Using Coroutines for Multi-core Preemptive
Scheduling

Ole Lehrmann Madsen
ole.l.Lmadsen@cs.au.dk
Aarhus University
Aarhus, Denmark

Abstract

The advent of multi-core processors has increased the de-
mand for programming concurrent systems. In this paper,
we explore the use of SIMULA style coroutines and other
primitives as a basis for defining a broad class of high-level
concurrency abstractions including the definition of associ-
ated schedulers. The main contribution in this paper is an
implementation of preemptive coroutines for a multi-core
processor in an experimental version of Beta. The overall
goal is to use a high-level language to program applications
on a bare bone platform without an operating system.

ACM Reference Format:

Ole Lehrmann Madsen. 2021. Using Coroutines for Multi-core
Preemptive Scheduling. In 11th Workshop on Programming Lan-
guages and Operating Systems (PLOS ’21), October 25, 2021, Vir-
tual Event, Germany. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3477113.3487271

1 Introduction

Concurrent! programming is inherently difficult and multi-
core processors has further increased the requirements on
languages and tools for concurrent programming,.
Mainstream programming languages such as C [15], C++
[23], Java [10], and C# [12] are of limited help with respect to
concurrent programming since they mainly offer low-level
mechanisms such as threads, locks, and semaphores. This is
despite the fact that many proposals for safe high-level con-
current programming languages have been made, including
Concurrent Pascal [4], Actor-based languages [2, 13], like
ABCL/1 [27], and Erlang [3], CSP [14], Ada [1], Concurrent
Smalltalk [26], and many more. For most of these languages,

IWe use concurrent and parallel as synonymous terms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLOS ’21, October 25, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8707-1/21/10...$15.00
https://doi.org/10.1145/3477113.3487271

the concurrency mechanisms are built into the language
and there is limited support for defining new concurrency
abstractions.

For a certain class of concurrent systems, you may want
to have full control over the scheduling of concurrent pro-
cesses — this includes processes running in true parallel (e.g.
on different cores), being preemptively scheduled, using co-
operative scheduling or a mixture of these. This is especially
the case for embedded systems where you do not want to rely
on an operating system. Here you may also want to avoid
the overhead of an operating system with respect to time
and space just as you may want to bypass the scheduling
mechanism of the operating system.

The work presented here is part of a project where the
overall goal is to design a language based on a few simple
low-level primitives and powerful abstraction mechanisms
that makes it possible to define safe high-level concurrency ab-
stractions. This includes mechanisms for defining schedulers
for a given concurrency model and the ability to implement
these on a multi-core architecture. The ultimate goal is to be
able to develop bare bone applications using safe high-level
concurrency abstractions with full control over scheduling.

In this paper, we show how to implement preemptive
schedulers for coroutines on a multi-core platform. The start-
ing point is coroutines as found in SIMULA [7, 8] and further
refined in Beta [20]. A coroutine is a cooperative thread in
the sense that there is no preemption, but preemption of
coroutines was later added in the Lund SIMULA system [24].

In [17], we described a further development of the corou-
tine and synchronization mechanisms of Beta in a variant
of Beta called xBeta. The main goal of xBeta has been to be
able to define safe concurrency abstractions in the sense of
Brinch-Hansen [5].

In this paper, we use a further development of xBeta called
gBeta.? At the basic level, gBeta (as Beta and xBeta) is un-
safe and has only few simple primitives for handling concur-
rency, communication, and synchronization. As shown in
[17], it is possible to define safe concurrency abstractions in
the form of application frameworks.?

Using a safe concurrency framework, corresponds to pro-
gramming at the level of Concurrent Pascal, Erlang, etc. If

The differences between xBeta and gBeta are not important here.
3By application framework we refer to a module that defines a set of ab-
stractions for a given concurrency model.


https://orcid.org/0000-0001-7221-142X
https://doi.org/10.1145/3477113.3487271
https://doi.org/10.1145/3477113.3487271
https://doi.org/10.1145/3477113.3487271

PLOS ’21, October 25, 2021, Virtual Event, Germany

you use gBeta directly, this will correspond to the imple-
mentation level of say Erlang, Actors, etc. That is, in order to
experiment with concurrency abstractions, scheduling poli-
cies, etc., in most cases for these languages you will have to
stick to the level of C or C++. gBeta is in this sense a general
purpose object-oriented language that supports implemen-
tation of safe high-level concurrency frameworks within the
same language.

The implementation of xBeta presented in [17] is for a
single-core processor. Here we show how to implement pre-
emptive coroutines on a multi-core platform.

In [17], we showed how to define safe monitor and Ada-
like rendezvous frameworks. In this paper, we show how
to define a framework for implementing a notion of Simple
Concurrent Processes (SCP). A subtle feature of this concur-
rency framework shows how to use coroutines to implement
asynchronous method invocation. The main purpose of this
framework is to be used as an example of how to define a
higher-level concurrency abstraction based on coroutines.
The SCP framework is thus not intended to be used for pro-
duction programming.

