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Ondřej Lhoták
University of Waterloo, Canada

olhotak@uwaterloo.ca

Abstract
We present FLIX, a declarative programming language for
specifying and solving least fixed point problems, particularly
static program analyses. FLIX is inspired by Datalog and
extends it with lattices and monotone functions. Using FLIX,
implementors of static analyses can express a broader range
of analyses than is currently possible in pure Datalog, while
retaining its familiar rule-based syntax.

We define a model-theoretic semantics of FLIX as a natural
extension of the Datalog semantics. This semantics captures
the declarative meaning of FLIX programs without imposing
any specific evaluation strategy. An efficient strategy is
semi-naïve evaluation which we adapt for FLIX. We have
implemented a compiler and runtime for FLIX, and used it
to express several well-known static analyses, including the
IFDS and IDE algorithms. The declarative nature of FLIX
clearly exposes the similarity between these two algorithms.

Categories and Subject Descriptors F3.2 [Semantics of
Programming Languages]: Program Analysis

General Terms Logic Programming, Static Analysis

Keywords logic programming, static analysis, Datalog

1. Introduction
Least fixed point problems are ubiquitous in mathematics and
computer science, significantly in programming languages,
and particularly in program analysis. Given a monotone
function F on a lattice, the goal is to find the least x for
which F pxq “ x. At the lowest and most general level, a
program is a function F that instructs a machine how to

change its overall state at each computation step. A static
analysis computes an abstract state x̂ that over-approximates
all possible concrete states that a program can reach. Every
sound approximation must satisfy F̂ px̂q Ď x̂, where F̂ is an
abstraction of the concrete transformation function F , since
if a state in x̂ can be reached by a computation, then so can
a state in F̂ px̂q. The least x̂ satisfying this property can be
computed by starting from the least element K and iteratively
applying F̂ until the fixed point is reached [15, 35].

Static analyzers, which involve fixed-point computations,
are complex pieces of software often implemented in general-
purpose languages such as C++ or Java. The many mutual de-
pendencies, imposed by the fixed-point problem, are typically
expressed using a complex arrangement of worklists. The de-
cision of how to structure the worklists is global, so these
large analyzers become difficult to restructure and modify. It
also becomes difficult to understand precisely the analysis
problem that the implementation is actually solving, and to
assure oneself that the implementation is correct. Moreover,
the complexity of the dependencies between inter-related sub-
analyses often leads analysis implementors to sacrifice preci-
sion. For example, some interprocedural analysis frameworks
use a call graph precomputed with conservative assumptions
to compute dataflow information that would enable a more
precise call graph.

To overcome these difficulties, some analysis designers
have turned to Datalog [7, 9, 63]. A Datalog program is a set
of rules and its solution is the minimal model that satisfies
those rules. An important benefit of a Datalog program is
its modularity: because the rules are declarative, individual
sub-analyses can be easily composed by taking the union of
their rules, and the Datalog solver takes care of the mutual
dependencies automatically. Thus, it is easy to understand
an analysis by understanding its components individually.
Correctness of each component implies correctness of the
overall analysis. Furthermore, Datalog solvers implement
many important optimizations, such as index selection, query
planning, and parallel execution [3, 27, 28, 58]. In a hand-
crafted static analyzer, each of these optimizations must be
implemented manually.
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However, Datalog has important limitations that restrict
its applicability to program analysis:

Lattices. Datalog is inherently limited to rules on relations,
i.e. powersets of tuples, but common static analyses operate
over a wide variety of other lattices. Some simple lattices can
be embedded in powersets, but at a very high computational
cost, and more interesting lattices cannot be encoded at all.
For example, we can embed the constant propagation lattice
over a finite domain in the following way: K is represented
by the empty set, each constant is represented by a singleton
set, and J is represented by any set that contains a specially
designated J element. We then add a rule that adds the J
element to every set of two or more elements. However, this
J rule cannot prevent the Datalog program from processing
the original non-singleton, non-J sets. We get the worst of
both worlds: the precision is the same as with the constant
propagation lattice, but the computational cost is the same
as with the much more expensive arbitrary-sets-of-constants
lattice. Moreover, when the domain of the constants is infinite,
such as the integers, the lattice cannot be encoded at all.

Functions. A related issue is that functions can only be
expressed as tabulated relations in Datalog. This can be
cumbersome and slow, and functions with an infinite domain
or codomain cannot be expressed at all. Consequently, most
operations on lattices cannot be expressed. Returning to
the constant propagation lattice, even if the lattice itself
could somehow be expressed in Datalog, there would be
no way to express abstract addition or multiplication on
its elements. Moreover, the lack of functions, as well as
compound datatypes, means that even a simple context-
sensitive analysis such as k -CFA cannot be expressed.

Interoperability. A practical limitation of most Datalog
solvers is that they do not interact well with existing infras-
tructure. For instance, static analyzers are often forced to
serialize their facts to a file, externally execute the solver,
and then read the solution back from a file. Besides addi-
tional overhead, this requires a tedious mapping between the
analysis and the Datalog solver format.

To overcome these limitations, we propose FLIX, a new
declarative language for fixed-point problems. FLIX is a rule-
based language inspired by Datalog and extended with lattices
and monotone functions.

In summary, this paper makes the following contributions:

• We present FLIX, a new programming language inspired
by Datalog and extended with lattices and functions.

• We define a model-theoretic semantics of FLIX as a
natural generalization of the Datalog semantics.

• We show how several well-known static analyses, which
are inexpressible in Datalog, can be expressed in FLIX.

