedure pattern – the difference is
in how instances are generated. Consider Figure 9.1: the class Graph has
class attributes Node and Link which define the elements of a graph. Node
and Link are specified as virtual classes. Subclasses of Graph may extend
the definitions of Node and Link corresponding to specific different kinds
of graphs. Instances of Node will therefore always have the attribute
Connected, and instances of Link will have the attributes Source and
Dest. As can be seen, the virtual procedure Connect makes use of these
attributes.

Note that the Node classes in two different instances of Graph are
different classes, as they are attributes of different objects. A Node object
from one Graph object cannot become part of another Graph.

In the DisplayableGraph subclass, the definitions of Node and Link

have been extended. This is reflected in the extended definition of Con-
nect which has an additional parameter DL. The execution of Connect

143

144 VIRTUAL CLASS PATTERNS

Graph:

(# Node:< (# Connected: @boolean #);

Link:< (# Source, Dest: ^Node #);

Root: ^Node;

Connect:<

(# S,D: ^Node; L: ^Link

enter(S[],D[])

do &Link[]->L[];

S[]->L.source[]; D[]->L.Dest[];

true->S.Connected->D.Connected;

INNER

#);

#);

DisplayableGraph: Graph

(# Node::< (# DispSymb: ^DisplaySymbol #);

Link::< (# DispLine: ^DisplayLine #);

Connect::<

(# DL: ^DisplayLine

enter DL[]

do DL[]->L.DispLine[]; INNER

#);

Display:< (# #)

#);

TravellingSalesmanGraph: Graph

(# Node::< (# Name: ^Text #);

Link::< (# Distance: @integer #);

Connect::<

(# D: @integer

enter D

do D->L.Distance; INNER

#);

#);

DG: ^DisplayableGraph;

TG: ^TravellingSalesmanGraph

Figure 9.1 Example of virtual class patterns.

implies the generation of a Link object (&Link). This Link object is an
instance of the extended Link class, and the reference L denotes this in-
stance. Thus L.DispLine is a valid expression. The reference DG.Root is
known to denote an instance of the extended Node class, thus an expres-
sion like DG.Root.DispSymb is valid.

9.2 GENERAL PARAMETERIZED CLASS PATTERNS 145

The definition of TravellingSalesman is similar, but with different
extensions of Node, Link and Connect.

9.2 General parameterized class patterns

In the previous chapters there have been examples of patterns describing
registers for inserting various elements. The Register in Chapter 3 may
be used to store integer objects; the ReservationRegister pattern in
Chapter 6 may be used to store Reservation objects. These patterns
have a similar structure: the main difference is the type of elements that
can be inserted in a register. From a modeling point of view, it is desir-
able to be able to describe a general generic Register pattern which can
be used to insert arbitrary elements. Special registers restricted to reser-
vations or records could then be defined as sub-patterns of this general
Register pattern.

The Register pattern in Figure 9.2 is an example of such a general
pattern. The only main difference from the previous register patterns is
the virtual class attribute Content. Content is the type of the elements
of the Register, and is qualified by the most general Object pattern.
This means that a Register object may include instances of all patterns.
Note that the qualification of Content is described using a pattern name
– most examples so far have used the form of direct qualification of virtual
patterns.

In sub-patterns of Register it is possible to restrict the type of el-
ements to be stored in the register. Figure 9.3 shows an example of a
register for storing Record objects. The RecordRegister pattern is de-
fined as a sub-pattern of Register, where the qualification of the virtual
class pattern is extended to the Record pattern. This means that the
elements of the register must be instances of Record or sub-patterns of
Record.

A Display attribute has been added to RecordRegister. The virtual
pattern Display scans through all the elements of the set and invokes
their Display pattern. This is possible as all elements in the register are
known to be instances of Record or its sub-patterns. Such objects all
have a Display attribute.

It is possible to make further sub-patterns of RecordRegister. A
Student register can be declared, as in Figure 9.4, where all objects in
this register are Student objects. Here we have made a final binding of
Content, which means that it is not possible to make further restrictions
of the qualification of Content in sub-patterns of StudentRegister.

146 VIRTUAL CLASS PATTERNS

Register:

(# Content:< Object;

Table: [100] ^Content; Top: @integer;

Init:< (# ... #);

Has: Find

(# Result: @boolean;

NotFound::(#do false->Result #)

do true->Result

exit Result

#)

Insert:

(# New: ^Content

enter New[]

do (if (New[]->Has) // false then ... if)

#);

Remove: (# ... #);

ForAll:

(# Current: ^Content

do (for inx: Top repeat

Table[inx][]->Current[];

INNER

for)#);

Find:

(# Subject: ^Content; index: @integer;

NotFound:< Object

enter Subject[]

do 1->index;

Search:

(if (index<=Top) // true then

(if Subject[] // Table[index][] then

INNER;

leave Search

if);

index+1->index;

restart Search

else &NotFound

if)#);

#)

Figure 9.2 The Register pattern parameterized with virtual patterns.

9.3 NOTES 147

RecordRegister: Register

(# Content::< Record;

Init::< (# ... #);

Display:<

(#

do ForAll(#do Current.Display #); INNER

#)

#)

Figure 9.3 Sub-pattern of Register.

StudentRegister: RecordRegister

(# Content:: Student;

UpdateStatus: Find

(# Status: @StatusType;

NotFound:: (# ... #)

enter Status

do Status->Table[index].Status

#)

#)

Figure 9.4 Example of a specialization of the Register pattern.

9.3 Notes

Even though the most common use of redefinitions of virtuals (methods)
is to reflect specialization, most object-oriented languages with virtuals
do not require definitions of virtuals in sub-classes to be specializations of
the virtual definitions in the super-class. A sub-class method in Smalltalk
and Flavors need not have more than the identifier in common with the
corresponding method in the super-class. A recent improvement of Si-
mula has made it possible to specify the parameters that all procedure
definitions in sub-classes must have, but apart from that, a definition
of a virtual in a sub-class consists of a pure redefinition of the virtual
definition in the super-class.

In the use of these languages it has, however, been recognized that
a pure redefinition of the virtual is not always what is wanted. When
(re)defining a virtual in a sub-class, the definition (or effect) of the virtual
in the super-class is sometimes needed. In Smalltalk this is obtained by

148 VIRTUAL CLASS PATTERNS

simply sending a message to the super-class (from within the method of
the sub-class), so that the method of the super-class is performed, i.e.
the opposite of inner. Flavors provides a more sophisticated scheme
(e.g. before and after methods). In Simula the virtual definition in the
super-class is simply not accessible as part of or after a binding of the
virtual.

In the case where pattern attributes are used to generate and exe-
cute item objects, they correspond to local procedures in Simula and to
methods in Smalltalk and Flavors. As BETA has a general sub-pattern
concept, also covering item objects acting as local operations, we have
in Smalltalk terms ‘classes and sub-classes of methods.’ It is not a new
idea to use the class/sub-class mechanism for methods. In 1975 Vaucher
proposed prefixed procedures as a structuring mechanism for operations
(Vaucher, 1975). In BETA this is a consequence of a more general notion
of pattern/sub-pattern. As Vaucher has demonstrated, a class/sub-class
mechanism for methods is useful in itself.

The essence of specialization by sub-patterns is that objects of a sub-
pattern of a pattern P should have all the properties of P-objects. There
is, however, no way to guarantee this, since a sub-pattern may introduce
properties that ‘contradict’ the intentions of the super-pattern.

Languages supporting classes/sub-classes do not prevent programmers
from making such sub-classes, although, by default, objects of sub-classes
behave like objects of the super-class. One example of this is that an
object of a sub-class inherits the attributes (in terms of variables and
procedures/methods) of the super-class. The term inheritance is very of-
ten used instead of sub-classing. This reflects the fact that inheritance
of ‘code’ is often considered to be the major benefit of sub-classing. In
BETA, sub-classing is primarily considered a mechanism for modeling
conceptual hierarchies, although it may be used for code sharing as well.
This is one of the major differences between the American and the Scan-
dinavian schools of object-oriented programming (Cook, 1988).

Chapter 10

Part Objects and Reference
Attributes

Classification and composition are fundamental means for apprehending
the real world. Classification is the means by which we form and distin-
guish between different classes of phenomena and concepts. Composition
is the means by which we understand phenomena and concepts as a com-
position of other phenomena and concepts.

In the previous chapters we have seen a number of examples of using
patterns, sub-patterns and virtual patterns for supporting classification.
In Chapter 8 we have seen how nested patterns (block structure) may be
used to support localization, which is one form of composition. In this
chapter we shall take a closer look at part-objects which supports another
form of composition called whole-part composition. This form of compo-
sition is useful for structuring phenomena into wholes and parts. The
modeling aspects of whole-part composition are mentioned in Chapter 2,
and are further discussed in Chapter 18 (Section 18.5.2). In this chapter
we shall give a number of examples of using part-objects in BETA to
model whole-part composition.

We also give examples of how to use (dynamic) reference attributes for
supporting reference composition, which is a third form of composition.
Reference composition is also discused in Section 18.5.2.

10.1 Part objects

The construct for declaring a part object was introduced in Chapter 3.
The stick figure from Figure 2.3 may be described in BETA, as shown in
Figure 10.1. In addition to the parts of Figure 2.3, operations for graphical
animation of a stick man have been added. It is possible to move, draw
and clear a stick man on a screen, and it is possible to wave the hands
and wriggle the toes. An instance of a stick man may be declared in the

149

150 PART OBJECTS AND REFERENCE ATTRIBUTES

StickMan:

(# theHead: @Head;

theBody: @Body;

LeftArm,RightArm: @Arm;

LeftLeg,RightLeg: @Leg;

move: (# ... #);

draw: (# ... #);

clear: (# ... #);

...

#);

Head: (# ... #);

Body: (# ... #);

Arm: (# theHand: @Hand; ... #);

Leg: (# theFoot: @Foot; ... #);

Hand: (# wave: (# #); ... #);

Foot: (# bigToe: @Toe; ... #);

Toe: (# wriggle: (# #); ... #)

Figure 10.1 Partial BETA description of a stick man

following way:

Joe: @StickMan

The stick man Joe may be manipulated in the following way:

Joe.move;

Joe.wave;

Joe.LeftLeg.theFoot.bigToe.wriggle

The move operation may be implemented by invoking a corresponding
move operation on the parts:

move:

(# pos: @point

enter pos

do pos->theHead.move; pos->theBody.move;

pos->LeftArm.move; pos->RightArm.move;

pos->LeftLeg.move; pos->RightArm.move;

#)

Clear and draw may be implemented similarly.
Operations of a compound object are often composed from operations

of its part objects. An example of this is the move operation, which is

10.1 PART OBJECTS 151

defined as a composition of move operations on the parts. The move op-
eration illustrates that whole-part composition is also relevant for action-
sequences.

A StickMan is also characterized as having an operation for wrig-
gling the left big toe. In contrast to the move operation, no oper-
ation for this is defined as an attribute of StickMan. Instead, the
wriggle operation of the bigToe part is used directly using the nota-
tion Joe.LeftLeg.theFoot.bigToe.wriggle.

A compound object may thus be characterized by having operations
that invoke operations of its parts and by operations defined in its parts.

In some situations it may be more convenient to ‘propagate’ an op-
eration of a part to the whole object. The wriggle operation may, for
example, be propagated to the StickMan object by defining the following
operation of StickMan:

LeftBigToeWriggle: (#do LeftLeg.theFoot.BigToe.wriggle #)

Note that if all the ten toes can wriggle, then ten such operations may
have to be defined.

10.1.1 Independent and dependent parts

The above example shows that a compound object may directly use an
operation of its parts or it may define operations which control its parts.
The parts are independent of the whole object in the sense that they are
instances of patterns defined without knowledge about being part of some
other object. In some situations it may be desirable that the definition
of a part has knowledge about the compound object. This is possible by
placing the definitions of the patterns inside the whole object. By doing
this it is possible to refer to attributes of the whole object from the parts.

In this section we shall show how it is possible to use virtual patterns to
define part objects that refer to the whole object. Consider the following
pattern defining an address:

Address:

(# Street: @text;

StreetNo: @integer

Town,Country: @text;

printLabel:<

(#

do INNER;

{print Street, StreetNo, Town, Country};

#)

#)

152 PART OBJECTS AND REFERENCE ATTRIBUTES

In this definition of an Address, it is not decided whether or not it is
the address of a person, company, organization, etc. For this reason, the
printLabel operation has been made virtual. In the examples below it
is shown how the Address pattern may be used to define addresses of
persons and companies:

Person:

(# name: @text;

adr: @Address(# printLabel::<(#do {print name} #);

#);

Company:

(# name,director: @text;

adr: @Address

(# printLabel::<(#do {print name and director} #);

#);

The address part of Person objects is defined as a singular instance of
the pattern Address. The virtual procedure pattern printLabel refers
to the name field of the enclosing Person object. The address part of a
Company is handled in a similar way, but here the printLabel refers to
the name and director fields of the enclosing Company object.

References to part objects

It is possible to obtain references to part objects, as already mentioned
in Chapter 3.

P: ^Person; C: ^Customer; A1,A2: ^Address

Given the references defined above, it is possible to assign a reference to
the address part of P and C to A1 and A2 as follows:

P.adr[]->A1[]; C.adr[]->A2[]

This may be useful in situations where there is a need to handle objects
with similar parts. In the above example, it may be useful to handle
objects that all have address parts. Consider the following declarations:

Areg: @Register(# content::< Address #);

The Areg is supposed to contain a list of Address objects. In this list it
is possible to insert any object that has an Address part:

P.adr[]->Areg.insert; C.adr[]->Areg.insert

It is now possible to scan this register and print all the labels:

Areg.scan(#do thisElm.printLabel #)

As may be seen, the Areg object and the code that uses it are independent
of the actual objects having the Address part. The only common thing
for these objects is that each has an Address part.

10.2 REFERENCE ATTRIBUTES 153

Part objects versus sub-patterns

The reader may have noticed that the possibility of treating Person ob-
jects and Company objects as Address objects may technically be obtained
by using sub-patterns. We might have described Person and Company as
sub-patterns of Address:

Person: Address

(# name: @text;

printLabel::< (#do {print name} #);

#);

Company: Address

(# name,director: @text

printLabel::<(#do {print name and directory} #);

#)

Even though this will technically work in the same way, there is a major
difference with respect to modeling. When using part objects we consider
the address property to be an aspect of a person and company. When
using sub-patterns, we consider persons and companies to be classified as
‘addressable’ objects. None of these views can be said to be the right one:
it depends on the actual situation where the objects are to be used.

Multiple part objects

It is of course possible to have several part objects as, for example, shown
in the stick man example. This means that the technique used for having
Address objects as part objects can be generalized to having several part
objects, each representing different aspects of the whole object.

10.2 Reference attributes

In the previous sections a number of examples of using static refer-
ences/part objects for modeling whole-part hierarchies have been given.
In this section the use of dynamic reference attributes for modeling refer-
ence composition will be given. Reference composition is used to describe
compound objects with parts which are not ‘physically’ contained in the
whole object, an example being the bank account defined in Chapter 3.
A bank account has a Customer attribute, and it is of course not a good
model to consider the Customer object to be a part of the Account. In-
stead, a reference to the Customer is considered a part of the Account:

Account:

(# Customer: ^Person;

...

154 PART OBJECTS AND REFERENCE ATTRIBUTES

#)

In general, reference composition may be used to represent arbitrary rela-
tions. The Customer attribute of an Account may be seen as representing
a ‘customer’ relation between an account and a person. In this example
the relation is one way, in the sense that the reference is from the account
to the person, and not vice versa. It is, of course, possible to represent
two way relations. Consider patterns representing books and authors:

book:

(# theAuthor: ^Author;

...

#);

Author:

(# theBook: ^Book;

...

#);

There are numerous examples of relationships of this kind. The relation-
ship between a vehicle and its owner is another example, and it may be
modeled in BETA as follows:

Vehicle: (# owner: ^Person; ... #)

As with the ‘customer’ relation, the ‘owner’ relation is simple in the sense
that an attribute of a Vehicle object refers to the owner of the vehicle.
The above representation of the ‘owner’ relation cannot be used to identify
a vehicle owned by a person. As before, it is possible to introduce a
reference attribute of a Person object to refer to a Vehicle:

Person: (# owns: ^Vehicle; ... #)

The above description assumes that a vehicle is owned by at most one
person, and that a person owns at most one vehicle. Such a relation is
called a one-to-one relation. A Person object representing a person that
does not own a vehicle could be represented by letting the owns reference
have the value NONE. If we assume that a vehicle always has an owner,
then the owner attribute of Vehicle objects will never be NONE.

In practice, a given person may own several vehicles and we might
want to represent this fact. In BETA this can be done using repetitions
of references, as in the following example:

Person: (# owns: [...] ^Vehicle; ... #)

In practice, it may be inconvenient to use repetitions to represent such
relationships. Instead we might have a Set pattern for representing sets
of references to objects:1

1The Mjølner BETA System has such a Set pattern defined in its basic library.

10.3 EXERCISES 155

Person: (# owns: @Set(# element::<Vehicle #); ... #)

This type of relation is called one-to-many.
The relation ‘Author writer-of Book’ is an example of a many-to-many

relation. An author may write several books, and a book may have several
authors.

Representing relations as patterns

Often it is useful to represent relationships as instances of patterns. This
may be the case for relations that are not binary, or if additional attributes
are needed to characterize the relation. In the following example a pattern
Quartet defines a relation covering phenomena such as ‘The Beatles.’
Phenomena like ‘The Mills Brothers’ and ‘Simon and Garfunkel’ may be
represented as objects that are instances of patterns modeling relations
such as ‘Trio’ and ‘Duo’:

Quartet:

(# p1,p2,p3,p4: ^Person;

init:< (# do INNER #)

#);

...

theBeatles: @Quartet

(# init::<(#do JohnLennon[]->p1[]; ... #)

#)

This an example of reference composition. Often more attributes than
just references may be associated with a relation. For a quartet its salary,
list of engagements, etc. may be represented. Consider the ‘owner/owns’
relation for vehicles. A Registration pattern may be used to represent
the relation:

Vehicle: (# R: ^Registration ; ... #);

Registration:

(# V: ^Vehicle;

P: ^Person;

RegistrationDate: @Date;

...

#);

Person: (# owns: @Set(# element::Registration; ... #)

10.3 Exercises

(1) Complete the stick man example. Use a suitable graphics package
from the Mjølner BETA System to implement the graphics for draw-
ing a stick man.

156 PART OBJECTS AND REFERENCE ATTRIBUTES

(2) Describe the many-to-many relation ‘Author writer-of Book’ where
an author may have written several books, and a book may have
several authors. Discuss possible properties of the relation.

(3) Describe patterns modeling arbitrary binary relations.

10.4 Notes

For many years the field of object-orientation has been focusing primarily
on classification/specialization, and has to some extent neglected compo-
sition. This may be due to the fact that support for composition has been
available in programming and design languages from the very beginning,
whereas support for classification was new with the introduction of sub-
classing (inheritance). There has thus been a tendency to forget about
composition and try to use inheritance for supporting composition also.
Composition is just as important as classification for organizing and struc-
turing knowledge. A general discussion of part objects may be found in
(Faber and Krukow, 1990). Sub-classing versus inheritance is discussed
in (Sakkinen, 1989). The importance of composition has mainly been
recognized within the database field, and object-oriented analysis and
design, (see, for example, (Kim et al., 1987; Coad and Yourdon, 1990;
Booch, 1991)).

The use of relations for data modeling has been central in the database
area (see also the bibliography in Chapter 18).

The stick man example is from (Blake and Cook, 1987) where it is
discussed how to support whole-part objects in Smalltalk-80, which does
not have direct support for this. It is suggested to use instance variables
for supporting parts, but since instance variables are not visible from
outside an object, it is not possible to execute an operation corresponding
to:

Joe.LeftLeg.theFoot.bigToe.wriggle

They extend Smalltalk to allow methods with names like:

LeftLeg.theFoot.bigToe.wriggle

The StickMan object may then define the meaning of the wriggle opera-
tion. If no method with the above name exists, then an instance variable
LeftLeg is assumed to exist, and the message theFoot.bigToe.wriggle

is send to leftLeg, which may have a method theFoot.bigToe.wriggle

or it may propagate the message further.
As proposed in, for example, (Raj and Levy, 1989), code reuse does

not have to be obtained solely by means of sub-classing (inheritance),

10.4 NOTES 157

but may also be obtained by part objects. A discussion of part ob-
jects in BETA, including inheritance from part objects, may be found
in (Madsen and Møller-Pedersen, 1992). This includes a comparison of
multiple inheritance using multiple super-classes and multiple inheritance
using part objects. If only inheritance of code is a concern, then multiple
inheritance from part objects is almost the same as multiple inheritance
from multiple super-classes. It is similar to multiple inheritance in C++
without virtual base classes. Most languages with multiple inheritance
include a renaming scheme to handle identical names inherited from dif-
ferent super-classes. With part objects, the inherited attributes will have
to be accessed using a remote name, i.e. no name conflicts will exist.
However, some people find the use of remote names to be to clumsy.
(Madsen and Møller-Pedersen, 1992) propose a renaming scheme for part
objects.

Additional language constructs for supporting part objects are also
proposed by (Madsen and Møller-Pedersen, 1992). One of these language
mechanisms is the location of a part object. Consider the Address ex-
ample, and consider first the situation where Person and Company are
sub-patterns of Address:

Person: Address

(# name: @text;

printLabel::< (#do {print name} #);

#);

Company: Address

(# name,director: @text

printLabel::<(#do {print name and directory} #);

#);

P: ^Person; C: ^Company; A: ^Address

Here the following types of assignments are possible:

P[]->A[]; C[]->A[]; A[]->P[]; A[]->C[]

The first two types of assignments are always legal, since A is ‘less qual-
ified’ than P and C. The latter two assignments are only legal if A refers
to a Person or Company, respectively. This is, in general, not known at
compile-time, and a run-time check is needed to test the validity of the
assignment. For a discussion of this, see (Madsen et al., 1990). Consider
now the situation where Address is represented as a part object:

Person:

(# name: @text;

adr: @Address(# printLabel::<(#do {print name} #);

#);

158 PART OBJECTS AND REFERENCE ATTRIBUTES

Company:

(# name,director: @text;

adr: @Address

(# printLabel::<(#do {print name and director} #);

#);

P: ^Person; C: ^Company; A: ^Address

The assignments:

P.adr[]->A[]; C.adr[]->A[];

correspond to the assignments P[]->A[]; C[]->A[] in the case where
Person and Company are sub-patterns of Address. In both cases, the
Person and Company objects are assigned to a reference qualified by
Address. In the sub-pattern case, the whole object is assigned; in the
part object case, a part object is assigned. In both cases only the Address
aspects of the Person and Company objects are considered.

In the sub-pattern case it is possible to assign A to P or C and consider
the whole object as a Person and Company. This is not possible in the part
object case. (Madsen and Møller-Pedersen, 1992) have suggested that an
object has a predefined attribute loc which refers to a possible containing
object. If A refers to an Address object which is part of a Person object,
then A.loc refers to the whole Person object. If A instead is part of
a Company object, then A.loc refers to the whole Company object. If A
refers to an object which is not part of another object, then A.loc is
NONE. Using loc we may now execute assignments:

A.loc->P[]; A.loc->C[]

These assignments corresponds to the assignments:

A[]->P[]; A[]->C[]

in the sense that a less qualified reference is assigned to a more qualified
reference, and both forms of assignments require a run-time check.

Chapter 11

Pattern Variables

In this chapter a more dynamic concept of patterns than ordinary and
virtual patterns will be introduced. In the following example:

T: (# A: (# ... #) {1}

V: < D;

do &A;

&V

#)

the evaluation &A always creates an instance of the pattern A as described
at {1}. The name A is constant in the sense that it always denotes the
same pattern. The evaluation &V creates an instance of some sub-pattern
of D. The actual instance created is determined by the sub-patterns of T
where V may be extended. The name V may be thought of as a variable
that may denote different sub-patterns of D. V may be given different
values in different sub-patterns of T and a given value for a sub-pattern
will apply for all instances of the sub-pattern. In this chapter we will
introduce the notion of a pattern variable, which may be assigned different
patterns during a program execution.

11.1 Declaration of pattern variables

A pattern variable is defined as follows:

F: ##T

where F is the name of the pattern variable and T is its qualification. F

may be assigned any pattern which is T or sub-patterns of T.
Consider the following patterns:

T1: T(# ... #)

T2: T(# ... #)

159

160 PATTERN VARIABLES

Then:

T1##->F##

assigns T1 as a pattern to F. F may be used to create instances in evalu-
ations of the form:

F &F &F[]

just as for ordinary patterns. F may be assigned a new pattern:

T2##->F##

or to another pattern variable:

F##->F1##

where F1 may be declared as follows:

F1: ##T

Consider the following example:

(# T: (# do ’Here is ’->puttext; INNER #);

T1: T(#do ’T1’->putText #);

T2: T(#do ’T2’->puttext #);

F1,F2: ##T;

do T1##->F1##; &F1; {1}

T2##->F1##; &F1; {2}

F1##->F2##; &F2; {3}

#)

In line 1, the pattern T1 is assigned to the pattern variable F1. The
subsequent invocation &F1 will then generate and execute an instance of
T1. The text Here is T1 will be printed. In line 2 F1 is assigned a
new pattern T2. The invocation &F1 will then generate and execute an
instance of T2, and the text Here is T2 will be printed. Finally, in line
3 F1 is assigned to F2. Since F1 is referring to the pattern T2, the T2

pattern will also be assigned to F2. The invocation &F2 will thus generate
and execute an instance of T2.

F is analogous to a reference R: ^T with respect to qualification. The
reference R may refer to instances of T or sub-patterns of T. F may refer
to the pattern T or to sub-patterns of T.

11.1 DECLARATION OF PATTERN VARIABLES 161

Structure reference of objects

For any object it is possible to obtain a reference to its structure. For an
object reference R, R## returns the structure that was used to instantiate
the object referred to by R. Consider references:

R1: @T1;

R2: ^T;

R3: @T2(# ... #)

The value of R1## is the pattern T1, since R1 is an instance of T1. The
value of R2## is the structure of the object referred to by R2. Since R2

may refer to instances of T or sub-patterns of T, R2## may be any such
pattern. The value of R3## is the structure T2(# ... #).

The following procedure pattern creates an object which is an instance
of the same pattern/object-descriptor as its enter parameter:

MakeCopy:

(# S,R: ^Object; F: ##Object

enter S[]

do S##->F##; &F[]->R[]

exit R[]

#)

The copy of the S-object will not have the same state as S. All simple
objects (integer, etc.) will have their default values (0, etc.), and all
references will be NONE. Some object-oriented languages provide a Clone

operation which generates a copy with the same state. Such an operation
is currently not available for BETA.

Relational operators

It is possible to compare pattern variables like:

F## = T1## F## < T2## R## <= T1##

where = means the same pattern, < means that the left-side is a sub-
pattern of the right-side, and <= means that the left-side is either equal
to the right-side or a sub-pattern of the right-side.

It is also possible to test for equality of pattern variables using the
if-imperative, as shown in Sections 6.1 and 7.6.

Block structure and relational operators

Consider the following declarations:

T: (# P: (# ... #); ... #);

X1,X2: @T

162 PATTERN VARIABLES

The two patterns X1.P and X2.P are different patterns, meaning that the
expression X1.P## = X2.P## has the value false. This example is similar
to the Grammar example discussed in Section 8.2, with Pascal.Symbol

being different from Simula.Symbol.
If X1 and X2 are declared as dynamic references:

X1,X2; ^T1

then they may refer to the same object or to different objects. In the
former case X1.P## = X2.P## will have the value true, whereas in the
latter case it will have the value False.

‘First class’ values

Pattern variables make patterns ‘first class’ values in the sense that a pat-
tern can be assigned to a variable, passed as a parameter to a procedure
pattern, and returned as a result of a procedure pattern.

It is also possible to change the behavior at run-time of objects. In-
stead of using virtual procedure patterns it is possible to use variable
procedure patterns. If variable procedure patterns are used, their value
can be completely redefined in sub-patterns. Consider an extension of
the example from the start of this chapter:

T: (# A: (# ...#);

V:< D;

F: ##P

#)

For instances of T and instances of sub-patterns of T, the attribute A is
constant, V may have different bindings in sub-patterns of T. The at-
tribute F may have different bindings in different instances of the same
sub-pattern of T, and the binding in a given instance may be changed
dynamically:

T1: T(# ... #);

X1,X2: @T1

...

P1##->X1.F##; P2##->X2.F##; ...; P3##->X1.F##; ...

11.2 Example

The following is an example of the use of pattern variables.
Consider a drawing tool for drawing boxes and ellipses on a graphical

screen using menus and a mouse. Whenever the user clicks a button on
the mouse, one of two actions is performed: either a symbol is drawn on

11.3 EXERCISES 163

the screen or a symbol pointed at is moved. There is always a ‘current
action’ to be performed. The current action is selected in the ‘actions
menu’ where the user can select either ‘draw’ or ‘move.’ When ‘draw’ is
selected, the current symbol is drawn on the screen. The current symbol
is selected by the user via the ‘symbol menu.’

The DrawingTool pattern in Figure 11.1 describes the drawing tool. It
has attributes representing the two types of symbols and the two types of
actions. It has a pattern variable for referring to the current selected sym-
bol (CurrentSymbol) and one for referring to the current selected action
(CurrentAction). The procedure pattern attribute SelectAction is ex-
ecuted when the user selects an entry in the action menu. SelectSymbol
is executed when the user selects an entry in the symbol menu. DoAction
is executed when the user clicks a button on the mouse.

When DoAction is executed, an instance of the pattern variable
CurrentAction is executed. Since CurrentAction will refer to either
the DrawAction or the MoveAction, one of these two actions will be exe-
cuted.

When DrawAction is executed, an instance of CurrentSymbol is cre-
ated. Since CurrentSymbol will refer to either Box or Ellipse, either a
box or ellipse object is created.

11.3 Exercises

(1) In Section 7.6 the attribute jobType was introduced as an integer
variable. For this to work properly, jobType must be initialized for
each job object. Consider how jobType instead could be defined as a
virtual pattern attribute thereby avoiding the initialization problem.

(2) The pattern qua may be used in the following way:

R: ^T;

..

(R[]->qua(# qual::T1 #)).x->a

The pattern qua checks if R##<=T1##. If this is true it returns a
reference qualified by T1. It is thus possible to use qua for testing
the qualification of a pattern and subsequently use it in a computed
remote name.

Implement qua in BETA.

(3) Extend the drawing tool from Section 11.2 to include connectors
between boxes and ellipses.

164 PATTERN VARIABLES

DrawingTool:

(# Symbol: (# ... #);

Box: Symbol(# ... #);

Ellipse: Symbol(# ... #);

Action: (# ... #);

DrawAction: Action

(# F : ^Symbol

do ... &CurrentSymbol[]->F[]; ...

#);

MoveAction: Action(# ... #);

CurrentSymbol: ##Symbol;

CurrentAction: ##Action;

SelectAction:

(# item : @text

enter item

do (if item

// ’draw’ then DrawAction##->CurrentAction##

// ’move’ then MoveAction##->CurrentAction##

if)

#);

SelectSymbol:

(# item: @text

enter item

do (if item

// ’box’ then Box##->CurrentSymbol##

// ’ellipse’ then Ellipse##->CurrentSymbol##

if)#);

DoAction:

(#

do CurrentAction

#)

#)

Figure 11.1 The pattern DrawingTool.

11.4 Notes

Procedure variables are known in many languages. In Lisp-based lan-
guages and functional programming languages it is usually possible to
pass functions around as arguments of functions and return functions as

11.4 NOTES 165

the result of other functions. In Algol-60 it is possible to pass a proce-
dure/function as an argument to a procedure/function. It is not possible
to return a procedure/function as a result or to declare procedure vari-
ables. In C it is, for instance, possible to have pointers to functions.

Most object-oriented languages do not have constructs similar to pat-
tern variables. Pattern variables as described here were suggested by Ole
Agesen, Svend Frølund and Michael H. Olsen in their Masters Thesis
(Agesen et al., 1990).

Pattern variables make the principal distinction between class-based
languages such as BETA and classless languages such as Self more blurred.
One of the advantages of classless languages is that since object references
can be passed as parameters, etc., this gives the power of passing classes
around as parameters. As has been seen, pattern variables provide the
same power.

In BETA it is possible to write a ‘classless’ program by means of
singular objects. ‘Instances’ of these singular objects may be created as
shown above. It is, however, not possible to define sub-classes of such
objects.

One may ask the question whether or not it is useful to have both
patterns and objects. Languages like Self demonstrate that it is possible
to have only objects. The reason for having both patterns and objects in
BETA is that for modeling purposes it is important to distinguish between
concepts, and phenomena and their representation in terms of patterns
and objects. If objects are used for representing concepts, and instances
are created by means of cloning, it may be very difficult to understand
the structure of a program. In the Cecil language (Chambers, 1992),
which is claimed to be classless, objects are divided into various categories
including abstract and template. An abstract object can only be used for
inheritance and a template object can only be used for instantiation. The
motivation for this categorization of objects is to avoid certain run-time
errors when manipulating such objects. It is very difficult to see the
principal difference between a template object and a pattern.

166 PATTERN VARIABLES

Chapter 12

Procedural Programming

In this section we show how to support procedural programming, i.e.
viewing a program as a collection of procedures that manipulate a set
of data structures. The data structures are implemented as instances
of classes used like Pascal records. In Chapter 3, various examples of
procedural programming were given. The patterns Factorial, Power

and Reciproc are all done in a procedural style. Modern procedural
languages like Modula and Ada include a module (called a package in
Ada) construct. In this chapter we describe the BETA alternatives to the
module/package construct.

Two interesting issues in programming languages are the notions of
higher order procedures and types. A higher order procedure is a procedure
parameterized by procedures and/or types. Similarly, a higher order type
is a type parameterized by procedures and/or types. A procedure or type
specified as a parameter is called a formal procedure or formal type. The
procedure or type passed as a parameter is called the actual procedure or
actual type.

There has been a tendency to restrict support for formal procedures
in procedural languages. Algol-60 has full support of formal procedures,
whereas languages like Pascal and Ada have restricted forms. In Ada
formal procedures and formal types are to a limited extent supported by
so-called generic modules. It is outside the scope of this book to describe
generic modules and other language constructs that support higher order
procedures and types. In this chapter we present examples of virtual
patterns used as formal procedures and types.

In the following, language constructs such as module, package, generic
and higher order procedure and type will be mentioned to compare how
such constructs may be expressed within the object-oriented framework
presented here. It will be an advantage if the reader is familiar with such
constructs. It is, however, possible to read the following sections without
such knowledge. The main purpose of this chapter is to present various

167

168 PROCEDURAL PROGRAMMING

Complex:

(# I,R: @real;

Plus:

(# X,Y: @Complex

enter X

do X.I+I->Y.I; X.R+R->Y.R

exit Y

#);

Mult: ...

enter(I,J)

exit(I,J)

#);

C1,C2,C3: @Complex

...

C2->C1.Plus->C3

Figure 12.1 Complex class.

useful programming techniques.

12.1 Functional classes

In object-oriented programming languages there is often an asymmetry
between operands of a function. Consider the class Complex in Figure
12.1. The function + is modeled by the attribute Plus of Complex. An
ordinary expression C1 + C2 then has the form C2->C1.Plus. As can be
seen, the arguments C1 and C2 are treated differently.

This has often been criticized. The authors of CLU (Liskov and
Zilles, 1974) decided to qualify the operations using class-name instead
of instance-name. The above operation looks like the following in CLU:

C3:=Complex$Plus(C1,C2)

A consequence is that all operation-calls must be denoted in this way.
In Smalltalk the asymmetry has been kept. Numbers are viewed as

instances of a class and respond to messages, although this may not be
the most natural way of modeling numbers in a programming language.
Below we show that the procedural/functional style can be expressed in
BETA.

Consider the definition of a complex package in Figure 12.2. The
ComplexRing class defines a set of attributes that implement complex

12.1 FUNCTIONAL CLASSES 169

(#

ComplexRing:

(#

Complex:

(# I,R: @real

enter(I,R)

exit(I,R)

#);

Create:

(# R,I: @real; C: @Complex

enter(R,I)

do R->C.R; I->C.I

exit C

#);

Plus:

(# A,B,C: @Complex

enter(A,B)

do A.I+B.I->C.I; A.R+B.R->C.R

exit C

#);

Mult: ...

#);

CR: @ComplexRing; {package object}

X,Y,Z: @CR.Complex;

do

(1.1,2.2)->CR.create->X;

(3.1,0.2)->CR.create->Y;

(X,Y)->CR.plus->Z

#)

Figure 12.2 Complex package.

numbers. The object CR is an instance of ComplexRing. The attributes
of CR may then be used as shown in the example. In CLU, the operations
are qualified by a type name; here they are qualified by an object name.
As can be seen, the definition of complex numbers is ‘functional.’ There
is no asymmetry between the arguments of the operations. Objects like
CR are called package objects.

170 PROCEDURAL PROGRAMMING

T: (# T1: (# ... #);

T2: (# ... #);

...

Tn: (# ... #);

F1: (# X: @T2; y: @T3; z: @T1

enter(x,y)

do ...

exit z

#);

F2: (# ... #);

...

Fm: (# ... #)

#);

aT: @T;

a: @aT.T1; b: @aT.T2; c: @aT.T3;

...

(b,c)->aT.F1->a

Figure 12.3 Definition of a set of mutually dependent classes.