Safety with respect to race conditions is a major goal of our
work, and we have proposed the notion of subpattern restric-
tions [17] to ensure safety of a given concurrency framework.
Space does not permit us to address subpattern restrictions
in this paper, instead the reader is referred to [17] .

In summary, we show how to implement preemptive sched-
uling of coroutines on a multi-core platform; we present
an example of a concurrency abstraction built on low-level
language mechanisms; and we show how coroutines may
implement asynchronous method invocation. A prototype
compiler and VM have been implemented for qBeta and all
examples presented here may be compiled and executed.

2 Basic language mechanisms

gBeta is a further development of Beta [16, 20] and xBeta
[17] with focus on coroutines and concurrency. The syntax is
inspired by Python [22] where nesting (block-structure) is de-
fined by indentation. To save space, we sometimes use curly
brackets ({...3}) to describe block-structure and semicolons
(’;’) to separate statements. We assume that the reader is
familiar with patterns, submethods and inner in Beta. An
extended version of this paper with more details on gBeta
and a short description of how to define a safe concurrency
abstraction is available from Aarhus University [18].

In this section, we give examples of Beta submethods and a
monitor? system is used to show how to define a concurrency
abstraction. The monitor abstraction in the form of a class is
shown in Figure 1.

Instances of the Monitor class have a Semaphore M. They
have a method attribute entry that must be a supermethod
of all public methods of a Monitor object. In Figure 1, it is

4Borrowed from [17, 20].

Ole Lehrmann Madsen

class Monitor:
M: obj Semaphore
void entry(): { M.wait; inner; M.signal }

buffer: obj Monitor
L: obj List;
void put(E: integer): entry{ L.put(E) }
integer get(): entry{ return L.get() }

put (5)

2

| M.wait Ii,| inner |_6,| M.signal |
4 5

L.put (5)

Figure 1. Monitor example and diagram showing the steps
in execution of buffer.put(5)

also shown how to define a (singular) object® buffer, which
is subclassed from Monitor.

The buffer object has a List object, L and two entry-
methods, put and get. The statements of put and get are
wrapped by the statements of entry, which ensures that they
behave as critical regions. The steps of a method invocation
buffer.put(5) are illustrated in Figure 16.

An object in Beta and gBeta may behave like a semi-
coroutine in the style of SIMULA. An object may have ex-
ecutable statements like a method - called an active object.
The execution of an object implies that its statements are
executed. An object may execute a suspend-statement, which
implies that control is returned to the point where it was ex-
ecuted. A subsequent execution of the object will resume ex-
ecution after the point of suspension. A subsequent suspend
executed by the object will again return to the caller, etc.

Figure 2 shows a simple example of a coroutine. The object
main invokes do, which invokes S := foo, which invokes
bar, which invokes go. Note that variable S is assigned a
reference to the method invocation (an object) foo. The stage
of execution at L1 is shown at the top part of the figure.

At the label L1, go executes this(foo).suspend, which im-
plies that execution returns to the point after the invocation
of foo. This is at the label L2 and illustrated by the bottom
part of the figure. The execution of foo may later be resumed
at L3 by execution of S.resume at L4. For a more detailed de-
scription of coroutines in Beta and gBeta, see [17, 20].

3 Simple concurrent processes

In [17] it is shown how to define safe concurrency frame-
works for Monitor-like systems and Ada-like rendezvous-
based systems. Here we show how to define a framework for

5A declaration of the form X: obj T{...} declares a singular object.
%Also from [17].



Using Coroutines for Multi-core Preemptive Scheduling

main: obj
do():
foo():
bar():
go():

L1l: this(foo).suspend
L3: ...
ee; gO(); ...
«.; bar(); ...;
S: ref foo
..; S:= foo(); L2: ...;
L4: S.resume; ...;
cop do(); ...

(oo 2o

Stage of execution at L1

R

Stage of execution at L2

Figure 2. A simple coroutine

PLOS ’21, October 25, 2021, Virtual Event, Germany

SCP: obj
class System:
class Process:
sch: ref Scheduler
SQS: obj ProcessQueue;
inner ;
sch:= Scheduler ()

TempEx: obj LIB.SCP.System
class Temperature: Process
cycle
controller.send (... measureTemp)
sleep(500)
temp1,temp2,temp3: obj Temperature
controller: obj Process
send(T: int): entry
display.show(T)
if T < minTemp then heater.turnUp(T)
elif T > maxTemp then cooler.turnDown(T)
display: obj Process
heater: obj Proces
turnUp(T: int): entry{... turnUpHeat(T)}
cooler: obj Process
turnDown(T: int): entry{... turnDownHeat(T)}
start Process objects

Figure 3. Temperature system

Simple Concurrent Processes (abbreviated SCP). An SCP sys-
tem consists of one or more concurrent processes. A process
is an object subclassed from class Process. A Process may
not access global data items, classes and methods, except for
data items referring to Process objects.

