
Sparse Dataflow Analysis
with Pointers and Reachability

Magnus Madsen and Anders Møller

Aarhus University, Denmark
{magnusm,amoeller}@cs.au.dk

Abstract. Many static analyzers exploit sparseness techniques to re-
duce the amount of information being propagated and stored during
analysis. Although several variations are described in the literature, no
existing technique is suitable for analyzing JavaScript code. In this pa-
per, we point out the need for a sparse analysis framework that supports
pointers and reachability. We present such a framework, which uses static
single assignment form for heap addresses and computes def-use informa-
tion on-the-fly. We also show that essential information about dominating
definitions can be maintained efficiently using quadtrees. The framework
is presented as a systematic modification of a traditional dataflow anal-
ysis algorithm.
Our experimental results demonstrate the effectiveness of the technique
for a suite of JavaScript programs. By also comparing the performance
with an idealized staged approach that computes pointer information
with a pre-analysis, we show that the cost of computing def-use infor-
mation on-the-fly is remarkably small.

1 Introduction

Previous work on dataflow analysis has demonstrated that sparse analysis is a
powerful technique for improving performance of many kinds of static analysis
without sacrificing precision [7,8,14,15,20,21], compared to more basic dataflow
analysis frameworks [12, 13]. The key idea in sparse analysis is that dataflow
should be propagated directly from definitions to uses in the program code, un-
like “dense” analysis that propagates dataflow along the control-flow. A potential
advantage of sparse analysis is that it propagates and stores only relevant infor-
mation, not entire abstract states. Another advantage is that transfer functions
need only be recomputed when their dependencies change.

While developing analysis tools for JavaScript we have found that the existing
approaches described in the literature for building sparse analyses do not apply
to the language features and common programming patterns that appear in
JavaScript code. Specifically, context-sensitive branch pruning (a variant of un-
reachable code elimination by Wegman and Zadeck [21]) is an important analysis
technique, as explained below, for handling the use of function overloading, which
in JavaScript is programmed using reflection. Moreover, the common wisdom
from analysis of e.g. Java code that context-insensitive analysis is usually faster



than context-sensitive analysis [18] apparently does not apply to JavaScript code,
which, as discussed below, makes it difficult to design practically useful staged
sparse analyses for this language.

function f(b, x, y) {
var r;
if (b.p) {
r = x.a;

} else {
r = y.a;

}
return r;

}

As a motivating example, consider the JavaScript
function on the right that exhibits a simple form
of overloading. Here, the branch condition b.p de-
cides whether the f function should have one behav-
ior or another (in real-world JavaScript code, com-
plex function overloading is mimicked using vari-
ous kinds of reflection in branch conditions, but the
pattern is the same). It is often the case that the
branch condition is determinate relative to the call
context [17]. That is, in one call context, b.p is
known to be true, and in another call context, it is known to be false. In a
context-sensitive dense analysis, this is no problem for the precision: f is simply
analyzed in two contexts, corresponding to the two cases, such that the analysis
logically clones f and analyzes it twice. When dataflow reaches the if state-
ment, the analysis can then discover that one branch is dead and only propagate
dataflow along the live branch.

To reason precisely about such program code, for example, with the purpose
of computing call graphs or information about types of expressions, a static anal-
ysis must account for reachability, i.e. whether branches are live or dead in the
individual contexts. At the same time it must handle heap allocated storage, as
objects are pervasive in JavaScript. Moreover, even apparently simple operations
in JavaScript, such as reading an object property, are complex procedures that
involve e.g. type coercion and traversal of dynamically constructed prototype
chains. This makes it beneficial to design analysis techniques that support com-
plex transfer functions, for example, all computable monotone functions [12]. It
is well known how to accomplish all this using dense analysis (see e.g. the TAJS
analysis [9]). Our goal is to take the step to sparse analysis, without sacrificing
precision compared to the original dense version.

One way to build sparse analyses for programs with pointers is to use a
staged approach where a pre-analysis computes a sound approximation of the
memory addresses that are defined or used at each operation in the code, and
then establish def-use edges that the main analysis can use for sparse flow-
sensitive dataflow propagation [8, 14]. Unfortunately, this does not work in our
setting, unless the pre-analysis is as precise as the main analysis (and in that
case, there would be no need for the main analysis, obviously): If the pre-analysis
is flow-insensitive, for example, it would establish def-use edges from both x.a
and y.a to r in our example, which would destroy the precision of the main
analysis. Note that one of the main results of Oh et al. [14] is that, in their
setting, approximations in the pre-analysis may lead to less sparseness but it
will never affect the precision of the main analysis (due to their use of data
dependence instead of def-use chains). However, for a language like JavaScript
where most operations may throw exceptions, their algorithm largely degrades

2



to a dense analysis if reachability is involved. In another line of work, Tok et
al. [20] and Chase et al. [2] compute def-use edges on-the-fly rather than using
a pre-analysis, but also without taking reachability into account. Conversely,
the sparse conditional constant analysis by Wegman and Zadeck [21] handles
reachability, but not pointers. In summary, no existing technique satisfies the
needs for making sparse analysis for languages like JavaScript.