Mutually dependent classes

In CLU a class defines a single abstract data type. In Ada it is possible
to define a package consisting of mutually dependent types, i.e. types that
must know about one another’s representation. It is straightforward to
generalize the technique used for the ComplexRing class to define mutually
dependent classes. Figure 12.3 illustrates a sketch of class that describes
package objects with attributes consisting of n classes and m operations.

In Figures 12.4 and 12.5 an example of two mutually dependent classes
is shown. The pattern VectorMatrixPackage defines two class patterns,
Vector and Matrix, and a number of associated operations. The Matrix

operations make use of the representation of a Vector object.
The notation used in the above examples has two immediate draw-

backs:

• It may be awkward to always have to qualify attributes of a package
object with the name of the package object. This can be avoided by a
mechanism similar to the with-statement of Pascal or inspect-statement
of Simula:

12.1 FUNCTIONAL CLASSES 171

VectorMatrixPackage:

(# Vector:

(# S: [100] @Integer;

Get: (# i: enter i exit S[i]#);

Put: (# e,i: @integer enter(e,i) do e->S[i] #)

#);

Matrix:

(# R: [100] ^ Vector;

Init:<

(#do (for i:R.range repeat &Vector[]->R[i][] for); INNER#);

Get: (# i,j: @integer enter(i,j) exit R[i].S[j] #);

Put: (# e,i,j: @integer enter(e,i,j) do e->R[i].S[j] #)

#)

VectorBinOp:

(# V1,V2: ^ Vector

enter(V1[],V2[]) do &Vector[]->V3[]; INNER exit V3[]

#);

AddVector: VectorBinOp

(#do (for i: V1.S.range repeat V1.S[i]+V2.S[i]->V3.S[i] for)#);

...

MatrixBinOp:

(# M1,M2,M3: ^ Matrix

enter(M1[],M2[]) do &Matrix[]->M3[]; M3.init; INNER exit M3[]

#);

AddMatrix: MatrixBinOp

(#do (for i: M1.R.range repeat

(for j: M1.R[i].S.range repeat

M1.R[i].S[j] + M2.R[i].S[j]->M3.R[i].S[j]

for)for)#);

...

MultMatrixByVector: ...

#);

Figure 12.4 Vector and matrix package.

with aT do

(# a: @T1; b: @T2; c: @T3;

do (b,c)->F1->a

#)

Of course, this only works if there is just one instance of the class T.
Ada also has a variant of the with statement. BETA does not have a
with-statement.

172 PROCEDURAL PROGRAMMING

MultMatrixByVector:

(# V: ^ Vector; M1,M2: ^ Matrix

enter(M1[],V[])

do &Matrix[]->M2[];

(for i: V.S.range repeat

(for j: M1.R[i].S.range repeat

V.S[i] * M1.R[i].S[j]->M2.R[i].S[j]

for)for)

exit M2[]

#)

Figure 12.5 Vector and matrix package.

• If only one instance of the class is needed, it may also be desirable to
avoid declaring the class. This can be accomplished by defining the
package object as a singular object:

aT: @(# T1: ...; T2: ...; ... Tn: ...;

F1: ...; F2: ...; ... Fm: ...;

#)

• An alternative to the with statement and singular objects is to use a
singular inserted object prefixed by T, as in

(# ...

do T(# {All declarations in T are visible here} #)

#)

This technique is often used in practice.

The examples in this section involve package objects that have only class-
and procedure attributes. There is thus no state associated with these
package objects. Since an <object-description> may contain variable
declarations, it is possible to describe package objects with state. A
singular package object like aT is then quite similar to an Ada package.
A class, like T or ComplexRing, describing package objects corresponds to
an Ada generic package without generic parameters. An instance of such
a class corresponds to an instantiation of an Ada generic package. Later
in this chapter we discuss how patterns can be used to model generic
packages with generic parameters.

12.2 HIGHER ORDER PROCEDURE PATTERNS 173

12.2 Higher order procedure patterns

It is possible to define higher order procedure patterns using virtual pro-
cedure patterns and/or pattern variables as formal procedures. By higher
order procedure pattern we understand a procedure pattern that is pa-
rameterized by a pattern or returns a pattern as a value.

Consider the following patterns:

IntFunc: (# X,Y: @integer enter X do INNER exit Y #);

PlotFunc:

(# F:< IntFunc;

first,last: @Integer;

Device: ^ Image

enter(first,last,Device[])

do (first,last)->forTo

(# inx: @Index

do (inx,(inx->F))->Device.PutDot

#)#)

The pattern PlotFunc is supposed to plot the values of the function F in
the interval [first,last]. Assume that we have functions:

Square: IntFunc(#do X*X->Y #);

Double: IntFunc(#do X+X->Y #)

The following ‘function calls’ will then plot the values of these functions:

(15,30,somePlotter[])->PlotFunc(# F::Square #);

(20,40,somePlotter[])->PlotFunc(# F::Double #);

Assume that we want to plot the value of the factorial function as de-
scribed in Chapter 3. Factorial has not been specified as a sub-pattern
of IntFunc. We may ‘pass’ Factorial in the following way:

(1,6,somePlotter[])->PlotFunc(# F::(#do X->Factorial->Y#)#)

In the above example, virtual patterns are used for parameterizing a
procedure. The following example shows how this can be done using
pattern variables. This style is similar to a traditional style of higher
order procedure patterns:

PlotFunc:

(# F: ##IntFunc;

first,last: @Integer;

Device: ^ Image

174 PROCEDURAL PROGRAMMING

enter(F##,first,last,Device[])

do (first,last)->forTo

(# inx: @Index

do (inx,(inx->F))->Device.PutDot

#)#);

...

(Square##,15,30,somePlotter[])->PlotFunc;

(Double##,20,40,somePlotter[])->PlotFunc;

In the above example, a pattern variable was used as an enter-parameter.
The next example shows a procedure pattern that returns a pattern vari-
able via the exit-list. The example shows how to define a function comp

for composing two integer functions:

comp:

(# f,g: ##IntFunc; h: IntFunc(#do x->f->g->y #)

enter(f##,g##)

exit h##

#);

C: ##IntFunc;

...

(Double##,Square##)->comp->C##;

5->C->x {x=100}

12.3 Virtual classes and genericity

(Meyer, 1987a) presents an interesting comparison between genericity and
inheritance, showing that, in general, inheritance cannot be simulated by
genericity while genericity can be simulated by inheritance. However,
the techniques for simulating so-called unconstrained genericity become
rather heavy. For this reason, unconstrained genericity was included in
Eiffel.

In this section we show to what extent virtual classes can replace
genericity using the example of a general class Ring (Meyer, 1988) with
the attributes Zero, Unity, Plus and Mult. We use Ring to define sub-
classes Complex, and a general class Vector parameterized by Ring. The
Vector class is in turn used to define a ComplexVector class.

The first version of class Ring is defined in a pure object-oriented style,
i.e. operations like + are asymmetrical; a+b is performed as a->b.plus. In
the next section another version of class Ring is defined using a functional
style. Here the + is defined as a function of two arguments.

12.3 VIRTUAL CLASSES AND GENERICITY 175

12.3.1 Pure object-oriented definition of class Ring

The pure object-oriented version of class Ring is shown in Figure 12.6.
The general class Ring defines the virtual procedure attributes Zero,

Unity, Plus and Mult. In addition, a virtual class attribute ThisClass

(explained below) is included. The class Complex is one example of a
sub-class of Ring.

A more interesting sub-class of Ring is the class Vector, which
includes a virtual class attribute ElementType qualified by Ring.
ElementType defines the class of the elements of the vector, i.e. the ele-
ments of the vector have all the properties of a ring. Class ComplexVector
is a sub-class of Vector where the virtual class ElementType is extended
to be class Complex. (In this example a vector consists of 100 elements.
By using a virtual procedure, yielding an integer value, it is straightfor-
ward to parameterize the size of the vector.)

The virtual class ThisClass is used to ensure that the argument of,
say Plus, is always of the same type as the current class. In Complex

it is therefore extended to be a Complex, and in Vector it is extended
to Vector. If the reference A in the definition of Plus in class Ring was
defined as A: ^ Ring, then in the extension of Plus in Complex the refer-
ence A might refer to any Ring object. An explicit check would be needed
to ensure that A refers to a Complex object. In addition, an operation like
V1[]->C2.Plus would be valid. Instead of explicitly defining a virtual
class like ThisClass, it would be more convenient to have a predefined
name for this. For BETA this was suggested in (Kristensen et al., 1983b).
In (Borning and Ingalls, 1981) a proposal for Smalltalk was made. In Eif-
fel the expression like current corresponds to ThisClass.

12.3.2 Functional definition of class Ring

In this section a functional version of class Ring is given. In languages
with a package concept one can define packages that contain the definition
of a type and the operations on this type. A package is not a class,
but rather a definition of a single object. A generic package, on the
other, hand resembles a class, but this is very limited. In object-oriented
terminology, a generic package can only be used for creating a single
instance (a package). It is actually just templates that are elaborated at
compile time; it is not possible to add properties like in sub-classes.

It is possible to model a generic package by a class with virtual class
and virtual procedure attributes representing the formal types and formal
operations of the package.

In Figure 12.7 a functional definition of the class Ring is given, to-
gether with a sub-class ComplexRing that defines the type complex and
operations on complex objects. The virtual class attribute plays the role

176 PROCEDURAL PROGRAMMING

Ring:

(# ThisClass:< Ring;

Plus:< (# A: ^ThisClass enter A[] do INNER #);

Mult:< (# A: ^ThisClass enter A[] do INNER #);

Zero:< (# do INNER #);

Unity:< (# do INNER #)

#);

Complex: Ring

(# ThisClass::< Complex;

I,R: @real;

Plus::<(# do A.I->I.Plus; A.R->R.Plus #);

Mult::< (# ... #);

Zero::< (# do 0->I->R #);

Unity::< (# ... #)

#);

Vector: Ring

(# ThisClass::< Vector;

ElementType:< Ring;

R: [100] ^ ElementType;

Plus::<

(#

do (for i: 100 repeat

A.R[i]->R[i].Plus

for)#);

Mult: ... Zero: ... Unity: ...

#);

ComplexVector: Vector

(# ThisClass::< ComplexVector;

ElementType::< Complex

#)

C1,C2: @Complex;

V1,V2: @ComplexVector

...

C1.Unity; C2.Zero; C1[]->C2.Plus;

V1.Unity; V2.Unity; V1[]->V2.Plus;

Figure 12.6 Object-oriented definition of class Ring.

of the type. The operations on the type are defined in a functional (sym-
metrical) way on instances of class Type. The Type class is extended in
sub-classes of the Ring class. To use a ComplexRing it is necessary to cre-
ate an instance of it (in the example, CR is such an instance). All complex

12.3 VIRTUAL CLASSES AND GENERICITY 177

Ring:

(# Type:< Object;

Plus:<

(# X, Y, Z: ^Type

enter(X[],Y[])

do &Type[]->Z[];

INNER

exit Z[]

#);

Mult: ... Zero: ... Unity: ...

#)

ComplexRing: Ring

(# Type::< (# I,R: @real #);

Plus::< (#do X.I + Y.I->Z.I; X.R + Y.R->Z.R #);

Mult: ... Zero: ... Unity: ...

#);

CR: @ComplexRing;

C1,C2,C3: ^ CR.Type

...

CR.Unity->C1[]; CR.Zero->C2[];

(C1[],C2[])->CR.Plus->C3[]

Figure 12.7 Functional definition of Ring.

references and operation calls are referred to as attributes of CR. The Ring
and ComplexRing classes can be compared to generic packages in Ada and
CR to a generic instantiation. The next example further illustrates this.

In Figure 12.8 a vector is defined using a functional class. The im-
portant thing to notice is that the element type of a vector ring is not a
virtual class, instead, it is described by the reference actualRingElement.
The reason is that a VectorRing instance must be parameterized by a
specific ring, i.e. an instance of RingElement, otherwise the elements
of a vector include, say, complex numbers from different complex rings,
which seems inappropriate in this case. (However, it is possible to model
this if desired.) In the example, the reference actualRingElement is
given a value when init is executed. (CR is the ComplexRing from Fig-
ure 12.7.) This is, however, not satisfactory, since actualRingElement

should not change value after the initialization, but it should denote the
same ComplexRing during the life time of the VectorRing. This can be
accomplished by making actualRingElement a ‘call-by-const’1 parameter

1‘Call-by-const’ was used in the first version of Pascal.

178 PROCEDURAL PROGRAMMING

VectorRing:Ring

(# RingElement:< Ring;

actualRingElement: ^RingElement;

Type::< (# V: [100] ^actualRingElement.Type #);

Init:<

(# aRing: ^RingElement

enter aRing[]

do aRing[]->actualRingElement[]

#);

Plus::<

(#

do (for i: 100 repeat

(X.V[i][],Y.V[i][])

->actualRingElement.Plus

->Z.V[i]

for)

#);

Mult: ... Zero: ... Unity: ...

#);

ComplexVectorRing: VectorRing

(# RingElement::< ComplexRing #);

CVR: @ComplexVectorRing;

A,B,C: @CVR.Type

...

CR[]->CVR.Init

Figure 12.8 Functional definition of the class Vector.

of the class VectorRing. It may then be bound when instantiating a
VectorRing (or one of its sub-classes) and not modified afterwards. Since
such parameter mechanisms are well known it will not be further elabo-
rated.

12.3.3 Class attributes versus type attributes

It could be argued that the definition of ComplexRing does not demon-
strate the need for or usefulness of class attributes. The attribute Type

could also be defined using a pure (record) type, as in Pascal. Such record
objects could, for instance, only be assignable and comparable, but not
have procedure and class attributes as do classes.

However, by using a class attribute it is possible to combine the object-
oriented and functional styles. The Type class of ComplexRing may have

12.3 VIRTUAL CLASSES AND GENERICITY 179

ComplexRing:Ring

(# Type::<

(# I,R:@real;

Incr: (# do I+1->I; R+1->R #)

#);

...

#);

Figure 12.9 Complex with local Incr operation.

VectorOfVector: Vector

(# ElementType:: Vector(# ElementType:: Elm #)

Elm:< Ring;

ThisClass::< VectorOfVector

#);

VectorOfVectorOfComplex: VectorOfVector

(# ThisClass::< VectorOfVectorOfComplex;

Elm::< Complex

#)

Figure 12.10 Class VectorOfVector.

a procedure attribute Incr that increments a complex number by 1 (see
Figure 12.9). It seems more natural to express such an operation in an
object-oriented style than in a functional style.

With the addition of the Incr it is possible, in addition to functional
expressions, to specify evaluations like:

...; C1.Incr; ...

12.3.4 More on extending virtual classes

In this section, the Vector class of Figure 12.6 will be further elaborated.
As shown in Figure 12.10, a VectorOfVector class parameterized by Vec-

tor is defined. A new virtual class Elm has been introduced to stand for
the parameter of the class VectorOfVector. The use of :: instead of
::< specifies that this is the final extension of ElementType, i.e. it is no
longer virtual. In general, it is useful to be able to specify that a virtual
attribute can no longer be extended.

180 PROCEDURAL PROGRAMMING

A note on syntax may seem appropriate here. The syntax for defining
and extending virtuals in examples like the Ring may be too heavy. In-
stead, a usual positional notation for definition and extension of virtuals
is being considered.

12.4 Notes

The examples in this chapter show that even the procedural style of pro-
gramming can be supported within a language primarily intended for the
object-oriented style of programming. As pointed out by others (Cox,
1984; Nygaard and Srgaard, 1987), a programming language should sup-
port more than one style. Object-oriented programming, procedural pro-
gramming and, to a limited extent, functional programming are supported
by languages like Simula, BETA and C++.

A property common to most object-oriented programming languages
is that everything has to be regarded as an object with methods, and
that every action performed is message passing. The implication of this
is that even a typical functional expression such as:

6+7

gets the unnatural interpretation:

6.plus(7)

In Smalltalk the expression 6+7 is interpreted as the message + with
argument 7 is sent to the object 6. The result of this message is that the
object 13 is returned. Even though 6 and 7 are objects, there is no reason
why + may not be regarded as an object that adds two integer objects:

plus(6,7)

Thinking object-oriented does not have to exclude functional expressions
when this is more natural. Functions, types and values are in fact needed
to describe measurable properties of objects.

Chapter 13

Deterministic Alternation

In our computerized models we must be able to represent actions taking
place in the application domain being modeled. Examples of such ac-
tions are deposit of money in a bank account, reservation of a seat on
a flight, pushing a button, etc. For certain actions the ordering in time
is important, for instance, in the case with the sequence of deposits and
withdrawals on a specific bank account. In the previous chapters we have
seen how to describe a sequential ordering of actions.

Just as it is important to be able to describe that two actions are
ordered in time, it is important to be able to describe that there is no
ordering in time between two actions. The deposit of money in one bank
account and the withdrawal of money from another may take place inde-
pendently in the sense that it is not important to describe an ordering in
time between the two actions. In our computerized models we must be
able to model several action sequences taking place in concurrency. From
time to time the action sequences may have to be synchronized. This is,
for instance, the case when two or more agents try to book the same seat.
A computerized model must be able to represent the synchronization of
action sequences.

A number of activities may be viewed as compound systems consist-
ing of several concurrent action sequences. Examples of this are ma-
chines consisting of several parts, each executing an independent action
sequence. In other cases an activity may be characterized by performing
several action sequences, but at most one at a time. The activity will
then shift between the various action sequences. An example of this is a
cook making dishes. This involves several ongoing activities by the cook
who constantly shifts between those requiring his attention. Another ex-
ample is the agents of a travel agency. They often perform complex tasks
consisting of several more or less independent activities. An agent may be
involved in ‘tour planning,’ ‘customer service’ and ‘invoicing.’ The agent
will alternate between these activities. When an agent shifts to a new

181

182 DETERMINISTIC ALTERNATION

activity, the current activity is temporarily suspended. Later when the
agent returns to this activity it is resumed at the the point of suspension.
This form of sequencing is called alternation.

A processor handling several devices may naturally be described by
alternation. The handling of each device generates an action sequence.
The processor then alternates between these action sequences dependent
on when the devices need to be served.

Alternation should not be confused with true concurrency, where a
number of tasks take place at the same time. In alternation, at most one
of the tasks takes place at a given time.

Deterministic alternation is the situation where the object decides
by itself how to alternate between the different tasks. Nondeterministic
alternation is the situation where external events cause the object to shift
to another task.

In the travel agency example, each agent serves a number of customers
and has a file for each customer. A task for an agent is to process a
customer file. During a working day the agent alternates between the
tasks processing the customer files. Most of the time the agent will decide
the order of the tasks. However, external events such as telephone calls
may force the agent to change task.

Action sequencing appears in several ways in programming languages.
The simplest mechanism is sequential execution, where procedures are ex-
ecuted sequentially and the dynamic structure of active procedure acti-
vations is organized as a stack.

To model concurrency and alternation, a program execution may be
organized as several sequential processes. This mode of execution is called
multi-sequential execution. Several language constructs that support mul-
tiple action sequences have been proposed.

One example of a multi-sequential execution is coroutine sequencing.
A coroutine is an object that has its own stack of procedure activations. A
program execution will then consist of a number of coroutines. The pro-
cessor will then alternate between executing these coroutines. A coroutine
may temporarily suspend execution and another coroutine may be exe-
cuted. A suspended coroutine may later be resumed at the point where it
was suspended. The sequencing between coroutines is deterministic and
explicit, since the programmer specifies as part of the coroutine when it
shall suspend its actions and which coroutine is to take over.

In a number of situations a program execution has to deal with multi-
ple action sequences that go on concurrently. Coroutines are not suitable
to support such concurrent action sequences. In the coroutine situation,
each coroutine has exclusive access to common data and there is no need
for synchronization. However, to handle explicitly the sequencing be-
tween a large number of symmetric coroutines requires strict discipline of

DETERMINISTIC ALTERNATION 183

the programmer. In the concurrent situation, it is often necessary to be
able to deal with nondeterminism: for example, a system with multiple
processors.

In BETA, action sequences are associated with objects; objects may
execute their actions as part of the execution of other objects. Such
objects are of kind item and have been covered in previous chapters.
Objects may also execute their actions concurrently with other objects,
or they may execute their actions alternating with other objects. Such
objects are of kind component.

The alternation between two or more action sequences may be deter-
ministic or nondeterministic. In this chapter, deterministic alternation
in BETA will be described. Concurrency is covered in Chapter 14 and
nondeterministic alternation in Chapter 15.

In BETA, deterministic alternation is supported by component objects
used as coroutines.1 Coroutines makes it possible to alternate between
‘stacks of executions.’ Objects are ‘state machines’ in the sense that the
result of a remote procedure call may depend on the state of the variables
of the object. For objects that are coroutines, the state may include a
point of execution. In general, such an execution state involves a stack of
procedure activations currently called. The possibility of saving the state
of execution makes coroutines useful for a large number of applications.
These applications may be grouped as follows:

• With respect to the modeling of real-life phenomena, the main mo-
tivation for coroutines is to model objects that perform alternating
activities. The alternation between coroutines may be deterministic in
the sense that the sequencing is decided by the object itself. The shifts
between coroutines may be triggered by events performed by other
concurrent objects, leading to nondeterministic alternation. One main
reason for introducing coroutines in BETA is for modeling objects that
alternate between a number of sequential processes (tasks).

• Coroutines may be used to create an illusion of concurrency. The basic
scheduling of coroutines is usually explicit, since a coroutine relinquish-
ing control names the coroutine that is to take over. It is possible to
eliminate the explicit scheduling by construction of a coroutine sched-
uler (an example of this is shown in Section 13.4.2).

• A certain class of algorithms is best understood as a set of interlocked
sequential execution stacks. This includes backtracking and pattern
matching. In Section 13.3 an example of such an algorithm is given.

• A generator is a coroutine capable of producing a sequence of values.
A new value is produced for each invocation of the coroutine. The

1In the following, the term ‘coroutine’ will often be used as a synonym for objects
of the kind component.

184 DETERMINISTIC ALTERNATION

 R1

 B

 A

 R1 R1

 C

 A

L1: L2: L3:

Figure 13.1 Snapshots of the execution stack.

next value depends on the sequence of previously generated values. In
Section 13.2 an example of a generator of factorial numbers is given.

13.1 Execution stacks

In this section we will take a closer look at execution stacks, and introduce
the basic elements of coroutines. Consider the following object:

R1: @

(# A: (# do ...; B; ...; C; ... #);

B: (# do ...; L2: ... #);

C: (# do ...; L3: ... #);

do ...; L1: A; ...

#)

The execution of R1 is organized in terms of a stack of active objects,
illustrated in Figure 13.1. At the label L1 the stack only consists of the
object R1, and at L2 the stack consists of R1, A and B. At L3, B has ter-
minated and C has been called. Each object on the stack has a structural
attribute called the return link. The return link consists of a dynamic
reference to the calling object and a code point in the calling object from
where the call was made. The arrows in the diagrams represent these
dynamic references.

The organization of action sequences in terms of stacks is useful for
modeling sequential executions. To model multi-sequential executions, it
is necessary to be able to organize a program execution in terms of several
stacks. Consider the following object:

R2: @

(# X: (# do ...; Y; ... #);

13.1 EXECUTION STACKS 185

Y: (# do ...; K1: Z; ... #);

Z: (# do ...; K2: ... #)

do ...; X; ... K3:

#);

The execution of R2 may also be illustrated by means of a stack in the
same way as for R1. In this chapter we will introduce language mecha-
nisms that make it possible to describe an object that alternates between
executing R1 and R2. First, part of R1 may be executed, then part of R2,
then part of R1, etc. Such a scenario is described below, and illustrated
in Figure 13.2:

(13.2.a) The initial state of execution consists of three objects: R1, R2
and P*. The object P* represents some active object. P* is the
object that alternates between executing R1 and R2. The objects
R1 and R2 are passive. The dynamic reference of these objects refer
to the top element of the stack, which initially is the object itself.

(13.2.b) Assume that P* starts by executing R1. This is done by at-
taching R1 to the stack of P*. This figure illustrates the state of
execution when R1 is at the label L1.

(13.2.c) This figure illustrates the situation when R1 is at the label L2.

(13.2.d) At this point we assume that the execution of R1 is temporarily
suspended, and that P* starts executing R2 by attaching R2 to its
stack. The situation when R2 is at the label K2 is shown in this fig-
ure. Note that the execution stack of R1 is shown with the dynamic
reference of R1 referring to the top element of its stack.

(13.2.e) At this point the execution of R2 may be suspended and the
execution of R1 may be resumed. This figure shows the situation
with R1 at the label L3.

(13.2.f) R1 may continue execution until it terminates. In this case, P*
may resume execution of R2. This figure shows the situation where
R1 is terminated and R2 is at the label K3, i.e. immediately before
it terminates.

The above scenario may be described by the following object:

(# R1: @ |

(# A: (# do ...; B; C; ... #);

B: (# do ...; L2:suspend; ... #);

C: (# do ...; L3: ... #);

do ...; L1: A; ...

186 DETERMINISTIC ALTERNATION

 C

 R1

 A

 R2

 P*

 X

 Y

 Z

 P*

 R1 R2

 P*

 R2 R1

 A

 B

 X

 Y

 Z

 P*

 P* P* P*

 P*

 B

 R1

 A

 P*

 P*

 R1

(a) (b)

(c) (d)

(e) (f)

 P*

 R1 R2 R2

 R2

 Z

Figure 13.2 Snapshots of alternating execution stacks.

13.1 EXECUTION STACKS 187

#);

R2: @ |

(# X: (# do ...; Y; ... #);

Y: (# do ...; K1: Z; ... #);

Z: (# do ...; K2: suspend;... #)

do ...; X; ...; K3:

#);

do M0: R1; R2; R1; R2

#)

The symbol | describes that the objects R1 and R2 may be executed al-
ternately. The imperative suspend used within R1 and R2 describes that
the execution of R1/R2 is temporarily suspended. The object containing
R1 and R2 plays the role of P*. The situation at label M0 then corresponds
to the situation in Figure 13.2.a. The situations corresponding to Fig-
ures 13.2.b-e illustrate the execution of the above object. In the following
section, the language mechanisms for coroutine sequencing are described
in detail.

13.1.1 Language constructs for basic coroutine se-
quencing

In the above example, the terms attach, suspend and resume have been
used for describing the alternation between execution of R1 and R2. The
precise meaning of these terms will be given below.

In addition, BETA constructs for creating and executing objects of the
kind component are described. The construction modes for the generation
of components are completely analogous to those for items. The term
‘object’ will be used whenever we describe something that is true for
all three kinds of objects. When a kind, like a component, is explicitly
mentioned, the explanation is only valid for that kind of object:

Component. An object that can be the basis for an execution stack is
called a component. In Section 5.10.1 it was said that there are two
different kinds of objects: items and components. The objects that
can be elements of the stack of a component are usually of kind
item corresponding to instances of procedure patterns. However, as
we shall see later, they may also be of kind component.

The declarations

R1: @ | P;

R2: @ | P (# ... #)

188 DETERMINISTIC ALTERNATION

 R1

 R1

 P*

 P*

 R2

 R2

 Rn

 Rn

(a)

(b)

. . .

. . .

Figure 13.3 General execution state.

describe that component instances are created. R1 is an instance of P,
whereas R2 is a singular component. R1 and R2 are static component ref-
erences that will constantly denote the newly created components. These
components are called static components or part components. R1 and
R2 will each have their own stack of active objects. Initially, the stack
consists of R1 and R2, respectively.

The declaration

S: ^ | P

describes a dynamic component reference. The reference S may denote
component instances of the pattern P. S may be assigned a reference to
R1 by:

R1[] -> S[]

A component instance may be dynamically generated by:

&|P[] -> S[]

13.1 EXECUTION STACKS 189

Active stack. A program execution consists of a number of component
stacks, as shown in Figure 13.3.a. It consists of the stack of P*,
called the active stack, and the stacks R1, R2 ,..., Rn, which are said
to be suspended. The object on top of the active stack is called the
active object; the top-most component on the active stack is called
the active component. The active object may execute the actions
attach and suspend.

Attachment. An action attach(r), where R is not a member of the
active stack, implies that the stack R is attached to the active stack.
Technically this happens by interchanging the return link of P* and
R. Figure 13.3.b illustrates the situation after attach(r1). The
execution of R is said to be resumed.

An imperative like:

R

where R is a component implies that R is attached to the active stack of
the component executing R.

The component executing R is said to attach R.

Suspension. An action suspend(r), where R is a member of the active
stack, implies that the stack of R is removed from the active stack.
Technically this happens by interchanging the return link of P* and
R. (Note that this interchange is the same as for attach. The dif-
ference in effect depends on whether or not R is part of the active
stack.) R is said to be suspended.

Assume that R is the currently operating component. The imperative:

suspend

implies that R is detached from the active stack. R is now said to be
suspended.

Termination. If the currently operating stack finishes execution of the
imperative in its do-part, termination of the component will take
place. This implies execution of an implicit suspend. A subsequent
attachment will result in an abort event.2

Program object. A BETA program to be executed by a BETA processor
always has the form:

2This implies that the program terminates with a run-time error.

190 DETERMINISTIC ALTERNATION

(# ...

do ...

#)

that is, a BETA program is a singular object descriptor. This sin-
gular object is actually of the kind component, which means that it
is the basis for an execution stack. When a BETA program is exe-
cuted, this program object is always active. The object P* used in
the above examples may be thought of as the program object. Intu-
itively, it may be useful to think of the program object as associated
with a processor of the underlying hardware.

Attachment of R implies that the component denoted by R will be exe-
cuted. This means that the actions described by the imperatives in the
do-part of R are executed. The execution of the component continues until
the component executes a suspend imperative. This will return the con-
trol to the point of the attachment. A subsequent execution (attachment)
of the component will resume the component after the suspend impera-
tive. This pattern may be continued until the component has completed
execution of its do-part.

The example in Figure 13.4 TrafficLight describes components
that when executed alternate between two states, red and green. The
Controller component initializes the state of North to red and the state
of South to green. It repeatedly waits for some time, and then switches
the lights. The ‘variable’ state is a static reference denoting an instance
of the pattern Color. The Color instance is an object of the kind item
whereas all the other objects are components. An item is not a coroutine.
In this example the Color instance is used as an ordinary variable.

13.2 Generators

Components may have enter/exit parts. Prior to the attachment of a
component, a value may be assigned to the enter part of the component.
When a component suspends execution or terminates, a value may be
assigned from its exit part. If R is a component having enter/exit parts,
then attachment of R with parameter transfer has the form:

X -> R -> Y

where X and Y are evaluations. The value of X is assigned to the enter-
part of R, then the component R is attached, i.e. execution of R is resumed.
Finally, when R suspends execution the exit part of R is assigned to Y.

13.3 COMPONENTS AND RECURSIVE PROCEDURE PATTERNS 191

(# TrafficLight:

(# state: @ Color

do Cycle(#

do red->state;

SUSPEND;

green->state;

SUSPEND

#)#)

North,South: @ | TrafficLight;

{Declaration of two component instances of TrafficLight}

Controller: @ | {Declaration of a singular component}

(#

do North; {attachment of North}

{North.state=red}

South; South; {two attachments of South}

{South.state=green}

Cycle(#

do {wait some time}

South; North; {switch the states}

#)#)

do Controller {attachment of Controller}

#)

Figure 13.4 Example of components.

In Figure 13.5 an example of a component having enter/exit parts is
given. The component Factorial computes N!. A call of the form E

-> Factorial -> F returns E! in F. A subsequent call Factorial -> F

returns (E+1)!. At any time a new enter parameter may be given. Fac-
torial values computed previously are saved in a table, i.e. each factorial
value is only computed once. Factorial is an example of a generator
that computes a sequence of values.

13.3 Components and recursive procedure

patterns

The examples so far have shown coroutines that only have a fixed num-
ber of procedure objects (items) as part of their actions. Such simple
coroutines may be simulated using simple variables, since there is only a
finite set of suspension points. If coroutines are combined with (recur-

192 DETERMINISTIC ALTERNATION

(# Factorial: @ | {a singular component}

(# T: [100] @ Integer; N,Top: @ Integer;

enter N

do 1->Top->T[1];

Cycle(#

do (if (Top<N) // True then

{Compute and save (Top+1)!...N!}

(Top+1,N)->ForTo

(#do {T[inx-1]=(inx-1)!}

T[inx-1]*i->T[inx]

{T[inx]=inx!}

#);

N->Top

if);

N+1->N;

{suspend and exit T[N-1]: }

SUSPEND;

{When execution is resumed after SUSPEND,}

{a new value may have been assigned}

{to N through enter}

#)

exit T[N-1]

#);

F: @ Integer

do 4->Factorial->F; {F=4!}

{This execution of Factorial will result in

computation of 1!, 2!, 3! and 4!}

Factorial->F; {F=5!}

{Here 5! was computed}

3->Factorial->F; {F=3!}

{No new factorials were computed by this call}

#)

Figure 13.5 A generator for factorial numbers.

sive) procedure calls, it is much more complicated to simulate the state
of execution at suspension points. In this section, examples of combining
coroutines and recursive procedure patterns will be presented.

The example in Figure 13.6 shows a component that generates the
factorial numbers. For each activation of Factorial, the next factorial
number is generated. This is done by means of a recursive procedure

13.3 COMPONENTS AND RECURSIVE PROCEDURE PATTERNS 193

(# Factorial: @ |

(# Next:

(# n: @integer

enter n

do n*F -> F;

SUSPEND;

n+1-> &Next

#);

F: @ Integer

do 1->F-> &Next

exit F

#);

v: @Integer

do Factorial->v; { v=1 }

Factorial->v; { v=2 }

Factorial->v; { v=6 }

L:

Factorial->v; { v=24 }

#)

Figure 13.6 Recursive generator for factorial numbers.

 Factorial Next Next Next

Figure 13.7 Recursive component for computing factorial

pattern, next.3 When Factorial has computed the next number, it sus-
pends its execution and exits the number. For each activation, the com-
ponent stack will grow with a new instance of next. In Figure 13.7, the
execution stack of factorial is shown when execution is at the label L.

The example in Figure 13.8 shows the power of combining components
with execution of recursive procedure patterns. It is a classic example of
using coroutines. The program describes a merge of two binary search
trees. The attribute Traverse performs an in-order traversal of the tree:

3This is not the most clever way of computing factorial, but it illustrates the
principle.

194 DETERMINISTIC ALTERNATION

(# BinTree:

(# Node: {The nodes of the binary tree}

(# elem: @ Integer;

left,right: ^ Node

#);

root: ^ Node;

Traverse: @ |

(# next: @ Integer;

Scan:

(# current: ^ Node

enter current[]

do (if (Current[]=NONE) // False then

current.left[]->&Scan;

current.elem->next;

SUSPEND;

current.right[]->&Scan

if)#);

do root[]->&Scan;

MaxInt->next; Cycle(#do SUSPEND #);

{Exit maxInt hereafter}

exit next

#); {Traverse}

#); {BinTree}

b1,b2: @ Bintree; e1,e2: @ Integer

do ...

b1.Traverse->e1; b2.Traverse->e2;

Merge:

Cycle(# ...

do (if (e1=MaxInt) and (e2=MaxInt)//True then leave Merge if);

(if (e1<e2) // True then e1->print; b1.Traverse->e1

else e2->print; b2.Traverse->e2

if)#)

...

#)

Figure 13.8 Merge components.

Traverse is a component that will suspend and exit the elements in the
nodes visited during the traversal. The main program starts by executing
Traverse for each of the trees b1 and b2. The smallest element of b1 will
then be delivered in e1, and the smallest element of b2 will be delivered

13.4 ABSTRACT SUPER-PATTERNS 195

76

51 86

78 91

81

73 96

45 77

b1 b2

b1.Traverse Scan Scan

b1.Traverse Scan Scan Scan

P’ Merge

Figure 13.9 Illustration of merge components.

in e2. The merge loop will then print the smallest of the two elements; for
example, if e1 is the smallest, then e1 is printed and b1.Traverse will exit
the next element of b1. This continues until there are no more elements
in the two trees. Figure 13.9 shows an example of two binary search trees
and a snapshot of the execution state, taken immediately after the attach
of b2.Traverse. b1.Traverse is detached at the leftmost node (51) and
b2.Traverse is resumed at the node labeled 45.

13.4 Abstract super-patterns

A major design goal for BETA has been to design a language with a
small number of basic but general primitives. In addition, much emphasis
has been put into the design of powerful abstraction mechanisms, as in
this way it is possible to define more specialized constructs. Object-
oriented languages provide powerful constructs for defining patterns that
describe the general properties of a class of (partial) program executions.
Often, such patterns are intended to be used as super-patterns of more
specialized patterns, and it is not meaningful to create instances of these
patterns. Patterns that should only be used as super-patterns are called

196 DETERMINISTIC ALTERNATION

abstract super-patterns.

In this section, examples of defining abstract super-patterns in BETA
will be given, including modeling of symmetric coroutines in the style of
Simula and the illusion of concurrent programming.

13.4.1 Symmetric coroutines

The components described in the previous section behave like so-called
semi-coroutines. They are so called because there is an asymmetry be-
tween the calling coroutine and the coroutine being called. The caller
explicitly names the coroutine to be called, whereas the called coroutine
returns to the caller by executing suspend, which does not name the
caller explicitly. There is another kind of coroutine, called a symmetric
coroutine, which explicitly calls the coroutine to take over. It does not
return to the caller by means of suspend, giving a symmetric relation
between the coroutines. In this section it will be shown how to model
symmetric coroutines.