• We present declarative formulations of the IFDS and
IDE algorithms in FLIX, which clearly and concisely
demonstrate that IDE is a generalization of IFDS.

• We discuss our implementation of a preliminary FLIX
solver and its relation to semi-naïve evaluation. We exper-
imentally compare its performance to hand-crafted static
analyzers and the DLV Datalog solver.

2. Motivation
2.1 Points-to Analysis with Datalog
Undoubtedly, the “killer-app” for Datalog has been points-to
analysis of object-oriented programs [4, 7, 30, 37, 54, 55, 63].
This involves the specification and computation of sophisti-
cated whole-program subset-based points-to analysis [1, 31].
Consider the following Java fragment:

1 ClassA o1 = new ClassA() // object A
2 ClassB o2 = new ClassB() // object B
3 ClassB o3 = o2;
4 o2.f = o1;
5 Object r = o3.f; // Q: What is r?

A points-to analysis for this program can help answer ques-
tions such as: “to what object can the local variable r point?”
In this case, r can point to object A since: (i) variable o1
points to object A, (ii) variable o2 points to object B, (iii)
variable o3 points to the value of variable o2 which is object
B, (iv) object A is written to field f of object B due to i and
ii, (v) the value of r is object A since variable o3 points to
object B due to iii, and the value of field f is A due to iv.

Unfortunately, such complicated reasoning is necessary
due to the multiple recursive dependencies in the dataflow
of an object-oriented program: specifically, that local vari-
able information depends on heap information which itself
depends on local variable information. Datalog provides an
elegant formalism to express such recursive rules. Figure 1
shows a points-to analysis for a minimal object-oriented lan-
guage. This formulation has just four rules, but is sufficient
to capture the entirety of the above reasoning.

The program defines six relations: the four input relations
New, Assign, Load, and Store, and the two derived relations
VarPointsTo and HeapPointsTo which hold the solution.
To analyze the code fragment above, we represent it as a set
of facts that are fed to a Datalog solver:

New("o1", "A").
New("o2", "B").
Assign("o3", "o2").
Store("o2", "f", "o1").
Load("r", "o3", "f").

Running the solver infers a solution containing the fact Var-
PointsTo("r", "A"), as expected. As an example of how
to understand a Datalog program, consider the second rule in
Figure 1. This rule states that if there is an assignment from
v2 to v1 and v2 points to some object h2, then v1 points to
h2. Furthermore, notice the mutual recursion in the rules for
VarPointsTo and HeapPointsTo in Figure 1.
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VarPointsTo(v1, h1) :́ New(v1, h1).
VarPointsTo(v1, h2) :́ Assign(v1, v2),

VarPointsTo(v2, h2).
VarPointsTo(v1, h2) :́ Load(v1, v2, f),

VarPointsTo(v2, h1),
HeapPointsTo(h1, f, h2).

HeapPointsTo(h1, f, h2) :́ Store(v1, f, v2),
VarPointsTo(v1, h1),
VarPointsTo(v2, h2).

Figure 1. A field-sensitive subset-based points-to analysis
for an object-oriented programming language, e.g. Java.

2.2 Points-to and Dataflow Analysis with FLIX

The analysis presented in the previous section is sufficient
if we are only interested in points-to information. However,
many static analysis clients require additional information.
Consider a client that wants to discover division-by-zero
errors. This analysis requires both points-to and dataflow
analysis to determine if the denominator in a division is
possibly zero. We can use a constant propagation analysis or
interval analysis to discover this information. However, as
argued in the introduction, such analyses are not expressible
in Datalog, but they are expressible in FLIX.

In this section, we show how to develop such an analysis,
but for the sake of exposition, we use the parity lattice instead
of the constant propagation or interval lattices. As a reminder,
the parity lattice tracks whether numbers are odd or even.
Figure 2 shows a FLIX program that extends the points-to
analysis with a dataflow analysis.

The FLIX language is composed of two parts: a pure
functional programming language for specifying lattices,
their associated operations, and monotone functions over
their elements, combined with a logic language for expressing
rules over relations and lattices. Bringing everything together
is a set of declarations to specify the names, arities, and types
of functions, relations, and lattices. The syntax of FLIX is
inspired by Scala and Datalog.

We briefly walk through the program in Figure 2.
The enum definition on lines 5–9 defines a tagged union

of the elements of the parity lattice. In FLIX, references to a
tag must be prefixed by the enum name, thus Parity.Odd
refers to the odd element of the parity enum.

The function definitions on lines 13–20 and 23–24 each
define a named function, the type of its arguments, its return
type, and its expression body. FLIX functions are used to
define the components of a lattice and to express monotone
filter and transfer functions. Here, the leq function defines
the partial order of parity lattice elements. FLIX functions are
expressed using a small, pure functional language.

The lattice definition on lines 28–29 associates a 5-tuple
pK,J,Ď,\,[q of lattice components with a type, where
K is the bottom element, J is the top element, Ď is the
partial order,\ is the least upper bound, and[ is the greatest
lower bound. A lattice definition is a built-in mechanism for
defining what is essentially an instance of a type class [62].