A Process may define an interface consisting of one or
more methods that must have Entry as supermethod — similar
to the Entry method defined for the Monitor abstraction.

For a Process, P, other processes may execute invocations
of the form P.foo(...). The instance of foo is inserted into
alocal queue of P and P.foo(. . .) returns to the caller.

As mentioned, a Process may have statements. A Process
may call the local method exeNext that will execute a possible
entry-method in the queue. When a Process has finished exe-
cuting its statements, it constantly executes possible methods

Figure 4. The SCP framework

in the entry-queue. Methods in the queue are executed in
the order of arrival.

The arguments of the Entry-methods must be either im-
mutable objects or unique objects. A unique object may be
referred to by at most one variable at any time during the
program execution. Constraints ensure that an SCP system
is safe in the sense that two or more processes cannot ac-
cess the same data items at the same time. The constraints
are enforced in the definition of the SCP framework using
subpattern restrictions, but not shown here.

3.1 An example of an SCP system

In Figure 3, we show an example of an SCP system in the
form of a simple system measuring the temperatures of an
environment. The last temperature is shown on a display;
if a temperature is below a certain boundary, a heater is
activated and, similarly, if the temperature is above some
limit, a cooler is activated. The system runs forever.

In gBeta modules are objects. The TempEx is such an ob-
ject module. It is subclassed from System defined in LIB. SCP,
which is the module defining the SCP framework. Three
processes temp1, temp2 and temp3 being instances of class
Temperature each measures the temperature at some point
in the environment. The control object receives the tem-
peratures from the Temperature processes. It sends the the
temperature to the display and if below/above some bound-
ary the cooler or heater is activated. Code prefixed by ...’
asin ’...measureTemp’ is pseudo code that is not specified.

3.2 The SCP framework

The overall structure of the SCP framework is shown in
Figure 4. The class System describes the outermost object
enclosing an SCP system. Class System defines class Process,
the scheduler sch and SQS, which is a FIFO-queue of active
Process objects scheduled for execution.

The definition of the Process object is shown in Figure 5.
A Process has a start method, which initializes the status of
the Process to ACTIVE and inserts the Process into the queue
of processes (SQS) scheduled for execution.

A Process has a super method entry, which must be the
supermethod of all public methods of a subclass of Process.
When executed, the actual submethod instance of entry is




PLOS ’21, October 25, 2021, Virtual Event, Germany

Ole Lehrmann Madsen

class Process:
start ():
status := ACTIVE
SQS.insert(this(Process))
entry ():
L.get()
Q.insert(this entry)
L.free()
this(entry). suspend
inner entry
stop(): < entry
inner stop
status:= TERMINATED
this(Process). suspend
exeNext ():
E: ref entry

L.get()
if Q.isEmpty then
L.free()

this(Process).suspend
restart exeNext
E := Q.removeNext ()
L.free()
E.resume ()

class Scheduler:
active: ref Process
cycle
active := SQS.next()
if active <> none then
active.attach(100)
if active.status = ACTIVE then
SQS.insert(active)

status: integer; Q: obj Queue; L: obj Lock
inner Process
cycle{ exeNext() }
Figure 5. Class Process
Templ Controller SQS
cycle
—+— controller.send(tl) call
sleep(500) send(tl) - -
(a) Temp1 has invoked controller.send(tl)
Templ Controller }—’ sS0s
cycle
controller.send(tl)
—+—+sleep(500) send(tl) -

(b) The send (t1) activation has been suspended and
inserted into SQS and Temp1 is executing sleep (500)

Figure 6. Illustration of a method suspend

inserted into the queue Q. Then the entry instance is sus-
pended and control returns to the calling Process. This is
illustrated in Figure 6.

The ability to detach a method invocation like an entry
instance is a unique property of gBeta. In SIMULA, Beta
and most other languages, it must be specified whether or
not an instance of a class is a coroutine or just a plain object
when the instance is generated. In gBeta, every object is
potentially a coroutine.

Note that Q is a critical region — two or more processes
may execute an entry method at the same time. Q is therefore,
protected by a Lock L.

When a Process returns after inner, it constantly executes
exeNext, which checks if there is an entry method in Q. If Q

Figure 7. Class Scheduler

is not empty, then the next method is removed from Q and
executed. The call E.resume(), resumes execution of E at
the point of suspension - i.e. inner entry is executed and
thereby the main part of the submethod of entry.

If Q is empty, then the Process suspends execution and
control returns to the scheduler — details will be shown in
the next section. The Process will then be scheduled for
execution and when resumed, it will restart execution of
exeNext and test if an entry method has been inserted into
Q. Again, access to Q is protected by the Lock L.

When a System object returns after inner, it generates and
executes an instance of the Scheduler, which implies that
scheduling is started.

3.3 Preemptive coroutines

In gBeta, a coroutine may be preempted. If S is an object,
then S may be resumed by the statement S.attach(100) that
is similar to S.resume, except that execution of S is preemp-
tively suspended after 100 units of execution.