The SymmetricCoroutineSystem pattern of Figure 13.10 is an ab-
stract super-pattern that describes the general properties of a symmetric
coroutine system. The attribute SymmetricCoroutine of Symmetric-

CoroutineSystem is an abstract super-pattern describing the properties
of a symmetric coroutine. It must be used as a super-pattern for all com-
ponents that are to take part in the symmetric coroutine scheduling. The
Run attribute is intended for initiating the first SymmetricCoroutine.
Run may be viewed as a primitive scheduler.

A SymmetricCoroutine is active until it makes an explicit trans-
fer of control to another SymmetricCoroutine, done by means of the
Resume attribute. Note that Resume is a virtual pattern, which means
that it is possible to extend the definition of Resume in sub-patterns of
SymmetricCoroutine.

The Resume pattern makes use of the pseudo-reference this(Sym-

metricCoroutine), which refers to the enclosing SymmetricCoroutine

object. Assume that A and B are different instances of SymmetricCorou-
tine or one of its sub-patterns. In A.Resume, this(SymmetricCorou-

tine) refers to A; in B.Resume, this(SymmetricCoroutine) refers to B.
For any enclosing pattern P there is a pseudo-variable this(P).

A SymmetricCoroutineSystem terminates when the active Symme-

tricCoroutine terminates execution without using resume. This may
happen either by executing a suspend or by terminating its action part.

In Figure 13.11, an example of a program using the pattern Symme-

tricCoroutineSystem is given. The problem to be solved (Grune, 1977)
is to copy characters from input to output. Any occurrence of a string
′aa′ must be converted to ′b′ , and a string ′bb′ must be converted to ′c′

13.4 ABSTRACT SUPER-PATTERNS 197

SymmetricCoroutineSystem:

(# SymmetricCoroutine:

(# Resume:<

(#

do this(SymmetricCoroutine)[]->next[];

SUSPEND {suspend caller}

#)

do INNER

#)

Run: {start of initial SymmetricCoroutine}

(#

enter next[] {global reference declared below}

do ScheduleLoop:

Cycle

(# active: ^ | SymmetricCoroutine

{currently operating component}

do (if (next[]->active[])

// NONE then leave ScheduleLoop

if);

NONE->next[];

active; {attach next SymmetricCoroutine}

{Active terminates when it executes either}

{resume, or suspend or it terminates}

#)#);

next: ^ | SymmetricCoroutine;

{Next SymmetricCoroutine to be resumed}

do INNER

#)

Figure 13.10 A general symmetric coroutine system.

(the latter includes ′a′ s converted to ′b′ s). A string ′abcaadbbeaabf′ will
thus be converted into ′abcbdcecf′ . The Converter terminates by means
of suspend when a newline character (nl) is recognized at the outermost
level of DoubleBtoC. Notice that the description of the Resume attribute
has been extended to include an enter parameter in DoubleBtoC.

13.4.2 Quasi-parallel systems

In this section it is shown how to simulate concurrency by means of co-
routines. The example is inspired by the Process module in (Wirth, 1982).
In Figure 13.12, an abstract super-pattern for defining quasi-parallel

198 DETERMINISTIC ALTERNATION

Converter: @ | SymmetricCoroutineSystem

(# DoubleAtoB: @ | SymmetricCoroutine

(# ch: @ Char

do Cycle(#

do Keyboard.GetNonBlank->ch;

(if ch // ’a’ then

Keyboard.GetNonBlank->ch;

(if ch // ’a’ then ’b’->DoubleBtoC.Resume

else

’a’->DoubleBtoC.Resume;

ch->DoubleBtoC.Resume

if)

else ch->DoubleBtoC.Resume

if)#)#);

DoubleBtoC: @ | SymmetricCoroutine

(# ch: @ Char;

Resume::< (# enter ch #);

do Cycle(#

do (if ch

// ’b’ then

DoubleAtoB.Resume;

(if ch // ’b’ then ’c’->Screen.put

else

’b’->Screen.put;

ch->Screen.put

if)

// nl then SUSPEND

else ch->Screen.put

if);

DoubleAtoB.Resume

#)#)

do DoubleAtoB[]->Run

#)

Figure 13.11 A SymmetricCoroutineSystem.

sequencing is presented. A QuasiParallelSystem defines an abstract
super-pattern Process defining coroutines that may take part in the

quasi-parallel sequencing. A coroutine that is to take part in the schedul-
ing must be a specialization (sub-pattern) of the Process pattern. In-
stances of sub-patterns of Process are hereafter called processes.

13.4 ABSTRACT SUPER-PATTERNS 199

QuasiParallelSystem:

(# ProcessQueue:

(# Insert: {Insert a process; insert of NONE has no effect}

...;

Next:

{Exit and remove some process;

If the queue is empty, then NONE is returned} ...;

Remove: {Remove a specific process} ...;

#);

Active: @ ProcessQueue; {The active processes}

Process: {General quasi-parallel processes}

(# Wait: {Make this(Process) wait for a send to S}

(# S: ^ ProcessQueue

enter S[]

do this(Process)[]->S.Insert;

this(Process)[]->Active.Remove;

SUSPEND

#);

Send: {Activate a process from S}

(# S : ^ ProcessQueue

enter S[]

do S.Next->Active.Insert;

SUSPEND

#)

do INNER;

this(Process)[]->Active.Remove

#); {Process}

Run: {The scheduler}

(# Ap: ^ | Process {Currently active Process}

do ScheduleLoop:

Cycle(#

do (if (Active.Next->Ap[])

// NONE then leave ScheduleLoop

if);

Ap[]->Active.Insert; {Ap is still active}

Ap; {Attach Ap}

#)#)

do INNER

#)

Figure 13.12 A general quasi-parallel system.

200 DETERMINISTIC ALTERNATION

ProducerConsumer: @ | QuasiParallelSystem

(# B: @ Buffer;

notFull,notEmpty: @ ProcessQueue; {Signals}

Producer: Process

(# Deposit:

(# E: @ BufferElement

enter E

do (if B.Full // True then notFull[]->Wait if);

E->B.put;

notEmpty[]->Send

#)

do INNER

#);

Consumer: Process

(# Fetch:

(# E: @ BufferElement

do (if B.Empty // True then notEmpty[]->Wait if);

B.Get->E;

notFull[]->Send

exit E

#);

do INNER

#);

P1: @ | Producer(# ... E1->Deposit; ... #);

C1: @ | Consumer(# ... Fetch->E1; ... #);

do P1[]->Active.Insert; C1[]->Active.Insert;

&Run

#)

Figure 13.13 A producer/consumer system.

The ProcessQueue pattern defines a queue of processes. All active
processes are placed in an instance of ProcessQueue called Active. Each
time a process suspends execution, a new process is selected from this
queue.

Communication among processes is synchronized by means of sig-
nals (c.f. (Wirth, 1982)). A process may send and wait for (some other
process sending) a signal. In the example a signal is implemented as a
ProcessQueue.

In Figure 13.13, the classic producer/consumer system is implemented
as a quasi-parallel system. Patterns describing the behavior of producers
and consumers are defined. Producers and consumers communicate by

13.5 EXERCISES 201

means of the buffer B and the signals notFull and notEmpty. A producer
component P1 and a consumer component C1 are declared.

13.5 Exercises

(1) The Register pattern in Chapter 6 has a ForAll pattern that scans
through all elements of the register. Make a version of Register

where the ForAll attribute is implemented as a component, and
where each call R.ForAll returns the next element of register R.

(2) Write a program that generates fibonacci numbers. The program
should use a component (coroutine) that works as a generator.

Fibonacci numbers are defined as follows:

Fib(1) = 1

Fib(2) = 1

Fib(n) = Fib(n-1) + Fib(n-2)

(3) Define a quasi-parallel system where the processes communicate by
means of synchronous message passing using procedure patterns
SendMessage and ReceiveMessage.

Let S and R be references to processes, and let M1 and M2 be references
to messages. Process S can execute:

(R[],M1[])->SendMessage

meaning that S wants to send the message M1 to R. S cannot continue
until R has accepted the message. This happens when R executes:

S[]->ReceiveMessage->M2[]

meaning that R wants to receive the message from M2. R cannot
continue before a message is ready from S.

(4) Modify the above quasi-parallel system such that the message passing
is asynchronous. This means that a process executing a SendMessage

can continue immediately, i.e. it does not have to wait for the receiver
to execute ReceiveMessage.

202 DETERMINISTIC ALTERNATION

13.6 Notes

The notion of coroutine sequencing was proposed by (Conway, 1963). Si-
mula was one of the first languages to include coroutines for supporting
quasi-parallel sequencing. A major application area of Simula is discrete
event simulation. The Simulation class of Simula includes abstractions
for creating an illusion of concurrency to be used when modeling concur-
rent actions.

It is only recently that mechanisms for supporting multiple action
sequences have been introduced in languages supporting object-oriented
programming. In Smalltalk it is, to a limited extent, possible to model
multiple action sequences by means of the classes Process, Semaphore

and ProcessScheduler.

In (Marlin, 1980) a distinction is made between two types of co-
routine sequencing. The first, the implicit sequencing kind, only com-
municates via first-in-first-out queues, and there is no explicit transfer
of control between the coroutines. Call-by-need parameters, lazy evalua-
tion, streams (as in (Rees and Clinger, 1986)) and the system described
in (Kahn and MacQueen, 1977) are examples of this kind of coroutine.

For the second kind of coroutine, the explicit sequencing kind, it is
possible to transfer control explicitly from one coroutine to another.

Only a few programming languages have support for explicit corou-
tine sequencing. Simula is one of the few languages that offers an ad-
vanced design. It introduced the distinction between semi-coroutines and
symmetric coroutines, a semi-coroutine being executed by means of the
new- or call-imperative; a subsequent detach returns control to the caller.
Symmetric coroutines are always explicitly scheduled by means of the
resume-imperative.

Unfortunately, the details of coroutine sequencing in Simula are very
complicated. The problem is to understand how semi-coroutines, sym-
metric coroutines and prefixed blocks are integrated. This means that
even experienced Simula programmers may have difficulties in figuring
out what is going on in a program using coroutines. The details of Si-
mula’s coroutines sequencing are described in (Dahl et al., 1968).

A simplified version of Simula’s coroutine mechanism has been pre-
sented by (Dahl and Hoare, 1972). A formal description of part of the
coroutine mechanism has been presented by (Wang and Dahl, 1971).
This formalization has been further elaborated in (Lindstrom and Soffa,
1981). In (Wang, 1982), it was shown that the semantics of Simula’s
coroutine mechanism was inconsistent. The problem was that deal-
location of block instances could not be performed as stated by the
original language definition. It is argued that the simple model of
(Wang and Dahl, 1971) cannot cope with full Simula. Wang presents

13.6 NOTES 203

a detailed analysis of Simula’s coroutine mechanism, and gives certain
proposals for changes. These proposals have since led to a change in the
semantics of Simula (Swedish Standard, 1987).

The diagrams used for illustrating the BETA coroutine mechanism
may be viewed as an informal variant of the Wang and Dahl model. The
model is operational, and may be viewed as an abstract implementation
(in fact, the current implementation in BETA follows this model very
closely). It may be argued that a more abstract and less operational
model should be used for explaining the semantics. However, from an
object-oriented perspective, where coroutines are viewed as models of
alternating sequential processes from the real world, this model appears
quite natural.

Explicit coroutine sequencing in the form of symmetric coroutines is
also present in Modula-2. According to (Henry, 1987), there are several
problems with the definition of the coroutine mechanism in Modula-2.

For a further discussion of the history and motivation for coroutines
see (Marlin, 1980) and (Horowitz, 1983).

Coroutines in BETA are similar to semi-coroutines in Simula. The
BETA constructs are simpler and more general than those of Simula.
In addition, BETA offers the possibility of including parameters when
calling coroutines. It has been shown that the BETA constructs for semi-
coroutines may be used to define a set of attributes that model Simula’s
symmetric coroutines.

The construct Cycle(# do Imp’ #) is similar to a prefixed block in
Simula, where prefixed blocks play a major role in quasi-parallel sequenc-
ing. This is not the case in BETA.

The Simulation class of Simula is a classical example of an abstract
super-class. It introduces the notions of processes and event notices along
with a scheduling mechanism. Simulation programs may then be ex-
pressed as specializations of the Simulation class. The term ‘abstract
super-pattern’ (super-class) originates from Smalltalk. In Eiffel, abstract
super-class is called ‘deferred class.’

More than 20 years of experience with Simula has demonstrated that
the coroutine mechanism is extremely useful, and since Simula is an
object-oriented language, coroutines are certainly useful within an object-
oriented framework. A major difference between Simula and Smalltalk
is that Smalltalk classes do not have a do-part. It should, however, be
straightforward to reinvent the do-part of Smalltalk classes, thereby al-
lowing Smalltalk objects to be active coroutines.

The experience with Simula’s coroutine mechanism has been the start-
ing point for BETA design. As mentioned above, the details of Simula’s
coroutine mechanism are very hard to understand, and inconsistencies in
the semantics have recently been detected. However, in most Simula pro-

204 DETERMINISTIC ALTERNATION

grams these problems do not show up. Another problem with Simula’s
coroutine mechanism was the inability to transfer parameters when call-
ing a coroutine. The lack of parameters makes it clumsy to implement
generators in Simula, since parameters must be transferred by means of
global variables.

In the design of BETA, an attempt has been made to include a simple
and general coroutine mechanism that keeps the advantages of Simula.
The simple mechanism, together with a powerful abstraction mechanism,
makes it possible to implement a wide variety of sequencing schemes. The
symmetric coroutines and quasi-parallel systems in Section 13.4.1 are ex-
amples of this. BETA adds nothing to the basic principles of coroutine
sequencing used in Simula. However, the technical details of coroutine
sequencing in BETA are much simpler than those of Simula. In addi-
tion, coroutines in BETA may have parameters. This makes it easier to
use BETA coroutines as generators. Coroutine (component) calls appear
like procedure calls (items) whereby a high degree of uniformity between
procedures and coroutines is obtained.

The arrival of Modula-2 has resulted in a renaissance for coroutines.
However, coroutines in Modula-2 are considered low-level facilities for
implementing concurrent processes. According to (Henry, 1987) this has
implied that the status of coroutines in Modula-2 is unclear. In BETA
the coroutine mechanism is a well integrated part of the language.

Icon (Griswold et al., 1981) is an example of a language that supports
generators.

Chapter 14

Concurrency

The subject of this chapter is the concurrent execution of objects. In the
previous chapter, we have described how to use objects of the component
kind for describing programs consisting of several execution stacks. It was
shown how to describe a deterministic alternation between components.

Components may also be executed concurrently, i.e. two or more com-
ponents may execute their actions at the same time. A basic mechanism
for starting the concurrent execution of a component will be introduced.

Concurrent components may interact in different ways: they may ac-
cess the same objects by, for example, executing procedure pattern at-
tributes of these objects; or they may communicate directly by accessing
attributes of each other.

It is well known that the concurrent execution of objects requires a
mechanism for synchronizing the access to shared objects, just as di-
rect communication between objects may require synchronization. The
basic mechanism in BETA for synchronization is called a semaphore.
Semaphores are, however, only useful for very simple synchronization
problems. We therefore introduce high-level abstractions for handling
more complicated synchronization problems, including monitor for guar-
anteeing exclusive access to an object, and a so-called rendezvous mech-
anism for handling direct communication between objects.1 All the
concurrency abstractions being introduced can be defined by means of
semaphores. For some of the abstractions, the complete definition will be
given; for others, their semantics will just be defined in English.

By means of textual nesting (block structure) it is possible to specify
compound systems. A system may specify concurrent or alternating exe-
cution of one or more internal objects, and such a compound system will
then have several ongoing action sequences. External systems may com-
municate directly with the internal systems without synchronizing with
the enclosing system.

1The Mjølner BETA System includes a library of such abstractions.

205

206 CONCURRENCY

14.1 Concurrent execution of components

Concurrent execution of a component may be described by means of the
fork-imperative:

S.fork

where S is a reference to a component. The meaning of S.fork is that
execution of S will take place concurrently with the execution of the com-
ponent executing S.fork. Execution of S will continue until S executes a
suspend or has finished execution of its do-part. If S suspends its execu-
tion by means of an explicit suspend, it may be resumed by means of a
new S.fork. The fork action is in many ways similar to attachment, as
described in the previous chapter. The difference is that execution takes
place concurrently.

The following example includes a bank account of a person (Joe) and
two components, one corresponding to a bank agent depositing money in
Joe’s account, and one representing Joe. Joe will only be withdrawing
money from the account:

(# Account: (# ... #);

JoesAccount: @Account;

bankAgent: @ |

(#

do cycle(#do ...; 500->JoesAccount.deposit; ... #)

#);

Joe: @ |

(# myPocket: @integer

do cycle

(#do ...;

100->JoesAccount.Withdraw->myPocket; ...

#)

#)

do ...

bankAgent.fork;{start concurrent execution of bankAgent}

Joe.fork; {start concurrent execution of Joe}

#)

From time to time, the bankAgent will deposit DKK 500 in JoesAccount.
Joe will similarly withdraw DKK 100 from his account. The fork imper-
atives describe that the bankAgent and Joe are executed concurrently.

14.1.1 Simple synchronization

The above example works well as long as the bankAgent and Joe do not
access JoesAccount at the same time. There is, however, no guarantee

14.1 CONCURRENT EXECUTION OF COMPONENTS 207

that this will not happen. Assume that:

500->JoesAccount.deposit

and:

100->JoesAccount.Withdraw->myPocket

are executed at the same time. Assume that the balance on the account
is DKK 800 before the actions are executed. The following sequence of
actions may then take place:

{deposit:} compute balance + amount giving the value 1300

{withdraw:} compute balance - amount giving the value 700

{deposit:} store 1300 in balance

{withdraw:} store 700 in balance

The final effect of the two actions will be that balance ends up having
the value 700. This is, of course, wrong, since 500 has been deposited and
100 has been withdrawn. The final value of balance should thus have
been 1200.

This is a standard example of two concurrent objects accessing a
shared object or more generally a shared resource. In general, it is not
possible to predict anything about the order of execution of actions made
by concurrent objects. The above example of a possible sequence is just
one example of many possibilities. The actual scenario depends on the
underlying hardware used for implementing the BETA processor. The
value of balance may be completely undefined depending on how the un-
derlying hardware handles simultaneous access to a memory location. It
is therefore necessary to make sure that at most one component accesses
the account object at a given time.

Semaphores

To handle synchronization, we introduce the notion of a semaphore,2

which may be thought of as a kind of signaling device similar to a traffic
light. If the light is green you may proceed, but if the light is red you
must wait. Consider an intersection between two roads: the intersection
may be considered a shared resource of the vehicles. To avoid two or
more vehicles in the intersection at the same time, access to the shared
resource (intersection) is controlled by a traffic light.

A semaphore works in the following way: it may be in two states, red
and green. When an object wants to access a shared resource controlled
by a semaphore, it checks its state:

2Webster: Semaphore: Any apparatus for signaling, as by lights, flags, etc.

208 CONCURRENCY

• Check-in: If the state is green, the state is changed to red and the
object accesses the resource. When the object has finished accessing
the resource, the state is changed to green.

• Check-out: If the state is red, the object waits until the state becomes
green. The waiting takes place in a queue together with other possible
objects waiting for access to the resource. When the state becomes
green, the first object in the queue may execute check-in, as described
above.

BETA has a predefined pattern representing a semaphore. An instance
of semaphore has two operations P and V,3 corresponding to check-in and
check-out, respectively. Consider the following example, describing two
concurrent components A and B:

(# S: @semaphore;

A: @ | (# do imp1; S.P; imp2; S.V; imp3 #);

B: @ | (# do imp4; S.P; imp5; S.V; imp6 #);

do S.V; A.fork; B.fork

#)

• The component A may execute imp1 and imp3 concurrently with any
action executed by B.

• Similarly, B may execute imp4 and imp6 concurrently with any action
executed by A.

• A and B cannot concurrently execute imp2 and imp5. This is ensured
by the semaphore S. If, for instance, A has executed S.P, then B will
be delayed when executing S.P and it can only continue when A has
executed S.V. The semantics of a semaphore is that two components
cannot at the same time execute an operation on the same semaphore
object. This means that A and B cannot execute S.P at the same time.

The semaphore described above has two states, red and green, and is
therefore called a ‘binary semaphore.’ The Semaphore pattern in BETA
is actually a so-called generalized semaphore. Such a semaphore has an
integer value:

• The P operation decrements the value and as long as it is positive, the
calling component is not blocked. When the value becomes negative,
the calling component is delayed.

• The V operation increments the value. As long as the value is less than
one, a waiting component is reactivated.

3Semaphores were introduced by Dijkstra, who named the P operation after the
Dutch word passeren, meaning to ‘pass’, and the V operation after vrygeven, the Dutch
word for ‘to release’.

14.1 CONCURRENT EXECUTION OF COMPONENTS 209

• If a semaphore is initialized to a positive value n, then n components
may check-in with the semaphore before subsequent components are
delayed. Initially, a semaphore has the value zero, meaning that it is
closed. A semaphore is usually initialized to the value 1 using the V

operation.

The semaphore pattern may be described as follows:

Semaphore:

(# P: (#

do (if (cnt-1->cnt)<0 // true then

{delay calling component in Q} if)

#);

V: (#

do (if (cnt+1->cnt)<1 // true then

{reactivate a waiting component from Q} if)

#);

Count:

{returns no.of. processes waiting on this(Semaphore)}

(# V: @integer

do (if cnt<0 then -cnt->V if)

exit V #);

cnt: @integer;

Q: @Queue

#);

The state of a semaphore is represented by an integer cnt and a queue
Q for keeping track of delayed processes. Since cnt and Q are accessed
from both the P and V operation, at most one of these operations may be
executed at a time, in other words, the execution of P and V must be in-
divisible. The Semaphore is a pre-defined pattern of the BETA language,
and is defined to have the property that execution of an operation P or V
is indivisible. The above description of Semaphore is thus not how it is
implemented in the Mjølner BETA System, since the above description
does not handle indivisibility of the P and V operations.

We may use a semaphore to guarantee exclusive access to each bank
account, as shown in the following revised version of the Account pattern:

Account:

(# mutex: @Semaphore; {semaphore controlling access}

balance: @integer;

Deposit:

(# amount,bal: @integer

enter amount

do mutex.P;

210 CONCURRENCY

balance+amount->balance->bal;

mutex.V

exit bal

#);

Withdraw:

(# amount,bal: @integer

enter amount

do mutex.P;

balance-amount->balance->bal

mutex.V

exit bal

#);

Init:< (#do mutex.V; {Initially open} INNER #)

#)

Execution of the Deposit and Withdraw operations will no longer be
able to make simultaneous access to balance. It is, of course, possible
to access balance directly, but this is breaking the rules of the game. In
Chapter 17 it is shown how to protect attributes like balance such that
it is not possible to break the ‘rules’.

Semaphore is a simple and primitive mechanism for obtaining syn-
chronization. In the above example it is relatively easy to be convinced
that the synchronization works correctly. In a system with several con-
current objects and several shared objects, it may be difficult to describe
synchronization by means of semaphores. Programs that make heavy use
of semaphores may be difficult to read and write. Instead, we shall intro-
duce a number of abstract patterns for handling more complicated forms
of synchronization and communication.

14.2 Monitors

The use of semaphores, as in Account, is a common way of defining
objects shared by two or more concurrent components. We shall therefore
introduce an abstraction that makes it easier to define such objects. The
following pattern describes a so-called monitor pattern:

Monitor:

(# mutex: @Semaphore;

Entry: (# do mutex.P; INNER; mutex.V #);

Init:< (#do mutex.V; INNER #)

#)

A Monitor object has a semaphore attribute and a local procedure pat-
tern, Entry, used to define operations. The Account may be described
using Monitor in the following way:

14.2 MONITORS 211

Account: Monitor

(# balance: @integer;

Deposit: Entry

(# amount,bal: @integer

enter amount

do balance+amount->balance->bal

exit bal

#);

Withdraw: Entry

(# amount,bal: @integer

enter amount

do balance-amount->balance->bal

exit bal

#);

#)

In the following, a monitor means some sub-pattern of Monitor. An en-
try pattern (or entry operation) means a sub-pattern of Entry defined
within some monitor. Monitor is one example of a high-level concurrency
abstraction that can be defined by means of semaphores.

14.2.1 Monitor conditions

It may happen that a component executing an entry operation of a mon-
itor is unable to continue execution due to some condition not being
fulfilled. Consider, for instance, a bounded buffer of characters. Such a
buffer may be implemented as a monitor with two operations Put and
Get: the Put operation cannot be executed if the buffer is full, and the
Get operation cannot be executed if the buffer is empty. A sketch of such
a buffer monitor may look as follows:

buffer: Monitor

(# R: [100] @char; in,out: @integer;

Put: Entry

(# ch: @char

enter ch

do {wait if buffer is full};

ch->R[in]; (in mod R.range)+1 ->in;

#);

Get: Entry

(# ch: @char

do {wait if buffer is empty}

R[(out mod R.range)+1->out]->ch;

exit ch

212 CONCURRENCY

#);

#)

The meaning of a wait is that the calling component is delayed until
the condition becomes true. The Monitor pattern is extended with an
attribute wait for this purpose:

Monitor:

(# mutex: @Semaphore;

Entry: (# do mutex.P; INNER; mutex.V #);

Wait:<

(# cond: @boolean

do ...; INNER;

(if cond//false then {wait} if)

#);

Init:< (#do mutex.V; INNER #)

#)

The Wait operation must be executed in the following way:

wait(#do <some condition>->cond #)

where <some condition> is a boolean expression. If a wait is executed
within a monitor entry, the calling component will be delayed until the
condition becomes true. While the component is delayed, monitor opera-
tions can be executed by other components. A delayed component will be
resumed provided that the condition is true and that no other component
is executing a monitor operation, i.e. exclusive access to the monitor is
still guaranteed.

We may now give the complete version of the buffer pattern. The
content of the buffer is:

R[out+1], R[out+2], ... R[in-1]

where all the indexes are modulo R.range. The buffer is full if in=out
and it is empty if in=(out+1), again modulo R.range.

(# buffer: @Monitor

(# R: [100] @char; in,out: @integer;

full: (# exit in=out #);

empty: (#exit (in = (out mod R.range)+1) #);

Put: Entry

(# ch: @char

enter ch

do wait(#do (not full)->cond #);

ch->R[in]; (in mod R.range)+1 ->in;

14.3 DIRECT COMMUNICATION BETWEEN COMPONENTS 213

#);

get: Entry

(# ch: @char

do wait(#do (not empty)->cond #);

R[(out mod R.range)+1->out]->ch;

exit ch

#);

init::< (# do 1->in; R.range->out #)

#);

prod: @ | (#do cycle(#do ...; ch->buffer.put; ... #)#);

cons: @ | (#do cycle(#do ...; buffer.get->ch; ... #)#)

do buffer.init;

prod.fork; cons.fork

#)

Monitors and conditions are useful for describing simple cases of shared
objects (by simple we mean a limited use of conditions). If the conditions
for delaying a calling component become complicated, the monitor may
similarly become difficult to program and read.

14.3 Direct communication between com-

ponents

In the previous section we have described a mechanism for concurrent
components to communicate through shared objects. In many cases it
appears more natural for concurrent components to communicate directly
instead of using shared objects. Consider the following example:

(# S: @ | (# P: (# ... #) do ...; R.Q; ... #);

R: @ | (# Q: (# ... #) do ...; S.P; ... #)

do S.fork; R.fork

#)

Here the concurrent components S and R call operations on each other.
The state of S may, however, not be meaningful when R executes P, and
vice versa. In the following sections we will introduce abstractions for
making it possible to synchronize such communication.

14.3.1 Synchronized communication between com-
ponents

In this section we will introduce the notion of synchronized execution of
objects. A component S may request execution of an object attribute of

214 CONCURRENCY

a component R. The component R must accept that that the request can
be fulfilled.

Synchronized communication is described in an abstract pattern
System. A System defines the notion of a Port for controlling the com-
munication. A Port has an Entry pattern for defining procedure patterns
controlled by the port; it also has an Accept operation for signaling that
an operation associated with the port can be executed. The System has
the following structure:

System:

(# Port:

(# mutex,m: @semaphore;

Entry: (#do m.P; INNER; mutex.V #);

accept: (#do m.V; mutex.P #)

#)

do ... INNER; ...

#)

The following object illustrates two communicating systems:

S: @ | System

(# ...

do ... E1->R.M->E2 ...

#);

R: @ | System

(# P: @Port;

M: P.Entry(# ... enter ... do ... exit ... #);

...

do ...; P.accept; ...

#)

The system S may execute a request, which is a normal remote proce-
dure call:

E1->R.M->E2

Since M is a sub-pattern of a port entry, the execution of M has to be
accepted by R before it is executed.

For M to be accepted, R must execute an accept, which has the following
form:

P.accept

The communication is carried out when S is executing R.M and R is execut-
ing P.accept. Both S and R are blocked until the communication takes
place. A communication has the effect that S and R together execute the
evaluation:

14.3 DIRECT COMMUNICATION BETWEEN COMPONENTS 215

E1->M->E2

This takes place as follows:

(1) When S executes E1->R.M->E2, an instance of M is created and E1 is
transferred to the enter part of this instance (since E1-> is optional
there need not be an assignment to the enter-part). S is now ready
to execute the do-part of the M-instance.

(2) When R executes P.accept, R has signaled that the do-part of a
instance of a sub-pattern of P.Entry may be executed. R will wait
until such an execution has taken place.

(3) When both R and S are ready, the do-part of M can be executed.

(4) When the do-part of M has been executed, R will continue execution.
In addition, a possible exit-part of M is transferred to E2.

The object S executing R.M is called the sender, and the object R having
M as an attribute is called the receiver.

In the following example, two systems Prod and Cons communicate
via a single element buffer represented by a SingleBuf system. The
SingleBuf system alternates between accepting a Put and a Get:

(# SingleBuf: @ | System

(# PutPort,GetPort: @Port;

bufCh: @char;

Put: PutPort.entry

(# ch: @char enter ch do ch->bufCh #);

Get: GetPort.entry

(# ch: @char do bufCh->ch exit ch #);

do cycle(#do PutPort.accept; GetPort.accept #)

#);

Prod: @ | System

(#

do cycle(#do ...; c->SingleBuf.put; ... #)

#);

Cons: @ | System

(#

do cycle(#do ...; SingleBuf.get->c; ... #)

#)

do Prod.fork; SingleBuf.fork; Cons.fork;

#)

216 CONCURRENCY

14.3.2 Ports controlling several operations

It is possible to associate more than one operation with a port, as illus-
trated in Figure 14.1. The Master-system transmits a sequence of values
to the two Slave-systems, and each Slave-system computes the sum of
the values being received. Each value is received and accumulated by a
synchronous execution of Add. A Slave object can be used according to
the following protocol:

(1) The Clear operation must be used to initiate a new sequence of
summations. A Clear thus terminates any ongoing summation.

(2) The Add operation accumulates a new value.

(3) The Result operation returns the current sum.

In the example, positive numbers are transmitted to Slave1 and negative
numbers are transmitted to Slave2.

14.3.3 Restricted acceptance

An accept operation on a port signals that any object is allowed to execute
an operation associated with the port. Sometimes it is desirable to restrict
the possible objects that are allowed to execute a port operation. The
restriction may specify that one specific object is allowed to execute a
port operation, or it may specify that instances of a specific pattern are
allowed to execute a port operation. These two types of restrictions are
described in the following two sections.

Object restriction

It is possible to restrict the sender of an operation by declaring the port
as an instance of the ObjectPort pattern. The Accept operation of an
ObjectPort has an enter parameter which is a reference to the object
that is allowed to execute a port operation. The syntax for this is:

S: ^ | T; {some component reference}

P: @ObjectPort;

F: P.Entry(# do ... #);

...

S[]->P.accept;

The example in Figure 14.2 describes an abstract pattern for handling
reservations of some kind. The reservations are supposed to be stored in
some register. The actual way this is done is supposed to be described
in sub-patterns of ReservationHandler. At most, one person at a time
is allowed to make reservations. An agent making a reservation must
perform the following steps:

14.3 DIRECT COMMUNICATION BETWEEN COMPONENTS 217

(# Slave: System

(# receive: @Port;

Clear: receive.entry(# do 0->sum #);

Add: receive.entry

(# V: @integer enter V do sum+V->sum #);

Result: receive.entry(# S: @integer do sum->S exit S #);

sum: @integer;

do 0->Sum;

Cycle(# do receive.accept #);

#);

Slave1: @ | Slave;

Slave2: @ | Slave;

Master: @ | System

(# Pos,Neg: @integer; V: [100] @integer;

do {Read values to V}

Slave1.Clear; Slave2.Clear;

(for inx: V.Range repeat

(if True

// V[inx] > 0 then V[inx]->Slave1.Add

// V[inx] < 0 then V[inx]->Slave2.Add

if)for);

Slave1.Result->Pos;

Slave2.Result->Neg;

#)

do Master.fork; Slave1.fork; Slave2.fork

#)

Figure 14.1 Example of concurrent systems.

(1) The register must be locked by executing the Lock operation.

(2) The agent may then perform one or more reservations using Reserve.

(3) The agent terminates the reservation session by executing Close.

The example includes a sketch of a handler for hotel reservations. The
system P describes a scenario of an agent making two hotel reservations.

Qualified restriction

The ObjectPort described above makes it possible to ensure that only
one specific system may execute a port operation. It is often desirable
to specify that a port operation may be executed by a restricted set of
systems. By using a port instantiated from QualifiedPort, it is possible

218 CONCURRENCY

ReservationHandler: System

(# start: @Port;

Lock: start.entry

(# S: ^ | System

enter S

do S[]->sender[]; false->closed; INNER

#);

sender: ^ | System;

request: @ObjectPort;

Reserve:< request.Entry;

Close:< request.Entry(# do true->closed; INNER #);

closed: @boolean

do cycle

(#

do start.accept;

loop: cycle

(#

do sender[]->request.accept;

(if closed//true then leave loop if)

#)#)

#);

HotelResHandler: @ | ReservationHandler

(# Reserve::<

(# guestName: @text; noOfPersons,roomNo: @integer

enter(GuestName,noOfPersons)

do ...

exit roomNo

#);

{Representation of register of hotel reservations}

#);

P: @ | System

(# rno1,rno2: @integer

do P[]->HotelResHandler.Lock;

(’Peter Olsen’,4)->HotelResHandler.Reserve->rno1;

(’Anne Nielsen’,1)->HotelResHandler.Reserve->rno2

HotelResHandler.Close

#)

Figure 14.2 Example using a restricted port.

to define port operations that may be executed by objects qualified by a
specific pattern. The syntax for this is:

14.4 COMPOUND SYSTEMS 219

(# Producer: (# ... #);

Consumer: (# ... #);

SingleBuf: @ | System

(# PutPort,GetPort: @QualifiedPort;

bufCh: @char;

Put: PutPort.entry(# ch: @char enter ch do ch->bufCh #);

Get: GetPort.entry(# ch: @char do bufCh->ch exit ch #);

do cycle

(#do Producer##->PutPort.accept;

Consumer##->GetPort.accept

#)

#);

Prod: @ | Producer

(#

do cycle(#do ...; c->SingleBuf.put; ... #)

#);

Cons: @ | Consumer

(#

do cycle(#do ...; SingleBuf.get->c; ... #)

#)

do Prod.fork; SingleBuf.fork; Cons.fork

#)

Figure 14.3 Single buffer using a qualified port.

T: (# ... #); {some pattern}

P: @QualifiedPort;

F: P.Entry(# do ... #);

...

T##->P.accept;

Port operations associated with P may now be executed by an object
which is an instance of T or a sub-pattern of T.

The example in Figure 14.3 illustrates the use of a qualified port. The
single buffer example is modified such that Put can only be executed by
Producer objects and Get can only be executed by Consumer objects.

14.4 Compound systems

Composition is a fundamental means for organizing objects. We have
several examples of defining an object as compositions of other objects
using part objects, references and block structure. We have also seen

220 CONCURRENCY

how the do-part of an object may be composed of other objects. In this
section we shall show how to construct compound systems that are system
objects consisting of several internal multiple action sequences.

In BETA the actions to be performed by a system may be distributed
among several internal systems. The internal systems may be more or
less independent, and they may access common data (items in an enclos-
ing system), communicate with each other, communicate with external
systems or control communication between external systems, and the en-
closing system. In the following, examples of such compound systems are
described.

For compound systems consisting of several internal concurrent sys-
tems, we are often interested in describing that execution of the outermost
system cannot terminate before execution of all inner systems has termi-
nated. The outermost system may have to do some initialization before
executing the inner systems, and it may have to do some finalization
(clean-up) when they have finished execution. The System pattern has
an attribute conc which can be used for this purpose. Conc can be used
in the following way:

S: @ | system

(# S1: @ | system(# ... do ... #);

S2: @ | system(# ... do ... #);

S3: @ | system(# ... do ... #);

...

do ...;

conc(#do S1.start; S2.start; S3.start #);

...

#)

When S is executed, it will eventually execute the conc object, where the
do-part describes that concurrent execution of S1, S2 and S3 is initiated.
The do-part of conc will then wait for termination of S1, S2 and S3.
When they have terminated, execution continues after conc.

14.4.1 Indirect communication between internal
systems

The internal systems of a compound system may communicate indirectly
via global objects in the enclosing system. Such shared objects should be
defined as monitor objects.