1 // an almost complete Flix program.
2
3 // an enum definition that defines
4 // the elements of the parity lattice.
5 enum Parity {
6 case Top,
7 case Even, case Odd,
8 case Bot
9 }

10
11 // a function definition that defines
12 // the partial order of the parity lattice.
13 def leq(e1: Parity, e2: Parity): Bool =
14 match (e1, e2) with {
15 case (Parity.Bot, _) => true
16 case (Parity.Even, Parity.Even) => true
17 case (Parity.Odd, Parity.Odd) => true
18 case (_, Parity.Top) => true
19 case _ => false
20 }
21
22 // additional lattice definitions ...
23 def lub(e1: Parity, e2: Parity): Parity = ...
24 def glb(e1: Parity, e2: Parity): Parity = ...
25
26 // association of the lattice operations
27 // with the parity type.
28 let Parity<> = (Parity.Bot, Parity.Top,
29 leq, lub, glb);
30
31 // monotone filter and transfer functions ...
32 def isMaybeZero(e: Parity): Bool = ...
33 def sum(e1: Parity, e2: Parity): Parity = ...
34
35 // declaration of relations ...
36 rel Load(var: Str, base: Str, field: Str);
37 rel VarPointsTo(var: Str, obj: Str);
38 // additional declarations ...
39
40 // declaration of lattices ...
41 lat IntVar(var: Str, Parity<>);
42 lat IntField(var: Str, field: Str, Parity<>);
43 // additional declarations ...
44
45 // VarPointsTo and HeapPointsTo rules ...
46
47 // additional dataflow analysis rules ...
48
49 IntVar(v, i) :́ Int(v, i).
50 IntVar(v, i) :́ Assign(v, v2), IntVar(v2, i).
51 IntVar(v, i) :́ Load(v, v2, f),
52 VarPointsTo(v2, h),
53 IntField(h, f, i).
54 IntField(h, f, i) :́ Store(v1, f, v2),
55 VarPointsTo(v1, h),
56 IntVar(v2, i).
57
58 // rule for addition of parity elements.
59 IntVar(r, sum(i1, i2)) :́ AddExp(r, v1, v2),
60 IntVar(v1, i1).
61 IntVar(v2, i2).
62
63 // rule for potential divisioń bý zero errors.
64 ArithmeticError(r) :́ DivExp(r, v1, v2),
65 IntVar(v2, i2),
66 isMaybeZero(i2).

Figure 2. A subset-based, field-sensitive points-to analysis
combined with a dataflow analysis expressed in FLIX.
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Like Haskell, FLIX allows only one type class instance per
type. The definition assumes that the supplied functions
satisfy the properties of a complete lattice; otherwise, the
semantics of the FLIX program is undefined. The notation
Parity<> is used to distinguish the parity type from the
parity type class instance.

The relation declaration on line 36 (and 37) defines a
relation by specifying its name and its attributes (columns),
together with their names and types. The lattice declaration
on line 41 (and 42) defines a lattice by specifying its name
and its attributes (columns), together with their names and
types. The last attribute of a lattice declaration must have a
type equipped with a lattice. Intuitively, the IntVar lattice is
the map lattice from strings to elements of the parity lattice.

A rule definition in FLIX is similar to a Datalog rule, but
is more expressive. First, a FLIX rule may contain function
applications in the last term of the head predicate of a rule.
For example, consider line 59:

IntVar(v, sum(v1, v2)) :́ ...

Here, the sum function is used to compute the abstract sum of
two parity lattice elements. The function must be monotone
in its arguments. Second, a FLIX rule may use a filter function
which is monotone over the booleans. For example, consider
lines 64–66:

ArithmeticError(r) :́ DivExp(r, v1, v2),
IntVar(v2, i2),
isMaybeZero(i2).

Here, the filter function isMaybeZero selects only those
parity elements i2 that may be zero, i.e. the Parity.Even
and Parity.Top elements.

This example demonstrates three key features of FLIX:
the ability to express lattices, monotone filter functions that
select a subset of lattice elements, and monotone transfer
functions that express mappings between lattice elements.
These features go beyond what is possible in Datalog and
give FLIX its expressive power.

2.3 Design Choice: Language or Framework?
A natural question to ask is why implement FLIX as a
programming language instead of as a framework? First,
we want the logic language and the functional language
to receive equal treatment. If we had embedded FLIX in
a functional language, expressing rules would have suffered,
and vice versa. Second, we want full control over the language
to ensure that the choices of evaluation strategy and data
structures are up to the implementation.

At the same time, we want to ensure interoperability with
the JVM, providing access to the existing ecosystem of static
analysis frontends and tools. FLIX allows programmers to
access JVM types and methods, and use them in their defini-
tions of lattices and functions. Furthermore, FLIX provides
an API for accessing computed solutions.

3. Semantics
In this section, we present the model-theoretic semantics of
Datalog, and then extend that semantics to FLIX. To do so,
we abstract away some details of the full FLIX language.

3.1 Model-Theoretic Semantics of Datalog
Syntax. A Datalog program P is a set of rules of the
form A0 ð A1, . . . , An where A0 is the head of the rule,
A1, . . . , An is the body of the rule, and each Ai is an atom.
A fact is a rule with an empty body. An atom has the form
ppt1, . . . , tnq, where p is a predicate symbol and t1, . . . , tn
are terms. A term is either a variable x or a constant value v.
Values are typically primitive integers and strings. Datalog
has no operations on primitive values nor any compound
datatypes. Figure 3 shows the syntax of Datalog programs.