Our contributions are as follows:

– We present the first algorithm for sparse dataflow analyses that supports
pointers, reachability, and arbitrary monotone transfer functions, while pre-
serving the precision of the corresponding dense analysis, and without re-
quiring a pre-analysis to compute def-use information.

– We describe experimental results, based on a dataflow analysis for JavaScript,
that show a considerable performance improvement when using sparse anal-
ysis compared to a traditional dense approach, which demonstrates that it is
possible to perform efficient sparse analysis in a setting that involves pointers
and reachability.

– We show experimentally that the overhead of computing dominating defi-
nitions on-the-fly is small, which makes our approach preferable to staged
approaches that compute that information with a pre-analysis.

– We demonstrate that quadtrees are a suitable data structure for maintaining
essential information about dominating definitions in sparse analysis.

We explain the technique as a framework where we can switch from dense to
sparse analysis, without affecting the abstract domains or the transfer functions.

2 A Basic Analysis Framework

Our starting point is a variant of the classical monotone framework for flow-
sensitive dataflow analysis [12] where programs are represented as control-flow
graphs with abstract states associated with the entry and exit program points of
each node. For simplicity this presentation focuses on intraprocedural analysis,
although our implementation supports interprocedural analysis as discussed in
Section 4.

We assume that we are given a control-flow graph where each node represents
a statement s ∈ S, together with a set of abstract memory addresses a ∈ A, a
lattice of abstract values v ∈ V , and a transfer function Ts for each statement
s. The transfer functions are assumed to be expressed using the following three
primitive operations:

– Read(s ∈ S, a ∈ A) : V . Returns the value v at the address a at the program
point immediately before the statement s.

– Write(v ∈ V, s ∈ S, a ∈ A). Writes the value v to the address a at the
program point immediately after the statement s. Note that an invocation
Write(v, s, a) models a strong update [2]; if a weak update is desired, the
transfer function should invoke Write(v t Read(s, a), s, a).

3



– Continue(ssrc ∈ S, sdst ∈ S). Indicates that the transfer function Tssrc has
completed and that sdst is a possible successor, in other words that sdst is
reachable from ssrc. (For example, this allows the transfer function for an if
statement to selectively propagate dataflow to one of its branches.)

As conventional, the framework applies the transfer functions using an iter-
ative worklist algorithm, starting from a designated program entry statement,
until the global fixpoint is reached. The ordering of the worklist W is left un-
specified, so the analysis implementor may freely choose any. We assume the
lattice V has finite height; for simplicity we ignore widening.

In the case of JavaScript, most transfer functions are complex operations
that involve multiple Read and Write operations. For example, the transfer
function for a simple assignment x = y.p in general requires traversal of scope
chains and prototype chains. This can be accomplished as shown in previous work
on the TAJS analysis [9]. Although that analysis uses more elaborate abstract
domains, it can in principle all be expressed within the present framework.

A traditional dense propagation strategy [12] maintains an entire abstract
state at each program point as a map from addresses to values:

I : S ×A→ V is the map of incoming states
O : S ×A→ V is the map of outgoing states

Reading from an address is then simply a matter of looking up its value in
the abstract state in I, and writing similarly updates O. (In practice, analysis
implementations often maintain onlyO, since the information in I can be inferred
when needed; we include both maps explicitly to simplify the presentation in
Section 3.) Continuing from ssrc to sdst is handled by joining the entire outgoing
state at ssrc into the incoming state at sdst. To initiate the analysis, I and O
return the bottom element ⊥ of V for every statement and address, except that
we assume an entry statement sentry with a no-op transfer function (that just
calls Continue) and where I(sentry , a) and O(sentry , a) both describe the initial
abstract state for every address a. The initial worklist is then W = {sentry}.

More formally, reading the value of an address a ∈ A at statement s ∈ S is
implemented simply by looking up the value in the incoming state:

Read(s ∈ S, a ∈ A) : V
1 return I(s, a)

Similarly, writing a value v ∈ V to the address a ∈ A at statement s ∈ S is
implemented by writing to the outgoing state:

Write(v ∈ V, s ∈ S, a ∈ A)
1 O(s, a) := v

Propagation of dataflow from statement ssrc ∈ S to sdst ∈ S is implemented
by joining all the values from the outgoing state of ssrc into the incoming state
of sdst. If a value is changed then sdst is added to the worklist. Reachability is
implicitly supported since an unreachable statement has every value set to the

4



bottom element ⊥, whereas we assume that every reachable statement will have
at least one value set to non-bottom, and so propagation from a reachable state-
ment to an unreachable statement will always cause the unreachable statement
to be added to the worklist:

Continue(ssrc ∈ S, sdst ∈ S)
1 for each a ∈ A
2 let v = O(ssrc, a)
3 let v′ = I(sdst, a)
4 if v 6v v′
5 I(sdst, a) := v t v′
6 W :=W ∪ {sdst}

The main fixpoint computation is implemented by the Solve procedure. It
maintains a global worklist W of pending statements and iteratively extracts a
statement and evaluates its transfer function, which may cause new statements
to be added to the worklist. The fixpoint is found when the worklist is empty:

Solve(E : A→ V ), where E is the entry state
1 I(s, a) := O(s, a) := ⊥ for all s ∈ S, a ∈ A
2 I(sentry, a) := O(sentry, a) := E(a) for all a ∈ A
3 W := {sentry}
4 while W 6= ∅
5 let s = Dequeue(W )
6 O(s, a) := I(s, a) for all a ∈ A
7 apply the transfer function Ts

3 Sparse Analysis

We now show how the basic analysis framework from the preceding section can
be changed into our sparse analysis technique. As a first step, we modify the
definitions of the incoming and outgoing states to become partial maps, I :
S ×A ↪→ V and O : S ×A ↪→ V , since we now want to maintain values only for
the statements and addresses that are involved in Read or Write operations,
respectively. Next, we add four new components that are all built incrementally
during the fixpoint computation:

R ⊆ S × S is the set of reachable edges
P : S ×A ↪→ V specifies the placement and values of φ-nodes
DU ⊆ S ×A× S is the set of def-use edges
F : S × S → P(A) is the map of frontier addresses

The R component now explicitly tracks the set of reachable edges in the control-
flow graph: if Continue(ssrc, sdst) has been invoked, then (ssrc, sdst) ∈ R. As in
previous sparse analysis techniques, we use SSA (static single assignment form)
to ensure that each use site has a unique associated definition site [4,7,21]. When
P (s, a) is defined with some value v, the statement s plays the role of a φ-node

5



for address a, where v is then the merged value from the incoming dataflow. As
effect we obtain SSA for all addresses, not only for local variables. Each triple
(s1, a, s2) ∈ DU represents a def-use edge, where s1 is a definition site or a
φ-node and s2 is a use site or a φ-node for a.

Since the analysis discovers definition sites and use sites incrementally, the
set of def-use edges changes during the analysis. The F map supports this con-
struction of def-use edges whenever frontier edge becomes reachable, as explained
later in this section.

The Solve procedure is unmodified, except that line 6 is omitted in the
sparse analysis version. The remainder of this section explains the modifications
of the Read, Write, and Continue procedures.

Notation and terminology We view maps as mutable dictionaries. For example,
if f : A→ B is a map, then f(x) := v denotes the update of f such that subse-
quently f(x) = v. If f : X ↪→ Y is a partial map, then f? denotes the domain
of f , i.e. the subset of X where f is defined. We assume the reader is familiar
with the concepts of SSA, dominance frontiers, and dominator trees from e.g.
Cytron et al. [4]. Specifically, a statement s2 is in the dominance frontier of a
statement s0 if s0 dominates some predecessor s1 of s2 in the control-flow graph,
but s0 does not dominate s2. The edge (s1, s2) is then called a frontier edge of
s0. We say that a statement s is a φ-node (resp. definition site or use site) for
an address a if (s, a) ∈ P? (resp. (s, a) ∈ O? or (s, a) ∈ I?). Only merge points
in the control-flow graph can be used as φ-nodes. For simplicity, we assume that
the statements at merge points are no-ops, such that they cannot be definition
sites or use sites (thus, P? and I? ∪O? are disjoint).

The following key invariants are maintained by the Read, Write, and
Continue operations in the sparse analysis framework:

[flow ] If (s1, a, s2) ∈ DU for some statements s1, s2 and some address a, then
– either O(s1, a) or P (s1, a) is defined with some value v,
– either I(s2, a) or P (s2, a) is defined with some value v′, and
– the value of a at s1 has been propagated to s2, i.e. v v v′.

[def-use] If (and only if) a statement s1 is a definition site or φ-node for some
address a, i.e. (s1, a) ∈ O? ∪P?, sk is a use site or φ-node for a, i.e. (sk, a) ∈
I? ∪ P?, such that s1 dominates sk and there is a path s1, s2, . . . , sk where
each step is reachable, i.e. (si, si+1) ∈ R for all i, and moreover, there is no
definition site or φ-node for a between s1 and sk, i.e. (si, a) /∈ I? ∪P? for all
i = 2, 3, . . . , k − 1, then there exists a def-use edge (s1, a, sk) ∈ DU .

[phi-use] If s is a φ-node for a, i.e. (s, a) ∈ P?, then for every reachable incoming
control-flow graph edge (s1, s) ∈ R there is a def-use edge (s2, a, s) ∈ DU
where s2 is the nearest dominator of s1 and s2 is a definition site or φ-node
for a.

6



[phi] If a statement s0 is a definition site or φ-node for some address a, i.e.
(s0, a) ∈ O? ∪P?, then for every frontier edge (s1, s2) of s0 that is reachable,
i.e. (s1, s2) ∈ R, the statement s2 is a φ-node for a, i.e. (s2, a) ∈ P?.

[frontier] If a ∈ F (s1, s2) for some statements s1, s2 and some address a, then
(s1, s2) is a frontier edge of a dominator s0 of s1 that defines a, i.e. (s0, a) ∈
O? ∪ P?.