The example in Figure 14.4 describes a histogram, represented by the
Histogram system, which is an example of a compound system. The
Histogram system consists of two internal systems and a monitor, the
monitor representing the data in the histogram. The Display system

14.4 COMPOUND SYSTEMS 221

(# Histogram: @ | system

(# histogramData: @monitor

{representation of the histogram}

(# R: [100] @integer;

Add: entry (# i: @integer enter i do R[i]+1->R[i] #);

Sub: entry

(# i: @integer enter i do (R[i]-1,0)->Min->R[i] #);

Get: entry(# i,V: @integer enter i do R[i]->V exit V #)

#);

Display: @ | system

(# i: @integer

do cycle(#

do (i+1) mod 100->i;

(i,i->histogramData.Get)->Screen.show

#)#);

Update: @ | system(#do cycle(#do request.accept #) #);

request: @Port;

newValue: request.entry

(# V: @integer

enter V

do (if V>0 then V->histogramData.Add

else -V->histogramData.Sub

if)

#)

do conc(#do Display.start; Update.start #)

#);

S: | system(#do cycle(#do ...; someValue->Histogram.newValue #)

do conc(#do Histogram.start; S.start #)

#)

Figure 14.4 Example of compound system.

constantly displays the histogram on a screen. The histogram may be
changed by means of external requests. The Update system handles pos-
sible external requests and updates the histogram data.

The Display and Update systems need not synchronize as the
Display system always displays the latest version of the histogram. Since
histogramData is represented as a monitor, the operations on the his-
togram data are indivisible.

The Display system reads the histogram by requesting execution of
the global item Get. Similarly, the Update system updates the histogram
data by execution of Add and Sub. Note that newValue is an attribute of

222 CONCURRENCY

Histogram, but controlled by the internal Update system. S is some sys-
tem using Histogram, and it communicates with the Histogram system
independently of its internal concurrent behavior.

14.4.2 Communication with internal systems

From outside a system it is possible to communicate directly with its
internal systems without synchronizing with the enclosing system. The
Pipe system in Figure 14.5 consists of three internal concurrent systems,
DisAsm, Squash and Asm. A Pipe object receives a sequence of text lines,
transforming substrings ** into ^. Then the input lines are formatted into
lines consisting of 80 characters. A blank is inserted between the original
input lines. This job is divided between the internal systems:

• The DisAsm system receives an input line and transmits each character
in the line to the Squash system. Note that the DisAsm system controls
a Port in an enclosing system object.

• The Squash system replaces substrings ** by ^ and transmits the out-
put to Asm.

• The Asm system formats the character sequence into lines consisting of
80 characters.

The Prod system transmits input lines to the Pipe, and the Cons system
receives lines from the Pipe. From these clients the internal concurrent
behavior does not affect the use of the Pipe.

14.5 Readers and writers problem

A classical synchronization problem is the so-called readers and writers
problem, which may be formulated in the following way: an object is
shared by a number of concurrent components. The components may be
divided into two classes, depending on how they use the shared object:

Readers: A reader component will only observe the state of the object.
Several readers may access the object at the same time.

Writers: A writer component will modify the state of the object. A
writer must have exclusive access to the object.

As an example of a shared object, consider a document. Several readers
are allowed to extract parts of the document or print it. Several writers
are allowed to modify the document by inserting new text or by deleting
text. However, each such operation must be indivisible. The following
pattern defines a document in the form of a monitor. The operations

14.5 READERS AND WRITERS PROBLEM 223

(# Prod: @ | System(#do cycle(#do getLine->Pipe.Put #)#);

Pipe: @ | System

(# In: @Port;

Put: In.Entry(# L: @text enter L do L->inLine #);

inLine: @text;

DisAsm: @ | System

(#

do cycle(#

do In.accept;

inLine.scan(#do ch->Squash.put #);

’ ’->Squash.put

#)#);

Squash: @ | System

(# P: @Port; ch: @char;

Put: P.Entry(# c: @char enter c do c->ch #);

do cycle(#

do P.accept;

(if ch // ’*’ then

P.accept;

(if ch // ’*’ then ’^’->Asm.put

else ’*’->asm.put; ch->asm.put if)

else ch->Asm.put

if)#)#);

Asm: @ | System

(# P: @Port; ch: @char

Put: P.entry(# c: @char enter c do c->ch #);

do cycle(#

do OutLine.clear;

(for i: 80 repeat P.accept; ch->OutLine.put for);

Out.accept

#)#);

Out: @port;

Get: Out.Entry(# L: @text do OutLine->L exit L #)

OutLine: @text

do conc(#do DisAsm.start; Squash.start; Asm.start #)

#);

Cons: @ | System(#do cycle(#do Pipe.Get->putLine #)#)

do conc(#do Prod.start; Pipe.start; Cons.start #)

#)

Figure 14.5 Compound system with internal communicating systems.

224 CONCURRENCY

Insert and Delete are usual entry operations, i.e. they have exclusive
access to the monitor. The operations GetSub and Print are defined as
sub-patterns of readerEntry, which is defined in monitor. ReaderEntry
is a control pattern for defining operations that can be executed at the
same time. A readerEntry cannot, however, be executed at the same
time as an entry operation:

Document: monitor

(# doc: @text

Insert: entry

(# i,j: @integer; T: @text

enter(i,j,T)

do {insert T between pos. i and j in doc}

#);

Delete: entry

(# i,j: @integer

enter(i,j)

do {delete characters from pos. i to j in doc}

#);

GetSub: readerEntry

(# i,j: @integer; T: @text

enter(i,j)

do {get from doc substring i-j to T}

exit T

#);

Print: readerEntry

(# P: ^ printer

enter P[]

do {send document to printer P}

#)

#)

The readerEntry may be defined as follows:

Monitor:

(# mutex,countMutex: @Semaphore;

rCount: @integer;

entry: (# do mutex.P; INNER; mutex.V #);

readerEntry:

(#

do countMutex.P;

(if rCount+1->rCount // 1 then mutex.P if);

countMutex.V;

INNER;

14.6 EXERCISES 225

countMutex.P;

(if rCount-1->rCount // 0 then mutex.V if);

countMutex.V

#);

...

#)

The variable rCount keeps track of the number of concurrent read oper-
ations taking place at the same time. When the first read operation is
started, the monitor is entered by executing mutex.P. Subsequent read
operations can now enter without being blocked by mutex. An attempt to
enter via entry cannot take place as long as a reader is executing. When
the last reader leaves the monitor, it is opened by execution of mutex.V.
The semaphore countMutex is used for guaranteeing exclusive access to
rCount.

The above definition of the monitor has the property that no reader
will wait unless the shared object is accessed by a writer, meaning that a
reader will not have to wait just because a writer is waiting for other read-
ers to release the object. An alternative would be to define the monitor

in such a way that when a writer wants access, it will get it as fast as
possible, i.e. possible new readers will have to wait. This is left as an
exercise.

14.6 Exercises

(1) Consider the master/slave example. A Slave object computes a
summation of the values received. Define a Slave pattern that ac-
cumulates the computation of a binary function F . This should be
done by defining an abstract pattern Slave that is parameterized
with a function F, and a null element null. If the Slave receives the
values v1,v2, ..., vn, it should compute:

null->ac; (ac,v1)->F->ac; (ac,v2)->F->ac; ...;

(ac,vn)->F->ac

(2) Make a complete definition of the wait attribute of the Monitor

pattern using semaphores.

(3) Make a complete definition of the patterns Port, Entry and accept

using semaphores.

(4) Consider the histogram example in Figure 14.4. What consequences
may it have to define the Get attribute in the following way?

Get: Entry(# i: @integer enter i exit R[i] #)

226 CONCURRENCY

Discuss the problems of referring to objects in an enclosing monitor
or system from the enter or exit parts of an entry operation.

(5) Define a monitor pattern that handles the readers and writers prob-
lem in such a way that a writer will get access to the shared object
as quickly as possible. Possible new readers should then wait until
the writer has finished.

(6) Describe in BETA a machine that can make coffee and soup. The
machine has the following characteristics:

1. The customer can push either makeCoffee or makeSoup.

2. If makeCoffee has been pushed, he/she can take out the coffee.
Similarly, if makeSoup has been pushed.

3. makeCoffee and makeSoup cannot be pushed again until the
coffee/soup has been taken out.

Next, extend the machine to be able to make tea also. The extended
machine should be described as a sub-pattern of the coffee and soup
machine.

(7) Consider a system with nested internal concurrent systems, where
the internal systems manipulate the ports in the enclosing system:

S: @ | system

(# p1: @port; p2: @port; p3:@port;

m1: p1.entry(# ... #); ...

m2: p2.entry(# ... #); ...

m3: p3.entry(# ... #); ...

S1: | system(# ... do ... p1.accept; ... #);

S2: | system

(# ... do ... p2.accept; ...; p3.accept; ... #)

do conc(#do S1.start; S2.start #)

#)

Discuss which operations a sender can apply to S depending on the
accept operations executed by the inner systems. Will the opera-
tions that can be applied to S be mutually disjoint or concurrent?
Discuss the advantages and disadvantages of this.

(8) The system/port patterns described in this chapter are static in the
sense that a system can only open one port at a given time unless
there are internal systems.

Design and implement a new system/port where a system can open
more than one port at the same time.

14.7 NOTES 227

Compare this style of communication with that using nested concur-
rent systems from the previous exercise.

(9) Consider a system A that can be in one of three states, state1,
state2 or state3. In each state one or more ports may be open.
When communication takes place, A changes to a new state depend-
ing on some conditions. If cond1 is true, the next state is state1,
if cond2 is true, the next state is state2, and if cond3 is true, the
next state is state3. Describe A in BETA.

Consider a system B, which is like A except that state1 consists of
two substates state11 and state12. System B changes to state11

if cond1 and cond11 is true and to state state12 if cond1 and

cond12 is true. Describe B in BETA as a sub-pattern of A.

14.7 Notes

It is outside the scope of this book to give a complete bibliog-
raphy of concurrent programming. Important contributions to this
work have been made by Dijkstra (Dijkstra, 1968), Concurrent Pas-
cal (Brinch-Hansen, 1975) (and other work by Brinch-Hansen), CSP
(Hoare, 1978), and Ada (US Department of Defense, 1980).

The semaphore concept was introduced by Dijkstra in (Dijkstra, 1968).
The monitor concepts were introduced in (Hoare, 1978; Brinch-Hansen,
1975). The BETA conc pattern is similar to Dijkstra’s parbegin, parend,
but the constituent parts of a conc object are systems (as in CSP) and
not arbitrary imperatives.

Synchronization between system objects is similar to the handshake in
CSP or rendezvous in Ada. In CSP, both the sender part and the receiver
part in a communication must be named. In Ada, only the sender must
name the receiver, whereas the receiver accepts all systems. The BETA
approach includes these two extremes as special cases.

Few programming languages support compound systems in a general
sense. In Ada, for example, it is possible to specify compound systems in
the form of nested tasks. However, the communication with internal tasks
is limited. It is not possible in Ada to call entry procedures of internal
tasks of a task.

The idea of using semaphores and abstract classes and procedures to
define higher level concurrency abstractions was first proposed by Jean
Vaucher in (Vaucher, 1975), where it was shown how to define a monitor
abstraction.

Most concurrent programming languages have built-in mechanisms
for concurrency, communication and synchronization. The actual mech-
anisms differ from language to language. Monitors and rendezvous are

228 CONCURRENCY

typical examples. BETA has currently no built-in mechanisms except for
semaphore and fork, because it is possible to define abstract patterns for
many of the commonly used high-level constructs. Experience with this
strategy may, however, imply that some built-in mechanisms should be
introduced.

Chapter 15

Nondeterministic Alternation

In Chapter 13 the notion of alternation was introduced. Alternation is
a sequencing form used to describe a system that executes several ac-
tivities, but at most one at a time. As mentioned in the introduction
to Chapter 13, alternation is a useful mechanism for modeling agents
that alternates between a number of more or less independent activities.
Alternation may also be used to structure a program using components
without explicitly having to synchronize access to common objects. This
is in contrast to concurrency, which is a sequencing form used for describ-
ing a system that executes several activities at the same time. In the
concurrent situation, access to shared objects may have to be synchro-
nized.

Alternating execution of components may be used to handle the non-
determinism of communication in a system of concurrent components. A
component involved in communications with more than one component
may then wait for one or more acts of communication at the same time.

In many situations the different acts of communication are more or
less independent. Assume that the system A communicates with systems
B, C, D and E. Then it may be that the acts of communication with B

and C are performed in one sequence and the acts of communication with
D and E are performed in another sequence, but there is no sequencing
between the two groups of communication. In such a situation it may
be more natural to describe the communication sequences by means of
alternating components. In the above example, system A can be described
as a compound system consisting of two alternating components, one for
communication with B and C and another for communication with D and
E. In the next section we show how to describe this situation in BETA.

In Chapter 13, deterministic alternation (coroutine sequencing) has
been described. In this chapter the nondeterministic form of alternation
will be presented. Nondeterministic alternation is only meaningful to-
gether with concurrency. A system object executing concurrently with

229

230 NONDETERMINISTIC ALTERNATION

other systems may be involved in a number of ongoing dialogs with some
of the other systems. Such a system will typically start an internal com-
ponent (coroutine) for each such ongoing dialog. These components will
then be executed alternately, and the scheduling will be nondeterministic
depending on when the other systems are ready to communicate.

The mechanism for specifying alternation is not a primitive language
mechanism, but is defined as an attribute of the System pattern.

15.1 Alternating execution of components

The following example shows a BETA program containing three compo-
nents C1, C2 and C3:

System

(# C1: @ | System(# ... SUSPEND ... #);

C2: @ | System(# ... SUSPEND ... #);

C3: @ | System(# ... SUSPEND ... #)

do alt(# do C1.start; C2.start; C3.start #)

#)

C1, C2 and C3 are objects of the component kind. Components may be
executed alternately as specified by the imperative:

alt(#do C1.start; C2.start; C3.start #)

The alt pattern is an attribute of System. Alternating execution means
that at most one of the components is executing its action part at a
time. The components not executing actions are delayed at well defined
points in their action sequence. These points are the same at which
interleaving (i.e. shift of execution to another component) may take place.
Interleaving may take place (1) at the beginning of the action-part of the
component, (2) when the component is attempting to communicate (see
below), and (3) when the component has suspended its action-sequence.

As mentioned, interleaving may, for instance, take place when the ac-
tive components attempt to communicate with another component. Com-
municate here means that the component attempts to execute either an
entry operation or an accept.

The situation mentioned at the beginning of this chapter with a system
A performing one communication sequence with B and C and another
sequence with D and E may take place as follows:

(1) The sequence involving B and C may, for example, be as follows: (a)
B attempts to execute an entry operation A.putB, which will have
to match a corresponding operation PB.accept executed by A; (b) A
will then execute some actions I1; (c) A will then attempt to execute

15.1 ALTERNATING EXECUTION OF COMPONENTS 231

(# A: @ | system

(# PB: @port; putB: PB.entry(#...#);

X1: @ | system

(#

do cycle(#do PB.accept; I1; C.putC; I2

#);

PD: @port; putD: PD.entry(#...#);

X2: @ | system

(#

do cycle(#do PD.accept; J1; E.putE; J2

#)

do alt(#do X1.start; X2.start #)

#);

B: @ | system(#do ...; A.putB; ... #);

C: @ | system

(# PC: @port; putC: PC.entry(#...#)

do ...; PC.accept; ...

#);

D: @ | system(#do ...; A.putD; ... #);

E: @ | system

(# PE: @port; putD: PE.entry(#...#)

do ...; PE.accept; ...

#);

do conc(#do A.start; B.start; C.start; D.start; E.start #)

#)

Figure 15.1 A skecth of an alternating system A.

an entry operation C.putC; (d) A will then execute some actions I2;
(e) This sequence may be repeated.

(2) A similar sequence may be performed involving D and E.

This scenario is described in Figure 15.1. Note that A has two internal
components, X1 and X2, each executing one of the sequences mentioned
above. The alt control-pattern performs an alternating execution of X1
and X2, in which case at most one of X1 and X2 is executing at the same
time.

Execution may alternate between X1 and X2 at the communication
points PB.accept;, C.getC, PD.accept and E.putE. For example, if X1
is executing and it attempts to execute PB.accept, but B is not ready to
execute A.putB, then X1 may be temporarily suspended and X2 may be
resumed.

232 NONDETERMINISTIC ALTERNATION

At some point, both X1 and X2 may be delayed while waiting for
communication to take place: X1 may be waiting at PB.accept and X2

may be waiting at E.putE. The X1 system may resume when B is ready
to communicate, and X2 may resume when E is ready to communicate. In
this situation, A may be seen as waiting for a communication with either
B or C, and it communicates with the first one which is ready.

The system A may be characterized as executing the following inter-
leaved sequences of imperatives:

S1: PB.accept; I1; C.putC; I2; PB.accept; I1; C.getC; I2; ...

S2: PD.accept; J1; E.putE; J2; PD.accept; J1; E.putE; J2; ...

The S1 sequence is generated by X1 and the S2 sequence is generated
by X2. The two sequences are interleaved at the communication points
PB.accept, C.putC, PD.accept and E.putE. The following sequence is
one example of a possible interleaving of S1 and S2

PB.accept; I1; PD.accept; J1; E.putE; J2; C.putC; I2;

PD.accept; J1; PB.accept; I1; C.putC; I2; E.putE; J2; ...

15.2 A distributed calendar

Consider a distributed calendar system. Each person in an organization
has a calendar object which keeps track of days where the person is en-
gaged in meetings. For simplicity, a meeting is always one day.

A person who wants to arrange a meeting for a group of people can
attempt to reserve a meeting date for this group. The calendar system
then checks if the requested date is free, and checks with the calendars of
those people involved if the date requested is free. If the date is free for
all those involved, the date will be reserved.

While a calendar system is checking with the people involved in the
requested meeting, it must be able to answer requests for meetings from
other calendar systems.

In Figures 15.2 and 15.3 a Calendar pattern is described. For sim-
plicity, only Calendar objects are assumed, i.e. no objects representing
persons are included. This means that instead of reserving a meeting
date for a group of people, a meeting is reserved for a group of Calendar
objects.

The ownerHandler takes care of an initial reservation from the
owner of the calendar. The start-port represents a state where the
ownerHandler is ready to accept the reserve operation for reserving
a meeting. The end-port represents a state where the ownerHandler is

15.2 A DISTRIBUTED CALENDAR 233

Calendar: system

(# days: [365] @integer; {representation of the calendar dates}

ownerHandler: @ | system

(# day: @integer; {date for initiated meeting}

group: ^Calendars; {involved Calendars}

start: @port;

reserve: @start.entry

(# D: @day; G: ^Calendars

enter(D,G[]) do D->day; G[]->Group[]

#);

Ok: @boolean;

checkGroup:

(#

do (if days[day]//free then

tmpBooked->days[day]; true->Ok;

group.scan

(#

do (day->theCalendar.othersHandler.reserve)

and Ok->Ok

#);

group.scan

(#

do Ok->theCalendar.othersHandler.confirm

#)

(if Ok//true then booked->days[day]

else free->days[day]

if)if)#);

end: @port;

confirm: end.entry

(# ok: @boolean do Ok->ok exit ok #);

do cycle(#do start.accept; checkGroup; end.accept#)

#);

othersHandler: @ I system (# ... #)

do alt(#do ownerHandler.start; othersHandler.start #)

#)

Figure 15.2 A distributed calendar.

ready to accept the confirm operation, which informs the owner about
whether or not the meeting could be reserved.

When a reserve-operation has been executed, the procedure pattern
checkDate checks whether it is possible to reserve a meeting for that day.

234 NONDETERMINISTIC ALTERNATION

othersHandler: @ | system

(# start: @port;

day: @integer;

reserve: @start,entry

(# d: @integer;

enter d

do (if (days[d->day]=free)->ok

//true then tmpBooked->days[d]

if)

exit ok

#);

end: @port;

confirm: end.port

(# ok: @boolean

enter ok

do (if ok//true then booked->days[day]

else free->days[day]

if)#);

do cycle(# start.accept; end.accept #)

#)

Figure 15.3 The othersHandler of the distributed calendar.

First, the day must be free for the owner of the calendar. If this is the
case, then the day is checked with all members of the group. Each group
member is temporarily asked to reserve the day, returning true or false
depending on whether or not they can. Finally, all members of the group
are informed about whether or not the day is actually reserved.

The othersHandler takes care of the requests from other calendar
systems. The reserve operation handles an initial reservation request
from another calendar. It may immediately return false if the day is not
free, otherwise it will make a temporary reservation. The confirm oper-
ation either books the day or frees the temporary reservation, depending
on the enter parameter.

The Calendars pattern will not be given in detail. It represents a
set of Calendar objects. It has a scan operation with the index variable
theCalendar that iterates over all members of the set.

The elements of the repetition days may have the values free,
tmpBooked or booked. These values may be implemented as integer val-
ues.

15.3 BOUNDED BUFFER 235

(# Buffer: System

(# S: [S.range] @char; in,out: @integer;

InPort,OutPort: @Port;

Put: InPort.entry

(# ch: @char

enter ch

do ch->S[in]; (in mod S.range)+1->in

#);

Get: OutPort.entry

(# ch: @char

do S[(out mod S.range)+1->out]->ch

exit ch

#);

PutHandler: @ | System

(#

do Cycle(#

do (if in // out then Pause {Buffer is full}

else InPort.accept; {accept Put}

if)#)#);

GetHandler: @ | System

(#

do Cycle(#

do (if in // (out mod S.range +1))

then {Buffer is empty}

else OutPort.accept; {accept Put}

if)#)#)

do 1->in; S.range->out;

alt(#do PutHandler.start; Gethandler.start #)

#);

Prod: @ | System(# ... ch -> Buf.Put; ... #);

Buf: @ | Buffer;

Cons: @ | System(# ... Buf.Get->ch; ... #)

do conc(#do Prod.start; Buf.start; Cons.start #)

#)

Figure 15.4 Bounded buffer with alternating components.

15.3 Bounded buffer

The example in Figure 15.4 describes a bounded buffer implemented us-
ing alternation. The internal components PutHandler and GetHandler

control communication with the Buffer-system; PutHandler takes care

236 NONDETERMINISTIC ALTERNATION

ExtendedBuffer: Buffer

(# GetRear: OutPort.entry

(# ch: @char

do S[(in+S.range-1) mod S.range -> in] -> ch

exit ch

#);

#)

Figure 15.5 Extended buffer.

of a sequence of Put-communications, and GetHandler takes care of a
sequence of Get-communications.

The imperative Pause specifies that this is a point where interleaving
may take place. Pause is not specified here, but may be implemented as
a communication with some system in the environment, such as a timer-
system.

Since the execution of the PutHandler and GetHandler compo-
nents is alternating, each component has exclusive access to the buffer
representation. Interleaving may only take place at InPort.accept,
OutPort.accept and Pause.

In Figure 15.5 a sub-pattern of Buffer is defined. A new operation,
GetRear, for also taking elements out from the rear of the buffer is added,
showing that it is possible to add operations to a port, and thereby spe-
cialize the protocol of Buffer.

15.4 A simple game

Consider a very simple game between a player and a ‘game process.’ The
game process is either in an even or an odd state. If the player probes the
game process when it is in an even state, the player loses and the score
is decreased by some value. If the game process is in the odd state, the
player wins and his/her score is increased by some value. At random, the
game process may change state, from even to odd or from odd to even.
Also, the game process may change the value by which the score of the
player is increased or decreased. The change of state and increment value
is initiated by a demon process. The game process is thus constantly
involved in a communication sequence with the player and the demon
process.

A concurrent system representing a game-system, demon-system and a
Player-system is described in Figures 15.6 and 15.7. Figure 15.6 shows

15.4 A SIMPLE GAME 237

system

(# game: @ | system

(# odd: (#exit 1 #); even: (#exit 0 #);

state,score,inc: @integer;

playerHandler: @ | system(# ... #);

demonHandler: @ | system(# ... #);

do alt(#do playerHandler.start; demonHandler.start #)

#);

demon: @ | system

(#

do cycle

(# score: @integer

do game.demonHandler.bump; random->pause;

(if random mod 2 // 1 then

game.demonHandler.changeInc->score;

(if score<100//true then

1->game.demonHandler.setInc

else 10->game.demonHandler.setInc

if)if)#)#);

player: @ | system

(#

do game.playerHandler.startGame; ...

game.playerHandler.probe;...

game.PlayerHandler.endGame

#)

do conc(#do game.start; demon.start; player.start #)

#)

Figure 15.6 Overall structure of simple game system.

the overall structure of the concurrent system, including details of the
demon-system and the player-system. The game system consists of two
internal alternating systems, playerHandler and demonHandler. The
details of these two systems are shown in Figure 15.7.

The playerHandler handles communication with the player and may
be in one of three states: start, playing and final. Each state is
represented by a port. In a start state, the startGame operation will
be accepted; in a playing state, the probe and endGame operations will
be accepted; in a final state, score will be accepted.

The demonHandler may be in two states, P1 and P2, also represented
by ports. In state P1, the bump and changeInc operations are accepted;
in state P2, the setInc operation will be accepted.

238 NONDETERMINISTIC ALTERNATION

playerHandler: @ | system

(# start: @port; {initial state: accepting StartGame}

startGame: start.entry

(#

do 0->score; false->stopped; even->state; 1->inc

#);

playing: @port; {playing state: accepting Result, EndGame}

probe: playing.entry

(#

do (if state

// even then score-inc->score

// odd then score+inc->score

if)

#);

endGame: playing.entry(#do true->stop #);

final: @port; {final state: accepting score}

score: playing.entry(#do {display final value of score} #);

stop: @boolean

do start.accept;

play:

(#

do playing.accept; (if stop//false then restart play if)

#);

final.accept

#);

demonHandler: @ | system

(# P1: @port;

bump: P1.entry(#do (state+1) mod 2 -> state #);

changeInc: P1.entry

(# v: @integer do score->v; true->newInc exit v #);

P2: @port;

setInc: P2.entry(# v: @integer enter v do v->inc #);

newInc: @boolean

do cycle

(#do P1.accept;

(if newInc//true then P2.accept; false->newInc if)

#)

#);

Figure 15.7 Details of playerHandler and demonHandler.

15.5 NOTES 239

The demon is represented by a concurrent system that performs a
bump operation on the game at irregular intervals (controlled by a random
number generator, not shown here). Sometimes the demon informs the
game that it wants to change the value (inc) used to increment/decrement
the score. The actual change of this value is dependent on the current
score (score) of the player.

The player is also represented by a concurrent system that performs
various operations on game.playerHandler.

15.5 Notes

A program describing a number of concurrent processes will usually in-
volve nondeterminism. This is the case since the speed of independent
processes cannot be predicted. Several different language mechanisms
have been proposed to deal with nondeterminism, including the guarded
I/O commands of CSP, which also appear in Ada. Guarded I/O com-
mands introduce nondeterminism into a single sequential process. Alter-
nating execution may be seen as an alternative to guarded commands.
Instead of having nondeterminism in each system object, the nondeter-
minism is described as alternating the execution of component objects.

By using alternation and compound objects instead of guarded com-
mands, logically independent action sequences are mixed into one action
sequence. This may make the structure of the resulting program more
clear. In addition, it simplifies implementation. A CSP-process and an
Ada-task may have several open channels of communication waiting at
one time. When a communication takes place it is possible that other
open channels of communication of the objects involved must be closed.
In BETA, each object may wait for at most one communication. No
open channel of communication needs to be closed when a communica-
tion takes place. Finally, in CSP and Ada the use of input and output
as guards is not symmetric: it is only possible to have input-commands
(accept-statements) in a guarded command. The possibility of allow-
ing output-commands as guards in CSP is mentioned in (Hoare, 1978).
However, symmetric use of input-/output-guards greatly complicates the
implementation.

Technically, most programs using alternation could be simulated by
programs using concurrency, but concurrency implies that each system
executes actions with a positive speed. On a single processor this implies
time sharing using a clock. Some implementations of concurrency avoid
this by shifting to another process only at a point of communication.
If this is the case, the program actually consists of alternating compo-
nents and not of concurrent systems. In a concurrent program no looping
system can monopolize the processor, whereas this is the case with an

240 NONDETERMINISTIC ALTERNATION

alternating program.
Alternation is not an alternative to concurrency, but a supplement. A

number of activities are, by their nature, alternating and nondetermin-
istic, and such activities should not be modeled by concurrent systems,
coroutines or guarded commands.

Chapter 16

Exception Handling

A large part of any software design is the handling of error situations
or rare situations that are unlikely to happen. Consider the Register

example in Figure 5.2. A register can hold up to 100 integers. If an
attempt is made to insert more than 100 integers using the Insert pattern
there is a problem. At the point of the comment {Overflow}, some code
for dealing with this situation must be inserted. For ‘small’ programs it is
common to print an error message and terminate the program execution.
The user must then increase the constant 100, recompile the program and
execute it again.

For most non-trivial programs it is not satisfactory just to terminate
the program with an error message. Consider the situation where the
register is part of a word processor program. An error message saying
that some internal register has overflowed is in general not meaningful
to a user of such a word processor. Furthermore, the user will not be
able to increase constants of possible tables. Another example is a flight
reservation system. Such a system runs over a very long period of time,
and it would not be acceptable if a table overflow simply resulted in an
error message and a subsequent termination of the program.

The program fragment using the Register pattern may of course keep
track of how many elements are stored in a given Register object and
then take some special action if more than 100 elements are to be inserted.
This may, however, imply that the program is greatly complicated with
code that tests for such rare situations. The code for the ‘normal’ situa-
tions may then be difficult to read. It would be desirable if the code for
handling the ‘rare’ situations could be separated from the code handling
the ‘normal’ situations.

There are many types of errors or exceptional situations which a pro-
gram may have to deal with. An exception is a class of computational
states that requires an extraordinary computation. It is not possible to
give a precise definition of when a computational state should be classified

241

242 EXCEPTION HANDLING

as an exception occurrence; this is a decision for the programmer. In
practice, most people have a good feeling of what is the ‘main’ compu-
tation and what are exceptional situations. The exceptional situations
are all those situations which imply that the ‘main’ computation fails.
The following is a list of examples of situations that are often considered
exceptional:

Overflow of tables The example described above with table overflow
in a Register object is typical for a large number of situations.
Most software has objects with finite tables that may overflow.

Undefined results A procedure or function may not have a well defined
result for all possible input parameters. One example of this is
division by zero, and another is a procedure for inverting a matrix.
If the matrix is singular, then the inverse is not well defined.

Incorrect usage by the user A user using a program or application
in an erroneous way is one example of getting undefined results.
Giving wrong input to a program is a common mistake made by
users. In some situations this could be treated as an exception,
but in many situations a program taking complex input is equipped
with an input checker. A compiler is an example of this. In other
situations it should be an explicit part of the user interface design.

Inconsistent data Programs often communicate by means of files: one
program writes a file to be read by another program. The informa-
tion on the file may then be written in a format agreed upon by the
authors of the two programs. The data file could be inconsistent
for a number of reasons: there could be errors in the first program,
some other program could have manipulated the file, by mistake
some other file could be used as input to the second program, etc.

A document saved by a word processor often has special information
used by the word processor. It should be able to handle possible
inconsistencies in this file.

Operating system errors Consider a word processor. When a doc-
ument is saved, it may be that there is no more disk space. The
user may try to open a document which cannot be interpreted by
the word processor. The user may attempt to modify a document
owned by another user. If the word processor does not handle such
situations, the operating system will usually terminate the word
processor with an error message which may not be meaningful to
the user.

EXCEPTION HANDLING 243

Language defined errors Run-time errors such as index errors and
attempts to use NONE references may appear in even well tested
programs. Since such situations appear because of errors in the pro-
gram, it is in general difficult to recover from such errors. However,
the program should at least terminate with an informative message.

Numeric errors Computers only support numbers with a finite amount
of values. This means that the result of an arithmetic operation may
result in a number which cannot be represented by the hardware.
This kind of arithmetic overflow is an example of an exception.

A program must be able to deal with exceptions. A good design rule is
to list explicitly the situations that may cause a program to break down.
Many programming languages have special constructs for describing ex-
ception handling. In BETA, exception handling is usually described by
means of virtual patterns. The purpose of this chapter is to show how to
use virtual patterns for exception handling.

From the above discussion an exception handling mechanism should
provide the following support:

Meaningful error messages As a minimum it should be possible to
provide meaningful error messages when an exception occurs.

Recovery The program using an object should be provided with the
possibility to recover from an exception raised by the object. Some-
times the recovery will be transparent in the sense that the ‘normal’
control flow may continue. In other situations the recovery may im-
ply a termination or restart of part of the computation.

Separation of control flow The code for dealing with an exception
should be isolated from the code handling the ‘normal’ case so as
not to disturb the readability. Also an explicit indication of possible
exceptions may be a useful property of a program.

In the following sections, a technique for using virtual patterns for excep-
tion handling will be presented. We start by introducing a simple version
of exception patterns and show how these may be used for overriding er-
ror messages and for doing recovery from the exceptions (Sections 16.1–
16.3). In Section 16.4 the difference between associating exceptions with
class patterns and procedure patterns is described. System exceptions
and language-defined exceptions are described in Sections 16.5 and 16.6,
respectively. Finally, a more advanced design of exception patterns is
described in Section 16.7.

244 EXCEPTION HANDLING

16.1 Simple exceptions

In this section a simple use of exception patterns is shown. Consider the
Register pattern in Figure 16.1 (it is a slightly revised version of the
Register pattern from Chapter 5, Figure 5.2). The Register pattern
is extended with two exception patterns. Overflow is invoked when the
register overflows, and NotFound is invoked when an attempt is made to
delete a key which is not in the register. These two exceptions represent
two different classes of exceptions: the Overflow exception is fatal in the
sense that it is probably not meaningful to continue the program; the
NotFound exception may perhaps be an error. For many applications of
Register it may not be an error to attempt to remove an element that
is not in the register. Both exception patterns are sub-patterns of the
Exception pattern, which describes the general properties of exceptions.
Exception will be defined below.

Consider an application that has a register of registration numbers
of some kind. The object Registrations represents this register. The
Overflow exception is handled and the application terminates, but it
overrides the default error message with one that is more meaningful
for the user. The NotFound exception is not considered fatal, but a
message describing the event is displayed to the user. The execution
of an Exception instance will by default result in termination of the pro-
gram unless a Continue has been executed. As can be seen, an explicit
Continue is executed by NotFound:

Registrations: @Register

(# Overflow::<

(#

do ’Too many registration numbers.’->msg.append;

’Program terminates.’->msg.append

#);

NotFound::<

(#

do ’Attempt to delete:’ ->PutText;

key->screen.putInt;

’which is not in the register’->PutText;

Continue

#)

#)

16.1 SIMPLE EXCEPTIONS 245

Register:

(# Table: [100] @integer; Top: @integer;

Init: (#do 0->Top #);

Has: {Test if Key in Table[1:Top]}

(# Key: @integer; Result: @boolean;

enter Key

do ...

exit Result

#);

Insert: {Insert New in Table}

(# New: @integer

enter New

do (if (New->&Has) // False then {New is not in Table}

Top+1->Top;

(if (Top<=Table.Range)

// True then New->Table[Top]

else

Overflow {An Overflow exception is raised}

if)if)#);

Remove: {Remove Key from Table}

(# Key: @integer

enter key

do (Search:

(for inx: Top repeat

(if Table[inx] // Key then

{remove key}

leave Search

if)for);

key->NotFound; {A NotFound exception is raised}

:Search)#);

Overflow:< Exception

(#do ’Register overflow’->msg.Append; INNER #);

NotFound:< Exception

(# key: @integer

enter key

do key->msg.putInt;

’ is not in register’->msg.Append;

INNER

#);

#)

Figure 16.1 Pattern Register with exception patterns.

246 EXCEPTION HANDLING

The Exception pattern may be defined as follows:

Exception:

(# msg: @text;

cont: @boolean;

Continue: (# do true->cont #);

Terminate: (#do false->cont #)

do ’Program execution terminated due to exception’

->msg;

INNER;

(if cont//false then

msg->PutText;

{Terminate program execution}

if)

#);

The text object msg is supposed to hold a text to be displayed to the
user in case the exception leads to termination of the program. The msg

text is given a default value in the exception pattern. In sub-patterns of
Exception, it is possible either to append more text to the message or
override the message. In the Register pattern more text is appended. In
the instance Registrations, the message is overridden in the Overflow

pattern, whereas it is not used in NotFound as this exception continues
execution.

The default action of an exception is to terminate execution, but this
termination may be avoided by specifying an explicit Continue. The
rationale behind this is that an exception is an error that must explicitly
be dealt with by the programmer.

In the above example, NotFound is not considered to be an error for
Registrations. This will probably be the case for most instances of
Register. Also, it may not even be necessary to display a message, i.e.
NotFound will be ignored. Each such instance of Register must, however,
explicitly call Continue for NotFound. It would be more convenient if the
programmer did not have to specify a handler in these cases. To do this, it
must be specified within Register that the default for NotFound will be
to continue execution. This can be done by inserting a call to Continue

within the description of NotFound in Register. The call to Continue

should be inserted before inner, since the sub-patterns of NotFound are
able to override the continue by execution of Terminate.

A virtual pattern dealing with an exception is called an exception
pattern, or just an exception. The invocation of an exception pattern is
called an exception occurrence. An exception is said to be raised when an
exception pattern is invoked. The object-descriptor associated with an
exception pattern is called a handler or an exception handler.

16.2 RECOVERY 247

An exception pattern defined in a pattern will be the default handler
for the exception in the case where no further binding of it is made. A sub-
pattern may extend the default handler by a further binding. A specific
instance handler may be associated with each instance by instantiating a
singular object with a further binding of the exception pattern.

16.2 Recovery

The handler associated with Overflow in Registrations provides a new
error message, whereafter the program execution is terminated. The han-
dler could instead execute a Continue, implying that the corresponding
element would not be inserted in the table. Often the handler may be
able to recover from the exception and continue the execution as if the
exception had not appeared. In the register example it might be possible
for the handler to remove some of the elements from the table, move some
elements to another table or extend the size of the table. Whether or not
this is possible will of course depend on the actual usage of the Register.