Herbrand Universe and Base. We now briefly describe
the Herbrand interpretation of a Datalog program. This is a
simple and elegant approach, commonly used to define the
meaning of Datalog programs [9]. The Herbrand universe U
of a Datalog program P is the set of all possible ground
terms. A ground term is a non-variable term, i.e. a constant
value appearing somewhere in the program P . The Herbrand
universe is finite since the program P contains a finite number
of constants. The Herbrand base B of a Datalog program P
is the set of all ground atoms. A ground atom is a predicate
symbol that occurs in P with its arguments drawn from the
Herbrand universe. Note that the Herbrand base respects the
arity of the predicates. The Herbrand base is also finite. As
an example, given the Datalog program

Ap1q. Bp2, 3q. Apxq : ´ Bpx, _q.

the Herbrand universe U is

U “ t1, 2, 3u

and the Herbrand base B is

B “

$

’

’

&

’

’

%

Ap1q, Ap2q, Ap3q,

Bp1, 1q, Bp1, 2q, Bp1, 3q,

Bp2, 1q, Bp2, 2q, Bp2, 3q,

Bp3, 1q, Bp3, 2q, Bp3, 3q

,

/

/

.

/

/

-

Intuitively, the Herbrand base can be thought of as the set of
“all possible facts.”

Interpretations and Models. An interpretation I of a Data-
log program P is a subset of the Herbrand base B. A ground
atom A is true w.r.t. an interpretation I if A P I . A conjunc-
tion of atoms A1, . . . , An is true w.r.t. an interpretation if
each atom is true in the interpretation. A ground rule is true
if either the body conjunction is false or the head is true. A
ground rule is a rule where all atoms are ground.

A model M of a Datalog program P is an interpretation,
i.e. a subset of the Herbrand base B, that makes each ground
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P P Prog ::“ R1, . . . , Rn

R P Rules ::“ A0 ð A1, . . . , An

A P Atoms “ ppt1, . . . , tnq

t P Terms “ x | v

p P Predicates “ is a finite set of predicate symbols.
x P Variables “ is a finite set of variables.
v P Values “ is a finite set of values.

Figure 3. Grammar of Datalog programs.

instance of each rule in P true. A ground instance of a rule
is obtained by replacing every variable in a rule with a term
from the Herbrand universe. A model M is minimal if there
is no other model M 1 such that M 1 Ă M . Consider the
following interpretations of the previous program:

I1 “ tAp1qu

I2 “ tAp1q, Bp2, 3qu

I3 “ tAp1q, Ap2q, Ap3q, Bp2, 3qu

I4 “ tAp1q, Ap2q, Bp2, 3qu

Here, I1 and I2 are not models because they do not make each
ground rule instance true. I3 is a model, but is not minimal
as evidenced by the true minimal model I4.

Computing the Minimal Model. The model-theoretic se-
mantics does not tell us how to compute the minimal model.
This is desirable because it separates the definition of what
the solution is from how to compute it. Thus, different Data-
log solvers can use different evaluation strategies while still
agreeing on the solution.

The model-theoretic semantics does provide some insight
into how a solver can be implemented. Let I be an inter-
pretation of a Datalog program P . We define the immediate
consequence operator Tp of I as the head atoms of each
ground rule instance that is satisfied by I . In other words, we
can think of I as the current set of facts, and TppIq as the
set of facts that can be derived from I and P in “one-step.”
The minimal model of P can then be computed by repeated
iteration of TppIq starting from the empty set of facts, i.e. it is
the least fixed point of T8p pHq. This strategy is called “naïve”
evaluation since it re-evaluates every rule whenever a new
fact is inferred. A better strategy is discussed in Section 3.7.

3.2 From Datalog to FLIX

We now extend the Datalog semantics to FLIX.
A complete lattice ` is a 6-tuple ` “ pE,K,J,Ď,\,[q,

where E is a set of elements, K P E is the least element,
J P E is the greatest element, Ď is the partial order on E, \
is the least upper bound, and [ is the greatest lower bound.

We want to allow static analysis implementors to express
their own lattices and operations on them. In order to do that,
we extend the values of Datalog with enums (tagged unions),

tuples, and sets. Furthermore, we add a pure functional
programming language. For the purpose of this paper, this
language can be thought of as a minimal lambda calculus,
but the full FLIX language is richer. It includes algebraic
data types, pattern matching, collections (e.g. lists, sets, and
maps), and a static type system.

We make six changes to the Datalog semantics to extend
it with lattices. In brief, the steps are:

1. Associate every predicate symbol with a lattice.

2. Extend the Herbrand universe with lattice elements.

3. Partition the Herbrand base into cells and introduce a
complete lattice on all ground atoms in each cell.

4. Introduce compactness of an interpretation.

5. Extend the definition of a model to incorporate the partial
order on ground atoms.

6. Introduce a partial order on models and update the defini-
tion of minimality.

We now describe each step in greater detail.
First, we change the grammar of Datalog programs to

associate every predicate symbol with a lattice `. Thus, for
example, a fact and a rule now look like

A`pOddq. B`pxq : ´ A`pxq.

where ` refers to a lattice, in this case, the parity lattice.
Second, we change the definition of the Herbrand uni-

verse U to include all possible ground terms T and lattice
elements E of the FLIX program P . The Herbrand base B
remains the same, but uses the new definition of the Herbrand
universe U . Notice that the Herbrand universe (and conse-
quently the Herbrand base) may be infinite if a lattice has
infinitely many elements.