In Figure 7, we show how a Scheduler for the SCP may
be implemented for a single-core processor. The Scheduler
loops as long as there are Processes in SQS scheduled for

execution — cycle ... repeatedly executes its do-part:

1. The next element in SQS is obtained by execution of
active := SQS.next().

2. If active is not none, then active is resumed by
active.attach(100).

3. After 100 execution units, active is preemptively sus-
pended and control returns to the Scheduler.

4. If status of active is ACTIVE, active is inserted into SQS
to be rescheduling later.

5. If active is none, then SQS is empty, Scheduler termi-
nates, implying that the whole System terminates.

In the current implementation, the interpreter counts the
number of bytecodes being executed, and when the appropri-
ate number have been executed, the coroutine is suspended.
For S.attach(100), S will be suspended when 100 byte codes
have been executed. As an alternative, preemption points
may be limited to allocation points or backward branches.
Finally for some platforms, it may be possible to use a timer
to trigger preemption.




Using Coroutines for Multi-core Preemptive Scheduling

3
3

3
3

Figure 8. Snapshot of coroutines on multi-core platform

PLOS ’21, October 25, 2021, Virtual Event, Germany

C1,C2,C3,C4: obj Core;
init_cores ():
fork(C1)
Cl.attach(nmew Scheduler ())
-- same for C2, C3 and C4

Figure 10. Binding objects to cores

class Core:

%core
main: ref Object -- any object may be attached
attach(P: ref Object): { main := P }
Loop:
if main = none then

sleep(100)

restart Loop
else

main

class Scheduler:
active: ref Process

SQS: obj -- critical region
Q: obj ProcessQueue
L: obj Lock
insert(P: ref Process):
{L.get(); Q.insert(P); L.free() }

Figure 9. Description of a core class

4 Multi-core

Here we show how to implement preemptive coroutines on
a multi-core platform. For this paper, we assume a multi-core
platform with two or more cores and a shared memory.

The basic idea is to associate an active qBeta object with
each core of a given platform. Such an active object may then
execute other objects/coroutines like a scheduler in the style
of the one shown above. There will thus be a number of truly
concurrent schedulers, one for each core. Together these
schedulers may handle the scheduling of Process objects.
Figure 8 illustrates a situation with four cores and a number
of Process objects to be scheduled.

The example in Figure 9 shows a class defining the struc-
ture of an active object that may be associated with a core.
The property %core describes that an instance of class Core’
may be associated with a core. Technically this means that
if C is an instance of Core then C may be passed as an argu-
ment of a primitive operation fork(C). The actual semantics
of fork(C) is implementation dependent. For implementa-
tions on a bare bone platform, C is associated a physical core
— for implementations on top of an operating system like
Windows and Linux, a native thread executing C is spawned.

The statements of the associated Core object are executed
- and as long as main is none, the Core object sleeps for a

"The name of the class need not to be Core.

Figure 11. SQS as a critical region

while and restarts the Loop. When a Scheduler is assigned to
main — using attach — the Scheduler is executed.

For a platform with four cores, we may thus typically
declare four instances of Core as shown in Figure 10. The
situation is then that four Scheduler objects - like the ones
described above — are executed simultaneously. For a concur-
rent program executed using these schedulers, this means
that up to four coroutines may execute truly concurrent.

We need to make some changes to the Scheduler as de-
scribed above in relation to SQS — the ProcessQueue — keeping
track of scheduled Processes. In the uni-core version only
one Scheduler object may access SQS. In the multi-core ver-
sion SQS has to be a critical region since it may be accessed
by two or more Schedulers. In Figure 11, SQS is defined as a
critical region protected by a Lock, L.

In [17], the primitives disable and enable are used to dis-
able and enable preemption of coroutines in order to imple-
ment critical regions. For a multi-core platform, these are not
sufficient. Enable and disable enables and disables preemp-
tion within a single Scheduler - i.e. if disable is executed
by an object, preemption is only disabled for the scheduler
executing the object. The other schedulers are not disabled.

To handle critical regions in the multi-core situation, gBeta
has a primitive operation, cmpAndSwap, equivalent to the hard-
ware instructions found in many CPUs. The execution of
cmpAndSwap ensures exclusive update of an integer variable.
We may use cmpAndSwap to implement a Lock-class as shown
in the lower right part of Figure 12. The get-method spins
until M. cmpAndSwap(@, 1) is successful, and the free-method
assigns 0 (zero) to M and releases the lock.

In general, Lock is used for controlling critical regions.
In [17], a Semaphore is defined using disable and enable of
preemptive scheduling. And in turn the Semaphore is used to
define a Monitor class and an Ada-like rendezvous class.