Intuitively, the [flow ] invariant ensures that dataflow has always been propagated
along the existing def-use edges; [def-use] expresses the main requirements for
construction of def-use edges, in particular that def-use edges respect reachabil-
ity and dominance of definitions; [phi-use] ensures that def-use edges to φ-nodes
also exist for all reachable incoming edges; [phi] ensures that φ-nodes are cre-
ated along reachable dominance frontiers; and [frontier] expresses that F records
which addresses are relevant for contructing def-use edges whenever a frontier
edge becomes reachable.

3.1 Reading Values

The Read(s, a) operation retrieves the requested value from the incoming state
if s is already known to be a use site for a. If a new use is discovered, the
appropriate def-use edge must be introduced and the value propagated to s:

Read(s ∈ S, a ∈ A) : V
1 if (s, a) /∈ I?
2 I(s, a) := ⊥
3 let s1 = FindDef(s′, a) where s′ is the immediate dominator of s
4 DU := DU ∪ {(s1, a, s)}
5 Propagate(s1, a, s)
6 return I(s, a)

The FindDef procedure searches up the dominator tree to find the nearest
definition site or φ-node for a:

FindDef(s ∈ S, a ∈ A) : S
1 if (s, a) ∈ O? ∪ P?

2 return s
3 else
4 return FindDef(s′, a) where s′ is the immediate dominator of s

We show in Section 3.4 how FindDef can be implemented more efficiently
than this pseudo-code suggests. Also note that by initializing I(sentry , a) and
O(sentry , a) for every address a according to the initial abstract state when the
analysis starts, Read and FindDef are well-defined because sentry is the root
of the dominator tree.

The Propagate procedure, which is also used by the Write operation later,
propagates a single value from a definition site or φ-node to a use site or φ-node,

7



in order to satisfy the [flow ] invariant. If the destination is a use site and its
incoming state changes, then that statement is added to the worklist W . If the
destination is a φ-node then propagation is invoked recursively for all its outgoing
def-use edges:

Propagate(ssrc ∈ S, a ∈ A, sdst ∈ S)
1 if (ssrc, a) ∈ O?

2 let v = O(ssrc, a)
3 else // must have (ssrc, a) ∈ P?

4 let v = P (ssrc, a)
5 if (sdst, a) ∈ I?
6 let vold = I(sdst, a)
7 if v 6v vold
8 I(sdst, a) := v t vold
9 W :=W ∪ {sdst}
10 else // must have (sdst, a) ∈ P?

11 let vold = P (sdst, a)
12 if v 6v vold
13 P (sdst, a) := v t vold
14 for each s where (sdst, a, s) ∈ DU
15 Propagate(sdst, a, s)

Notice that recursive calls to Propagate can only happen along chains of def-use
edges between φ-nodes, which are placed only at merge points, so the recursion
is bounded by the block nesting depth of the program being analyzed.

3.2 Writing Values

The Write operation writes the given value to the outgoing state. If a new
definition site is discovered, the set of def-use edges must be updated. Moreover,
the written value is propagated along the outgoing def-use edges:

Write(v ∈ V, s ∈ S, a ∈ A)
1 if (s, a) /∈ O?

2 Update(s, a)
3 O(s, a) := v
4 Forward(s, a)
5 else
6 O(s, a) := v
7 for each sdst where (s, a, sdst) ∈ DU
8 Propagate(s, a, sdst)

Whenever a new definition site is discovered in Write (line 1), def-use edges
that bypass the new definition site and have the same address must be updated
(line 2) and φ-nodes must be introduced at the iterated dominance frontiers
along with associated def-use edges (line 4).

8



A

B C

D

E

F

W

V Z

Y

X

(a) (b)

Fig. 1. Two control-flow graph fragments (with thick edges representing control-flow)
that illustrate the Update procedure. (a) The statement A defines some address that
is used at both statements D and F (corresponding to the def-use edges A→ D and
A→ F). At some point a definition is discovered at E. The dominating definition at E
is A. Its use at D is not dominated by E and thus not affected by the new definition
at E. The use at F, however, is dominated by E, so the def-use edge A→ F is replaced
by E→ F. (b) The statement X defines some address that is used by the φ-node at W
(corresponding to the def-use edge X→W). If a new definition is discovered at Y then
X→W must be replaced by Y→W since X dominates Y.

Update(s ∈ S, a ∈ A)
1 let s1 = FindDef(s, a)
2 for each s2 where (s1, a, s2) ∈ DU
3 if s strictly dominates s2
4 DU := (DU \ {(s1, a, s2)}) ∪ {(s, a, s2)}
5 for each (s3, s4) ∈ S × S that is a frontier edge of s
6 let s0 = FindDef(s3, a)
7 if s0 strictly dominates s
8 if (s0, a, s4) ∈ DU
9 DU := (DU \ {(s0, a, s4)}) ∪ {(s, a, s4)}

The Update procedure updates the def-use edges that bypass the new definition.
The first part (lines 1–4) handles the def-use edges that end at a statement
dominated by the new definition, to restore the [def-use] invariant as illustrated
in Figure 1(a); the second part (lines 5–9) handles the def-use edges that end at
a dominance frontier node of the new definition, corresponding to [phi-use] as
illustrated in Figure 1(b).