Third, we partition the Herbrand base such that two ground
atoms A “ p`pv1, . . . , vnq and B “ p1`1pv11, . . . , v

1
mq are in

the same cell S if they have the same predicate symbol (i.e.
p` “ p1`1 ), the same number of terms (i.e. n “ m), and the
first n ´ 1 terms are equal (i.e. v1 “ v11 ^ ¨ ¨ ¨ ^ vn´1 “

v1m´1). Notice that all predicate symbols in the same cell have
the same associated lattice `. For each cell S, we introduce a
complete lattice LS “ pS,KS ,JS ,ĎS ,\S ,[Sq. Given two
ground atoms A “ p`pv1, . . . , vnq and B “ p`pv

1
1, . . . , v

1
nq,

we define their partial order as follows: if n “ 1 thenA ĎS B
when v1 Ď v11. Otherwise, if n ą 1 then A ĎS B when
v1 “ v11 ^ ¨ ¨ ¨ ^ vn´1 “ v1n´1 and vn Ď v1n. In words,
in order for A ĎS B, the first n ´ 1 components of A and
B must match exactly, and the last component of A must
be less than or equal to the last component of B according
to the partial order defined for the lattice `. The definition
of the remaining lattice components is straightforward. The
intuition is that unary predicates correspond to a single lattice
element whereas multi-ary predicates correspond to a single
tuple from a map lattice. To ensure a finite number of cells,
we restrict the terms that can appear in a ground atom. Recall
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that the Herbrand universe U “ T Y E consists of ground
terms T and lattice elements E . We require that in every
ground atom p`pv1, . . . , vnq, the values v1, . . . , vn´1 must
be drawn from T , and vn must be drawn from E . Since T
consists of terms that syntactically appear in the program P ,
it is finite and consequently the number of cells is finite.

Fourth, we introduce the notion of compactness. An
interpretation I is compact iff every cell S in the partition of
I has one unique element.

Fifth, an interpretation is still a subset of the Herbrand
base, but we change the definition of when an interpretation
is a model. Specifically, a ground atom A is true w.r.t. an
interpretation I if DA1 P I such that A ĎS A

1, where A and
A1 are in the same cell S. As before, a conjunction of atoms
A1, . . . , An is true w.r.t. an interpretation if each atom is true
in the interpretation. Finally, a ground rule is true if either the
body conjunction is false or the head is true. A model M of
P is then an interpretation that makes each ground instance
of each rule in P true.

Sixth, we define a partial order ĎM on models. Given two
models M1 and M2, we say that M1 is less than or equal to
M2 if for every ground atom A1 PM1, belonging to cell S,
there is a ground atom A2 P M2, also belonging to S, such
that A1 ĎS A2. A model M is minimal if it is compact and
there is no other model M 1 such that M 1 ĎM M .

Example. The FLIX program defined over the parity lattice
` “ ptK,J, Even, Oddu,K,J,Ď,\,[q with the facts

A`pEvenq. A`pOddq. B`pOddq.

has the Herbrand universe

U “ tK,J, Even, Oddu

and the Herbrand base

B “
"

A`pKq, A`pEvenq, A`pOddq, A`pJq,

B`pKq, B`pEvenq, B`pOddq, B`pJq

*

An interpretation of the program is a subset of B, e.g.:

I1 “ tA`pJqu

I2 “ tA`pJq, B`pKqu

I3 “ tA`pJq, B`pOddq, B`pJqu

I4 “ tA`pEvenq, A`pOddq, B`pOddqu

I5 “ tA`pJq, B`pJqu

I6 “ tA`pJq, B`pOddqu

The interpretations I1 and I2 are not models of the program
since neither makes B`pOddq true. I3 and I4 are models, but
they are not compact. I5 is a compact model, but it is not
minimal as evidenced by the true minimal model I6.

Example. The FLIX program defined over the sign lattice
` “ ptK,J, Neg, Zer, Posu,K,J,Ď,\,[q with the facts

A`p1, Posq. A`p2, Posq. A`p2, Negq.

has the Herbrand universe

U “ t1, 2,K,J, Neg, Zer, Posu

and the Herbrand base

B “
"

A`p1,Kq, A`p1, Negq, A`p1, Zerq, . . .

A`p2,Kq, A`p2, Negq, A`p2, Zerq, . . .

*

An interpretation of the program is a subset of B, e.g.:

I1 “ tA`p1,Jqu

I2 “ tA`p1, Posq, A`p1, Negq, A`p2,Jqu

I3 “ tA`p1,Jq, A`p2,Jqu

I4 “ tA`p1, Posq, A`p2,Jqu

Here, I2, I3 and I4 are models, I3 and I4 are compact, but
only I4 is minimal.

Least Upper and Greatest Lower Bounds. To clarify how
lattices are used in FLIX, suppose that we have the two facts:

A(Odd). B(Even).

Then the FLIX program with the two rules

R(x) :́ A(x). R(x) :́ B(x).

has RpJq in the minimal model since J is the only element
greater than or equal to both Odd and Even. On the other
hand, the FLIX program with the one rule

R(x) :́ A(x), B(x).

has RpKq in the minimal model since K is the only element
less than or equal to both Odd and Even.

Computing the Minimal Model. We have described how
to compute the minimal model of a Datalog program as the
least fixed point of the immediate consequence operator Tp.
We can adopt a similar strategy for FLIX programs with one
change: the domain of the operator is restricted to compact
interpretations, and since the set of one-step derivable facts
may not be compact, we must compute the least upper bound
in every cell of the interpretation before we apply Tp again.

Ullman [59, Chapter 3] presents a naïve evaluation algo-
rithm for Datalog with a detailed proof that it terminates and
computes the minimal model. The proof relies on two key
properties: monotonicity of the immediate consequence oper-
ator and finiteness of ascending chains of interpretations. By
being careful to maintain monotonicity in defining the FLIX
version of the immediate consequence operator, and by insist-
ing that the FLIX lattices be of finite height, we can apply the
same proof to a naïve evaluation algorithm for FLIX.
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3.3 The Full FLIX Language
The FLIX language is richer than the core formalism pre-
sented in the previous subsection. In this subsection, we de-
scribe two important extensions: monotone filter functions
and monotone transfer functions. Without these features, pro-
gramming in FLIX would be severely limited. Monotonicity
of these functions is necessary to maintain the monotonicity
of the immediate consequence operator, which in turn is nec-
essary for the correctness of the naïve evaluation algorithm.