In BETA it is actually possible to extend the size of a repetition. An
evaluation of the form:

25->Table.extend

will extend Table by 25 elements. An overflow handler for Register

could then be defined as follows:

Register:

(# Overflow:< Exception

(#

do Continue;

INNER;

(Table.range div 4)->Table.extend

#);

Insert:

(# New: @integer

enter New

do (if (New->&Has) // false then

{New is not in Table}

Top+1->Top

(if (Top<=Table.Range)

//false then Overflow

if);

New->Table[Top]

if)#);

...

248 EXCEPTION HANDLING

#)

The default handler for Register will execute a Continue and extend
the size of Table by 25%. A further binding of Overflow may override
the effect of continue. Also note the change in Insert: if control is
returned to Insert after the execution of Overflow, it is assumed that
the exceptional situation has been repaired by the handler, i.e. Insert
may continue.

16.3 Partial recovery

Often it is not possible to do the simple kind of recovery mentioned in the
preceding section. It may be necessary to interrupt the control flow and
escape to an outer level in order to do the recovery. To do this there must
be a well defined control point that can be used to break the current
computation. Such a control point can be defined as a label, and the
handler may then exit to this label by means of leave or restart, as
illustrated in the next example:

do ...

L: (# R: @Register(# Overflow::<(#do ... leave L #)#)

do ... I->R.Insert; ...

#);

...

In the case of an Overflow being raised by Insert, the execution of the
object containing the declaration of R is terminated. This is a drastic way
of handling the exception, since the R register including all its elements
is abandoned. However, in many situations it is a better alternative than
terminating the entire program execution.

In some situations the handler may be able to make a partial recovery
and restart the computation from some point. This would correspond to
replacing leave with restart in the above example. An example of this
kind of partial recovery is given below.

16.4 Handlers for procedure patterns

The above examples have shown examples of associating handlers with
class patterns. Such handlers will be the same for all activations of pro-
cedure patterns associated with the object, i.e. the code may have several
invocations of, for example, Insert, and exceptions raised by all these
Inserts will have the same handler. In many situations it would be de-
sirable to associate different handlers with the different invocations. This

16.4 HANDLERS FOR PROCEDURE PATTERNS 249

is possible by defining an exception pattern as an attribute of Insert.
Consider the following description of Register:

Register:

(# ...

Insert: {Insert New in Table}

(# Overflow:< {Procedure level exception}

Exception(# ... #);

New: @integer

enter New

do (if (New->&Has)

// false then {New is not in Table}

Top+1->Top

(if (Top<=Table.Range)

// false then Overflow if);

New->Table[Top]

if)#);

Overflow:<

Exception(# ... #); {Class level exception}

#)

Handlers for different invocations of Insert may now be defined as fol-
lows:

(# R: @Register

(# Overflow::<(# ... #); {Class handler for R} #)

do ...

I->R.Insert

(# Overflow::<(# ... #); {Procedure handler} #)

...

J->R.Insert

(# Overflow::<(# ... #); {Procedure handler} #)

...

#)

It may appear that there is no use for the class handler since only the
procedure handlers associated with Insert will be called. However, the
local procedure handlers may invoke the class handler if they are unable
to deal with the situation:

I->R.Insert(# Overflow::<(#do ... R.Overflow #) #)

The situation where an exception handler invokes an enclosing handler is
called exception propagation.

Sometimes it is desirable to automatically propagate an exception. In
the above example there may be a mixture of invocations of Insert where

250 EXCEPTION HANDLING

some have a local procedure handler and others do not. For those which
do not have a procedure handler it would be desirable for the exception to
be automatically propagated to the class handler. This could be specified
in the declaration of the exception in Insert:

Register:

(# Overflow:<(# ... #);

Insert:

(# Overflow:< Exception

(#

do INNER;

(if {no binding of Overflow} then

this(Register).Overflow

if)

#)

...

#)

...

#)

The idea is that if no binding has been made of Overflow in a possi-
ble sub-pattern of Insert, then the Overflow exception of the enclosing
Register pattern is invoked. In Section 16.7 it is shown how to imple-
ment ‘no binding of Overflow’.

16.5 System exceptions

Any implementation of BETA, including the Mjølner BETA System, will
provide libraries of patterns and objects for interfacing to the underlying
operating system. A good example of this is a File pattern for interfacing
to the file system of the computer. A large number of error conditions
may appear when manipulating files. Below a simple version of a file1

pattern is given, together with possible exceptions that may be raised.

File:

(# name: @text; {The logical name of the file}

Open:

{General super-pattern for OpenRead and OpenWrite}

(# OpenError: FileException

(#

1This is a simplified version of the File pattern implemented by the Mjølner BETA
System.

16.5 SYSTEM EXCEPTIONS 251

do ’Error during open.’->msg.append; INNER

#);

NoSuchFile:< OpenError

(#

do ’No such file.’->msg.append; INNER

#)

enter name

do INNER

#);

OpenRead: Open

(# NoReadAcess:< OpenError

(#

do ’No permission to read.’->msg.append;

INNER

#)

do {open the file for read}

{May raise NoSuchFile or NoReadAccess}

#);

OpenWrite: Open

(# NoReadAccess:< OpenError

(#

do ’No permission to write.’->msg.append;

INNER

#)

do {Open this(File) for write}

{May raise NoSuchFile or NoReadAccess}

#);

Get:

(# ch: @char

do {Get next char to ch}

{May raise EOFerror}

exit ch

#);

Put:

(# ch: @char

enter ch

do {Write ch to file}

{May raise DiskFull}

#);

Close: (# do {close the file} #);

Remove: (# do {Remove the file from the disk} #);

FileException: Exception

(#do ’Error in file:’->PutText; name->PutText;

252 EXCEPTION HANDLING

INNER

#);

DiskFull:< FileException

(#do ’No more space on disk’->msg.append;

INNER

#);

EOFerror:< FileException

(#do ’Attempt to read past end-of-file’

->msg.append;

INNER

#)

#)

The normal use of a File may be as follows:

(# F: @File

do {Prompt user for file name}

N->F.openWrite;

...

ch->F.put;

...

F.close

#)

In the following example, handlers are defined for some of the exceptions.
When DiskFull is raised, the file is closed and removed, and the program
terminates execution. If the file cannot be opened, or the user has no write
permission to the file, the user is asked to try again:

(# F: @File

(# DiskFull::<

(#

do ’Please remove some files from the disk’

->PutText;

close; Remove; {Close and remove the file}

#)

#)

do GetFileName:

(#

do {Prompt user for file name}

N->F.openWrite

(# NoSuchFile::<

(#

do ’File does not exist. Try again’

->PutText;

16.6 LANGUAGE-DEFINED EXCEPTIONS 253

Restart GetFileName

#);

NoWritePermission::<

(#

do ’You do not have write permission’

->PutText;

’Try again’->PutText;

restart getFileName

#)

#)#);

...

ch->F.put;

...

F.close

#)

16.6 Language-defined exceptions

Language-defined exceptions have to be dealt with by providing pre-
defined patterns in the environment. An implementation of BETA could
provide a pre-defined pattern, Program, that has virtual patterns corre-
sponding to all pre-defined language exceptions. The Program pattern
could be described as follows:

Program:

(# IndexError:< Exception

(#

do ’Index out of range’->msg.append;

INNER

#);

RefIsNone:< ...

ArithmeticOverflow:< ...

DivisionByZero:< ...

do INNER

#)

A BETA program may then provide handlers for the language-defined
exceptions as shown in the following example:

Program

(# IndexError::< (# ... #);

RefIsNone::< (# ... #);

ArithmeticOverflow::< (# ... #);

254 EXCEPTION HANDLING

DivisionByZero::< (# ... #);

...

do ...

#)

The above Program provides handlers for all four kinds of exceptions.
It is possible to provide several levels of Program objects in order to

have different handlers, for example, for IndexError in different parts of
the program. This is illustrated in the following example:

Program

(# IndexError::< (# ... #);

RefIsNone::< (# ... #);

ArithmeticOverflow::< (# ... #);

DivisionByZero::< (# ... #);

...

do ...

Program

(# IndexError::< {alternative handler for index error}

(# .. #)

do ...

#)

#)

In the do-part of the outermost descriptor a new handler for index error
is provided. This handler will then handle possible index errors in the
innermost Program object.

The problem with this approach is that a handler must be supplied for
all the language-defined exceptions, since the handlers in the outermost
Program object are not automatically invoked for exceptions other than
IndexError. In the next section, a more advanced exception mechanism
is provided, which makes it easier to propagate exceptions from an inner
Program object to an outer Program object.

16.7 Advanced design of exception pat-

terns

In this section, a possible design for a more advanced exception mecha-
nism is presented. The goal is to define an exception handling mechanism
with the following properties:

• Better support for the propagation of language-defined exceptions that
have no handler to a possible outer Program object.

16.7 ADVANCED DESIGN OF EXCEPTION PATTERNS 255

• It should be possible to specify another termination level as a default.
The simple Exception pattern (from the previous sections) terminates
the entire program execution as a default action.

• When an object level is terminated, it should be possible to specify
some ‘clean-up’ actions to be executed before termination to ensure
smooth termination.

This is achieved by combining the Exception pattern with the Program

pattern in the following way:

Program:

(# Exception:

(#msg: @text;

cont: @boolean;

Continue: (# do true->cont #);

Terminate: (# do false->cont #)

do ’Program execution terminated due to exception’

->msg;

INNER;

(if cont//false then

(if outerMostProgram then msg->PutText if);

CleanUp;

leave Program

if)

#);

CleanUp:<(#do INNER #);

IndexError:< Exception

(#

do (if {No binding} then

(if Outer[]<>NONE // True then

Outer.IndexError if)if)

’Index out of range’->msg.append;

INNER

#);

RefIsNone:< ...

ArithmeticOverflow:< ...

DivisionByZero:< ...

Outer: ^Program;

DefineOuter:<(#do INNER #)

do DefineOuter;

INNER

#);

The exception patterns may be used as follows:

256 EXCEPTION HANDLING

(# Main: Program

(# IndexError::< (# ... #);

RefIsNone::< (# ... #);

do ...

L0:

Program

(# IndexError::< (# ... #)

{New handler for index error}

DefineOuter::<(#do Main[]->Outer[] #)

{Propagate other exceptions}

{to handlers in Main}

CleanUp::<

(#do {executed before termination}

{of this(Program)}

#)

do ...

L1:

(# Register: (# ... #)

do L2:

(# Registrations: @Register

(# Overflow::< (# do ... #);

NotFound::< (# do ... #)

#)

do ...

#);

...

#);

...

#)

#)

do Main

#)

The options for the handlers of Overflow and NotFound in Registrations

are:

(1) Do nothing: in this case the exception will imply a termination of
the enclosing Program object of the Register definition, i.e. L0 will
terminate.

(2) Explicit leave: the exception handler may explicitly specify a leave
of an arbitrary enclosing level (e.g. L2, L1, L0 or Main).

(3) Explicit Restart: the handler may specify a restart of an enclosing
level (e.g. L2, L1, L0 or Main).

16.8 EXERCISES 257

(4) Explicit Continue: the handler may execute Continue and thereby
resume execution.

The Program pattern has attributes for supporting propagation from in-
ner to outer Program objects. The Outer and DefineOuter attributes are
used for specifying a Program object for propagation of exceptions that
have no handlers. Sub-patterns of Program can have a further binding
of DefineOuter for specifying an outer Program object. This mecha-
nism assures that all language-defined exceptions except IndexError are
propagated to the outermost Program object.

In some of the above examples, there is a need to test whether or not a
virtual pattern has actually been bound in sub-patterns. This is possible
using pattern variables. Consider the following example:

T: (# V:< D;

D:

(#

do ...

INNER;

(if V## // D## then {No further binding} if)

#)

#)

This is only possible using the above form of virtual specification. For
the shorthand form:

V:< (# do ... INNER ... #)

it is not possible, since V## will refer to the actual binding of V. This
means that we have to modify some of the Exception patterns in the
above examples. It is possible to imagine a more explicit support in
BETA for testing whether or not a virtual pattern has a further binding.
This may be included in future versions of BETA.

16.8 Exercises

(1) Redo Exercise 1 in Chapter 11 such that an exception is raised when
R is not qualified by T.

(2) Modify the Register in Figure 16.1 such that an exception is raised
if an attempt is made to insert an element already in the register.
What should the default behavior of this exception be?

258 EXCEPTION HANDLING

16.9 Notes

The foundation of exception handling is the pioneering work by J.B.
Goodenough (Goodenough, 1975). Most procedural languages with spe-
cial language facilities for exception handling are more or less directly
based on this work (e.g. languages like Clu and Ada). Several object-
oriented languages have included special language facilities for exception
handling (e.g. Smalltalk, Eiffel and C++).

All these facilities employ a dynamic approach to finding the handlers
of a particular exception. This implies (with variations) that the han-
dler for an exception is found by traversing the call chain of procedure
invocations and enclosed blocks backwards, until a block or a procedure
invocation is found in which a handler for the exception is defined. This
dynamic approach implies the separate definition of the exception and the
handler, and association of the exception with the handler based on the
dynamic behavior of the program. This implies that it is very difficult to
trace the exceptional computation (this works somewhat like a series of
computed GOTOs), and it is very difficult to ensure that all exception oc-
currences will eventually be handled (i.e. it is very difficult to verify that
a program will respond sensibly to all perceived exceptional conditions).2

This dynamic behavior (dynamic binding of handlers to exceptions) is
often in contrast to the host language (e.g. Ada and Clu) that uses static
name binding (e.g. when binding procedure invocations to procedure
declarations). This has resulted in criticisms from several sources, e.g.
C.A.R. Hoare (Hoare, 1981) states that ‘... the objectives of languages
including reliability, readability, formality and even simplicity ... have
been sacrificed ... by a plethora of features ... many of them unnecessary
and some of them, like exception handling, even dangerous.’

As an alternative to the dynamic approach to exception handling, a
proposal has been made for a static approach to exception handling by
Jørgen Lindskov Knudsen (Knudsen, 1984; Knudsen, 1987) that is based
on the sequel concept proposed by (Tennent, 1977). A sequel is a uni-
fication of continuations and procedures in the sense that it is like a
procedure, except that it does not return to the point of its invocation,
but instead terminates the block in which it is defined. When used for
exception handling, this implies that a sequel in one definition defines
an exception, its handler and the termination level of the exception (i.e.
the enclosing block). The advantage of this approach is that the sequel
concept follows the static binding rule of the host language and at the
same time allows for efficient exception handling. The static approach

2It is important to note that exception handling in any programming language
is only capable of handling exceptional conditions that have been perceived during
program design.

16.9 NOTES 259

has been further developed to incorporate support for smooth termina-
tion (i.e. allowing for clean-up, etc., of blocks being terminated during
an exceptional ‘backtrack’) (Knudsen, 1987).

The BETA approach to exception handling is inspired by this static
approach to exception handling. The rationale for the concrete design
has been to introduce static exception handling into BETA without in-
troducing any new language constructs, but instead utilizing the powerful
abstraction mechanisms of the language to construct an exception han-
dling concept. Exception handling as described in this chapter is merely
a technique for using virtual patterns.

260 EXCEPTION HANDLING

Chapter 17

Modularization

In previous chapters we have introduced language mechanisms for describ-
ing objects and patterns of a BETA program execution. In this chapter,
language mechanisms for describing the physical organization of BETA
programs will be introduced. A non-trivial BETA program will usually
consist of several pages, so it is desirable to be able to split such a de-
scription into smaller, more manageable units. Such units are in general
called modules. A module is a convenient part of a program typically kept
in a file (or in a database), manipulated by an editor, and translated by
a compiler.

Modularization is of the utmost importance when writing programs
that are more than small examples. Since the examples must be fairly
small in a book like this, it is difficult to adequately illustrate and motivate
modularization. The language constructs will be introduced using very
small examples to illustrate the principles. The modularization techniques
described below are absolutely necessary for large programs and highly
recommended even for moderately sized programs. The reasons for this
may be summarized as follows:

• Most reasonably sized programs can be conveniently split into modules
of logically related elements, since it is cumbersome to handle large pro-
grams. Large programs are easier to understand if split into a number
of smaller units.

• When editing it is easier to manage a number of small modules instead
of one large program.

• When several people are working on a project, each person can work
on his own set of modules.

• Modules can be saved in a library and shared by several programs.
Good modularization mechanisms will thus improve reusability of code
as well as designs.

261

262 MODULARIZATION

• It is good practice to split a module into interface modules (often re-
ferred to as specification modules) and implementation modules. An
interface module defines how a module can be used, and an implemen-
tation module describes how a module is implemented. This makes it
possible to prevent users of a module from seeing details about data
representation and implementation of algorithms.

• Certain modules may exist in several variants. One example of this
is different implementations of the same (interface) module. Another
example is variants of a module corresponding to different computers.
If a module has several variants it is important that the common part
of two or more variants exists in only one copy. It should only be nec-
essary to separate out the code that differs between variants, otherwise
maintenance becomes more complicated, since the same change may
have to be made for several variants.

• A module may be used as a unit to be separately compiled. When
changing parts of a large program, it is not acceptable to be forced
to recompile the whole program, since this may take several hours.
With separate compilation of modules, only the modules that have
been changed and those that are affected by these changes have to be
recompiled. Below we explain how one module may be affected by
changes in another.

In the following section, language constructs for describing modulariza-
tion are introduced. Thereafter, we discuss how to apply these language
constructs and why they are useful and necessary.

17.1 Fragments

The language constructs for describing program modularization are not
considered part of the BETA language. The reason is that BETA is a lan-
guage for describing objects and patterns of a BETA program execution,
while the modularization language is for describing the physical organi-
zation of just the program. The structuring of the program execution in
terms of objects and patterns will of course also be reflected in the pro-
gram, but in addition the program itself may be organized in modules that
do have to follow the structuring in terms of objects and patterns. The
two languages are thus intended for quite different purposes. The mod-
ularization language is called the fragment language, since it describes
the organization of BETA programs in terms of fragments. (The notion
of a fragment will be introduced below.) The fragment language is used
for communicating with The Fragment System, which is the component
of the Mjølner BETA System that handles storing and manipulation of

17.1 FRAGMENTS 263

fragments. The terms fragment language and fragment system are used
interchangeably when this causes no confusion.

The fragment language is independent of BETA. The principles behind
the fragment language can in fact be used to describe modularization of
most programming languages. The fragment language is grammar-based.
The idea is that any correct sequence of terminal and nonterminal sym-
bols defined by the grammar is a legal module. The fragment language
describes how such strings may be combined into larger strings, and is
presented here using a graphical syntax, though the fragment language
also has a textual syntax which is currently used by the Mjølner BETA
System. A future version of the Mjølner BETA System will include sup-
port for a graphical syntax such as that used in this book.1

17.1.1 Forms

The BETA grammar in Appendix A has the following rule:

<ObjectDescriptor> ::= <PrefixOpt> <MainPart>

The following strings can be derived from the nonterminal <ObjectDe-
scriptor>:

(1) (# T: @Text do ’Hello’->T #)

(2) (# P: <ObjectDescriptor>; R: ^P

do (if <Evaluation> // true then &P[]->R[] if)

#)

The first string consists only of terminal symbols. The second string has
two unexpanded nonterminals, <ObjectDescriptor> and <Evaluation>.
In Figure 17.1, other examples of strings derived from nonterminals of the
BETA grammar are shown.

A string of terminal and nonterminal symbols derived from a nonter-
minal A is called an A-form , or sometimes just a form 2. The derived
strings in Figure 17.1 are all examples of forms. Forms are the basic
elements used to define modules in the Mjølner BETA System. The frag-
ment language has language constructs for combining forms into complete
programs. Consider, for example, the forms 3 and 4 in Figure 17.1. By
substituting the DoPart nonterminal of form 3 by form 4 we get the fol-
lowing form:

1In addition to the use of a graphical syntax, the fragment language described in
this book is slightly more general than the actual implementation. For details, see the
Mjølner BETA System manuals.

2In formal language theory this is called a sentential form.

264 MODULARIZATION

Nonterminal Examples of derived forms

1. <Attributes> P: (# a,b: @integer #);

R: ^P

2. <AttributeDecl> X: @integer

3. <PatternDecl> Foo: (# a,b,c: @integer

enter(a,b)

<DoPart>

exit c

#)

4. <DoPart> do a*b->c

5. <Imp> (if B//True then <Imp> if)

6. (for <Index> repeat <IfImp> for)

7. <IfImp> (if B//True then <Imp> if)

8. <ForImp> (for <Index> repeat <IfImp> for)

Figure 17.1 Nonterminals and examples of corresponding derived
forms.

Foo: (# a,b,c: @integer

enter(a,b)

do a*b->c

exit c

#)

The fragment language is a notation for describing how nonterminals in
one form may be replaced by other forms.

17.1.2 Slots

A form may contain several nonterminals having the same syntactic cat-
egory. This is the case in the following form:

Stack:

(# Push: (# e: @integer enter e <DoPart> #);

Pop: (# e: @integer <DoPart> exit e #)

#)

which has two <DoPart> nonterminals. In the fragment language it is
necessary to be able to refer separately to each nonterminal. Each non-
terminal must therefore have a name which uniquely identifies it.

In the Mjølner BETA System, several tools manipulate forms, thus not
all nonterminals are necessarily to be used by the fragment system. The
nonterminals used by the fragment language are called slots since they

17.1 FRAGMENTS 265

define openings where other forms may be inserted. They are marked by
the keyword SLOT. A nonterminal defining a slot has the syntax:

<<SLOT T:A>>

where T is the name of the slot and A is the syntactic category. Also note
that slots are enclosed by << and >> instead of < and >. This is done
purely for technical reasons. A nonterminal must begin with a symbol
(here <<), which is not in the vocabulary of the language. Since < is used
as less than in BETA, it cannot be used to begin a nonterminal.

The above form may instead be described as follows:

Stack:

(# Push: (# e: @integer enter e <<SLOT Push:DoPart>> #);

Pop: (# e: @integer <<SLOT Pop:DoPart>> exit e #)

#)

Slot names and BETA names belong to different languages, thus there is
no possibility of confusing BETA names and slot names. In the above
example there is a pattern called Push and a slot called Push. As we shall
see later, it is conventional to use identical names in this manner.

17.1.3 Fragment-form

In the fragment language, each form must be given a name and its syntac-
tic category specified. A fragment-form is a form associated with a name
and a syntactic category having the following syntax. As noted earlier,
the syntax of the fragment language is mainly graphical:

F:A
ff

F is the name of the fragment-form, A is the syntactic category, and ff

is a form, i.e. ff is a string of terminal and nonterminal symbols derived
from A.

The following is an example of a fragment-form:

Counter:PatternDecl
Counter:

(# Up: (# n: @integer enter n <<SLOT Up:DoPart>> #);

Down: (# n: @integer <<SLOT Down:DoPart>> exit n #)

#)

266 MODULARIZATION

17.1.4 Fragment-group

Often it is convenient to define a set of logically related fragment-forms
together. For this purpose it is possible to define a group of fragments,
called a fragment-group, which has the following syntax:

name ’F’

F1:A1
ff1

F2:A2
ff2

...

Fn:An
ffn

that defines a fragment-group with the name F consisting of n fragment-
forms. The name of fragment-form i is Fi, its syntactic category is Ai

and the actual fragment-form is ffi.
The following is an example of a fragment-group:

Up:DoPart
do n+7->n

Down:DoPart
do n-5->n

The term fragment refers to either a fragment-form or a fragment-
group.

17.1.5 Fragment library

The fragment system handles the storing of fragment-groups in a library,
called the fragment library. The fragment library is usually implemented
on top of the computer’s file system or database system. The frag-
ment language has constructs for describing how to combine fragments
into compound fragments and eventually complete programs. The frag-
ment language refers to fragment-groups stored in the fragment library
by means of a fragment name (or just name). The Mjølner BETA System
assumes a hierarchical name structure in the style of UNIX directories or
Macintosh folders3, as shown in Figure 17.2.

3The reader is assumed to have some knowledge of such hierarchical file systems.

17.1 FRAGMENTS 267

 /

 home lib

smith jones beta tex

 betaenv editor

Figure 17.2 Hierarchical directory structure.

In the Mjølner BETA System, fragment-groups are represented as files
in such a directory. The name of a fragment-group is given by means of
a UNIX-path enclosed in quotes (’). The path:

’/home/smith/CounterGroup’

denotes a file CounterGroup which is supposed to contain a fragment.
CounterGroup resides in the directory/folder /home/smith. In the fol-
lowing examples, the name of a fragment-group will often be given as
shown below:

name ’/home/smith/CounterGroup’

Counter:PatternDecl
Counter:

(# Up: (# n: @integer enter n <<SLOT Up:DoPart>> #);

Down: (# n: @integer <<SLOT Down:DoPart>> exit n #)

#)

For fragment-groups consisting of only one fragment-form, one should
not confuse the name of the file/folder containing the fragment-group with
the name of the fragment-form. In the above example, CounterGroup is
the fragment-group (and file/folder) name and Counter is the fragment-
form name. The file/folder name and the fragment-form name may be
identical.

268 MODULARIZATION

17.1.6 Origin of a fragment-group

The origin part of a fragment-group specifies a fragment-group that is
used when binding fragment-forms to slots. Consider the following exam-
ple:

name ’/home/smith/CounterBody’

origin ’/home/smith/CounterGroup’

Up:DoPart
do n+7->n

Down:DoPart
do n-5->n

The origin of CounterBody is the fragment-group /home/smith/Coun-

terGroup. The origin must have free slots corresponding to Up and Down.
The origin construct specifies that the fragment-forms Up and Down are
substituted for the corresponding slots in CounterGroup. The result of
this substitution is a form, called the extent of the fragment, as defined
below.

A fragment defines a unique form, called the extent of the fragment.
The extent of the above fragment is a combination of CounterBody and
CounterGroup. The combination is obtained by filling in the slots in the
origin with the corresponding fragment-forms. In the above example this
gives the following form:

Counter:

(# Up: (# n: @integer enter n do n+7->n #);

Down: (# n: @integer do n-5->n exit n #)

#)

17.1.7 The basic environment

The Mjølner BETA System provides a basic environment that defines the
most important standard patterns and objects. In addition, this environ-
ment initiates and terminates the execution of any BETA program. The
basic BETA environment is the fragment betaenv4 shown in Figure 17.3.
As can be seen, this fragment defines a number of standard patterns. In
addition, the fragment has two slots: PROGRAM and LIB.

A complete BETA program that makes use of betaenv may be defined
by defining the PROGRAM slot. The following fragment-form is an example
of a very simple BETA program:

4In the rest of this chapter, simple names without directory paths are used for
specifying the names of fragment-groups.

17.1 FRAGMENTS 269

name ’betaenv’

betaenv:ObjectDescriptor

{****** The basic BETA environment ******}

(# Put: (# ch: @char enter ch ... #);

PutInt: (# n: @integer enter n do ... #);

PutText: (# T: @Text enter T do ...#);

NewLine: (# ... #);

PutLine: (# T:@Text enter T do T->putText; newLine #);

Text: ...;

File: ...;

integer: (# ... #);

char: (# ... #);

... {Definition of other standard attributes}

<<SLOT LIB: Attributes>>

do {Initialize for execution}

<<SLOT PROGRAM:ObjectDescriptor>>;

{Terminate execution}

#)

Figure 17.3 The basic BETA environment.

name ’mini1’

origin ’betaenv’

PROGRAM:ObjectDescriptor
(#

do ’Hello world!’->PutLine

#)

The extent of the fragment mini1 is the following form:

{****** The basic BETA environment ******}

(# ...

PutLine:...

...

do {Initialize for execution}

(#

do ’Hello world!’->PutLine

#)

{Terminate execution}

#)

270 MODULARIZATION

As can be seen, the PROGRAM fragment has been substituted for the
PROGRAM slot in betaenv. In the PROGRAM fragment it is therefore possi-
ble to use any name which is visible at the point of the PROGRAM slot in
betaenv. PutLine is visible at the PROGRAM slot and is therefore visible
in the PROGRAM fragment. It would also have been possible to make use
of patterns like integer, char, Text, etc. In Section 17.6 we shall return
to the question of visibility.

The LIB slot in betaenv is intended for making a set of general pat-
terns to be used by other programs. The difference between such a library
and a program is that the library is a list of patterns whereas the program
is a single object-descriptor. The following example is an example of a
library consisting of two patterns:

name ’mylib’

origin ’betaenv’

LIB:attributes
Hello: (# do ’Hello’->PutText #);

World: (# do ’World’->PutText #)

By substituting the LIB slot in betaenv with the LIB fragment-form
we obtain the following form:

{****** The basic BETA environment ******}

(# ...

Hello: (# do ’Hello’->PutText #);

World: (# do ’World’->PutText #)

do {Initialize for execution}

<<SLOT PROGRAM:ObjectDescriptor>>;

{Terminate execution}

#)

As can be seen, the library patterns are inserted at the point of the LIB

slot. This means that in the LIB fragment-form it is possible to see all
names visible at the point of the LIB slot in betaenv.

Note that the extent of mylib is not an executable program, since the
PROGRAM slot has not been defined. In the next section we shall show how
to make use of a library in a program.

17.1.8 Include

When making libraries like mylib, we need a mechanism for combining
several fragments into one fragment. The include construct makes this

17.1 FRAGMENTS 271

possible. In the following example we have a program that makes use of
the mylib library:

name ’mini2’

origin ’betaenv’
include ’mylib’

PROGRAM:ObjectDescriptor
(#

do Hello; World; newLine

#)

The effect of the include ’mylib’ is that the patterns defined in myLib

can be used in the PROGRAM fragment-form. Formally the fragment-forms
of mylib become part of the fragment mini2. In the above example mini2
may be understood as a fragment-group consisting of the fragment-forms
in mylib and the PROGRAM fragment-form. This implies that the extent
of mini2 is obtained by substituting the LIB slot in betaenv by the LIB

fragment-form in mylib and by substituting the PROGRAM slot in betaenv

by the PROGRAM fragment-form in mini2. This gives the following form as
a result:

{****** The basic BETA environment ******}

(# ...

Hello: (# do ’Hello’->PutText #);

World: (# do ’World’->PutText #)

do {Initialize for execution}

(#

do Hello; World; newLine

#)

{Terminate execution}

#)

Since the patterns in mylib are inserted at the point of the LIB slot, they
are visible at the point of the PROGRAM slot. This is where the PROGRAM

fragment-form in mini2 is inserted, i.e. the patterns Hello and World are
visible inside the PROGRAM fragment-form.

A fragment-form may have more than one include. This makes it
possible to use several library fragments in the same fragment.

17.1.9 Body

When defining a fragment it is often desirable to be able to specify one or
more fragments that must always be included when using the fragment.

272 MODULARIZATION

This is often the case when a fragment is separated into an interface
fragment and one or more implementation fragments. Here we introduce
the construct for specifying this, but delay further explanation until Sec-
tion 17.2. The body construct specifies a fragment that is always part of
the extent. Consider the following fragments:

name ’counter’

origin ’betaenv’
body ’counterbody’

LIB:Attributes
Counter:

(# Up: (# n: @integer enter n <<SLOT Up:DoPart>> #);

Down: (# n: @integer <<SLOT Down:DoPart>> exit n #);

Private: @ <<SLOT Private:ObjectDescriptor>>

#)

The counter fragment has a body specification which specifies that a
fragment called counterbody is always part of the extent of counter.
The counterbody fragment could be described as follows:

name ’counterbody’

origin ’counter’

Up:DoPart
do n+7->n

Down:DoPart
do n-5->n

Private:ObjectDescriptor
(# V: @integer #)

The counter fragment could be used by the following fragment:

name ’mini3’

origin ’betaenv’
include ’counter’

PROGRAM:ObjectDescriptor
(# C: @Counter; N: @integer

do 3->C.up; C.down->N

#)

17.1 FRAGMENTS 273

The extent of mini3 is obtained by combining the PROGRAM fragment-
form in mini3, origin ’betaenv’ and include ’counter’. In addition the
body ’counterbody’ in counter implies that the counterBody fragment
is also included in the extent. The resulting form looks as follows:

{****** The basic BETA environment ******}

(# ...

Counter:

(# Up: (# n: @integer enter n do n+7->n #);

Down: (# n: @integer do n-5->n exit n #);

Private: @(# V: @integer #)

#)

do {Initialize for execution}

(# C: @Counter; N: @integer

do 3->C.up; C.down->N

#);

{Terminate execution}

#)

As stated earlier, the patterns defined in LIB are visible in mini3 through
the use of include. However, the counterbody is not visible from mini3.
This means that an evaluation like:

C.private.V+1->C.private.V

is not possible within mini3. That is even if the extent of mini3 includes
the counterbody fragment, it is not visible within mini3.

The domain of a fragment F is that part of the extent of F which is
visible within F. The domain of F consists of the fragment-forms in F,
plus the domain of the origin of F plus the domain of possible included
fragments.

The domain of mini3 takes the following form:

{****** The basic BETA environment ******}

(# ...

Counter:

(# Up: (# n: @integer enter n <<SLOT Up:DoPart>> #);

Down: (# n: @integer<<SLOT Down:DoPart>>exit n#);

Private: @ <<SLOT Private:ObjectDescriptor>>

#)

do {Initialize for execution}

(# C: @Counter; N: @integer

do 3->C.up; C.down->N

#);

{Terminate execution}

#)

274 MODULARIZATION

The domain of mini3 is constructed as follows:

• The domain of mini3 consists of the PROGRAM fragment-form in mini3,
the domain of betaenv (its origin), plus the domain of the included
fragment counter.

• The domain of betaenv is the form in Figure 17.3.

• The domain of the counter fragment consists of the form defining the
pattern Counter, plus the domain of betaenv. Note that the body
part of Counter does not contribute to the domain.

In Section 17.6 the concepts of extent and domain are described further.

17.2 Separation of interface and implemen-

tation

Organizing a program as a collection of fragments (modules) is one way of
dealing with the complexity of large programs. A large system, however,
consists of a large number of fragments. A fragment may use a number
of other fragments (via origin, include or body), and be itself used by a
number of other fragments. The result may in fact be a fairly complicated
structure. For this reason it is necessary to limit the interconnections be-
tween fragments. Furthermore, knowledge about the details of a fragment
should be limited whenever possible.

A fundamental technique in the design of software systems is to dis-
tinguish between the interface and implementation of a module. The
interface of a module describes the part of the module which is visible
from modules that use it. This includes a description of how to use the
module and is sometimes called the ‘outside view’ of the module. The
implementation of a module is the part of the module which is necessary
to realize it on a computer. This is sometimes called the ‘inside’ view of
the module.

An important issue is the notion of encapsulation or information hid-
ing. Encapsulation means that access to the implementation part of a
module is not possible from outside the module, i.e. the implementation
of a module is hidden. This means that the usage of a module cannot
depend upon internal details of its implementation, and thus it is possible
to change the implementation of a module without affecting its usage.

Encapsulation and separation of interface and implementation may
also save compilation time. In the Mjølner BETA System, as in most other
systems, fragments (modules) can be separately compiled. A change in an
implementation module can then be made without recompilation of the
interface module and modules using the interface module. This can yield

17.2 SEPARATION OF INTERFACE AND IMPLEMENTATION 275

significant savings in compilation time. On the other hand, a change in
an interface module implies that all modules using it must be recompiled.
This can be extremely time consuming, therefore we recommend carefully
designing critical interfaces to reduce the need for future changes. It is,
however, not possible to avoid such changes since the requirements for an
interface usually change over time.

Programming takes place at different abstraction levels. The interface
part of a module describes a view of objects and patterns meaningful at
the abstraction level where the module is used. The implementation level
describes how objects and patterns at the interface level are realized using
other objects and patterns.

To sum up, encapsulation and separation of interface and implemen-
tation have the following advantages:

• The user of a module can only access its interface and thus cannot make
use of implementation details.

• It is possible to change the implementation without affecting the usage
of a module.

• A change in an implementation module can be made without recompi-
lation of the interface module and modules using the interface module.

The fragment language supports encapsulation and separation of interface
and implementation. One fragment defines the interface while others
define the implementation.

Figure 17.4 shows the textlib fragment which defines the interface
of a library text manipulating patterns. The library consists of two pat-
terns, each having a slot as its do-part. This slot should be filled with a
<DoPart> defining the implementation of the pattern. The textlibbody

fragment in Figure 17.5 is the implementation part of the library.
The body ’textlibbody’ part of textlib specifies that the fragment

textlibbody is automatically included in any fragment using textlib.
A fragment using textlib will not be able to access attributes described
in textlibbody. In other words; the extent of textlib includes textlib
and textlibbody, whereas the domain of textlib does not include
textlibbody. Figure 17.6 shows a program fragment which makes use of
textlib.

276 MODULARIZATION

name ’textlib’

origin ’betaenv’

body ’textlibbody’

LIB:attributes

SpreadText:

{A blank is inserted between all chars in the text ’T’}

(# T: @Text

enter T

<<SLOT SpreadText:DoPart>>

exit T

#);

BreakIntoLines:

{’T’ refers to a Text which is to be split into a}

{no. of lines. ’w’ is the width of the lines.}

(# T: ^Text; w: @integer

enter(T[],w)

<<SLOT BreakIntoLines: DoPart>>

#)

Figure 17.4 Interface fragment of the simple text library.