PLOS ’21, October 25, 2021, Virtual Event, Germany

class Lock:
M: var int; -- initially 0
get ():
if M.cmpAndSwap(0,1) = 1 then restart get
free(): { M := 0 }

Figure 12. Class Lock

The above scheduler for SCP is simpler than the ones
for monitor and Ada-like rendezvous. For these systems,
processes may be suspended waiting for a semaphore and
the scheduler must keep track of possible waiting processes.

4.1 An alternative scheduler

The scheduler described above is probably too inefficient
for many types of systems. It is, however, possible to define
whatever scheduler is needed for at given task.

For the temperature example, if temp1 is critical, we may
then attach temp1 to corel (C1) as the only process. We may
attach a scheduler to C2 and let temp2 and temp3 be scheduled
by this scheduler. And similarly attach a scheduler to 3
handling controller and display and a scheduler attached
to C4 handling heater and cooler. The programmer has the
full freedom to decide on the best setup.

5 Related work

Coroutines were originally proposed by Conway [6], and
SIMULA was one of the first languages to support coroutines.
Other examples include Modula 2 [25] and Icon [11]. In [9],
Dahl and Wang presented a model of coroutines. The Lund
SIMULA System introduced preemptive coroutines and was
the direct inspiration for preemptive coroutines in Beta.

Beta generalized SIMULA style coroutines. The coroutine
mechanism described in this paper is called semi-coroutine.
SIMULA also supports symmetric coroutines where a corou-
tine explicitly transfers control to the next coroutine using a
resume statement. Symmetric coroutines are the most com-
mon form of coroutines. In [19, 20] it is shown how to define
a symmetric coroutine abstraction based on semi-coroutines.

Recently coroutines have been added to Python, Lua, Go,
Kotlin and C++. In most of theses languages coroutines are
similar to symmetric coroutines in SIMULA with coopera-
tive scheduling and no support for preemptiveness and/or
generators as in Icon.

In all of the above languages (except SIMULA and Beta)
coroutines and tasks are different mechanisms. For Beta,
coroutine is the basic mechanism for defining higher-level
concurrency abstractions. The task mechanism as found
in Java and similar OO languages is a built-in mechanism
for supporting concurrency. Cooperative and preemptive
coroutines may replace tasks and provide a much wider
range of possibilities for defining concurrency abstractions.

Ole Lehrmann Madsen

Although concurrency abstractions are central for this
paper, it is not in the scope of this paper to compare, eval-
uate and propose concurrency abstractions. This paper is
neither about scheduling policies, load balancing or effective
communication. The scheduler presented is only intended
to illustrate the basic mechanisms for defining schedulers.
In fact, the use of one global queue (SQS) for scheduled pro-
cesses will be a bottleneck for programs consisting of many
concurrent processes. Here a more fancier scheduling strat-
egy will be needed. In principle, it is possible to implement
any scheduling strategy in gBeta.

6 Status, discussion and further work

Coroutines have been used in SIMULA and Beta since the
early days of object-oriented programming and this includes
using preemptive coroutines for defining high-level concur-
rency frameworks. As mentioned, the disadvantage of such
frameworks is that they are not safe with respect to race con-
ditions. With subpatterns restrictions, it is possible to define
safe concurrency frameworks. It is of course also possible to
define frameworks that makes it possible to define objects
that can be accessed without synchronization.

The basic synchronization primitive in Beta is a semaphore,
which is often too complex and for gBeta, we have replaced
it by a cmpAndSwap. Also Beta has only been implemented on
a single-core platform.

gBeta is implemented on Ubuntu and Windows. In lack
of direct access to control the cores, we simulate a core by a
native thread. If we assume a platform with 4 cores, we allo-
cate 4 threads and attach a scheduler to each of these threads.
The operating system then schedules the native threads and
gBeta schedules coroutines on top of these threads.

An experimental implementation of qBeta has been made
for an ARM.2 The compiler generates a boot image that can
be run on a bare bone RPIL. The implementation supports
attaching objects to the different cores and executing them.
We currently work on implementing synchronization. The
primitive cmpAndSwap is implemented using exclusive read
and write. We currently work on an implementation for
ESP32 on top of FreeRTOS.

The experience with using gBeta is limited so far, but we
have a proof-of-concept that preemptive coroutines can be
used to define concurrent processes with full control over
scheduling. We work on larger examples as well as support
for non-blocking IO and support for handling interrupts.

Work is also needed on defining the right concurrency
frameworks. The SCP example and the examples in [17] may
cover one class of applications whereas alternatives may be
needed for other kinds of applications. This same is the case
for scheduling algorithms - different types of applications
may need different kind of scheduling algorithms. But these
are general issues independent of the work presented here.

8Raspberry PI 3 model B, Quadcore Cortex A 53.



Using Coroutines for Multi-core Preemptive Scheduling

Acknowledgment. The author would like to thank Birger
Mpller-Pedersen for fruitful discussions through many years

and the anonymous referees for useful comments.

References

(1]
(2]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

Ada. Ada reference manual. proposed standard document, 1980.

Gul Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, Cambridge, MA, USA, 1986.