Monotone Filter Functions. A monotone filter function
is a function from one or more lattice elements to true
or false, and is monotone when the booleans are ordered
false ă true. For example, assume that isMaybeZero is
a function over the parity lattice elements. Then the rule

ArithmeticError(r) :́
DivExp(r, v1, v2),
IntVar(v2, i2),
isMaybeZero(i2).

captures a possible division-by-zero error for result variable
r when there is an expression r = v1 / v2, the value of
variable v2 is the parity lattice element i2, and i2 is possibly
zero according to the filter function. The important point
here is that the DivExp relation and IntVar lattice are both
explicitly represented and tabulated, whereas isMaybeZero
is a reference to a function expression, i.e. a piece of code.
Thus, filter functions may operate over domains that are too
difficult or even impossible to tabulate.

We add filter functions to the model-theoretic semantics
with the following changes:

1. Extend the definition of a rule to allow filter function
applications fip. . . q in addition to atoms.

2. Extend the definition of when a ground rule is true.
A conjunction of atoms A1, . . . , An and filter function
applications f1, . . . , fm is true w.r.t. an interpretation if
each atom is true in the interpretation, and if each filter
function evaluates to true. A ground rule is true if either
the body conjunction is false or the head is true.

Monotone Functions. A monotone function is a function
from one or more lattice elements to a lattice element, which
is order-preserving. These functions are used to implement
“transfer” functions in FLIX. For example, in the rule

IntVar(r, sum(i1, i2)) :́
AddExp(r, v1, v2),
IntVar(v1, i1),
IntVar(v2, i2).

the monotone function sum computes the abstract addition
of two parity lattice elements i1 and i2. We highlight two
important design choices here.

First, we require such transfer functions to be strict and
monotone. Strictness ensures that when a function is applied
to K it returns K. Monotonicity requires that the function is
order-preserving and is necessary to ensure that the immedi-
ate consequence operator is also monotone.

Second, we only allow non-filter functions to appear in
the last term of the head predicate of a rule. This ensures that
the implementation can evaluate the rule body first, in any
order, and then evaluate the head. If non-filter functions could
appear in the body, then one could write

R(z) :́ A(x), B(y, f(x)), C(z, g(y)).
R(x) :́ A(y, f(x)), B(z, g(y)), C(x, h(z)).

where the first rule implicitly enforces an evaluation order1.
Moreover, it is not clear how to evaluate the second rule.
Thus, we disallow non-filter functions in rule bodies.

We add monotone “transfer” functions to the model-
theoretic semantics with the following changes:

1. Extend the definition of a rule to allow the last term of a
head predicate to contain function applications fip. . . q.

2. Extend the definition of a ground rule instance to allow
function applications in the last term of a head predicate.

3. Extend the definition of when a ground atom is true.
A ground atom A with function applications is true iff
after all function applications are evaluated, the resulting
ground atom is true.

3.4 Compositionality of FLIX Programs
An important property of Datalog programs is compositional-
ity: given two disjoint Datalog programs P1 and P2, i.e. two
programs that share no predicate symbols, the union of their
rules is a Datalog program P . The model of P is the union of
the models of P1 and P2. FLIX retains this property, allowing
composition of analyses. For example, given a constant prop-
agation analysis and a reachability analysis, we can combine
the two to obtain a conditional constant propagation analysis.
We share information between the two analyses by introduc-
ing the shared predicates isReachablepsq, isTruepsq, and
isFalsepsq. The constant propagation analysis infers facts
for the isTruepsq and isFalsepsq predicates and uses the
isReachablepsq predicate, while the reachability analysis
does the opposite.

In abstract interpretation terminology, the composition-
ality discussed above is known as the direct product [14].
Given two analyses, e.g. sign and parity, the direct product
corresponds to running each analysis independently. No in-
formation is shared and neither lattice is used to refine the
other. For example, the element pZer, Oddq in the Cartesian
product Signˆ Parity does not correspond to any concrete
value and could be replaced by pK,Kq. The reduced product
uses this idea to refine and share information between lat-
tices [11, 14]. The logical product is more precise than the
reduced product, and under certain conditions can be con-
structed automatically [29]. FLIX provides the direct product
automatically, but the reduced and logical products must be
implemented manually.

1 Since the functions f and g are opaque and may not have an inverse.
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3.5 Negation, Stable Models, and Stratification
Pure Datalog does not allow negation: every atom in the
body of a rule must appear unnegated. Many proposals
have been made to extend logic and Datalog programs with
negation [20, 21, 23, 26, 36]. A fundamental challenge is how
to define the semantics of programs such as:

A(x) :́ !B(x). B(x) :́ !A(x).

To overcome these issues, several solutions including stable
models [25], well-founded semantics [61], and many-valued
logic [23] have been developed. A common solution is to re-
strict the use of negation to so-called stratifiable programs [2].
A program is stratifiable if it satisfies a simple syntactic prop-
erty which ensures that no negative cycles occur in the pro-
gram. FLIX currently does not support any form of negation,
but it is something we plan to add.