17.2 SEPARATION OF INTERFACE AND IMPLEMENTATION 277

name ’textlibbody’

origin ’textlib’

SpreadText: DoPart

do (# L: @integer

do (for i: (T.length->L)-1 repeat

(’ ’,L-i+1)->T.InsertCh

for)#)

BreakIntoLines: DoPart

do T.scan

(# sepInx,i,l: @integer;

do i+1->i; l+1->l;

(if (ch<=’ ’)// true then i->sepInx if);

(if l//w then

(nl,sepInx)->T.InxPut;

i-sepInx->l

if)#);

T.newline;

Figure 17.5 Implementation fragment of the simple text library.

name ’libuser2’

origin ’betaenv’

include ’textlib’

program:ObjectDescriptor

(# T: @Text;

do ’Here I am!’->SpreadText->PutLine;

’Once upon a time in the west ’->T;

’a man came riding from east’->T.putText;

(T[],10)->BreakIntoLines;

T->putText;

#)

Figure 17.6 The fragment libuser2 includes textlib.

278 MODULARIZATION

name ’stack’

origin ’betaenv’

body ’arraystack’

LIB: Attributes

Stack:

(# Private: @ <<SLOT private: ObjectDescriptor>>;

Push: (# e: ^Text enter e[] <<SLOT Push: DoPart>> #);

Pop: (# e: ^Text <<SLOT Pop: DoPart>> exit e[] #);

New: (# <<SLOT New: DoPart>> #);

isEmpty:

(# Result: @boolean

<<SLOT isEmpty: DoPart>>

exit Result

#)

#)

Figure 17.7 The interface part of the Stack pattern.

17.2.1 Abstract data types

One of the fundamental concepts in program development is the notion
of abstract data type. In the context of BETA, an abstract data type is
a class pattern whose instances are completely characterized by a set of
(procedure) pattern attributes – sometimes referred to as its ‘operations.’
These operations constitute the outside view of the objects, whereas ref-
erence attributes and details of the pattern attributes belong to the inside
view (the implementation).

The fragments in Figures 17.7 and 17.8 show an example of an abstract
data type in BETA. The fragments define the interface and implementa-
tion of a stack of text references. A stack is completely characterized by
its operations Push, Pop, New and isEmpty. The stack may be used as
shown in Figure 17.9

Since the domain of stack does not include its implementation, the
stack can only be used by means of its operations. It is good practice
to define most class patterns as ‘abstract data types,’ i.e. restrict their
interface to be pattern operations. In some languages (e.g. Smalltalk),
class patterns are always abstract data types.

17.2 SEPARATION OF INTERFACE AND IMPLEMENTATION 279

name ’arraystack’

origin ’stack’

private: ObjectDescriptor

(# A: [100] ^Text; Top : @integer

#)

Push: DoPart

do private.top+1->private.top;

e[]->private.A[private.top][]

Pop: DoPart

do private.A[private.top][]->e[];

private.top-1->private.top

new: DoPart

do 0->private.top

isEmpty: DoPart

do (0 = private.Top)->result

Figure 17.8 The implementation part of Stack.

280 MODULARIZATION

name ’libuser3’

origin ’betaenv’

include ’stack’

program:ObjectDescriptor

(# T: @Text; S: @Stack

do ’To be or not to be’->T; T.reset;

Get:

cycle

(# T1: ^Text

do &Text[]->T1[]; T.getText-> T1;

(if T1.empty // True then leave Get if);

T1[]->S.push

#);

Print:

cycle

(# T1: ^Text

do (if S.isEmpty // true then leave Print if);

S.pop->T1[];

T1->putText; ’ ’->put

#)

#)

Figure 17.9 A fragment using the stack interface.

17.3 ALTERNATIVE IMPLEMENTATIONS 281

name ’listStack’

origin ’stack’

private: ObjectDescriptor

(# head: ^elm; elm: (# T:^Text; next: ^elm #)

#)

Push: DoPart

do (# R: ^private.elm

do &private.elm[]->R[]; private.head[]->R.next[];

e[]->R.T[]; R[]->private.head[];

#)

Pop: DoPart

do private.head.T[]->e[];

private.head.next[]->private.head[];

new: DoPart

do NONE->private.head[]

isEmpty: DoPart

do (NONE=private.head[])->result ;

Figure 17.10 List implementation of stack.

17.3 Alternative implementations

It is possible to have several implementations of a given interface mod-
ule. In general, this means that different fragments may define different
bindings for slots in a given fragment.

Suppose that we want to define an alternate implementation of the
stack from the previous section. In the alternate implementation stack
objects are represented as a linked list. The list implementation is shown
in Figure 17.10.

We have to remove the body specification of the stack fragment, since
it forces the arrayStack to always be included as part of the extent of
stack. Instead, the user of stack should have a body part specifying the
appropriate implementation.

282 MODULARIZATION

To sum up:

• The stack must have no body:

name ’stack’

origin ’betaenv’

LIB: Attributes
Stack:

(# ...

#)

• A user of the stack must have a body selecting an implementation.
The following fragment makes use of the list implementation:

name ’libuser4’

origin ’betaenv’
include ’stack’
body ’listStack’

program:ObjectDescriptor

(# T: @Text; S: @Stack

do ...

#)

• The following fragment makes use of the array implementation:

name ’libuser5’

origin ’betaenv’
include ’stack’
body ’arrayStack’

program:ObjectDescriptor

(# T: @Text; S: @Stack

do ...

#)

17.4 PROGRAM VARIANTS 283

Sometimes it is not desirable to select the implementation of the stack at
the point where it is used. Consider a fragment using the stack without
specifying an implementation:

name ’libuser6’

origin ’betaenv’
include ’stack’

program:ObjectDescriptor

(# T: @Text; S: @Stack

do ...

#)

The fragment libuser6 has, however, not been completely specified since
the free slots in stack have not been bound. The simplest way of doing
this is to specify a fragment that only adds a body specification:

name ’libuser7’

origin ’libuser6’
body ’arrayStack’

The fragment libuser7 is a complete program.

17.4 Program variants

Often, several variants of a given program are needed, usually if variants
of a given program have to exist for several computers. The main part
of the program is often the same for each computer. For maintenance
purposes, it is highly desirable to have only one version of the common
part. In the Mjølner BETA System program, variants are handled in
the same way as alternative implementations of a module, i.e. different
variants of a module bind some of the slots differently.

As an example, assume that two variants of a program are needed.
Assume that they vary with respect to the implementation of the stack

pattern. The fragment in Figure 17.11 is like the libuser6 fragment
above, except that it has been extended with a slot. This slot is supposed
to print information about the variant. The fragment in Figure 17.12 is
an example of a variant of the libuser8 fragment. A similar variant may
be defined using stackList.

284 MODULARIZATION

name ’libuser8’

origin ’betaenv’

include ’stack’

program:ObjectDescriptor

(# T: @Text; S: @Stack

do ’Program Hamlet. ’-> PutText;

<<SLOT hamlet:ObjectDescriptor>>;

’To be or not to be’->T; T.reset;

Get:

cycle(# T1: ^Text

do &Text[]->T1[]; T.getText-> T1;

(if T1.empty // True then leave Get if);

T1[]->S.push

#);

Print:

cycle(# T1: ^Text

do (if S.isEmpty // true then leave Print if);

S.pop->T1[]; T1->putText; ’ ’->put

#)

#)

Figure 17.11 The libuser8 fragment.

name ’libuser9’

origin ’libuser8’

body ’listStack’

hamlet:ObjectDescriptor

(#do ’Variant using list implementation of stack’

->putLine;

#)

Figure 17.12 The libuser9 fragment.

17.5 USING SEVERAL LIBRARIES 285

name ’libuser10’

origin ’betaenv’

include ’mylib’

include ’textlib’

program:ObjectDescriptor

(# T: @Text;

do Hello; World; newline;

’Here I am!’->SpreadText->PutLine;

’Once upon a time in the west ’->T;

’a man came riding from east’->T.putText;

(T[],10)->BreakIntoLines;

T->putText;

#)

Figure 17.13 Example of a fragment including two other fragments.

17.5 Using several libraries

The examples of libraries until now have only shown how to use one
library from a program. The syntactic category of a slot like SLOT

LIB:attributes describes a list of declarations. It is thus possible to
bind an arbitrary number of LIB fragments to such a slot. Figure 17.13
shows a fragment that includes two libraries.

17.6 Visibility and binding rules

We now summarize the rules for binding slots, and give a precise definition
of the extent and domain of a fragment. A general skeleton of a fragment
is shown in Figure 17.14. The origin G is optional, and there may be
zero or more includes. The case m = 0 means that there are no includes.
Similarly, k = 0 corresponds to a fragment with no bodies.

The origin-chain of F is a list of fragments:

G, G1, G2, ... Gn

where G is the origin of F, G1 is the origin of G, etc. The fragment Gn

has no origin. Usually, Gn will be the basic environment betaenv. The
origin-chain must be finite without duplicates.

The fragment-forms in F are bound by searching for free slots in the
origin chain, starting with G.

286 MODULARIZATION

name ’F’

origin ’G’

include ’A1’

include ’A2’

...

include ’Am’

body ’B1’

body ’B2’

...

body ’Bk’

F1: S1

ff1

F2: S2

ff2

...

Fn: Sn

ffn

Figure 17.14 A general fragment.

The fragment-dependency graph of F has a node for each fragment
referred to via origin, include and body. The dependency graph is con-
structed as follows:

(1) A directed edge is made from F to its origin.

(2) A directed edge is made from F to each fragment it includes.

(3) Construct the dependency graph for each body fragment F.

(4) Steps 1-3 are repeated for each fragment referred by origin, include
and body.

The dependency graph must be acyclic, i.e. there should be no loops.
This means that a fragment cannot include itself directly or indirectly
via other fragments. The dependency graph for fragment libuser9 of
Figure 17.12 is shown in Figure 17.15

The extent of F is the extent of its origin, the extent of all fragments
included, plus the extent of all bodies, and finally F itself. This may
be described using the following equation, where we rely on the reader’s
intuition for the definition of the operator ⊕:

17.7 EXERCISES 287

betaenv

Stack

listStack

libuser8

libUser9

Figure 17.15 Dependency graph for libuser9.

Extent(F) = Extent(G) ⊕
Extent(A1) ⊕ Extent(A2) . . .⊕ Extent(Am) ⊕
Extent(B1) ⊕ Extent(B2) . . .⊕ Extent(Bk) ⊕
ff1 ⊕ ff2 ⊕ . . .⊕ ffn

Note the recursive nature of extent. Anything in the extent of the origin is
part of the extent of F, and similarly for include and body. The recursion
is finite since the dependency graph is acyclic. Eventually, there will be
a fragment without an origin and fragments without include and body
parts.

The domain of F has a similar recursive definition. The domain of F
includes the domain of the origin, the domain of all included fragments
and the fragment itself. The body fragments are not included in the
domain. The following equation describes the domain:

Domain(F) = Domain(G) ⊕
Domain(A1) ⊕ Domain(A2) . . .⊕ Domain(Am)

⊕ ff1 ⊕ ff2 ⊕ . . .⊕ ffn

17.7 Exercises

(1) Define an interface fragment and an implementation fragment for the
Register pattern in Chapter 9.

288 MODULARIZATION

(2) Develop an alternative implementation for the Register pattern
where the elements are stored in a linked list.

(3) Redo the soda- and vending machine Exercise 2 in Chapter 7 and
split the program into interface- and implementation fragments.

(4) Redo the bank system Exercise 3 in Chapter 7 by splitting the pro-
gram into interface- and implementation fragments.

17.8 Notes

The grammar-based principle used to define the Mjølner BETA Fragment
System was originally proposed by (Kristensen et al., 1983a).

The handling of modularization differs from language to language.
Some languages, like the original version of Pascal, have no mechanisms
for supporting modularization. Other languages like Modula 2 and Ada
have modularization constructs as part of the language. In these lan-
guages the interface of the data type has been textually separated from
the implementation. In C and C++ a module corresponds to a file.

In (DeRemer and Krohn, 1976) the term ‘programming in the large’
was introduced to characterize the construction of large and complex sys-
tems. The main point made by DeRemer and Krohn is that structuring a
large collection of modules to form a system (programming in the large)
is essentially a different activity from that of constructing the individual
modules (programming in the small). They propose the use of differ-
ent languages for the two activities: a module interconnection language
should be used for describing the modular structure, and a conventional
programming language should be used for describing the contents of mod-
ules. They also propose a module interconnection language called MIL 75.
The BETA Fragment System is an example of such a module intercon-
nection language.

Chapter 18

Conceptual Framework

In Chapter 2 a short introduction to the conceptual framework underlying
BETA was given. This chapter will present a more detailed description
of the framework. We will introduce concepts such as information pro-
cesses and systems and discuss abstraction, concepts, classification and
composition. The framework provides a means to be used when modeling
phenomena and concepts from the real world, it is thus a fundamental
basis for object-oriented analysis and design. It is, however, also impor-
tant for implementation, since it provides a means for structuring and
understanding the objects and patterns generated by a program execu-
tion. The approach presented in this book is that analysis, design and
implementation are programming or modeling activities, but at different
abstraction levels.

Object-orientation is also being applied to databases. This book is
not about databases, but the framework and BETA language presented
here are also relevant for object-oriented databases. Data modeling is
the same activity for databases and programming. There are, of course,
additional aspects of databases which are not covered by this book. In
(Atkinson et al., 1990) the following is mentioned: persistence of objects;
secondary storage management; recovery and query facilities.

In the rest of this chapter a number of definitions of various concepts
are given. The definitions are given in English, and it is in most cases not
possible to give a precise definition. The level of preciseness is intended
to be like that of a dictionary. Most of the concepts being defined are
examples of so-called ‘prototypical’ concepts (see below). The examples
following the definitions are therefore of great importance for understand-
ing the concepts. Despite the difficulties in making precise definitions,
the experience is that the concepts introduced are useful, but that some
practical experience is necessary before a satisfactory understanding of
the concepts can be obtained. This experience may be obtained by using
BETA in practical system development projects.

289

290 CONCEPTUAL FRAMEWORK

18.1 Physical modeling

The conceptual framework presented here reflects a certain perspective on
programming. It is deliberately presented as one of many possibilities: in
Chapter 2 other perspectives such as procedural programming, functional
programming and constraint programming were briefly mentioned. We
define perspective as follows:

Definition 18.1 A perspective is the means a person uses to structure
her/his thinking and understanding in relation to situations within some
domain.

The means determine the nature of properties which may be considered
important for a given situation, and thereby also the nature of properties
that are ignored. The means also provide concepts and other methods of
organization to be used in the interpretation of the selected and considered
properties.

For functional and constraint programming, the means include mathe-
matics. For procedural programming the means include the concept of
a programmable calculator. In this chapter (some of) the means of the
object-oriented perspective are presented.

In Chapter 2, the object-oriented perspective on programming was
defined as follows:

Definition 18.2 A program execution is regarded as a physical model
simulating the behavior of either a real or imaginary part of the world.

The key word is ‘physical.’ The term ‘physical model’ is used to dis-
tinguish these models from, for instance, mathematical models. Part of
reality may often be described using mathematical equations: Newton’s
Laws are an example of this. A physical model is a model constructed
from some physical material like Lego bricks. Elements of the physical
model represent phenomena from the application domain. Objects are the
computerized material used to construct computerized physical models.
Objects may be viewed as a kind of electronic Lego bricks.

A collection of things which may be used to generate a set of phenom-
ena may be called a phenomena generator. If the phenomena generated
are processes, the collection may be called a process generator. The set
of processes that might be generated may be called the process set of the
process generator.

A collection of Lego pieces is a phenomena generator. The phenomena
generated will usually be regarded as static, and a building set for toy
railroads is a better example of a process generator. With this very general
description, almost anything could be regarded as a phenomena generator.

18.1 PHYSICAL MODELING 291

In practice we will of course use it in a much more restricted context –
that of informatics and of modeling and design.

A given phenomena/process generator puts some restrictions on which
aspects of reality can be modeled. In addition, it defines the possibilities
for obtaining a physical similarity between reality and the model. Most
‘Lego houses’ would probably have some commonly accepted physical
likeness to houses people live in. A toy model of a railway shunting yard
may be used for serious analysis of aspects of the real yard’s operation,
and the physical similarity is obvious. The building set may, however,
also be used to model cars moving on a road, but with a questionable
realism, since for example, a car represented by a toy locomotive will not
be able to pass another car, represented by another locomotive, except
at predetermined locations on the ‘road’ and using rules that do not
correspond to passing on real roads.

An analog computer, consisting of capacitors, resistance and other
electric components, may of course be used to model the electric behavior
of a certain class of circuitry – the process set of the analog computer.
But it may (and has) also be used successfully to model the management
of water reservoirs in a hydroelectric power supply system. In this case
there is no physical similarity between the reality and the model.

The definition of object-oriented programming implies that all pro-
gram executions are models of some other existing systems. For new
systems this also holds, even though the existing system in that case is
a system existing in the mind(s) of the programmer(s). The distinction
between a real or an imaginary part of the world needs further elabora-
tion.

Let us consider modeling parts of the real world. Examples of this are
simulation programs – a program simulating a railway system is clearly
a model of part of the real world. The trains, stations, passengers, etc.,
involved in the simulation may all be represented as objects in the pro-
gram execution. The first object-oriented language, Simula, was in fact
invented with the purpose of simulation.

Consider next a library. A library consists of books, card files and
files for the registration of loans. Each of the files consists of a number
of cards describing books or loans. A computer system handling these
files may be considered as a physical model of the library (which is a real
part of the world). The cards in the files may naturally be represented
by objects in the program execution, etc. This is an example of how to
make a physical model of a manually operated administrative system.

The creation of computer systems of course includes a great deal of
invention. These inventions may be imagined as new phenomena and
concepts with a well defined role in the problem domain. They will then
subsequently be realized as objects and patterns in the program execu-

292 CONCEPTUAL FRAMEWORK

tion. Often it is also a matter of taste as to whether or not an object
is a representation of some real world phenomenon or a new kind of phe-
nomenon. Is a patient record a representation of a patient or a new kind
of object?

There are also examples of computerized models where initially the
system was conceived of as a model of some existing part of the world.
However, as time goes on, the EDP-system completely replaces the orig-
inal manual system and becomes part of reality itself. An example of
this is a computer system for organizing securities like stocks and bonds.
When constructing such a system it is natural to represent the securi-
ties as objects and all the trading with securities are then replicated in
the EDP-system. In some countries, like Denmark, the objects become
the securities themselves, i.e. the ‘real stocks and bonds’ are the objects
and not the paper representations. Eventually, people will forget about
paper-based securities and only think of object-based securities.

Referent and model systems

The real or imaginary part of the world being modeled will in the following
be called the referent system, and the program execution constituting the
physical model will be called the model system.1 Figure 18.1 illustrates
the programming process as a modeling process between a referent and a
model system.

The programming process involves identification of relevant concepts
and phenomena in the referent system and representation of these con-
cepts and phenomena in the model system. This process consists of
three sub-processes: abstraction in the referent system; abstraction in
the model system; and modeling. Please note that intentionally we do
not impose any ordering among the sub-processes. Abstraction in the
referent system is the process where we are perceiving and structuring
knowledge about phenomena and concepts in the referent system with
particular emphasis on the problem domain in question. We say that we
are creating problem-specific concepts in the referent system. Abstraction
in the model system is the process where we build structures that should
support the model we are intending to create in the computer. We say
that we create realized concepts in the model system. Finally, modeling is
the process where we connect the problem specific concepts in the refer-
ent system with the realized concepts in the model system. In the model
system, objects and properties of these objects represent phenomena and
their properties in the referent system.

The programming process involves identification of concepts and phe-
nomena in the referent system and their subsequent representation in

1Later in this chapter a definition of the term system will be given.

18.2 INFORMATION PROCESSES 293

problem
 specific
 concepts

abstraction

phenomena

Referent System

realized
 concepts

abstraction

objects

Model System

Modeling

ccc

Figure 18.1 Modeling.

terms of objects and patterns. Ultimately this is a question about how to
identify the patterns and objects of our program executions. It is not all
aspects of the real (or imaginary) world that can be modeled as a program
execution. We therefore have to identity the kind of phenomena that we
want to model as program executions. The physical models we are in-
terested in are those parts of reality we want to regard as information
processes. In the next section we will introduce the notion of information
process, which will give us some guidelines about identifying objects.

Patterns are means for representing concepts of the referent system.
To ‘find the patterns’ it is therefore necessary to discuss subjects like
the notion of concepts and their relations to phenomena, and important
aspects of the abstraction process. Concepts and abstraction will be dealt
with further in Section 18.3.

18.2 Information processes

It is not all aspects of reality that can be modeled as program executions.
In this section we will look at the kind of phenomena we can represent
as computerized models. Perhaps the most important phenomena stud-
ied in informatics are information processes. Program executions are
information processes, and information handling in offices, planning in

294 CONCEPTUAL FRAMEWORK

corporations, etc., are other examples of such processes. The above def-
inition of informatics does not imply that all phenomena to which we
may associate information aspects ‘belong’ to informatics. Informatics
represents one perspective for looking at phenomena. Data processing in
a post office may be regarded as an information process, as an economic
process or as a social process, and thus ‘belong’ to informatics, economics
or sociology, depending upon the perspective chosen.

An information process is a special kind of process, and we define it
in the following way:

Definition 18.3 An information process is a process where the qualities
considered are:

• Its substance, the physical material that it transforms.

• Measurable properties of its substance, the results of measurement rep-
resented by values.

• Transformations of its substance and thus its measurable properties.

The notion of an information process gives certain guidelines for identi-
fying concepts and phenomena in the referent systems.

Substance This is the physical material that is transformed by an in-
formation process. Phenomena like ‘Socrates’, ‘Mount Everest’, a medical
record, and a memory cell in a computer are all examples of phenomena
which have substance. Substance is characterized by a certain volume
and a unique location in time and space. A major aspect of substance is
identity. Two pieces of substance have the same identity only if they are
the same substance. They may have identical properties: ‘Socrates’ and
‘your teacher’ may have the same weight, age and eye color, but they are
not the same person.

Measurable properties of substance Substance has no inherent
properties besides having a certain volume and a unique location in time
and space. All other properties associated with substance have to be
obtained by measurements. A given property of some substance may
be observed by performing a measurement resulting in a measure result
(measurement). A measurement may be a simple counting of the number
of petals on a flower or it may be performed using advanced equipment,
such as measuring radiation from a computer screen. In general, a se-
quence of actions is involved in performing the measurement.

Weight, blood pressure and eye color of a person are examples of
measurable properties. The state of a memory cell of a computer is a
measurable property.

18.2 INFORMATION PROCESSES 295

The results of measurements are usually described by values to cap-
ture them for the purpose of comparing them. This is so common that one
often does not distinguish between measurements and the values describ-
ing them. The value ‘82.5 kg’ may describe the weight of some person.
The value ‘82.5 kg’ is actually an abstraction classifying a set of mea-
surements on a weight. We may think of ‘82.5 kg’ as a concept and the
measurements of the weight as part of its extension. Because of this con-
fusion values are often considered the phenomena instead of the actual
measurements.

Abstractions such as values, functions and types have been developed
to describe measurable properties of substance.

Transformations on substance An information process is charac-
terized by transformations which change its substance and thereby its
measurable properties. Transformations are partially ordered sequences
of events. An event changes the state of the information process, and
events are ordered in time. The ordering is partial. The events are the
only means for changing the measurable properties of the substance.

The following phenomena are examples of events: pushing a specific
button at a specific point in time; ‘the birth of Hans Christian Ander-
sen’, and ‘the transition between spring and summer 1984.’ Phenomena
may also be sequences of events like ‘Hannibal’s march across the Alps’,
‘Columbus’ America-expedition’ and ‘eating.’

The notion of information processes gives certain guidelines for the
selection of phenomena. We have to consider tangible things where the
main aspect is substance, we have to consider measurable properties of
substance, and finally, we have to consider the transformations on the
substance.

Information systems

The definition of an information process is very general, and in this section
we will put a system perspective on information processes. The term
system is often encountered within informatics, and it has been frequently
used in this book. We define a system in the following way:

Definition 18.4 A system is a part of the world that a person (or group
of persons) chooses to regard as a whole consisting of components, each
component characterized by properties and by actions related to these
properties and those of other components.

According to this definition, no part of the world ‘is a system’ as an
inherent property. It is a system if we choose a system perspective.

296 CONCEPTUAL FRAMEWORK

In a system perspective, substance of information processes is orga-
nized/perceived in terms of components. The (measurable properties) of
substance are the measurable properties of components. The transforma-
tions on the substance are perceived as actions performed by components.
In the definition of system, terms like ‘properties’ and ‘actions’ are used.
There are many different kinds of properties that may be associated with
components, and there are many ways of organizing actions within a sys-
tem. Program executions are information processes, and may be regarded
as systems in the above sense. In this book we are mainly interested in
program executions, and the notion of BETA program executions pre-
sented here is one specific way of understanding and describing systems.

We are now able to give a more precise definition of program execution:

Definition 18.5 A program execution is an information process regarded
as a system developing through transformations of its state.

• The substance is organized as objects, which are computerized material.

• A measurable property of the substance is a measurable property of one
or more objects.

• Transformations of state are regarded as partially ordered sequences of
actions associated with objects.

• Concepts are represented by patterns which are attributes of objects.

The components of a program execution are objects. The properties of
components (objects) are attributes. A BETA program execution can be
more precisely defined as follows:

Definition 18.6 A BETA program execution consists of a collection of
objects. An object is characterized by a set of attributes and an action-
part. An attribute may be: A reference to an object, a part-object or a
pattern.

A BETA program execution has three kinds of objects: item, com-
ponent and system. Items may have their action-part executed by other
objects, components may execute their action-part alternately with other
components, and systems may execute their action-part concurrently with
other systems.

18.3 Concepts and abstraction

Abstraction is probably the most powerful tool available to the human
intellect for understanding complex phenomena. In the real world we are
confronted with a huge number of different phenomena such as physical

18.3 CONCEPTS AND ABSTRACTION 297

objects, situations, events and processes. All phenomena are different;
there are no two identical persons, two identical cars, or two identical
flowers. It is, however, impossible to deal with all single phenomena di-
rectly without tools for grouping similar phenomena. Abstraction arises
from a recognition of similarities between phenomena and concepts and
the decision to concentrate on these similarities and ignore the differences
for the time being. The similarities are considered as fundamental and
the differences as trivial. An abstraction covers a group of phenomena
characterized by certain properties. A word or picture is usually intro-
duced to symbolize the abstraction. An abstraction is also referred to as
a concept.

18.3.1 Phenomena and concepts

Until now we have been rather vague about the terms phenomenon and
concept. The following definitions give more precise definitions of these
terms:

Definition 18.7 A phenomenon is a thing that has definite, individual
existence in reality or in the mind; anything real in itself

Definition 18.8 A concept is a generalized idea of a collection of phe-
nomena, based on knowledge of common properties of instances in the
collection

The following individuals are all examples of phenomena: ‘Winston
Churchill’, ‘John F. Kennedy’ and ‘Charles de Gaulle.’ They are all cov-
ered by the general concept ‘Person’, but also by the more specialized
concept ‘Statesman.’ ‘Bounty’, ‘Jutlandia’ and ‘Peder P̊ars’2 are exam-
ples of phenomena covered by the concept ‘Ship.’ ‘Mount Everest’, ‘Mont
Blanc’ are examples of phenomena covered by the concept ‘Mountain.’

The ‘Statesman’ concept is an example of a role played by persons.
Other examples of roles are ‘Employee’, ‘Owner’, ‘taxpayer’ and ‘Tenant.’

The above-mentioned phenomena are examples of phenomena that
have substance.

Phenomena can also be events that happen. The following phenomena
are examples of events: pushing a specific button at a specific point in
time, and ‘the birth of Hans Christian Andersen.’ Phenomena may also be
sequences of events like ‘Hannibal’s march across the Alps.’ ‘Columbus’
America-expedition’ and ‘making a specific pizza.’ For such phenomena
we may develop concepts where the intension describes the sequences of
events taking place.

2Jutlandia and Peder P̊ars are well-known Danish ships.

298 CONCEPTUAL FRAMEWORK

We may also have phenomena that record events. An example of such
a phenomenon is a ‘Flight record’ which may register certain data of a
specific flight, like SK911 from Copenhagen to LA on December 12, 1989,
etc. Another example is a ‘System crash’ which may be registered in a
log book.

Measurable properties of some material are also examples of phenom-
ena. Examples of these include the ‘weight of a person’, the ‘blood pres-
sure of a person’ and ‘the temperature in New York on December 24,
1984.’

Definition 18.9 A concept is traditionally characterized by the following
terms:

• The extension of a concept refers to the collection of phenomena that
the concept somehow covers.

• The intension of a concept is a collection of properties that in some way
characterize the phenomena in the extension of the concept.

• The designation of a concept is the collection of names (or pictures) by
which the concept is known.

The extension of the concept ‘Person’ includes the phenomena ‘Winston
Churchill’, ‘John F. Kennedy’ and ‘Charles de Gaulle.’ The intension of
‘Person’ includes the following properties: ‘able to think’, ‘walks upright’
and ‘uses tools.’ In addition to ‘Person’ the designation includes ‘Human
Being’ and ‘Homo sapiens.’

A phenomenon is a thing that has definite, individual existence in
reality or in the mind. The above examples of phenomena exist in
reality. Examples of phenomena existing in the mind include ‘Sherlock
Holmes’, ‘Donald Duck’ and ‘The Loch Ness Monster’ (although some
people think it exists in reality!). The extension of concepts like ‘Unicorn’,
‘Pixy’ and ‘Nordic God’ are examples of phenomena existing in the mind.
The terms concrete phenomena and abstract phenomena are often used
to distinguish between phenomena existing in reality or in the mind.

One philosophical issue here is whether or not it is useful to distin-
guish between phenomena and concepts. Concepts exist in the mind and
may consequently be viewed as abstract phenomena. One consequence of
this is that it is possible to imagine a concept where the extension con-
sists of concepts. This situation is usually better described by means of
generalization, as introduced below. In general, we think that it is useful
to distinguish between concepts and abstract phenomena. A concept like
‘Boat’ covers a collection of phenomena, whereas an abstract phenomenon
like ‘Sherlock Holmes’ is one individual phenomenon existing in the mind
of people. However, at this point it may be appropriate to point out that

18.3 CONCEPTS AND ABSTRACTION 299

most issues in this chapter are of a philosophical nature and therefore
highly subjective.

In the above definition of concepts, the properties constituting the
intension are those that ‘in some way’ characterize the phenomena in
the extension. There are different views of concepts that give different
interpretations to ‘in some way.’ In the next sections we look at two
extremes in this respect.

18.3.2 Aristotelian view

The first of the two views has its origin in the classical Aristotelian logic.
Here concepts are organized in a logical hierarchical concept structure
and the extension of a concept contains phenomena that all satisfy some
precisely defined requirements. This is expressed in the following charac-
terization of the intension:

Definition 18.10 The intension of a concept is a collection of proper-
ties that may be divided into two groups: the defining properties that all
phenomena in the extension must have and the characteristic properties
that the phenomena may or may not have. The nature of the properties
is such that it is objectively determinable whether or not a phenomenon
has a certain property.

The defining properties determine a sharp border between members
and non-members of a concept. Since it is objectively determinable
whether or not a phenomenon has a certain property, it is also objec-
tively determinable whether or not a phenomenon belongs to a given
concept. In other words, the extension of a concept is uniquely defined
by the intension.

The Aristotelian view of concepts has turned out to be useful for mod-
eling systematic and ‘scientific’ concepts as found within well established
fields like mathematics, physics, zoology and botany.

For the properties in the intension it is important that it is objectively
determinable whether or not a phenomenon has a certain property. This
results in a concept structure in which the concepts are characterized by
sharp concept borders. In addition, the phenomena in the extension of
an Aristotelian concept are relatively homogeneous. This is in line with
the ‘scientific’ nature of the Aristotelian view of concepts.

The properties of an Aristotelian concept may be described by means
of predicates, i.e. using mathematics. Within sciences like physics and
biology, phenomena are often characterized using measurable properties,
as described in Section 18.2. No matter how the properties are described,
it is important that it is objectively decidable whether or not a given
phenomenon has a certain property.

300 CONCEPTUAL FRAMEWORK

18.3.3 Prototypical view

As already mentioned, the Aristotelian view of concepts is useful for mod-
eling systematic and ‘scientific’ concepts, and it has been used for many
years with success especially within natural sciences, although not always
without problems.

There are a large number of everyday concepts that cannot conve-
niently be described as Aristotelian concepts. Examples of such concepts
are, ‘rock music’, ‘intelligence’ and ‘food.’ Also, some more technical
concepts such as ‘object-oriented programming’ and ‘structured program-
ming’ are difficult to describe as Aristotelian concepts. It is commonly
not possible to find a collection of objectively decidable properties that
define these concepts, but it is possible to find a collection of properties
that may characterize these concepts. However, often it is not possible to
objectively determine whether or not a given phenomenon has a certain
property. This has led to the development of the so-called prototypical
view of concepts (or fuzzy view or prototype theory). In the prototypical
view the intension is defined in the following way:

Definition 18.11 The intension of a concept consists of examples of
properties that phenomena may have, together with a collection of typ-
ical phenomena covered by the concept, called prototypes.

The prototypical view differs from the Aristotelian view in a number of
ways:

(1) It may not be objectively decidable whether or not a phenomenon
has a property of the intension.

(2) The intension is given by examples of properties. All phenomena
will have some of the properties, but rarely all. A phenomenon hav-
ing some of the properties may not belong to the extension of the
concept.

(3) The prototypes are typical phenomena belonging to the extension of
the concept.

The major consequence of this is that the extension of a prototypical
concept is not uniquely determined by the intension. It requires a human
judgement to decide whether or not a given phenomenon belongs to the
concept. The phenomena in the extension will have varied typicality and
the borders between concepts are blurred.

The prototypical view of concepts is more suited than the Aristotelian
view to describe most everyday concepts. This is also often true for
problem-specific concepts of the referent system. Below we discuss the
consequences of this for the system development process.

18.3 CONCEPTS AND ABSTRACTION 301

18.3.4 Other views of concepts

The Aristotelian and prototypical view of concepts represent two ex-
tremes, and it is possible to imagine a number of intermediate views.

One difference between Aristotelian and prototypical views of concepts
is whether or not it is objectively decidable if a given phenomena has a
certain property or not.

Conceptual clustering Conceptual clustering is a variation of the
Aristotelian view. The intension may have properties which may not
be objectively decided, thus it is based on a human judgement whether
or not a phenomenon is covered by the concept.

Prototypical concepts with objective properties It is of course
possible to imagine prototypical concepts where all the properties are
objectively decidable.

Defining versus characteristic properties The intension of an Aris-
totelian concept is divided into defining and characteristic properties. In
theory, each of these two sets of properties may be empty. It is easy to
imagine Aristotelian concepts without characteristic properties. It is more
problematic to imagine Aristotelian concepts without defining properties.
According to the definition of an Aristotelian concept, any phenomenon
possessing the defining properties belongs to the extension of the concept.
Consequently, a concept without defining properties has all phenomena
in its extension. This is of course useless.

It is, however, still interesting to consider a variant of Aristotelian
concepts that allows the defining properties to be empty. In this case the
defining properties are supposed to be possessed by all phenomena in the
extension, but not vice versa. It is then a matter of human judgement to
decide if a given phenomenon belongs to the concept.

If properties are allowed to be non-objective, we are close to the proto-
typical view of concepts.

18.3.5 Representing concepts in BETA

A programming language like BETA is mainly useful for representing
Aristotelian concepts: a pattern may be used for representing an Aris-
totelian concept. The instances of the pattern represent the extension of
the concept, the object-descriptor represents the intension and the name
of the pattern represents its designation. The intension of a concept is
represented by means of an object-descriptor, i.e. an object-descriptor

302 CONCEPTUAL FRAMEWORK

determines the kind of properties that can be represented. For an object-
descriptor we have attributes and actions. The attributes may be part-
objects, references to other objects and patterns.

18.4 The abstraction process

In both the referent and the model systems, concept structures are cre-
ated. This implies that we have to discuss the process of producing and
using knowledge, i.e. issues related to the theory of knowledge also called
epistemology. The process of knowledge may be split into three levels:

(1) The level of empirical concreteness. At this level we conceive reality
or individual phenomena as they are. We do not realize similarities
between different phenomena, nor do we obtain any systematic un-
derstanding of the individual phenomena. We notice what happens,
but neither understand why it happens nor the relations between the
phenomena. In the programming process this corresponds to a level
where we are trying to understand the single objects that constitute
the system. We have little understanding of the relations between
the objects, e.g. how to group them into classes.

(2) The level of abstraction. To understand the complications of the ref-
erent system, we have to analyze the phenomena and develop con-
cepts for grasping the relevant properties of the phenomena that we
consider. In the programming process this corresponds to designing
the classes and their attributes and to organizing the classes into
a class/sub-class hierarchy. At this level we obtain a simple and
systematic understanding of the phenomena in the referent system.

(3) The level of thought concreteness. The understanding corresponding
to the abstract level is further developed to obtain an understand-
ing of the totality of the referent system. By having organized the
phenomena of the referent system by means of concepts, we may be
able to understand relations between phenomena that we did not
understand at the level of empirical concreteness. We may also be
able to explain why things happen and to predict what will happen.

The above is an identification of three levels appearing in the process
of creating and producing knowledge. In this process the perspective
provides us with various means for organizing and understanding our
knowledge. The following are three fundamental means of organization
for apprehending the real world:

(1) Identification of phenomena and their properties. In perceiving the
real world people identify phenomena and their properties. The re-
sult of this is a number of singular phenomena characterized by a

18.5 CLASSIFICATION AND COMPOSITION 303

selected set of properties. The phenomena are singular since they
have not been classified in terms of concepts.