Joe Armstrong, Robert Virding, and Mike Williams. Concurrent Pro-
gramming in Erlang. Prentice Hall, 1993.

Per Brinch-Hansen. The programming language concurrent pascal.
IEEE Transactions on Software Engineering, SE-1(2), 1975.

Per Brinch-Hansen. Java’s insecure parallelism. ACM SIGPLAN Notices,
34(4):38-35, 1999.

Melvin E. Conway. Design of a separable transition-diagram compiler.
Communications of the ACM, 6(7):396—408, 1963.

Ole-Johan Dahl, Bjern Myhrhaug, and Kristen Nygaard. Simula 67
common base language (editions 1968, 1970, 1972, 1984). Technical
report, Norwegian Computing Center, 1968.

Ole-Johan Dahl and Kristen Nygaard. The development of the sim-
ula languages. In ACM SIGPLAN History of Programming Languages
Conference, pages 439-480, 1978.

Ole-Johan Dahl and Arne Wang. Coroutine sequencing in a block
structured environment. BIT, 11:425-449, 1971.

James Gosling, Bill Joy, and Guy Steele. The Java (TM) Language
Specification. Addison-Wesley, 1996.

R.E. Griswold, D.R. Hanson, and Korb. J.T. Generators in icon. ACM
Trans. on Programming Languages and Systems, 3(2):144-61, 1981.
Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The C# Program-
ming Language. Addison-Wesley, 2003.

Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ac-
tor formalism for artificial intelligence. In IJCAI'73 — 3rd international
Jjoint conference on Artificial intelligence, pages 235-245, 1973.

C. A.R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8), 1978.

B.W. Kernighan and D.M. Ritchie. The C Programming Language 2nd
edn. Prentice Hall, Englewood Cliffs N.J., 1978.

Bent Bruun Kristensen, Ole Lehrmann Madsen, and Birger Mgller-
Pedersen. The when, why and why not of the beta programming
language. In Brent Hailpern and Barbara G. Ryder, editors, History of
Progamming Languages III, pages 10-1-10-57. SIGPLAN, 2007.

Ole Lehrmann Madsen. Building safe concurrency abstractions.
In G. Agha, A. Igarashi, N. Kobayashi, H. Masuhara, S. Matsuoka,
E. Shibayama, and K Taura, editors, Concurrent Objects and Beyond,
pages 66—104. Springer, 2014.

Ole Lehrmann Madsen. Using coroutines for multi-core preemptive
scheduling — extended version. Technical report, Department of
Computer Science, Aarhus University, 2021. This paper is an extended
version of the paper published at the 11th Workshop on Programming
Languages and Operating Systems (PLOS 2021). It may be be obtained
from cs.au.dk/ olmadsen.

Ole Lehrmann Madsen and Birger Mgller-Pedersen. What object-
oriented programming may be—and what it does not have to be. In
S. Gjessing and K. Nygaard, editors, ECOOP’88 — European Confer-
ence on Object-Oriented Programming, volume 322 of Lecture Notes in
Computer Science, pages 1-20. Springer Verlag, 1988.

Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kristen Nygaard.
Object-Oriented Programming in the BETA Programming Language.
Addison Wesley, 1993.

P. Naur. Revised report on the algorithmic language algol 60. Commu-
nications of the ACM, 6, 1963.

python.org. The python tutorial, 2011.

[23]

[24]

[25]

[26]

[27]

PLOS ’21, October 25, 2021, Virtual Event, Germany

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
Reading MA, 1986.

J. Vaucher and B. Magnusson. Simula frameworks: the early years.
In Mohammad Fayad and Ralph Johnsson, editors, Object-Oriented
Application Frameworks, page 672. Wiley, 1999.

N. Wirth. Programming in Modula-2. Springer-Verlag, Heidelberg,
New York, 1982.

Yasuhiko Yokote and Mario Tokoro. Experience and evolution of
concurrent smalltalk. In OOPSLA 87— Object-Oriented Programming
Systems, Languages and Applications, pages 406 — 415. ACM SIGPLAN,
1987.

Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-
oriented concurrent programming in abcl/1. In OOPLSA 86 — Object-
Oriented Programming Systems, Languages and Applications, pages 258
- 268. ACM SIGPLAN, 1986.



PLOS ’21, October 25, 2021, Virtual Event, Germany

A A short introduction to gBeta

In this appendix, we describe some further details of qBeta
as used in this paper.’ As mentioned in the introduction,
gBeta is a further development of xBeta as used in [17] and
xBeta is based on Beta. For the purpose of this paper, the
differences between qBeta and xBeta are not important. The
main differences between Beta and qBeta/xBeta are with
respect to syntax, coroutines, synchronization primitives
and the possibility of binding objects to physical cores of the
underlying platform.