3.6 The Theoretical Expressive Power of Datalog
We have previously stated that certain static analyses are
“inexpressible” in pure Datalog. Strictly speaking, this is
not true: a well-known result from logic and complexity
theory shows that the data complexity of Datalog is PTIME-
complete [17]. The data complexity of a program is the
complexity when the input is restricted to facts (i.e. the rules
are kept fixed) and PTIME is the class of all polynomial
time algorithms. Intuitively, any algorithm which runs in
polynomial time can be encoded as a Datalog program.
Naturally, this includes polynomial time static analyses.

However, this encoding simulates a Random Access Ma-
chine that tabulates all steps taken by the algorithm, and
furthermore, requires operations such as integer arithmetic to
be represented as finite relations. While this is sufficient for
an existence proof, such tabulation is completely impractical
for an implementation.

3.7 The Semi-naïve Evaluation Strategy
The model-theoretic semantics of FLIX describes the struc-
ture of the minimal model of a program, but not how to
compute it. This is a good thing, since it gives the fixed-point
solver maximum freedom in the choice of data structures and
evaluation strategy. As explained before, the model-theoretic
semantics inspires a naïve evaluation strategy based on the
immediate consequence operator. The idea is to repeatedly
re-evaluate every rule while maintaining a monotonically
growing set of facts. While this strategy is simple and correct,
it is hopelessly inefficient.

A better strategy, known as semi-naïve evaluation, tracks
the dependencies between predicates and predicate symbols
appearing in rule bodies. Under this evaluation strategy,
whenever a new fact for a predicate p is inferred, only the
rules containing p in their body are re-evaluated, and only for
the new fact. For example, in the FLIX program

SelfLoop(x) :́ Edge(x, x).
Path(x, y) :́ Edge(x, y).
Path(x, z) :́ Path(x, y), Edge(y, z).

if the fact Path(1, 2) is inferred, then only the third rule
is re-evaluated under the environment tx ÞÑ 1, y ÞÑ 2u.
The first and second rules are not re-evaluated. With naïve
evaluation, all three rules would be re-evaluated.

We use a variant of semi-naïve evaluation, adapted for
FLIX by taking the compactness requirement into account.
For example, in the FLIX program

A(Odd).
B(Even).
A(x) :́ B(x).
R(x) :́ isMaybeZero(x), A(x).

we initially infer the two facts ApOddq and BpEvenq, which
cause evaluation of the two rules. This infers the new fact
ApEvenq. Next, we must re-evaluate the third rule, but we
must not use the environment tx ÞÑ Evenu since this breaks
the compactness requirement. Instead, we must compute the
least upper bound of ApOddq \ ApEvenq “ ApJq, and re-
evaluate the third rule under the environment tx ÞÑ Ju. This
gives the correct minimal model M where RpJq PM .

In addition to naïve evaluation, Ullman [59, Chapter 3]
also defines and proves correctness of a semi-naïve evaluation
algorithm for Datalog. The semi-naïve algorithm maintains a
so-called incremental relation for each predicate. Whenever
the algorithm evaluates a rule with head predicate pi to yield
a new relation P 1i , the incremental relation is computed as the
set difference ∆Pi “ P 1i z Pi, where Pi is the old relation for
the predicate pi. The incremental relation contains only the
facts that were newly computed in P 1i , that were not already
contained in the old relation Pi.

Then, the process of evaluating a rule is modified to the
following procedure. Letting n be the number of atoms in
the body of the rule, the rule is evaluated n times. Each
time, one of the n atoms is instantiated using the incremental
relation ∆Pi corresponding to the predicate specified by the
atom. All other atoms of the body of the rule are instantiated
using their corresponding old relations Pi. Informally, this
ensures that each newly-inferred fact in ∆Pi is considered
with all of the existing facts in the old relations for the
other atoms. Ullman proves that each such incremental
evaluation step yields the same resulting relation for the
head predicate as the corresponding full evaluation step in
the naïve algorithm. Furthermore, he proves inductively that
every iteration of the semi-naïve algorithm infers the same
facts as the corresponding iteration of the naïve algorithm
(but using less work), and therefore the final outputs of the
two algorithms are the same.

To adapt semi-naïve evaluation to FLIX, we must first
adapt the definition of the incremental relation. In Datalog,
P 1i Ě Pi by the monotonicity of rule evaluation, so P 1i “
∆Pi Y Pi. This latter property is important because each
step of semi-naïve evaluation can be informally thought of
as determining ∆Pi Y Pi, while the corresponding step of
naïve evaluation computes P 1i . However, in FLIX, it is not
generally true that P 1i Ě Pi because rule evaluation applies
a least upper bound in each cell S to obtain a compact
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relation P 1i . Instead of P 1i Ě Pi, FLIX ensures that P 1i Ě Pi.
An alternative definition of the incremental relation ∆Pi is
therefore necessary so that P 1i “ ∆Pi \ Pi, analogously to
the Datalog property P 1i “ ∆Pi Y Pi. We have defined a
set of facts P to be compact if it contains one ground atom
for each cell S; let us denote this ground atom gapP, Sq.
When P 1i and Pi are the relations for a predicate before and
after evaluating a rule, we define their incremental relation
∆Pi “ t gapP

1
i , Sq | S P cells^gapP 1i , Sq Ľ gapPi, Squ. In

words, the incremental relation ∆Pi contains every ground
atom from P 1i which is strictly greater than the ground atom
for the same cell in Pi. Since P 1i Ě Pi, this definition of ∆Pi

does imply the desired property P 1i “ ∆Pi \ Pi.
The process of evaluating a rule can then be incremen-

talized in the same way as for Datalog, in that the rule is
evaluated as many times as there are atoms in its body, and
each time, one of the atoms is instantiated with the FLIX ver-
sion of the incremental relation ∆Pi. The resulting relation
for the head predicate is then made compact by computing a
least upper bound for each cell S. We can show that this incre-
mental rule evaluation step yields the same resulting relation
for the head predicate as the corresponding full evaluation
step, in the same way as the analogous incremental evaluation
step does in Datalog. Therefore, the inductive proof of the
equivalence of outputs of naïve and semi-naïve evaluation for
Datalog then applies analogously to FLIX.