Note that DU does not always grow monotonically, since Update both adds
and removes edges. Termination is still ensured: a def-use edge (s1, a, s2) is only
removed if a new definition site sd is discovered such that sd dominates s2.
Definitions are never removed, so the edge (s1, a, s2) can never be re-added, and
only a finite number of def-use edges can be created. All other components in the
sparse framework are monotonically increasing during the fixpoint computation.

9



The purpose of the Forward procedure is to introduce φ-nodes at the it-
erated dominance frontiers, together with def-use edges for the corresponding
reachable frontier edges, and maintain the [frontier] invariant:

Forward(s ∈ S, a ∈ A)
1 for each (s1, s2) ∈ S × S that is a frontier edge of s
2 if a /∈ F (s1, s2)
3 F (s1, s2) := F (s1, s2) ∪ {a}
4 if (s1, s2) ∈ R
5 MakePhi(s2, a)

Although a statement typically has a single frontier edge, it is possible to have
multiple, for example, in connection to statements that may throw exceptions.
Line 3 in Forward adds a to the frontier addresses of the frontier edge (s1, s2),
which indicates that a has been defined by a statement that dominates s1. If
that edge is already known to be reachable, we may need to add a new φ-node
at the frontier, which is handled by MakePhi as explained next.

MakePhi(s ∈ S, a ∈ A)
1 if (s, a) /∈ P?

2 Update(s, a)
3 P (s, a) := ⊥
4 for each s1 ∈ S where s1 is an immediate predecessor of s in the control-flow graph
5 if (s1, s) ∈ R
6 let s2 = FindDef(s1, a)
7 DU := DU ∪ {(s2, a, s)}
8 Propagate(s2, a, s)
9 Forward(s, a)

The MakePhi procedure is only invoked with s being a dominance frontier node.
If s is not already a φ-node for a (line 1), we mark it as one (line 3). However,
since a φ-node has a similar effect as a definition site, Update is called first
to update the def-use edges, c.f. line 2 in Write. A φ-node also has a similar
effect as a use site, although generally with multiple incoming def-use edges. For
this reason, we make sure a def-use edge exists for every reachable income edge
(lines 4–8), c.f. lines 3–5 in Read. Finally, the process is continued recursively
for the iterated dominance frontiers (line 9).

3.3 Propagating Reachability

As the propagation of dataflow values is performed along def-use edges by
Propagate, the primary role of Continue is to propagate reachability:

Continue(ssrc ∈ S, sdst ∈ S)
1 if (ssrc, sdst) /∈ R
2 R := R ∪ {(ssrc, sdst)}
3 W :=W ∪ {sdst}
4 for each a ∈ A where a ∈ F (ssrc, sdst) ∨ (sdst, a) ∈ P?

5 MakePhi(sdst, a)

10



Y

Z

X

{a,b} {b,c}

Fig. 2. A control-flow graph fragment, where the frontier edges X→ Z and Y→ Z hold
the addresses {a, b} and {b, c}, respectively. The edge X → Z is already reachable, and
φ-nodes for {a, b} at Z have already been introduced. Now Continue is invoked for
the edge Y → Z. Continue ensures that appropriate def-uses edge to Z are introduced
for all the addresses a, b, and c, and for all the incoming edges to Z.

If the given control-flow graph edge (ssrc, sdst) is not already reachable, we mark
it as reachable (line 2) and add sdst to the worklist. However, this may trigger
calls to MakePhi in two situations, corresponding to the two cases in line 4: The
condition a ∈ F (ssrc, sdst) signals that (ssrc, sdst) is a frontier edge of a statement
that defines a, so we must ensure that sdst is a φ-node for a and therefore call
MakePhi. The condition (sdst, a) ∈ P? captures the case where sdst is already a
φ-node for a, but now there is a new reachable incoming edge, which is handled
by lines 4–8 in MakePhi as illustrated in Figure 2. Notice that we carefully
ensure in Forward, MakePhi, and Continue that no dataflow is propagated
across control-flow edges, in particular frontier edges, until they are known to
be reachable.

Proposition The sparse framework has same analysis precision as the basic
framework. Specifically, if O(s, a) = v for some s ∈ S, a ∈ A, and v ∈ V
after analyzing a given program with the sparse framework, then we also have
O(s, a) = v when analyzing the program with the basic framework.

3.4 A Data Structure for Finding Dominating Definitions

During the fixpoint computation new definition sites and use sites are discovered
incrementally by the Read and Write operations. A key challenge is how to
ensure that the FindDef operation is able to quickly find the nearest dominating
definition for any statement in the control-flow graph.

The naive version of FindDef from Section 3.1 is easy to implement, as also
suggested by Chase et al. [2]. It is, however, impractical because each invocation
requires a traversal along a spine of the dominator tree, in the worst case from
the given statement all the way to the root. As an example, consider a straight-
line program consisting of k statements in sequence. Invoking FindDef at the
last statement may then require traversal of all k statements to find the nearest
dominating definition.