Selection of the relevant properties of phenomena is highly domain
specific. In this book the domain is information processes, as ex-
plained in Section 18.2. Within information processes there is still a
great deal of variety depending on the kind of information system to
be constructed.

(2) Classification. Classification is the means by which we form and
distinguish between different classes of phenomena. That is we form
concepts. Having identified phenomena and their properties and con-
cepts, we group similar phenomena and concepts. A classification is
often called a taxonomy. It is very common to construct taxonomies
to compare various subjects. When classification is applied repeat-
edly, classification hierarchies may be obtained.

(3) Composition. A phenomenon may be understood as a composition
of other phenomena, i.e. there is a distinction between whole phe-
nomena and their component phenomena. A car consists of body,
four wheels, motor, etc. A process of making a pizza may be under-
stood as a composition of several sub-processes, including: making
the dough, making the tomato sauce, preparing the topping, etc. Re-
peated application of composition leads to composition hierarchies.

In general, the process of creating new concepts cannot just be explained
as consisting of the above sub-functions. In practice, the definition of
concepts will undergo drastic changes. The understanding obtained dur-
ing the development process will usually influence previous steps. It is,
however, useful to be aware of whether a problem is approached top-
down or bottom-up. In the same way it is useful to be aware of the
above-mentioned sub-functions of abstraction.

In the next section we take a closer look at classification and compo-
sition.

18.5 Classification and composition

In reality we have to deal with a huge number of concepts and phenom-
ena, and it would not be possible to deal with that amount of complexity
without tools for hierarchical organization of concepts and phenomena.
Classification and composition are means to organize complexity in terms
of hierarchies. The two terms are often used in two different, but com-
plementary, ways. In some situations they are used as a description of
sub-functions going on in the process of producing knowledge. In this
process we constantly apply classification and composition to organize

304 CONCEPTUAL FRAMEWORK

our knowledge. In other situations the two terms are used for describing
(static) relations between phenomena and concepts identified during the
process of identifying knowledge.

18.5.1 Classification

For classification we distinguish between the classification of phenomena
and of concepts. In the following we define the terms ‘clustering’ and
‘generalization.’ By classification we then mean either clustering or gen-
eralization:

Clustering Is a means to focus on similarities between a number of
phenomena and to ignore their differences, i.e. clustering is a classification
of phenomena.

Definition 18.12 To cluster is to form a concept that covers a collection
of similar phenomena. To exemplify is to identify a phenomenon in the
extension of a concept. Exemplification is the inverse of clustering.

Clustering/exemplification corresponds to the instance-of relation-
ship.

Definition 18.13 The instance-of relationship holds between a concept
and a phenomenon in the extension of the concept.

Generalization Is a means to focus on similarities between a number of
concepts and to ignore their differences, i.e. generalization is classification
of concepts.

Definition 18.14 To generalize is to form a concept that covers a num-
ber of more special concepts based on similarities of the special concepts.
The intension of the general concept is a collection of properties that are
all part of the intension of the more special concepts. The extension of the
general concept contains the union of the extensions of the more special
concepts.

To specialize is to form a more special concept from a general one.
Specialization is the inverse of generalization.

The terms generalization of and specialization of are the names for
the corresponding relations.

Definition 18.15 A generalization is a relationship between a general
concept and a number of more special concepts. A specialization is the
inverse of a generalization.

The term generalization is often used about the general concept and
the term specialization is often used about one of the special concepts.

18.5 CLASSIFICATION AND COMPOSITION 305

The concept ‘Animal’ is a generalization of the more special concepts
‘Mammal’, ‘Fish’, ‘Bird’ and ‘Reptile’, and all of these may in turn be
considered specializations of ‘Animal.’ The concept ‘Mammal’ may be
thought of as a generalization of the concepts ‘Predator’ and ‘Rodent’,
which may be considered specializations of ‘Mammal.’

The concept ‘Reservation’ may be considered a generalization of
‘Flight Reservation’, ‘Train Reservation’, ‘Boat Reservation’ and ‘Hotel
Reservation.’

The concept ‘Movement’ may be considered a generalization of the
concepts ‘Travel’, ‘Jump’ and ‘Run.’

Classification hierarchies

Classification is often used to define hierarchies of concepts and phe-
nomena. An example of a classification hierarchy for animals is shown
in Figure 2.2. This hierarchy is also an example of a generaliza-
tion/specialization hierarchy since it only includes concepts.

The hierarchy in Figure 2.2 has an important property: it is tree struc-
tured. Each concept has at most one immediate generalization, implying
that the extensions of two concepts with the same immediate generaliza-
tion are disjoint. The concepts ‘Predator’ and ‘Rodent’ have the same
generalization ‘Mammal’, and the extensions of ‘Predator’ and ‘Rodent’
are disjoint. The tree structured classification hierarchies are an impor-
tant mechanism for organizing knowledge. They are applied in many
disciplines such as biology and chemistry. The phenomena of interest are
classified according to selected properties.

There are also examples of classification hierarchies that are not tree
structured. An example of such a hierarchy is given in Figure 18.2,3

which shows a classification of geometric figures. This hierarchy is not
tree structured since, for example, the concept ‘Square’ has two immediate
generalizations ‘Rectangle’ and ‘Rhombus.’

It is often a desirable property of a classification hierarchy that it is
tree structured since this gives a simpler and more systematic organization
than using non-tree structured classifications. In practice, however, one
often ends up with a classification hierarchy which is not tree structured.
This may be the case if one is classifying the same phenomena according
to independent properties. A non-tree structured hierarchy can always
be made tree structured, which, however, often gives rise to clumsy hier-
archies. Instead of one classification hierarchy one may instead make two
or more classifications of the same phenomena. This will then result in
two or more independent tree structured classification hierarchies.

3Borrowed from (Abelson and Sussmann, 1985).

306 CONCEPTUAL FRAMEWORK

polygon

quadrilateral

kitetrapezoid

triangle

isosceles triangle right triangle

equilateral triangle isosceles right triangle

parallelogram

rectangle rhombus

square

Figure 18.2 Classification of geometric objects.

Consider an example where several roles of people are of interest. It
may then be of interest to classify people according to their profession,
their nationality and their religion. This may result in three alternative
tree structured classifications of the same phenomena.

Support for classification in BETA

Classification is supported in BETA by means of objects and patterns.
Objects may be used to represent phenomena and their properties. Pat-
terns may be used to represent concepts. Clearly, there is support for the
instance-of relationship.

Sub-patterns and virtual patterns supports generalization/specializa-
tion. In Chapters 6–9 numerous examples of modeling of generaliza-
tion/specialization hierarchies are shown.

It is obvious that the sub-pattern mechanism only supports tree struc-
tured classification hierarchies. In addition, BETA does not support the
possibility of representing more than one classification hierarchy of the
same objects. In BETA it may therefore be necessary to represent such
classification hierarchies by another mechanism.

Some programming languages like Clos, C++ and Eiffel make use of
multiple inheritance. In the cases where this is used to represent alterna-

18.5 CLASSIFICATION AND COMPOSITION 307

tive classifications, like the role example above, it may lead to complicated
structures. See Section 6.8 for a further discussion of multiple inheritance.

18.5.2 Composition

Composition is a means to organize phenomena and concepts in terms of
components of other phenomena and concepts. There are a number of
different ways of composing phenomena into compound phenomena.

A car may be viewed as consisting of a body, four wheels, etc. These
components are physical parts of the car. A tree may be viewed as con-
sisting of branches, a trunk, roots and leaves.

A ‘Hotel Reservation’ may be viewed as a composition of a ‘Person’,
a ‘Hotel’, a ‘Room’ and a ‘Date.’ It is, however, not meaningful to view,
for instance, the person as a physical part of the hotel reservation. The
corresponding component is better viewed as a reference to a person.

We define composition in the following way:

Definition 18.16 To compose is to form a compound phenomenon/con-
cept by means of a number of component phenomena/concepts. Properties
in the intension of the compound phenomenon/concept are described us-
ing the component phenomena/concepts. The extension of the compound
phenomenon/concept consists of phenomena which have components be-
longing to the extension of the component phenomena/concepts.

To decompose is to identify a component phenomenon/concept of a
phenomenon/concept. Decomposition is the inverse of composition.

Composition gives rise to the component-of relation:

Definition 18.17 The component-of relation is a relationship between a
phenomenon/concept and one of its component phenomena/concepts.

There are a number of different means for making compositions. They
may all be defined as special cases of composition and component-of. In
the following we introduce four of these means: whole-part composition;
reference composition; localization; and concept composition. They will
only be introduced as relations, and no name for the corresponding sub-
function of composition will be given, although this could be done. The
four cases of composition are not independent in the sense that the same
components may be part of two or more of the relations. The reader may
find the distinction between some of the verbal definitions below quite
subtle. However, hopefully the illustration of the relations in BETA will
make the distinction clear.

308 CONCEPTUAL FRAMEWORK

Whole-part composition

One important form of composition is the structuring of phenomena into
wholes and parts. A ‘Person’ may naturally be viewed as consisting of
parts like ‘Head’, ‘Body’, ‘Arms’ and ‘Legs.’ In turn, the ‘Legs’ consist
of ‘Lower leg’, ‘Foot’, etc.

Definition 18.18 The part-of relation is a relation between a phe-
nomenon and one of its part phenomena.

A ‘Car’ may be considered as consisting of parts like ‘SteeringWheel’,
‘Motor’, ‘Body’ and ‘Wheel’, i.e. ‘Wheel’ is a part-of a ‘Car’, a ‘Motor’ is
a part-of a ‘Car’, etc.

The following example shows how whole-part composition is sup-
ported in BETA. The example describes a pattern representing the con-
cept of a ‘Car’:

Car:

(# aSteeringWheel: @SteeringWheel;

aMotor: @Motor;

aBody: @Body;

wheels: [4] @Wheel

#)

The part-of relation gives rise to a part hierarchy.
For more examples of modeling whole-part hierachies in BETA, see

Chapter 10.

Reference composition

A reference is a component of a phenomenon that denotes another phe-
nomenon. The ‘Person’ component of a ‘Reservation’ is actually a ref-
erence to a ‘Person.’ Similarly, for the ‘Hotel’ and ‘Room’ components.
Composition of references gives rise to the has-ref-to relation:

Definition 18.19 The has-ref-to relation is a relationship between a phe-
nomenon and one of its components, being a reference to another phe-
nomenon.

The following examples shows how reference composition is supported in
BETA. The example describes the concept of a ‘Hotel Reservation’:

HotelReservation:

(# aPerson: ^Person;

aHotel: ^Hotel;

aRoom: ^Room;

aDate: @Date

#)

18.5 CLASSIFICATION AND COMPOSITION 309

The components ‘aPerson’, ‘aHotel’ and ‘aRoom’ are reference compo-
nents of a ‘Hotel Reservation.’

The component ‘aDate’ is represented as a part-object. It is, how-
ever, not intuitively useful to model the date of a hotel reservation as a
part object. The date is a measurable property of a hotel reservation.
Modeling of measurable properties is further discussed in Section 18.7

For more examples of modeling reference composition in BETA, see
Section 10.1.1.

Localization

Localization is a means for describing/organizing that the existence of
phenomena/concepts are restricted to the context of a given phenomenon,
i.e. the local component phenomena/concepts are dependent upon the
composite phenomenon. The properties of a given phenomenon may be
singularly defined phenomena or concepts which only have a meaning as
components of the compound phenomenon/concept.

Definition 18.20 The is-local-to relation is a relationship between a
compound phenomenon and a locally defined dependent component phe-
nomenon/concept.

In Chapter 8 a number of examples of localization are given. Block struc-
ture is the BETA mechanism for supporting localization.

Concept composition

Concept composition is a means to define a compound phenomenon/con-
cept by means of a number of independent component concepts. Concept
composition is thus a relationship between a phenomenon/concept and a
number of concepts. Independence means that the component concepts
have a meaning independent of the compound phenomenon/concept being
defined.

Definition 18.21 A concept composition is a relationship between a
compound phenomenon/concept and a number of independent component
concepts.

A certain relationship between the concepts ‘Person’, ‘Hotel’, ‘Room’ and
‘Date’ may be considered as the concept composition ‘Reservation.’ The
concepts ‘Person’, ‘Hotel’, ‘Room’ and ‘Date’ are independent, since they
have a meaning without the concept of ‘Reservation.’ Note that a concept
like ‘Reservation’ may be viewed as both a reference composition and a
concept composition. In general, a concept or phenomena may be viewed
as one or more of the four forms of composition.

310 CONCEPTUAL FRAMEWORK

The concept ‘Travel’ may be viewed as a concept composition of con-
cepts like ‘Source’, ‘Destination’, ‘Duration’ and ‘Subtravels.’

The concept ‘Car’ may be thought of as a concept composition of the
concepts: ‘Horsepower’, ‘Body’, ‘Wheel’, ‘Motor’, etc.

18.6 Relations

Relations are a common form of abstraction used for organizing knowl-
edge:

Definition 18.22 A relation is a union or connection of phenomena
and/or concepts

Some of the above abstraction mechanisms may all be viewed as special
kinds of relations. For classification and composition we have already
introduced a number of corresponding relations, including instance-of,
part-of, has-ref-to, etc. These relations are examples of structural rela-
tions implied by the abstraction principles. In a given problem domain
there may be a large number of special relations that we may be interested
in modeling.

Reference composition is actually a means for representing simple bi-
nary relations between phenomena. An example of such a relation is ‘Em-
ployee has-a Boss’, which is a binary relationship between an employee
and his or her boss. Other examples are ‘Vehicle is-owned-by Person’,
‘Part is-manufactured-by Supplier’, ‘Hotel room is-reserved-by Person’
and ‘Company has President.’ In Section 10.1.1 a number of examples
of how to represent relations in BETA are shown, including the relation-
ship between a book and its author, and between a vehicle and its owner.
In addition, the difference between one-way and two-way relations was
discussed.

Another important aspect of relations metioned in Section 10.1.1 is
the functionality of the relation. Consider a relation ‘A R B’ meaning that
instances of ‘A’ are in the relation ‘R’ to instances of ‘B.’ Relationships
involving instances of two classes can be classified into the following forms,
depending on the number of instances involved in each instance of the
relationship:

One-to-one: In each instance of the relationship, at most one instance
of ‘A’ can be in relation to at most one ‘B.’

One-to-many: In each instance of the relationship, at most one instance
of ‘A’ can be in relation to many instances of ‘B.’

Many-to-many: In each instance of the relationship, many instances of
‘A’ can be in relation to many instances of ‘B.’

18.7 REPRESENTATIVE ELEMENTS OF A DESCRIPTION 311

For each of the forms the phrase ‘at most one’ could be ‘exactly one.’
This is, for example, the case with a vehicle that always has an owner.
Similarly, the phrase ‘many’ can mean either ‘ zero or more’ or ‘one or
more’ or a fixed number.

Section 10.1.1 also mentioned that it may be useful to represent rela-
tionships as instances of patterns. This may be the case for relations that
are not binary or if additional attributes are needed to characterize the
relation. ‘The Beatles’, ‘The Mills Brothers’, and ‘Simon and Garfunkel’
are examples of phenomena that belong to the extensions of concepts such
as ‘Quartet’, ‘Trio’ and ‘Duo.’ As an example of a relation that includes
attributes other than just dynamic references, the ‘owner/owns’ relation
for vehicles was given.

The use of relations for modeling phenomena and concepts have been
used extensively in the area of databases for many years. The most widely
used model is the extended entity-relationship model, where information
is represented by means of three primitive concepts:

(1) Entities, which represent the phenomena being modeled.

(2) Attributes, which represent the properties of those phenomena.

(3) Relationships, which represent the associations among phenomena.

The extended EER model fits well with object-oriented modeling in the
sense that an EER model can be developed as part of an object-oriented
model. The EER entities correspond to objects, and the EER attributes
correspond to measurable properties. The relationships may be repre-
sented as simple references or as patterns, as shown above.

18.7 Representative elements of a descrip-

tion

BETA may be used as a tool for analysis, modeling and design. The
BETA language provides support for representing certain parts of reality.
There are, however, various parts of reality that cannot be described
directly in BETA. It will therefore be necessary to represent such aspects
by means of some other BETA elements.

Let us first discuss aspects that can be directly represented in BETA.
These include:

• Concepts can be represented by patterns.

• Material can be represented by objects.

• Classification hierarchies can be represented by sub-pattern hierarchies
and objects.

312 CONCEPTUAL FRAMEWORK

• Composition hierarchies corresponding to whole-part composition, ref-
erence composition, localization and concept composition can be rep-
resented.

• Relations can be represented by reference composition or by relational
objects.

The balance property of an Account is an example of a property that
cannot be represented directly in BETA. In Chapter 3, the balance prop-
erty is represented as an integer part-object. Balance is an example of a
measurable property, and the substance of the integer part-object does
not correspond to a phenomenon in the referent system.

Consider next the speed of a vehicle. This is an another example of a
property that does not have substance. It is, however, an observable and
measurable property, by for example the car’s speedometer or the police
radar, and the measuring devices do have substance. The measurement
maps an observation of the speed on a value space with km/hr (miles/hr)
as the unit. There are a number of alternatives for representing a mea-
surable property in BETA. The speed attribute may be represented by
an object as in:

Vehicle:

(# Body: @(# ... #);

owner: ^Person;

speed: @real

#)

There is, however, a great difference between the description of the speed
property and the other attributes of Vehicle. The real object represent-
ing speed does not correspond to a phenomenon in the referent system.
It is important to be aware of which elements of a BETA description
correspond to phenomena/concepts in the referent system and which do
not. For this reason we introduce the following definition:

Definition 18.23 A representative element of a BETA description is
a BETA element corresponding to a phenomenon or concept in the ref-
erent system. BETA elements which are not representative are called
non-representative.

In the above description of Vehicle, Body and owner may be viewed as
representative whereas speed is not.

Speed is an example of a measurable property, and to measure a prop-
erty a measurement must be performed. The speed property could thus be
represented by a pattern representing a classification of all measurements
of the speed. This gives us the the following version of Vehicle:

18.7 REPRESENTATIVE ELEMENTS OF A DESCRIPTION 313

name ’vehicle’

origin ’betaenv’

body ’vehiclebody’

LIB:Attributes

Vehicle:

(# Body @(# ... #)

owner: ^Person;

Speed: (# V: @real do <<SLOT Speed:DoPart>> exit V #)

private: @<<SLOT private:ObjectDescriptor>>

#)

name ’vehiclebody’

origin ’vehicle’

Speed:DoPart

do private.speed -> V

private:ObjectDescriptor

(# speed: @real #)

Figure 18.3 Separation of the Vehicle description into representative
and non-representative parts.

Vehicle:

(# Body: @(# ... #);

owner: ^Person;

Speed: (# V: @real do ... exit V #)

#)

The Speed pattern is now intended to perform a measurement producing
the ‘speed’ of the vehicle. How can we complete the description of Speed?

One possibility is to have a private Real object representing the Speed.
This may leave us close to the first alternative of representing Speed di-
rectly as a Real object. We may, however, separate the actual representa-
tion of the speed from the Vehicle pattern using the fragment system, as
described in Chapter 17. Figure 18.3 shows how a description of Vehicle
can be separated into representative and non-representative parts.

314 CONCEPTUAL FRAMEWORK

18.8 Graphical notation

The syntax of the BETA language used in this book has been textual. In
Chapter 17 a diagrammatic notation for the fragment language has been
used. It may also be possible to use a diagrammatic or graphical notation
for the BETA language, especially useful in analysis and design, since a
diagrammatic notation may provide a better overview of key objects and
patterns and their relations. In this book certain diagrams have been
used to illustrate language concepts.

It is possible to define an alternative graphical syntax for the BETA
language, and one proposal for this was given by (Bertelsen et al., 1986).
This proposal gave a graphical syntax for all language constructs in
BETA. It is not obvious that it is useful to have a graphical notation
for all language elements, since perhaps not all details are best presented
graphically. The Mjølner BETA System includes an editor that provides
a diagrammatic notation for the overall structure of a BETA description.
The syntax of these diagrams is similar to the diagrams used in this book.

One advantage of a graphical notation is that it can illustrate certain
semantic relations more directly than the textual representation. One
example of this is classification hierarchies, as shown in Figure 6.1. The
classification structure is defined as sub-patterns, where the names of
super-patterns refer to the corresponding super-patterns. Using a graphi-
cal notation, it is possible to show the relationship between a pattern and
its sub-patterns more directly by using, for example, lines.

A graphical notation can also be used to show composition hierarchies,
specified relations, active versus passive objects and communication con-
nections between objects.

Graphical notations have been used for many years to support analysis
and design. This is especially the case for methods based on structured
analysis/structured design. Recently, a number of graphical design nota-
tions for supporting object-oriented analysis and design have appeared.

CASE tools

It may be impractical to use a graphical notation without the support of
a computer-based tool. A number of so-called CASE tools have been de-
veloped to support the various different development methods. In general
such tools support construction and manipulation of a graphical notation
for analysis and/or design. In addition, such tools may support the gen-
eration of code skeletons in some programming language, which may then
be filled in to produce a final program. There may be a number of prob-
lems with such tools depending on the differences between the graphical
notation and the programming language. The following problems have
been recognized:

18.8 GRAPHICAL NOTATION 315

(1) There may be language mechanisms in the graphical language which
are not supported by the programming language. This may make it
difficult to recognize the original design in the code skeletons.

(2) Ideally, a CASE tool should make it possible to make a full specifi-
cation that can be used to generate a complete executable program.
With current specification languages this is not practical, since it
would be just as complex as writing the program directly. Most
CASE tools thus generate a code skeleton which must be completed
to get a full implementation. The distance between the (graphical)
specification language used by the CASE tool and the programming
language is referred to as the CASE gap.

(3) In the process of developing the code skeletons into complete pro-
grams, it may happen that it is necessary to reorganize the code.
This means that the CASE diagrams will have to be updated, other-
wise there will be inconsistencies between the diagrams and the code.
The problem of going back from the code to the CASE diagrams is
called reverse engineering.

The above problems with CASE tools are due to the fact that the CASE
language and the programming language differ. By using an object-
oriented approach it is possible to design a CASE language and a pro-
gramming language based on the same abstract language. The graphical
notation being developed for BETA is just an alternative syntax for the
same underlying abstract language. The graphical notation and the tex-
tual notation are two alternative representations of the same language. It
is therefore possible to develop a CASE tool/editor4 that makes it pos-
sible to alternate between using the graphical notation and the textual
notation. It is easy to generate the textual notation from the graphical
notation, and vice versa.

The problems with CASE tools are typical for CASE tools based on
structured analysis/structured design. The reason is that there is a ma-
jor shift in language between analysis, design and implementation. For
CASE tools based on an object-oriented approach the problem is in gen-
eral less obvious. It is, however, often the case that there are differences
between the CASE language and the programming language. The BETA
approach is that the same underlying (abstract) language should be used
for analysis, design and implementation. This will make it easier to al-
ternate between analysis, design and implementation.

4Such a CASE tool/editor is currently being developed for the Mjølner BETA
System.

316 CONCEPTUAL FRAMEWORK

18.9 Elements of a method

In this section we summarize some of the important tasks involved in an
object-oriented approach. Note that this is not intended to be a fully-
fledged method, since there are more elements of a method than presented
here. According to (Andersen et al., 1986), a method is characterized
by application area, perspective(s) (e.g. language), and guidelines, i.e.
techniques, tools and principles of organization.

The approach presented in this chapter consists of creating a physi-
cal model (called the model system) of part of reality (called the refer-
ent system). The system development process, which is the process of
creating a model system, has traditionally been organized into analysis,
design and implementation. The analysis phase is primarily concerned
with understanding the problem domain; the design phase is concerned
with construction of the physical model; implementation is concerned
with realizing this model on a computer.

The conceptual framework presented in the previous sections may be
applied to all three phases. Each phase represents three different domains:
the domain of the referent system is the phenomena and concepts of the
application domain; the domain of the model system is the phenomena
and concepts of the model, i.e. the representative objects and patterns;
the domain of the implementation are the objects and patterns used to
implement the model. Thus, one main difference between the three phases
is the domain; another is the degree of formality, as we shall see below.

The separation of the system development process into analysis, de-
sign and implementation is not a sequential organization in the sense
that phase one is analysis, phase two is design and phase three is imple-
mentation. Often these phases are completely intermixed, and it may be
difficult to distinguish between them. Many developers are not even aware
of whether they are doing one or the other. In practice it is very diffi-
cult to do analysis without doing some design, and similarly doing design
without doing some implementation. The system development process is
evolutionary with respect to analysis, design and implementation. One
implication of this could be that it is perhaps not useful to distinguish
between analysis, design and implementation. Below we argue that this
is in fact useful.

18.9.1 General approach

The BETA language and associated conceptual framework is to various
degrees useful for analysis, design and implementation. In this section we
summarize the overall approach to all these phases. In later sections we
discuss how the approach differs for analysis, design and implementation.

18.9 ELEMENTS OF A METHOD 317

In the following the domain can be the referent system, the model
system or the computer system. Within a given domain, the following
steps should be taken. Again the steps are not supposed to be sequential,
merely a check list:

(1) Select (relevant) phenomena and concepts from the domain and se-
lect the (relevant) properties of these phenomena and concepts. This
includes:

(a) Select the material (objects) of the domain.

The section of relevant properties of the material includes se-
lection of:

(b) Measurable properties.

(c) Possible physical parts of the material, i.e. whole-part compo-
sition.

(d) Possible reference attributes, i.e. reference composition.

(e) Possible local concepts: procedure patterns, class patterns, etc.,
i.e. localization.

(f) Possible non-local concepts used for describing properties, i.e.
concept composition.

(g) Classification of objects as either active or passive.

For active objects describe the action-sequences they perform.
This includes their participation into concurrent action se-
quences with other objects, and their involvement in alternating
action sequences.

(2) Select concepts. Describe concepts as prototypical, Aristotelian, etc.
Describe the intension of the concepts.

(3) Select relations between phenomena and concepts.

It must be decided whether a relation is one-to-one, one-to-many or
many-to-many, and whether a relation should be represented by a
pattern or just by means of reference attributes.

(4) Determine classification hierarchies, including clustering and gener-
alization/specialization. It must be considered which of the classifi-
cation hierarchies are single/tree structured and which are multiple,
and whether there should be several alternative classifications of the
same phenomena/concepts.

(5) Determine composition hierarchies.

The composition hierarchies such as whole-part composition, refer-
ence composition, localization and concept composition should be
determined.

318 CONCEPTUAL FRAMEWORK

18.9.2 Analysis

The analysis phase is primarily concerned with understanding the prob-
lem domain, i.e. the referent system. The domain referred to in the
general approach is thus the referent system. We are therefore concerned
with the selection of relevant phenomena and concepts from the referent
system.

In this phase it is important that the developer is not restricted to
the (formal) mechanism of a programming language like BETA. This also
applies to any other formal language proposed for analysis including the
many proposals for a graphical notation. If the developer is restricted to
the use of a formal notation this may impose too narrow a view on the
referent system. The developer should make use of any means available
when doing analysis, including informal descriptions, graphics and the
conceptual framework presented in this chapter.

Prototypical concepts may be useful for understanding the problem
domain. Problem-specific concepts are often prototypical. BETA (and
other programming languages) is primarily suited for representing Aris-
totelian concepts. It is possible to use a pseudo formal notation for de-
scribing prototypical concepts. Such a description will often include an
English description.

The realized concepts in the model have to be Aristotelian. Part of the
modeling function is thus concerned with giving prototypical concepts an
Aristotelian interpretation. This will often make the resulting computer
system appear inflexible to the user. It is important that the developer
is not forced to use Aristotelian concepts at too early a stage in the
development process. In addition, it is useful to be aware of concepts
that are best described as prototypical, but have been transformed into
an Aristotelian concept. Of course, the developer should make use of
Aristotelian concepts whenever possible.

A major characteristic of analysis is that it may be necessary to relax
on the formal notation provided by the language. Examples include the
use of prototypical concepts, and describing alternative classifications and
multiple inheritance. The developer should have the ability to extend the
language to at least informally describe the desired aspects of the referent
system.

18.9.3 Design

The design phase is concerned with the construction of a physical model
that can be refined into an executable program. The domain referred to
in the general approach is thus the objects and patterns of the model.

The (possibly informal) descriptions of phenomena and concepts iden-
tified during analysis have to be transformed into formal descriptions in

18.9 ELEMENTS OF A METHOD 319

terms of objects and patterns, including giving Aristotelian definitions of
prototypical concepts.

As can be seen, the programming process is faced with the problem
that not only do we restrict the realism of our model by only considering a
part of the world, but equally important, the modeling process has to take
into account the restrictions imposed by modeling a possible prototypi-
cal concept structure in the referent system into an Aristotelian concept
structure in the model system. In general, the expressiveness is limited
by the language used to describe the model. Other examples of this
include the support for classification hierarchies: it may be necessary to
transform multiple classification hierarchies into single hierarchies, or into
the particular interpretation of multiple inheritance in the programming
language, just as it may be awkward to represent several classifications.

A large part of design may be to invent new things and concepts.
Remember that the model system is a physical model simulating the
behavior of either a real or imaginary part of the world. The imaginary
part has to be invented during design: the new phenomena and concepts
must have a meaning in the referent system.

The formal notation can be a programming language or a graphical
design language. If BETA is used a mixture of graphical and textual
syntax can be used. In the design phase it is important to remember that
the whole description/specification must be representative with respect
to the reference system. A design description in BETA will thus be a
fairly abstract program.

Design may also involve the design of a user interface. It is outside
the scope of this book to discuss the design of user interfaces. The gen-
eral approach of an object-oriented user interface is that representative
elements of the model should have a representation on the screen. The
user should have a feeling of manipulating the physical model directly. Of
course, only selected parts of the model may be represented at any given
time, but the user should be able to navigate in the model.

During design it may be useful to construct scenarios and/or proto-
types of the system. The latter will involve implementation.

At some point during design it may be necessary to make a require-
ment specification, and in such a specification it should be possible to use
part of the design. Selected objects and their attributes, class patterns,
procedure patterns, etc., classification hierarchies and composition hier-
archies should be relatively easy to present for the users. The form of the
presentation may be a mixture of diagrams, program text and English
descriptions, depending on the background of the user.

320 CONCEPTUAL FRAMEWORK

18.9.4 Implementation

Here the domain of the general approach is the computer system. Phe-
nomena and concepts are the objects and patterns necessary to implement
the design. In the implementation phase the design description is refined
into an implementation that can be executed. It is very important to
make a clear separation of representable and non-representable parts of
the description.

18.10 Exercises

(1) Develop a set of concepts that capture what you consider to be the
essential properties of a restaurant.

(a) Develop a generalization hierarchy with concepts that are more
general than Restaurant and concepts that are more special than
Restaurant.

(b) Develop a composition hierarchy. Identify possible parts, ref-
erences and concepts of a restaurant. Identify possible con-
cepts/phenomena where a restaurant may be a component.

(c) Identify one or more phenomena in the extensions of the con-
cepts.

(d) Describe the intension of the developed concepts. Describe
defining and characteristic properties of the concepts.

(e) Are the developed concepts Aristotelian or prototypical?

(f) Identify substance, measurable properties and transformations.

(g) Try to model the process of serving a customer in a restaurant.
This may include concepts like ‘customer’, ‘table’, ‘waiter.’ It
may include actions like ‘get a table’, ‘get a menu’, ‘order food’
and ‘pay the bill.’ For each object in your model, identify which
of its attributes are measurable properties, part objects, refer-
ences to separate objects and local concepts.

(h) Include modeling of the restaurant’s food preparation process
as well.

(i) For which type of applications are the concepts useful? For
customers using restaurants, for the owner of a restaurant, for
the city administration, etc.?

18.11 NOTES 321

18.11 Notes

Some authors use the term paradigm instead of perspective as used
in this book, i.e. terms like the object-oriented paradigm and func-
tional paradigm are used instead of object-oriented perspective and func-
tional perspective. (Nygaard and Sørgaard, 1987) argue that according
to Kuhn, paradigms are defined to deal with major shifts in understand-
ing within science, which is not the case with for example the differ-
ence between functional programming and object-oriented programming.
Object-oriented programming and functional programming may often
both be used in the same program.

Various authors use different words for classification and composi-
tion. Some of the terms like classification and composition and their
more special variants – clustering, generalization/specialization, whole-
part composition, reference composition, localization, concept composi-
tion – are widely accepted, whereas others are not. The term classification
is generally accepted although some authors use classification for what
has been called clustering here. The term generalization/specialization
is widely accepted, with the same meaning as here. It is more prob-
lematic with terms for composition: the term aggregation is often used
instead of composition. However, there is no commonly agreed definition
of aggregation. Most authors define aggregation to be whole-part com-
position. Others define it to be localization or concept composition. In
(Smith and Smith, 1977a) aggregation seems to be defined similarly to
concept composition.

Relations have been an important aspect of databases, analysis
and design for many years. The entity-relationship model was in-
troduced in (Chen, 1976). Relations have not played a central role
within object-oriented programming, but are included in most books
on object-oriented databases and object-oriented analysis and design
(see (Hughes, 1991; Coad and Yourdon, 1990; Coad and Yourdon, 1991;
Booch, 1991; Rumbaugh et al., 1991), and
(Wirfs-Brock et al., 1991)).

The conceptual framework presented here has been influenced by sim-
ilar developments within artificial intelligence and databases
(Smith and Smith, 1977a; Smith and Smith, 1977b). The development
of a conceptual framework has been an important part of the devel-
opment of BETA. It does not seem to have played a role in the de-
velopment of other object-oriented languages. It is, however, of major
importance in the area of object-oriented analysis, modeling and de-
sign, as presented, in for example, (Booch, 1991; Coad and Yourdon,
1990; Coad and Yourdon, 1991; Shlaer and Mellor, 1988; Rumbaugh
et al., 1991; Wirfs-Brock et al., 1991). The BETA approach is, how-

322 CONCEPTUAL FRAMEWORK

ever, that analysis, design and programming should not be considered
as different issues: it is all programming at different abstraction lev-
els. The conceptual framework presented here is heavily influenced by
(Knudsen and Thomsen, 1985). The use of characteristic properties for
Aristotelian concepts is discussed in (Faber and Krukow, 1990). The pro-
cess of knowledge is from (Mathiassen, 1981), but originates from Karl
Marx.

Object-oriented CASE for BETA is discussed in (Sandvad, 1990).

Appendix A

Grammar for BETA

This appendix describes a grammar for the implemented subset of BETA.
The grammar formalism used in the Mjølner BETA System is a variant of
context-free grammars. A structured context-free grammar is a context-
free grammar (CFG) where the rules (productions) satisfy a certain struc-
ture. Each nonterminal must be defined by exactly one of the following
rules:

1. An alternation rule has the following form:

<A0> ::| <A1> | <A2> | ... | <An>

where <A0>, <A1>, ..., <An> are nonterminal symbols. The rule
specifies that <A0> derives one of <A1>, <A2>, ..., or <An>.

2. A constructor rule has the following form:

<A0> ::= w0 <t1:A1> w1 ... <tn:An> wn

where <A0>, <t1:A1>, ..., <tn:An> are nonterminal symbols and w0,

w1, ..., wn are possibly empty strings of terminal symbols. This
rule describes that <A0> derives the string:

w0 <A1> w1 ... <An> wn

A nonterminal on the right side of the rule has the form <t:A>

where t is a tag-name and A is the syntactic category. Tag-names
are used to distinguish between nonterminals belonging to the same
syntactic category, consequently all tag-names in a rule must be
different. If no tag-name is provided then the name of the syntactic
category is used as a tag-name.

3. A list rule has one of the following forms:

323

324 GRAMMAR FOR BETA

<A> ::+ w

<A> ::* w

where is a nonterminal and w is a possibly empty string of
terminal symbols. The nonterminal <A> generates a list of s
separated by ws:

 w w ... w

The +-rule specifies that at least one element is generated; the *-rule
specifies that the list may be empty.

4. An optional rule has the following form:

<A> ::?

where is a nonterminal. The nonterminal <A> may generate the
empty string or .

There are four predefined nonterminal symbols named <NameDecl>,
<NameAppl>, <String> and <Const>. These nonterminals are called
lexem-symbols, and they derive identifiers, character-strings and in-
teger constants. A lexem-symbol may also have a tag-name like
<Title:NameAppl>.

The start symbol of the grammar is <BetaForm>, which may derive
either an <ObjectDescriptor>, an <Attributes> or a <DoPart>. These
nonterminals are those that can be used to define fragment-forms/slots,
cf. Chapter 17.