In gBeta, nesting of classes and methods (block-structure)
is defined by indentation as in Python, but it is also possible
to use curly brackets({ . . . }) to describe block-structure and
semicolon (;) to separate declarations and/or statements. For
the benefit of the reader, we will use a syntax in the style
of C++, Java, and C#, to avoid introducing gqBeta syntax for
classes, methods, statements and expressions.

We refer to Beta below for elements of gBeta that are
similar to Beta and gBeta for elements that differ from Beta.

In Beta there is no distinction between a class and a method
- they are unified into the notion of a pattern. A pattern may
be used as a class or method and instances of a pattern may
be executed as method activations, or as coroutines.

A class in the following means a pattern intended to be
used as a class. A similar terminology is used for method,
coroutine, etc.

A class (pattern) has the following syntax:

Ole Lehrmann Madsen

void msgl ():
S1;
inner msgl
S6
void msg2(): msgl
S2
inner msg2
S5
void msg3(): msg2
S3
inner msg3
S4

class MyClass: super
attributes
statements

Where super is the superclass of MyClass, attributes de-
scribes the attributes of the objects and statements de-
scribes a sequence of statements.

As can be seen, a class pattern may contain a action part
in the form of statements to be executed. A method pattern
has the following syntax:

returnType msg(arguments): super
attributes
statements

The structure of a method is the same as the structure of a
class with respect to super, attributes and statement part.

A class may in fact also have arguments and a return type,
but we will not give examples of this in this paper. And since
there is no difference between a class and a method, the
keyword class is only used for the benefit of the reader.

A distinctive feature of Beta is that a method pattern may
inherit from another method - its supermethod. And methods
may thus be organized in a method hierarchy similar to a
class hierarchy.

Consider the following example of a submethod hierarchy:

9This appendix is a modified version of a similar description of Beta in [17].

The methods msg2 and msg3 are submethods of msg1 and
msg2 respectively, and msg1 and msg2 are supermethods of
msg2 and msg3 respectively. Execution of msg1 implies that
S1, inner msgl and then S6 are executed, and in this case,
inner msg1 is just a skip-statement with no effect.
Execution of msg?2 starts by execution of the action part
of msg1, and in this case, execution of inner msgl implies
that the statement part of msg2 is executed. All together
the following statements are executed: S1, inner msg1, S2,
inner msg2, S5 and then S6. In this case, inner msg1 has
an effect whereas inner msg2 is a skip-statement.
Submethods may form an arbitrary hierarchy — the method
msg3 is a submethod of msg2, which in turn is a submethod
of msg1.
Execution of msg3 gives rise to the following statements
being executed:
S1,
. inner msgl,
S2,
. inner msg2,
S3,
. inner msg3 , -- skip, empty action
S4,
S5,
S6.
In Beta, it is possible to define singular objects — correspond-
ing to anonymous classes in e.g. Java. A singular object myOb j
may be declared as follows:

—_

0PN G R W

myObj: obj
S: ref T
foo:

myObj has a data item S that may refer to instance of class T,
and a local pattern foo.

In a similar way, it is possible to define singular method
activations. A singular method activation may have the form:

msg3

Sx




Using Coroutines for Multi-core Preemptive Scheduling

Execution of this statement implies that the action part of
the top supermethod, in this case msg1, is executed and the
resulting statements being executed are: S1, inner msgl,
S2, inner msg2, S3, inner msg3, Sx, S4, S5, S6. In this case
inner msg3 is not the empty action, but implies execution
of Sx.

A singular method activation corresponds to a prefixed
block in SIMULA, which in turn is a generalization of inner
blocks from Algol 60 [21].

In Beta, control abstractions are defined using submethods.
A simple example is the control pattern cycle that may be
used to execute a list of statements infinitely unless escaped
by a break statement - see below.

cycle:
inner cycle
restart cycle

Pattern cycle may be used as follows:

cycle
S1
S2
S3

The statements S1; S2; S3 are the executed forever unless
a break statement is executed as part of S1, S2 or S3.

Beta has two break statements, restart L as used in
cycle, and leave L. They both have the same effect as a
goto statement, but can only be used in a pattern with the
name L or a structured statement labelled by L.

Submethods may also be used to define iterators as shown
in the example below of a List class:

List:
void insert(V: integer): {...};
integer head(): {...};
void scan():
current: integer
current := first_element;
while current <> none then
inner scan;
current := next_element;

-- representation of List

}
void uselList ():
L: obj List;

L.scan{ current.print()}

The List has methods insert and head (returns and re-
moves the head of the list). In addition, List has a control
pattern scan that iterates through all elements of the list —
none is the the same as null in Java. For each element of
the list, the variable current holds the value of the next
element and inner scan is executed. Execution of inner
scan implies that the statement part of a submethod of scan
is executed. Note that inner scan appears within a loop
and is thus potentially executed several times.

PLOS ’21, October 25, 2021, Virtual Event, Germany

The method uselist defines a List object L, it scans the
elements of L, and prints each element.