A better approach is to maintain dominator information separately for each
address and only for the nodes that are known to be definition sites or φ-nodes.
The idea is to equip each statement in the control-flow graph with two numbers,

11



A
J

C

A

B C

ED

GF

H

J

A

B C J

ED

GF

H

1 18 20

G

0

0

10

2010

2 3 4 15 16 17

5 6 7 12 13 14

8 9 10 11

x

y

(a) (b) (c)

Fig. 3. (a) A control-flow graph fragment where the statements A, C and J are defini-
tion sites for some address. The statement G is a use site of the same address. (b) The
dominator tree for the control-flow graph with the definition sites and use site marked.
(c) The 2d points associated with the timestamps of the dominator tree.

x and y, as shown in Figure 3. The numbers are obtained through a depth-first
traversal of the dominator tree, such that the first number x is the discovery
time and the second number y is the exit time. Using these numbers we can
determine dominance between nodes: if p dominates q, then p must have been
discovered before q, i.e. xp < xq, and all children of q must have been visited
before exiting p, i.e. yq < yp. As an example, in Figure 3, statement E dominates
F since xE < xF and yF < yE.

A key observation is that to find the nearest dominating definition of a node
q we need to find a node p where xp < xq and yq < yp. Of all nodes that satisfy
these conditions we wish to find the one with maximum x value. For example,
in Figure 3 the nearest dominating definition at G is C, which satisfies these
properties.

One approach is to store the definitions in a resizable array and perform a
linear scan to find the nearest dominating definition, as in Staiger-Stöhr [19].
Unfortunately, this requires O(d) time, where d is the number of definitions.
Another approach is to define an ordering such that finding all dominating def-
initions takes O(log d) time and then scan through these to find the nearest
dominating definition, as in Tok et al. [20]. However, the scanning may still
require O(d) time.

Our solution works as follows. If we interpret the number pair (xq, yq) of a
node q as a point in a two dimensional space, then finding the nearest dominating
definition p is equivalent to finding the point (xp, yp) in the rectangle [0, xq] ×
[yq,∞] with the maximum xp. This is a well-known problem in the computational
geometry literature; one data structure solving this problem is the quadtree [5].
Finding the nearest dominating definition then takes O(

√
n) time where n is

the number of control-flow graph nodes, and a new node can be inserted in
O(logn) time. Quadtrees are simple to implement and have a low constant-

12



factor overhead. Our experimental comparison (see Section 4) confirms that
quadtrees lead to a faster implementation than the naive version of FindDef
and Staiger-Stöhr’s approach. In principle one could combine the techniques and
get O(min (

√
n, d)), but in practice using the quadtrees alone seems to work well.

To summarize, we pre-compute the two numbers for every statement in the
control-flow graph and then maintain a quadtree ya for each a ∈ A containing
every statement s ∈ S where (s, a) ∈ O? ∪ P?. The FindDef procedure from
Section 3.1 is then replaced by a search in ya.

4 Implementation and Evaluation

We have implemented a dataflow analysis for JavaScript, configurable for both
the traditional dense propagation (Section 2) and the sparse analysis with on-
the-fly SSA construction (Section 3). The dataflow lattices and transfer functions
are designed in the style of the TAJS analysis by Jensen et al. [9], structured such
that all transfer functions are expressed using the Read, Write and Continue
operations. For the quadtrees, we use a variant called compressed quadtrees [6].
Interprocedural dataflow is handled by straightforward generalizations of the al-
gorithms from the preceding sections. Call graphs are built on-the-fly, similar
to TAJS. For the interprocedural sparse analysis, φ-nodes are made at function
entries and at no-op statements that are placed after call sites where dataflow
may merge from different functions. Searching for dominating definitions may
then span multiple functions backward via the call edges, and similarly, defi-
nitions inside a function are propagated forward along dominance frontiers of
the call sites. The full implementation is approximately 20,000 lines of Scala
code, whereof the core that corresponds to Section 2 and 3 constitutes less than
1,000 lines.

Our experiments are based on the collection of JavaScript programs shown in
Table 1. (Our current implementation does not contains models of the browser
API and HTML DOM, so we settle for stand-alone JavaScript programs.) The
collection contains programs from the Mozilla SunSpider and Google Octane
benchmark suites, plus a few additional programs found on the web. All ex-
periments are performed on an Intel Core 2 Duo 2.5 GHz PC. The analysis
implementation and all benchmarks are available online.1

We consider the following three research questions:

Q1: Is our sparse analysis technique more efficient than the basic analysis frame-
work? The literature shows that sparse analysis is usually highly effective,
but since none of the existing techniques are applicable to our setting, which
involves both pointers and reachability, we cannot know a priori whether
our sparse analysis has similar advantages.