The grammar

<BetaForm> ::| <DescriptorForm>

| <AttributesForm>

<DescriptorForm> ::= <ObjectDescriptor>

<AttributesForm> ::= <Attributes>

<ObjectDescriptor> ::= <SuperPattenrOpt> <MainPart>

<MainPart> ::= (# <Attributes> <ActionPart> #)

<Attributes> ::+ <AttributeDeclOpt> ;

<SuperPattern> ::? <SuperPattern>

<SuperPattern> ::= <AttributeDenotation>

<AttributeDeclOpt> ::? <AttributeDecl>

GRAMMAR FOR BETA 325

<AttributeDecl> ::| <PatternDecl>

| <SimpleDecl>

| <RepetitionDecl>

| <VirtualDecl>

| <BindingDecl>

| <FinalBindingDecl>

| <VariablePatternDecl>

<PatternDecl> ::= <Names> : <ObjectDescriptor>

<SimpleDecl> ::= <Names> : <referenceSpecification>

<RepetitionDecl>::= <Names> : [<index>] <referenceSpecification>

<VirtualDecl> ::= <Names> :< <ObjectSpecification>

<BindingDecl> ::= <Names> :: < <ObjectSpecification>

<FinalBindingDecl> ::= <Names> :: <ObjectSpecification>

<VariablePatternDecl> ::= <Names> : ## <AttributeDenotation>

<referenceSpecification> ::| <StaticItem>

| <DynamicItem>

| <StaticComponent>

| <DynamicComponent>

<StaticItem> ::= @ <ObjectSpecification>

<DynamicItem> ::= ^ <AttributeDenotation>

<StaticComponent> ::= @ | <ObjectSpecification>

<DynamicComponent> ::= ^ | <AttributeDenotation>

<ObjectSpecification> ::| <ObjectDescriptor>

| <AttributeDenotation>

<Index> ::| <SimpleIndex>

| <NamedIndex>

<NamedIndex> ::= <NameDcl> : <Evaluation>

<ActionPart> ::= <EnterPartOpt> <DoPartOpt> <ExitPartOpt>

<EnterPartOpt> ::? <EnterPart>

<DoPartOpt> ::? <DoPart>

<ExitPartOpt> ::? <ExitPart>

<EnterPart> ::= enter <Evaluation>

<DoPart> ::= do <Imperatives>

<ExitPart> ::= exit <Evaluation>

<Imperatives> ::+ <ImpOpt> ;

<ImpOpt> ::? <Imp>

<Imp> ::| <LabelledImp>

| <LabelledCompoundImp>

| <ForImp>

| <IfImp>

| <LeaveImp>

| <RestartImp>

| <InnerImp>

| <SuspendImp>

| <Evaluation>

326 GRAMMAR FOR BETA

<LabelledImp> ::= <NameDcl> : <Imp>

<LabelledCompoundImp> ::= (<NameDcl> <Imperatives> <NameDcl>)

<ForImp> ::= (for <Index> repeat <Imperatives> for)

<IfImp> ::= (if <Evaluation> <Alternatives> <ElsePartOpt> if)

<Alternatives> ::+ <Alternative>

<Alternative> ::= <Selections> then <Imperatives>

<Selections>::+ <Selection>

<Selection> ::| <CaseSelection>

<CaseSelection> ::= // <evaluation>

<ElsePartOpt> ::? <ElsePart>

<ElsePart> ::= else <Imperatives>

<LeaveImp> ::= leave <NameApl>

<RestartImp> ::= restart <NameApl>

<InnerImp> ::= inner <NameAplOpt>

<NameAplOpt> ::? <NameApl>

<SuspendImp> ::= suspend

<Evaluations> ::+ <Evaluation> ,

<Evaluation> ::| <Expression>

| <AssignmentEvaluation>

<AssignmentEvaluation> ::= <Evaluation> -> <Transaction>

<Transaction> ::| <ObjectEvaluation>

| <ComputedObjectEvaluation>

| <ObjectReference>

| <EvalList>

| <StructureReference>

<ObjectEvaluation> ::| <InsertedItem>

| <reference>

<Reference> ::| <ObjectDenotation>

| <DynamicObjectGeneration>

<DynamicObjectGeneration> ::| <DynamicItemGeneration>

| <DynamicComponentGeneration>

<InsertedItem> ::= <ObjectDescriptor>

<ObjectDenotation> ::= <AttributeDenotation>

<ComputedObjectEvaluation> ::= <ObjectEvaluation> !

<ObjectReference> ::= <Reference> []

<StructureReference> ::= <AttributeDenotation> ##

<EvalList> ::= (<Evaluations>)

<DynamicItemGeneration> ::= & <ObjectSpecification>

<DynamicComponentGeneration> ::= & | <ObjectSpecification>

<AttributeDenotation>::| <NameApl>

| <Remote>

| <ComputedRemote>

| <Indexed>

| <ThisObject>

<Remote> ::= <AttributeDenotation> . <NameApl>

<ComputedRemote> ::= (<Evaluations>) . <NameApl>

GRAMMAR FOR BETA 327

<Indexed> ::= <AttributeDenotation> [<Evaluation>]

<ThisObject> ::= this (<NameApl>)

<Expression> ::| <RelationalExp> | <SimpleExp>

<RelationalExp>::| <EqExp> | <LtExp> | <LeExp>

| <GtExp> | <GeExp> | <NeExp>

<SimpleExp> ::| <AddExp> | <SignedTerm> | <Term>

<AddExp> ::| <PlusExp> | <MinusExp> | <OrExp>

<SignedTerm> ::| <unaryPlusExp> | <unaryMinusexp>

<Term> ::| <MulExp> | <Factor>

<MulExp> ::| <TimesExp> | <DivExp> | <ModExp> | <AndExp>

<EqExp> ::= <Operand1:SimpleExp> = <Operand2:SimpleExp>

<LtExp> ::= <Operand1:SimpleExp> < <Operand2:SimpleExp>

<LeExp> ::= <Operand1:SimpleExp> <= <Operand2:SimpleExp>

<GtExp> ::= <Operand1:SimpleExp> > <Operand2:SimpleExp>

<GeExp> ::= <Operand1:SimpleExp> >= <Operand2:SimpleExp>

<NeExp> ::= <Operand1:SimpleExp> <> <Operand2:SimpleExp>

<PlusExp> ::= <SimpleExp> + <Term>

<MinusExp> ::= <SimpleExp> - <Term>

<OrExp> ::= <SimpleExp> or <Term>

<unaryPlusExp> ::= + <Term>

<unaryMinusExp> ::= - <Term>

<TimesExp> ::= <Term> * <Factor>

<DivExp> ::= <Term> div <Factor>

<ModExp> ::= <Term> mod <Factor>

<AndExp> ::= <Term> and <Factor>

<Factor> ::| <TextConst>

| <IntegerConst>

| <NotExp>

| <NoneExp>

| <RepetitionSlice>

| <Transaction>

<RepetitionSlice> ::= <AttributeDenotation>

[<Evaluation> : <Evaluation>]

<notExp> ::= not <factor>

<noneExp> ::= none

<Names> ::+ <NameDcl> ,

<NameDcl> ::= <NameDecl>

<NameApl> ::= <NameAppl>

<SimpleEntry> ::? <TextConst>

<TextConst> ::= <String>

<IntegerConst> ::= <Const>

<SimpleIndex> ::= <Evaluation>

328 GRAMMAR FOR BETA

Appendix B

The Mjølner BETA System

The Mjølner BETA System1 is a programming environment for object-
oriented programming, which includes an implementation of BETA. In-
formation about the Mjølner BETA System is available from:

Mjølner Informatics A/S
Science Park Aarhus, Phone: +45 70 27 43 43
Gustav Wiedsvej 10, Fax: +45 70 27 43 44
DK-8000 Aarhus C, E-mail: mjolner@mjolner.com

DENMARK Web: www.mjolner.com

A free version of the Mjølner BETA System is available from Mjølner
Informatics A/S either as a CD or downloadable from www.mjolner.com.

1The original printing of this book contains a description of the Mjølner BETA Sys-
tem as of May 1993. The Mjølner BETA System has undergone extensive development
since then and the original Appendix B is therefore obsolete.

329

330 THE MJØLNER BETA SYSTEM

Bibliography

(Abelson and Sussmann, 1985) G. Abelson, G.J. Sussmann with J. Suss-
mann. The Structure and Interpretation of Computer Programs.
Cambridge MA: MIT Press, 1985.

(Agesen et al., 1990) O. Agesen, S. Frølund, M.H. Olsen. Persistent and
Shared Objects in BETA. Technical Report IR-89, Computer Sci-
ence Department, Aarhus University, 1990.

(Andersen et al., 1986) N. E. Andersen, F. Kensing, M. Lassen J. Lundin,
L. Mathiassen, A. Munck-Madsen, P. Sørgaard. Professional Sys-
tem Development. Teknisk Forlag, 1986 (in Danish).

(Atkinson et al., 1990) M. Atkinson, F. Bancilhou, D.DeWitt, K. Dit-
trich, D. Maier, S. Zdonick. Object-Oriented Database System
Manifesto. In Deductive and Object-Oriented Databases (W. Kim,
J.M. Nicolas, eds.). Amsterdam: North-Holland, 1990.

(Bertelsen et al., 1986) S. Bertelsen, S. Hvidbjerg, P. Sørensen. Graph-
ical Programming Environments – Applied to BETA. Masters
thesis, Computer Science Department, Aarhus University, 1986.

(Blake and Cook, 1987) E. Blake, S. Cook. On Including Part Hierar-
chies in Object-Oriented Languages, with an Implementation in
Smalltalk. In Proc. Euro. Conf. Object-Oriented Programming,
Paris, France, July, 1987 (Lecture Notes in Computer Science,
Vol 276, Berlin: Springer-Verlag).

(Bobrow and Stefik, 1983) D.G. Bobrow, M. Stefik. The LOOPS Manual.
Palo Alto CA: Xerox Corporation, 1983.

(Booch, 1986) G. Booch. Object-Oriented Development. IEEE Trans.
Software Engineering, 12(2), 1986.

(Booch, 1991) G. Booch. Object-Oriented Design with Applications. New
York NY: Benjamin/Cummings, 1991.

331

332 BIBLIOGRAPHY

(Borning and Ingalls, 1981) A.H. Borning, D.H. Ingalls. A Type Declara-
tion and Inference System for Smalltalk. University of Washing-
ton, 1981.

(Brinch-Hansen, 1975) P. Brinch-Hansen. The Programming Language
Concurrent PASCAL. IEEE Trans. Software Engineering, 1(2),
149-207, 1975.

(Cannon, 1982) H. Cannon. Flavors, A Non-Hierarchical Approach to
Object-Oriented Programming. Draft 1982 .

(Chambers, 1992) C. Chambers. Object-Oriented Multi-Methods in Ce-
cil. In Proc. Euro. Conf. Object-Oriented Programming, Utrecht,
Netherlands, June/July, 1992 (Lecture Notes in Computer Sci-
ence, Vol 615, Berlin: Springer-Verlag).

(Chen, 1976) P.P.S Chen. The Entity Relationship Model: Towards a
Unified View of Data. ACM Trans. Database Systems, 1(1), 1976.

(Coad and Yourdon, 1990) P. Coad, E. Yourdon. Object-Oriented Anal-
ysis. Englewood Cliffs NY: Prentice-Hall/Yourdon Press, 1990.

(Coad and Yourdon, 1991) P. Coad, E. Yourdon. Object-Oriented De-
sign. Englewood Cliffs NY: Prentice-Hall/Yourdon Press, 1991.

(Conway, 1963) M.E. Conway. Design of a Separable Transition – Dia-
gram Compiler. Comm. ACM, 6(7), 396-408, 1963.

(Cook, 1988) S. Cook. Impressions of ECOOP’88. J. of Object-Oriented
Programming, 1(4), 1988.

(Cox, 1984) B.R. Cox. Message/Object, An Evolutionary Change. IEEE
SOFTWARE, Jan. 1984.

(Dahl and Hoare, 1972) Dahl O.-J., C.A.R Hoare. Hierarchical Program
Structures. In Structured Programming (O-J. Dahl, E.W. Dijk-
stra, C.A.R.Hoare), Academic Press, 1972.

(Dahl et al., 1968) O.J. Dahl, B. Myrhaug, K. Nygaard. SIMULA 67
Common Base Language. Norwegian Computing Center, Oslo,
1968.

(Dahle et al., 1986) H.P. Dahle, M. Løfgren, O.L. Madsen, B. Magnus-
son. The Mjølner Project – A Highly Efficient Programming En-
vironment for Industrial Use. Mjølner report no. 1, Oslo, Malmø,
Aarhus, Lund 1986.

BIBLIOGRAPHY 333

(DeRemer and Krohn, 1976) F.L. DeRemer, H. Krohn. Programming-in-
the-Large versus Programming-in-the-Small. IEEE Transactions
on Software Engineering, 2(2), 80-86, 1976.

(Dijkstra, 1968) E. W. Dijkstra. Co-operating Sequential Processes. In
Programming Languages (F. Genuys, ed.), New York NY: Aca-
demic Press, 1968.

(ECOOP 1987–1992) ECOOP, European Conference on Object-Oriented
Programming. Conference Proceedings 1987-92. Lecture Notes in
Computer Science, Berlin: Springer-Verlag, 1987–1992.

(Eiffel, 1989) ”Interactive Software Engineering Inc.. Eiffel: The Lan-
guage, Version 2.2. Santa Barbara, CA, USA, 1989.

(Faber and Krukow, 1990) L. Faber, L. Krukow. This Town is Big
Enough for Most of It – Modelling in OOP. Masters thesis, Com-
puter Science Department, Aarhus University, 1990.

(Goldberg and Robson, 1989) A. Goldberg, D. Robson. Smalltalk-80,
The Language and its Implementation. Reading MA: Addison-
Wesley, 1989.

(Goodenough, 1975) J.B. Goodenough. Exception Handling: Issues and
a Proposed Notion. Comm. ACM, 18(12), 436-49, 1975.

(Griswold et al., 1981) R.E Griswold, D.R Hanson, J.T. Korb. Genera-
tors in Icon. ACM Trans. on Programming Languages and Sys-
tems, 3(2), 144-61, 1981.

(Grune, 1977) D. Grune. A view of Coroutines. ACM Sigplan Notices,75-
81, July 1977.

(Hanson, 1981) Hanson D.R.. Is Block Structure Necessary?. Software
Practice and Experience, 11, 853-66, 1981.

(Henry, 1987) R. Henry. BSI Modula-2 Working Group: Coroutines and
Processes. The Modus Quarterly, 8, 1987.

(Hoare, 1972) C. A. R. Hoare. Proof of Correctness of Data Representa-
tion. Acta Informatica, 4, 271-281, 1972.

(Hoare, 1978) C.A.R Hoare. Communicating Sequential Processes.
Comm. ACM, 21(8), 666-677, 1978.

(Hoare, 1981) C.A.R Hoare. The Emperor’s old Clothes. Comm. ACM,
24(2), 75-83, 1981.

334 BIBLIOGRAPHY

(Holbæk-Hanssen et al., 1975) E. Holbæk-Hanssen, P. H̊andlykken, K.
Nygaard. System Description and the Delta Language. Norwegian
Computing Center, Publ. no 523, 1975.

(Holbæk-Hanssen et al., 1981) P. H̊andlykken, K. Nygaard. The DELTA
System Description Language: Motivation, Main Concepts and
Experience from use. In Software Engineering Environments (H.
Hunke, ed.). Amsterdam: North-Holland, 1981.

(Horowitz, 1983) E. Horowitz. Fundamentals of Programming Languages.
Berlin: Springer-Verlag 1983.

(Hughes, 1991) J.G. Hughes. Object-Oriented Databases. Englewood
Cliffs NJ: Prentice-Hall, 1991.

(Jackson, 1983) M. Jackson. System Development. Englewood Cliffs NJ:
Prentice-Hall, 1983.

(Jensen and Wirth, 1975) K. Jensen, N. Wirth. Pascal User Manual and
Report. Berlin: Springer-Verlag, 1975.

(Kahn and MacQueen, 1977) G. Kahn, D. MacQueen. Coroutines and
Networks of Parallel Processes. Information Processing 77, B.
Gilchrist (ed.), 993-998. Amsterdam: North-Holland, 1977.

(Keene, 1989) S.E. Keene. Object-Oriented Programming in Common
Lisp – A Programmer’s Guide to CLOS. Reading MA: Addison-
Wesley 1989.

(Kernighan and Ritchie, 1978) B.W. Kernighan, D.M Ritchie. The C
Programming Language 2nd edn. Englewood Cliffs NJ: Prentice-
Hall, 1988.

(Kim et al., 1987) W. Kim, J. Banerjee, H.-T. Chou, J.F. Garza,
D.Woelk. Composite Object Support in an Object-Oriented
Database System. In Proc. Object-Oriented Programming, Lan-
guages, Systems and Applications, Orlando, FL, 1987, (ACM Sig-
plan Notices, 22(12)).

(Knudsen, 1984) J. L. Knudsen. Exception Handling – A Static Ap-
proach. Software Practice and Experience, 429-49, May 1984.

(Knudsen, 1987) J. L. Knudsen. Better-Exception Handling in Block-
Structured Systems. IEEE Software, 40-49, May 1987.

(Knudsen and Thomsen, 1985) J. Lindskov Knudsen and K. Stoug̊ard
Thomsen. A Conceptual Framework for Programming Languages.
DAIMI PB-192, Aarhus University, April 1985.

BIBLIOGRAPHY 335

(Knudsen et al., 1989) J.L. Knudsen, O.L. Madsen, C. Nørgaard, L.B.
Petersen, E. Sandvad. An Overview of the Mjølner BETA System.
Computer Science Department, Aarhus University, Draft, Dec.
1989.

(Knudsen et al., 1990) J.L. Knudsen, O.L. Madsen, C. Nørgaard, L.B.
Petersen, E. Sandvad. Teaching Object-Oriented Programming
Using BETA. In Proc. Apple European University Consortium
Annual Conf., Salamanca, 1990.

(Knudsen et al., 1992) J.L. Knudsen, M. Løfgren, O.L. Madsen, B. Mag-
nusson (eds.). Object-Oriented Environments – The Mjølner Ap-
proach. Englewood Cliffs NJ: Prentice-Hall, 1993.

(Kristensen et al., 1976) B.B. Kristensen, O.L. Madsen, B. Møller-
Pedersen, K. Nygaard. BETA Project Working Notes 1-8. Nor-
wegian Computing Center, Oslo and Computer Science Depart-
ment, Aarhus University, Aarhus, 1976–1982 .

(Kristensen et al., 1983a) B.B. Kristensen, O.L Madsen, B. Møller-
Pedersen, K. Nygaard. Syntax Directed Program Modulariza-
tion. In Interactive Computing Systems (P. Degano, E. Sandewall,
eds.). Amsterdam: North-Holland, 1983.

(Kristensen et al., 1983b) B.B. Kristensen, O.L. Madsen, B. Møller-
Pedersen, K. Nygaard. Abstraction Mechanisms in the BETA
Programming Language. In Proc. 10th ACM Symp. Principles
of Programming Languages, Austin TX, January 24-26 1983.

(Kristensen et al., 1985) B.B. Kristensen, O.L. Madsen, B. Møller Ped-
ersen, K. Nygaard. Multisequential Execution in the BETA Pro-
gramming Language. Sigplan Notices, 4(20), 1985.

(Kristensen et al., 1987a) B.B. Kristensen, O.L. Madsen, B. Møller-Pe-
dersen, K. Nygaard. The BETA Programming Language. In Re-
search Directions in Object Oriented Programming (B.D. Shriver,
P .Wegner, eds.). Cambridge: MIT Press, 1987.

(Kristensen et al., 1987b) B.B. Kristensen, O.L. Madsen, B. Møller-
Pedersen, K. Nygaard. Classification of Actions or Inheritance
also for Methods. In Proc. Euro. Conf. Object-Oriented Program-
ming, Paris, France, June, 1987 (Lecture Notes in Computer Sci-
ence Vol. 276, Berlin: Springer-Verlag).

(Kristensen et al., 1988) B.B. Kristensen, O.L. Madsen, B. Møller-
Pedersen, K. Nygaard. Coroutine Sequencing in BETA. Hawaii

336 BIBLIOGRAPHY

International Conference on System Sciences, 21, January 5-8,
1988.

(Krogdahl and Olsen, 1986) S. Krogdahl, K.A. Olsen. Modular and
Object-Oriented Programming. DataTid No. 9, Sept. 1986 (in
Norwegian).

(Lampson et al., 1977) Lampson B.W. et al.. Report on the Program-
ming Language Euclid. SIGPLAN Notices, 12(2), 1977.

(Leler, 1987) W. Leler. Constraint Programming – Their Specification
and Generation. Reading MA: Addison-Wesley, 1987.

(Lindstrom and Soffa, 1981) G. Lindstrom, M. L. Soffa. Referencing and
Retention in Block-Structured Coroutines. ACM Trans. on Pro-
gramming Languages and Systems, 3(3), 263-292, 1981.

(Liskov and Zilles, 1974) B. Liskov, S. Zilles. Programming with Ab-
stract Data Types. ACM Sigplan Notices, 9(4), 50-59, 1974.

(Liskov et al., 1977) B. Liskov, A. Snyder, R. Atkinson, C. Schaffert.
Abstraction Mechanisms in CLU. Comm. ACM, 20(8), 564-576,
1977.

(Madsen, 1987) O.L. Madsen. Block Structure and Object Oriented Lan-
guages. In: Research Directions in Object Oriented Programming
(B.D. Shriver, P. Wegner, eds.). Cambridge MA: MIT Press, 1987.

(Madsen and Møller-Pedersen, 1988b) O.L. Madsen, B. Møller-Peder-
sen. What Object-Oriented Programming may be — and what it
does not have to be. In Proc. Euro. Conf. Object-Oriented Pro-
gramming, Oslo, Norway, August, 1988 (Lecture Notes in Com-
puter Science Vol 322, Berlin: Springer-Verlag).

(Madsen and Møller-Pedersen, 1989a) O.L. Madsen, B. Møller-Pedersen.
Basic Principles of the BETA Programming Language. In Object-
Oriented Programming Systems (G. Blair, D. Hutchinson, D.
Shephard, eds.). London: Pitman Publishing, 1989.

(Madsen and Møller-Pedersen, 1989b) O.L. Madsen, B. Møller-Peder-
sen. Virtual Classes — A Powerful Mechanism in Object-
Oriented Programming. In Proc. Object-Oriented Programming,
Languages, Systems and Applications, New Orleans, LS, 1989,
(ACM Sigplan Notices, 24(10)).

BIBLIOGRAPHY 337

(Madsen and Møller-Pedersen, 1992) O.L. Madsen B. Møller-Pedersen.
Part Objects and their Location. Technology of Object-Oriented
Languages and Systems — TOOLS 7, Dortmund. Englewood
Cliffs NJ: Prentice-Hall 1992.

(Madsen et al., 1983) O.L. Madsen, B. Møller-Pedersen, K. Nygaard.
From SIMULA 67 to BETA. In Proc. 11th SIMULA 67 User’s
Conf., Paris 1983. Norwegian Computing Center, 1983.

(Madsen et al., 1990) O.L. Madsen, B. Magnusson, B. Møller-Pedersen.
Strong Typing of Object-Oriented Languages Revisited. In Proc.
Object-Oriented Programming, Languages, Systems and Applica-
tions, Ottawa, Canada, 1990, (ACM Sigplan Notices, 25(10)).

(Marlin, 1980) C.D. Marlin. Coroutines – A Programming Methodol-
ogy, a Language Design and an Implementation. Lecture Notes
in Computer Science, Vol 95. Berlin: Springer-Verlag, 1980.

(Mathiassen, 1981) L. Mathiassen. Systems Development and Systems
Development Methods (in Danish). Ph.D. thesis. Institute of In-
formatics, Oslo University, 1981.

(Meyer, 1987a) B. Meyer. Genericity versus Inheritance. In Proc. Object-
Oriented Programming, Languages, Systems and Applications,
Portland, OR, 1986, (ACM Sigplan Notices, 21(11)).

(Meyer, 1987b) B. Meyer. Reusability: The Case for Object-Oriented De-
sign. IEEE Software, 2(4), March 1987.

(Meyer, 1988) B. Meyer. Object-Oriented Software Construction. Engle-
wood Cliffs NJ: Prentice-Hall, 1988.

(Møller-Pedersen et al., 1987) B. Møller-Pedersen, D. Belsnes, H.P.
Dahle. Rationale and Tutorial on OSDL: An Object-Oriented Ex-
tension of SDL. Computer Networks & ISDN Systems, 13, 97-117,
1987.

(Naur, 1962) P. Naur (ed.). Revised Report on The Algorithmic Lan-
guage ALGOL 60. Regnecentralen. Copenhagen, 1962.

(Nygaard, 1986) K. Nygaard. Basic Concepts in Object Oriented Pro-
gramming. ACM Sigplan Notices, 21(10), 1986.

(Nygaard and Dahl, 1981) K. Nygaard, O.-J. Dahl. Simula 67. In History
of Programming Languages (R.W. Wexelblat, ed.). Reading MA:
Addison-Wesley, 1981.

338 BIBLIOGRAPHY

(Nygaard and Sørgaard, 1987) K. Nygaard, P. Sørgaard. The Perspec-
tive Concept in Informatics. In Computers and Democracy – A
Scandinavian Challenge (G. Bjerkness, P. Ehn, M. Kyng, eds.).
Aldershot: Gower, 1987.

(OOPSLA 1986–1992) OOPSLA, Object-Oriented Programming Sys-
tems, Languages and Applications. Conference Proceedings,
1986–1992. ACM Sigplan Notices.

(Raj and Levy, 1989) R.K. Raj, H.M. Levy. A compositional Model for
Software Reuse. In Proc. Euro. Conf. Object-Oriented Program-
ming, Nottingham, England, July, 1989 (BCS Workshop Series,
Cambridge: CUP).

(Rees and Clinger, 1986) J. Rees and W. Clinger (ed.). Revised Report
on the Algorithmic Language Scheme. MIT, TR no. 174, August
1986.

(Rumbaugh et al., 1991) J. Rumgaugh, M. Blaha, W. Premerlani, F.
Eddy, W. Lorensen. Object-Oriented Modeling and Design. En-
glewood Cliffs NJ: Prentice-Hall, 1991.

(Sakkinen, 1989) M. Sakkinen. Disciplined Inheritance. In Proc. Euro.
Conf. Object-Oriented Programming, Nottingham, England, July,
1989 (BCS Workshop Series, Cambridge: CUP).

(Sandvad, 1990) E. Sandvad. Object-Oriented Development – Integrating
Analysis, Design and Implementation. Computer Science Depart-
ment, DAIMI PB-302, April 1990.

(Shlaer and Mellor, 1988) S. Shlaer and S.J. Mellor. Object-Oriented Sys-
tems Analysis – Modeling the World in Data. Englewood Cliffs
NJ: Prentice-Hall/Yourdon Press, 1988.

(Shriver and Wegner, 1987) B. Shriver, P. Wegner (eds.). Research Direc-
tions in Object-Oriented Languages. Cambridge: MA: MIT Press,
1987.

(Smith, 1984) B. Smith. Personal Communication. Stanford 1984.

(Smith and Smith, 1977a) J.M. Smith and D.C.P. Smith. Data Base Ab-
stractions: Aggregation. Comm. ACM, 20(6), 396-404, 1977.

(Smith and Smith, 1977b) J.M. Smith and D.C.P. Smith. Data Base Ab-
stractions: Aggregation and Generalization. ACM Transactions
on Database Systems, 2(2), 105-133, 1977.

BIBLIOGRAPHY 339

(Stefik and Bobrow, 1984) M. Stefik, D.G. Bobrow. Object-Oriented
Programming: Themes and Variations. AI Magazine, 6(4), 40-
62, 1984.

(Stroustrup, 1991) B. Stroustrup. The C++ Programming Language 2nd
edn. Reading MA: Addison-Wesley, 1986.

(Swedish Standard, 1987) Swedish Standard. Data Processing – Pro-
gramming Languages – SIMULA. Swedish Standard SS 63 61 14,
ISBN 91-7162-234-9, 1987.

(Sørgaard, 1988) P. Sørgaard. Object-Oriented Programming and Com-
puterised Shared Material. In Proc. Euro. Conf. Object-Oriented
Programming, Oslo, Norway, August, 1988 (Lecture Notes in
Computer Science, Vol 322, Berlin: Springer-Verlag).

(Tennent, 1977) R.D. Tennent. Language Design Methods based on Se-
mantic Principles. Acta Informatica, 8(2), 97-112, 1977.

(Tennent, 1982) R.D. Tennent. Two Examples of Block Structuring.
Software-Practice and Experience, 12, 385-392, 1982.

(Thomsen, 1987) K.S. Thomsen. Inheritance on Processes, Exemplified
on Distributed Termination Detection. International Journal of
Parallel Programming, 16(1), 17-52, 1987.

(Ungar and Smith, 1987) D. Ungar, R.B. Smith. SELF: The Power of
Simplicity. In Proc. Object-Oriented Programming, Languages,
Systems and Applications, Orlando, FL, 1987, (ACM Sigplan No-
tices, 22(12)).

(US Department of Defense, 1980) Ada Reference Manual . Proposed
Standard Document. United States Department of Defense, July
1980.

(Vaucher, 1975) J. Vaucher. Prefixed Procedures: A Structuring Concept
for Operations. Infor, 13(3), 1975.

(Wang and Dahl, 1971) A. Wang, O.-J. Dahl. Coroutine Sequencing in a
Block Structured Environment. BIT, 11, 425-449, 1971.

(Wang, 1982) A. Wang. Coroutine Sequencing in Simula, Parts I-III.
Norwegian Computing Center, 1982.

(Wegner, 1983) P. Wegner. On the Unification of Data and Program Ab-
straction in Ada. In Proc. 10th ACM Symp. on Principles of Pro-
gramming Languages, Austin, TX, 24-26 January 1983.

340 BIBLIOGRAPHY

(Wegner, 1987) P. Wegner. Dimensions of Object-Based Language De-
sign. Tech. Report No. CS-87-14, Brown University, 1987.

(Wikstrøm, 1987) A. Wikstrøm. Functional Programming Using Stan-
dard ML. Englewood Cliffs NJ: Prentice-Hall, 1987.

(Wirfs-Brock et al., 1991) R. Wirfs-Brock, B. Wilkerson, L. Wiener. De-
signing Object-Oriented Software. Englewood Cliffs NJ: Prentice-
Hall, 1990.

(Wirth, 1982) N. Wirth. Programming in Modula-2. Berlin: Springer-
Verlag, 1982.

(Wulf and Shaw, 1973) W.A. Wulf, M. Shaw. Global Variables Consid-
ered Harmful. Sigplan Notices, 8, 28-34, 1973.

Index

A-form, 263
abstract data type, 278
abstract phenomena, 298
abstract super-patterns, 89, 196
abstraction, 292

in model/referent system, 292
accept, 214
action-part, 32, 296
active component, 189
active object, 189
active stack, 189
actual procedure, 167
actual type, 167
aggregation, 321
alternating, 183
alternation, 182, 229
alternation rule, 323
anonymous pattern, 117
anonymous procedure, 96
application of a name, 77
arithmetic overflow, 243
array, see repetition, 54
assignment, 72
attached, 189
attribute-part, 31
attributes, 296

basic patterns, 44
restrictions, 46, 101

BETA program execution, 296
binding, 114

virtual pattern, 114
block structure, 78, 131, 149
boolean, 44

CASE gap, 315

CASE tools, 314
char, 44
characteristic properties, 299
class, 42, 44
class pattern, 42–44
classification, 149, 303, 304

hierarchies, 303
tree structured, 305

classification hierarchies, 303
classless, 47
clone, 47, 161
cluster, 304
code point, 184
code sharing, 129
comment, 29
communicate, 230
communication, 214
component, 79, 183, 187, 296
component-of, 307
compose, 307
composition, 131, 149, 303

localization (block structure),
309

reference, 308
whole-part, 308

composition hierarchies, 303
compound systems, 205, 220
computed reference, 71
computed remote name, 71
concept, 297, 298
concept composition, 309
concrete phenomena, 298
concurrency, 205, 229
constant, 159
construction mode, 79, 80
constructor rule, 323

341

342 INDEX

control patterns, 97
control structures, 57
coroutine sequencing, 182

declaration, 27
virtual pattern, 114

declaration of a name, 77
decompose, 307
default handler, 247
defining properties, 299
design, 4
designation, 20, 298
deterministic, 182
deterministic alternation, 182
direct qualification, 117
direct sub-pattern, 103
direct super-pattern, 103
do-part, 32, 57
domain, 273
dynamic component reference, 188
dynamic object, 36, 80
dynamic reference, 34, 184

encapsulation, 274
enter-part, 32

for sub-pattern, 99
entry pattern, 211
evaluation, 57, 72
evaluation-imperative, 58, 72
exception, 241, 246

raising an exception, 246
exception handler, 246
exception handling, 243

static approach, 258
exception occurrence, 242, 246
exception propagation, 249
exemplify, 304
exit-part, 32

for sub-pattern, 99
explicit sequencing, 202
extend, 52
extended descriptor, 127
extended entity-relationship model,

311

extension, 20, 298
extent, 268

final binding, 127
for-imperative, 59
fork-imperative, 206
form, 263
formal procedure, 167
formal type, 167
ForTo, 106
fragment, 262, 266
fragment language, 262, 263
fragment library, 266
fragment name, 266
fragment system, 263
fragment-dependency graph, 286
fragment-form, 265
fragment-group, 266
function, 42
function pattern, 42
functional style, 174
further binding, 126
fuzzy view, 300

generalization, 304
generalize, 304
generalized semaphore, 208
generator, 183
grammar-based, 263

handler, 246
has-ref-to, 308
hierarchical organization, 303
higher order procedure, 167
higher order procedure pattern, 173

identification of phenomena, 302
identity, 294
if-imperative, 60
illusion of concurrency, 183
imperative, 29
implementation, 4, 274
implementation modules, 262
implicit sequencing, 202
in concurrency, 181

INDEX 343

in-line, 80
indivisible, 209
information hiding, 274
information process, 293, 294
inheritance, 106, 148
initial values, 46
inner, 94

shorthand notation, 98
input parameters, 32
inserted item, 80
inserted object, 80
instance handler, 247
instance-of, 304
integer, 44
intension, 20, 298–300
interface, 274
interface modules, 262
is-local-to, 309
item, 79, 183, 296

labeled imperative, 62
lazy evaluation, 202
leave-, 62
level

of abstraction, 302
of empirical concreteness, 302
of thought concreteness, 302

lexem-symbols, 324
list rule, 323
locality, 140
localization, 131, 149
location of a part object, 157

main-part, 102
of a pattern, 103
of an object, 103
of an object descriptor, 103

many-to-many, 155, 310
measurable properties, 72, 294
measurement, 72, 294
measurements, 294
model system, 292
modeling, 292
module, 167, 261

monitor, 205, 210
multi-sequential execution, 182
multiple action sequences, 182
multiple assignment, 57
multiple inheritance, 306
multiple part objects, 153
mutually dependent types, 170

new, 52
no object, 35
nondeterminism, 183, 229
nondeterministic, 183
nondeterministic alternation, 182,

229
NONE, 35

object, 25
pattern-defined, 27, 33
singular, 26, 32

object kind, 79
object pattern, 100
object-descriptor, 25, 31, 32
objects, 296
one-to-many, 155, 310
one-to-one, 154, 310
optional rule, 324
origin part, 268
origin-chain, 285
output parameters, 32

package, 167
package objects, 169
paradigm, 321
part components, 188
part hierarchy, 308
part-object, 33, 149, 296
part-of, 308
passeren, 208
pattern, 32, 296
pattern variable, 159
pattern-defined object, 27, 33
persistent, 7
perspective, 290
phenomena generator, 290

344 INDEX

phenomenon, 297
physical model, 2
physical structure, 6
prefix, 102
prefix-pattern, 102
problem-specific concepts, 292
procedure, 42
procedure invocation, 29, 36
procedure pattern, 42
process, 197, 303
process generator, 290
process of knowledge, 302
process set, 290
program, 29
program execution, 296
programming process, 47
properties, 295
Prototype Abstraction Relation Prob-

lem, 141
prototype theory, 300
prototype-based, 47
prototypes, 300
prototypical view, 300
pure object-oriented style, 174

qualification, 37, 126
virtual pattern, 114

qualified, 37, 104
qualified reference, 89
qualifying pattern, 37
qualifying virtuals, 128
quasi-parallel sequencing, 202

range, 49
readers and writers, 222
real, 44
real world apprehension, 1
realized concepts, 292
receiver, 215
reference, 296, 307

assignment, 35
attribute, 33, 149
composition, 149
equality, 62, 69

referent system, 292
relation, 310

one way, 154
one/two way, 310
two way, 154

relational operators, 46
remote access, 37
remote-name, 26
rendezvous, 205
repetition

extend, 51
new, 52
range, 49
slice, 52

representative element, 312
request, 214
restart-imperative, 62
restrictions, 46, 101
resumed, 189
return link, 184
reusability, 1, 261
reverse engineering, 315
role, 297
run-time error, 35

scope, 77
scope rules, 140
Self, 47, 165
self reference, 40
semaphore, 205, 207
sender, 215
sentential form, 263
separately compiled, 262
sequential execution, 182
sequential ordering, 181
shared object, 207
shared resource, 207
singular object, 26, 27, 32
singular part-object, 33
singular phenomena, 302
singular static object, 33
slice, 52
slots, 264

INDEX 345

smooth termination, 255
specification modules, 262
special relations, 310
specialization, 304
specialize, 304
stability of design, 1
state of a program execution, 29
state of an object, 29
static component references, 188
static components, 188
static object, 33, 80
static reference, 33
streams, 202
structural relations, 310
structure, 25, 33
structure object, 39
structured context-free grammar,

323
sub-pattern, 87, 102, 103
substance, 294
super-pattern, 87, 102, 103
suspended, 189
symmetric coroutine, 196
synchronized, 181
synchronized execution of objects,

213
system, 292, 295, 296
system perspective, 295

taxonomy, 303
this(P), 40
transformation, 72, 294
transient, 7
type, 42

value, 72
assignment, 67
equality, 62, 69

variable reference, 34
variants, 262
virtual class pattern, 143
virtual pattern, 110

binding, 114
continued extension, 118

declaration, 114
extension, 114
further binding, 126

virtual pattern qualification, 114
virtual procedure pattern, 110
vrygeven, 208

whole-part
action-sequences, 151

whole-part composition, 149