In Beta, a declaration likeL: obj List defines a static
object in the form of L being a constant reference that refer
to an instance of List, which is generated as part of the
generation of the object enclosing L. It is similar to final
List L = new List() in Java. The keyword obj declares
a constant reference wheres the keyword ref declares a vari-
able reference. In S: ref List, S may refer to different
instances of S during execution.

Execution of the anonymous method activation
L.scan{current.print()} thus prints the elements of L.
Note that L.scan is the supermethod of the anonymous
method activation.

Control abstractions defined using submethods and inner
scan have the advantage that you do not need to initialize
the iterator and there is no state in the object keeping track of
the progress of the iterator. This means that several instances
of the control abstraction (iterator) can be made.

Submethods are also useful for describing a general su-
permethod that ensures mutual access to shared variables.
One example of this is the entry method defined in class
Monitor in Figure 1 of Section 2. Another similar example
is the entry method defined in class Process of Figure 5 in
Section 3.2.

For further details about Beta, see [16, 20]. Reference [20]
is a book about Beta and is available as a PDF-file from
cs.au.dk/"olmadsen.

B Defining safe concurrency abstractions

In this appendix, we briefly show how to add subpattern
restrictions to the SCP-framework in order to make it safe.

Per Brinch-Hansen has pointed out that a language like
Java is inherently insecure with respect to race-conditions
and this is also the case for most other class-based object-
oriented languages like C++, C# and Beta. The synchronized
mechanism in Java supports monitor-like behavior, but the
compiler does not enforce the programmer to annotate a
method as synchronized.

Beta has the same problem as Java since the compiler
cannot check that all interface methods for a monitor as e.g.
shown in Figure 1 in fact are submethods of entry.

For the SCP-framework defined in Figure 4, we described a
number of restrictions that the framework should obey, but
these cannot be checked by the compiler. As mentioned, we
have introduced the notion of subpattern restrictions [17]
to be able to define the necessary restrictions to be enforced
on the use of a framework like SCP.

In the following, we show how subpattern restrictions
may be used to enforce the necessary restrictions on the
SCP-framework:

An object being a subclass of Process should not be able
to modify global variables except that it may invoke methods



PLOS ’21, October 25, 2021, Virtual Event, Germany

SCP: obj
class System:
class Process:
%globals Process, SQS
%interface entry
entry:
%arguments value,immutable,unique

sch: ref Scheduler
SQS: obj ProcessQueue;
inner System;

sch:= Scheduler ()

Figure 13. The SCP framework

in other Process objects, and add itself to the SQS queue.
This may be enforced by means of the %globals property:

%globals P1, P2, ..., Pn

A pattern (class or method) annotated by the %globals-
property may only access global data-items of type P1, P2, ...
Pn.

All methods in the public interface of a Process object
must inherit from pattern entry. This can be enforced by
the %interface property:

%interface P1,P2,..,Pn

For a pattern annotated by the %interface property, the
public interface must be methods that inherit from one of
P1, P2,.., or Pn.

In order to prevent race conditions, we require that the
arguments of a public method of class Process must be val-
ues, references to immutable objects or references to unique
objects.

In gBeta, it is possible to define value objects that differ
from ordinary objects in the sense that assignment of an
object Y to X (X := Y) means that data-items of Y are assigned
to the corresponding data-items of X. In a similar way, a
comparison of X and Y (like X = Y) consist of a comparison of
similar data-items in X and Y. This is in contrast to reference
assignment and reference comparison for traditional objects.

In gBeta, all basic patterns like, integer, Boolean, char
and float define value objects.

In gBeta, it is also possible to declare an object to be
immutable by means of the %immutable property:

%immutable

The state of an immutable object cannot be changes after it
has been generated and initialized.

A unique object has at most one reference at a given time
during execution:

%unique

The complete definition of the SCP-framework with sub-
pattern restrictions is shown in Figure 13.

Ole Lehrmann Madsen

The Process class has been annotated with %globals
Process, SQS, which implies that the only global objects that
can be accessed in objects being subclassed from Process
are other Process objects of the SQS object.

In addition, the and %interface entry property enforce
the property that all public methods of subclasses of Process
must inherit from and entry.

For the method pattern entry, the property %arguments
value, immutable,unique, ensure that the arguments of
a submethod of entry must be value objects, immutable
objects or unique objects. For the temperature system in
figure 3, the arguments are all basic integers and thus value
objects.

All the subpattern restrictions may be expressed in terms
of predicates over a number of domains of the program execu-
tion. We do not use a predicate notation since the compiler
will in general not be able to validate such a predicate at
compile time. The predicates being used here may thus be
considered names or abbreviations of specific predicates.



	Abstract
	1 Introduction
	2 Basic language mechanisms
	3 Simple concurrent processes
	3.1 An example of an SCP system
	3.2 The SCP framework
	3.3 Preemptive coroutines

	4 Multi-core
	4.1 An alternative scheduler

	5 Related work
	6 Status, discussion and further work
	References
	A A short introduction to qBeta
	B Defining safe concurrency abstractions