Q2: How does the performance of our sparse analysis algorithm compare to
staged analysis techniques? As argued in Section 1, performing sparse anal-
ysis on the basis of imprecise reachability information would affect not only

1 http://www.brics.dk/sparse/

13



Program Total time SSA overhead

Name Lines Nodes Basic Sparse % Quadtree Naive Array

deltablue.js 885 3303 timeout 35780 43% 15223 23347 21927
richards.js 541 1655 timeout 703 31% 216 391 405
splay.js 398 1058 79844 705 28% 198 268 273
3d-cube.js 343 2875 timeout 1974 24% 482 991 899
3d-raytrace.js 443 3000 timeout 2723 30% 812 1686 2954
access-nbody.js 170 847 63864 488 39% 189 262 218
crypto-aes.js 426 2581 timeout 713 25% 177 451 486
crypto-md5.js 295 1508 30561 2091 3% 53 111 117
garbochess.js 2812 16146 timeout 5764 26% 1501 3138 4362
simplex.js 450 2121 timeout 465 28% 128 282 235
jpg.js 889 5146 timeout 2621 21% 538 1035 992
javap.js 1430 5561 timeout 1693 33% 559 1479 3037

Table 1. Experimental results. Lines shows the number of source code lines and Nodes
shows the number of control-flow graph statements for each program, to indicate their
sizes. Basic and Sparse are the total analysis time for the basic and sparse frameworks,
respectively. SSA overhead shows the time spent on SSA construction during the sparse
analysis, using three different implementations for maintaining dominating definitions.
All times are shown in milliseconds, with timeout representing a timeout of 90 seconds.

the degree of sparseness but also the precision of the main analysis, and we
want our sparse analysis to be as precise as with the basic framework. On
the other hand, our algorithm could potentially be simplified without af-
fecting analysis precision by using a pre-analysis to compute definition sites
and use sites for SSA construction, instead of performing it all on-the-fly.
For this reason, it is interesting to measure the overhead of computing that
information in our on-the-fly sparse analysis framework.

Q3: Are quadtrees a suitable choice in practice, compared to other techniques
for maintaining information about reaching definitions? In Section 3.4 we
argued that quadtrees have a good theoretical complexity, however, this
needs to be supported empirically.

To answer Q1 we instantiate the analysis with both configurations (using
quadtrees for the sparse analysis). The columns Basic and Sparse in Table 1 show
the corresponding analysis times. The numbers show that our sparse analysis is
in most cases more than an order of magnitude faster than the basic framework.
As result, we have demonstrated that it is possible to perform efficient sparse
analysis in a setting that involves pointers and reachability.

We address Q2 by assuming an ideal pre-analysis that computes the definition
sites and use sites and from this constructs the SSA form, with the full preci-
sion of the on-the-fly sparse analysis. Designing a realistic pre-analysis involves
a trade-off: it has to be fast (at least, faster than the original dense analysis),
and it has to be reasonably precise (since imprecision can lead to less sparseness

14



in the main analysis). With such a pre-analysis, we can perform sparse analysis
and still account for reachability – reminiscent of the sparse conditional con-
stant analysis by Wegman and Zadeck [21]. The SSA overhead columns (% and
Quadtree) in Table 1 show how much time is spent by our sparse analysis in-
side the operations FindDef, Update, Forward, and MakePhi (excluding
Propagate), relative to the entire sparse analysis and in milliseconds, when
using the quadtree implementation of FindDef. This constitutes work that in
principle could be omitted if using a pre-analysis. We observe that between 3%
and 43% of the analysis time is spent in these parts. In other words, the best
imaginable pre-analysis will only be able to achieve a speedup of less than 1.7x
(for deltablue.js) and on average less than 1.4x. Moreover, by using our on-
the-fly approach, the analysis developer is relieved of the burden of designing
and implementing a fast and precise pre-analysis.

Regarding Q3, the columns Quadtree, Naive, and Array show the time for
SSA construction with different implementations of the data structure used
for finding dominating definitions. The Quadtree column corresponds to our
quadtree-based implementation described in Section 3.4, Naive corresponds to
FindDef from Section 3.1, and Array follows the approach of Staiger-Stöhr [19],
as discussed in Section 3.4. In all cases the quadtree implementation is the fastest
and typically outperforms the alternatives by a factor of 1.4x to 5.4x.

5 Related Work

The basic ideas in sparse analysis originate from Reif and Lewis [15] who sug-
gested the use of global value graphs, for example for efficient constant prop-
agation analysis. The concept of SSA form is attributed to Rosen et al. [16].
Cytron et al. [4] introduced the concept of dominance frontiers as an effective
mechanism for placing φ-nodes. As mentioned in the introduction, the sparse
conditional constant analysis by Wegman and Zadeck [21] builds on top of this
work and takes reachability into account during the analysis by tracking which
def-use edges represent executable flow. The notion of dependence flow graphs
by Johnson et al. [11] is a variant of SSA that incorporates branch conditions
and thereby supports subsequent dataflow analysis with reachability. Common
to this line of work is that heap objects and pointers are not supported.

For programming languages with pointers, most work on sparse analysis has
focused on pointer analysis, not dataflow analysis in general. The semi-sparse
pointer analysis by Hardekopf and Lin [7] uses SSA and sparse analysis for top-
level variables that are not accessed via pointers, whereas address-taken variables
and heap allocated data are treated using standard flow-sensitive analysis with-
out sparseness.

Other techniques handle pointers typically by staging the analysis using a
pre-analysis to approximate possible definition sites and use sites [3,8,14]. How-
ever, as discussed previously, that approach cannot support reachability without
sacrificing analysis precision or sparseness. By computing definition sites and use
sites on-the-fly, we avoid that problem.

15



The analysis by Chase et al. [2] handles pointers and performs sparse analysis
on the basis of φ-nodes that are computed on-the-fly, however, it does not account
for reachability. The analysis framework by Tok et al. [20] is based on similar
ideas. The algorithms used in those analyses for finding dominating definitions
are discussed in Section 3.4. A related analysis framework has been presented
by Staiger-Stöhr [19].

Numerous other program analysis techniques have been designed to prevent
various kinds of redundancy in the dataflow propagation. Of particular relevance
is the lazy propagation technique by Jensen et al. [10] that restricts dataflow at
call sites that is not needed by the function being called. When use sites are in-
crementally discovered, the relevant values are recovered by a backward traversal
of the call graph, which is reminiscent of the search for nearest dominating def-
initions in our sparse analysis. We conjecture that our sparse analysis may be
more efficient than lazy propagation; however, lazy propagation is known to work
smoothly together with recency abstraction [1,9], which is a useful technique for
boosting analysis precision, and it is an open problem whether sparse analysis
and recency abstraction can also be combined effectively.

In summary, the present work can be understood as a generalization and
combination of ideas from on-the-fly SSA construction [2, 19, 20] while taking
reachability into account [11,21]. Furthermore, we propose a more efficient data
structure, based on insights from computational geometry [5], for managing dom-
inating definitions, compared to the existing techniques [19,20].

6 Conclusion

We conclude that it is possible to perform efficient sparse dataflow analysis in a
setting that requires reasoning about pointers and reachability. Our experimental
evaluation shows not only that the sparse analysis is significantly faster than the
dense counterpart, but also that the overhead of on-the-fly SSA construction
is small, which makes the approach a promising alternative to staged analyses.
Moreover, we have demonstrated that quadtrees are suitable for maintaining
information about dominating definitions.

Our next step is to integrate the analysis algorithm into the TAJS tool to
become able to explore the performance on a larger class of JavaScript applica-
tion. It may also be interesting to apply the algorithm to other programming
languages and other abstract domains.

Acknowledgments The authors thank Casper Kejlberg-Rasmussen, Jesper
Sindal Nielsen, and Ondřej Lhoták for inspiring discussions about data struc-
tures and dataflow analysis. The work presented in this paper was supported by
the Danish Research Council for Technology and Production.

16



References

1. Gogul Balakrishnan and Thomas W. Reps. Recency-abstraction for heap-allocated
storage. In Proc. 13th International Static Analysis Symposium, August 2006.

2. David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers
and structures. In Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation, June 1990.

3. Fred Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and Mark Streich. Effective
representation of aliases and indirect memory operations in SSA form. In Proc.
6th International Conference on Compiler Construction, April 1996.

4. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems,
13(4):451–490, 1991.

5. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Compu-
tational Geometry: Algorithms and Applications. Springer, 1997.

6. Sariel Har-Peled. Geometric Approximation Algorithms. American Mathematical
Society, Boston, MA, USA, 2011.

7. Ben Hardekopf and Calvin Lin. Semi-sparse flow-sensitive pointer analysis. In
Proc. 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, January 2009.

8. Ben Hardekopf and Calvin Lin. Flow-sensitive pointer analysis for millions of
lines of code. In Proc. 9th International Symposium on Code Generation and
Optimization, April 2011.

9. Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for
JavaScript. In Proc. 16th International Static Analysis Symposium, volume 5673
of LNCS, August 2009.

10. Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interprocedural analysis
with lazy propagation. In Proc. 17th International Static Analysis Symposium,
volume 6337 of LNCS, September 2010.

11. Richard Johnson and Keshav Pingali. Dependence-based program analysis. In
Proc. ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, June 1993.

12. John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks.
Acta Informatica, 7:305–317, 1977.

13. Gary A. Kildall. A unified approach to global program optimization. In Proc.
ACM Symposium on Principles of Programming Languages, October 1973.

14. Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. De-
sign and implementation of sparse global analyses for C-like languages. In Proc.
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, June 2012.

15. John H. Reif and Harry R. Lewis. Symbolic evaluation and the global value graph.
In Proc. 4th ACM Symposium on Principles of Programming Languages, January
1977.

16. Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value numbers
and redundant computations. In Proc. 15th ACM Symposium on Principles of
Programming Languages, January 1988.

17. Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Dynamic determinacy
analysis. In Proc. ACM SIGPLAN Conference on Programming Language Design
and Implementation, June 2013.

17



18. Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts
well: understanding object-sensitivity. In Proc. 38th ACM Symposium on Princi-
ples of Programming Languages, January 2011.

19. Stefan Staiger-Stöhr. Practical integrated analysis of pointers, dataflow and control
flow. ACM Transactions on Programming Languages and Systems, 35(1):5:1–5:48,
2013.

20. Teck Bok Tok, Samuel Z. Guyer, and Calvin Lin. Efficient flow-sensitive interpro-
cedural data-flow analysis in the presence of pointers. In Proc. 15th International
Conference on Compiler Construction, March 2006.

21. Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional
branches. ACM Transactions on Programming Languages and Systems, 13(2):181–
210, 1991.

18