4. Evaluation
We have implemented a compiler and runtime for FLIX. The
entire implementation is roughly 30,000 lines of Scala code.
The toolchain includes a parser, a type checker, an interpreter,
an indexed database, and a semi-naïve fixed-point solver. The
source code is freely available on GitHub.2

We evaluate the usefulness of FLIX by implementing three
existing static analyses: the Strong Update analysis [39] and
the IFDS and IDE algorithms [52, 53].

4.1 The Strong Update Analysis
The Strong Update analysis is a points-to analysis for C pro-
grams that propagates singleton points-to sets flow sensitively
and larger sets flow insensitively. The paper presents the anal-
ysis as a set of constraints (Figure 7 in that paper) and then as
an imperative algorithm (Figure 9 in that paper). The latter is
implemented in C++ and evaluated [39]. The FLIX implemen-
tation shown in Figure 4 follows the constraint specification
of the analysis directly: there is a one-to-one correspondence
between the FLIX rules and the constraints from Figure 7 of
the Strong Update paper. The PtSU function is defined as:

ptsur`spaq fi

#

sur`spaq if sur`spaq ‰ J
ptpaq if sur`spaq “ J

The monotonicity of this definition depends on the unstated
fact that sur`spaq Ď ptpaq when sur`spaq is a singleton set.

2 https://github.com/flix

enum SULattice {
case Top,
case Single(Str),
case Bottom

}

def filter(t: SULattice, b: Str): Bool =
match t with {
case SULattice.Bottom => false
case SULattice.Single(p) => b == p
case SULattice.Top => true

}

Pt(p, a) :́ AddrOf(p, a).
Pt(p, a) :́ Copy(p, q), Pt(q, a).
Pt(p, b) :́ Load(l, p, q), Pt(q, a), PtSU(l, a, b).
PtH(a, b) :́ Store(l, p, q), Pt(p, a), Pt(q, b).

SUBefore(l2, a, t) :́
CFG(l1, l2),
SUAfter(l1, a, t).

SUAfter(l, a, t) :́
SUBefore(l, a, t),
Preserve(l, a).

SUAfter(l, a, SULattice.Single(b)) :́
Store(l, p, q),
Pt(p, a), Pt(q, b).

PtSU(l, a, b) :́
PtH(a, b),
SUBefore(l, a, t),
filter(t, b).

Figure 4. FLIX version of the Strong Update analysis [39].
SUBefore and SUAfter is the information before and af-
ter label l, written ptsurlspaq and ptsurlspaq in the paper.
Preserve is the complement of the Kill set.

In the corresponding FLIX rule, monotonicity is explicit: the
rule first selects all b P ptpaq, and then uses the function
filter to reject all elements other than p in the case that
sur`spaq is the singleton tpu.

4.2 IFDS
IFDS is a framework that can be instantiated to solve a large
class of interprocedural context-sensitive dataflow analyses,
the interprocedural finite distributive subset analyses [52].
The paper that defines the framework presents it as a one-
page algorithm in pseudocode that contains many worklist
updates and implicit quantifications. Anecdotally, many peo-
ple find the algorithm difficult to understand, and checking
its correctness requires a long proof.

Figure 5 declaratively specifies the desired properties of
an IFDS solution. It is also a set of FLIX rules that can be
executed to compute the solution. The rules compute a set of
path edges, each leading from a data point d1 at the start of
a procedure to a data point d3 at an instruction m within the
procedure, and a set of summary edges that summarize the
transfer function of each call to a procedure. To implement
a specific dataflow analysis, one must provide the transfer
functions of that analysis. These are specified to FLIX in
the form of three functions eshIntra (intraprocedural),
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PathEdge(d1, m, d3) :́
CFG(n, m),
PathEdge(d1, n, d2),
d3 <́ eshIntra(n, d2).

PathEdge(d1, m, d3) :́
CFG(n, m),
PathEdge(d1, n, d2),
SummaryEdge(n, d2, d3).

PathEdge(d3, start, d3) :́
PathEdge(d1, call, d2),
CallGraph(call, target),
EshCallStart(call, d2, target, d3),
StartNode(target, start).

SummaryEdge(call, d4, d5) :́
CallGraph(call, target),
StartNode(target, start),
EndNode(target, end),
EshCallStart(call, d4, target, d1),
PathEdge(d1, end, d2),
d5 <́ eshEndReturn(target, d2, call).

EshCallStart(call, d, target, d2) :́
PathEdge(_, call, d),
CallGraph(call, target),
d2 <́ eshCallStart(call, d, target).

Result(n, d2) :́
PathEdge(_, n, d2).

Figure 5. FLIX implementation of the IFDS analysis [52].

eshCallStart (call site to start node), and eshEndReturn
(end node to return site). The special arrow syntax in the first
rule d3 <- eshIntra(n, d2) binds d3 to each element in
the set returned by the call.

It is essential that the transfer functions be specified as
functions; they cannot be tabulated and given as input to any
solver in the form of relations. The reason is that the overall
goal of the IFDS algorithm is to compute a set of reachable
pairs pn, dq. If we knew the set of arguments pn, dq for which
eshIntra needs to be tabulated (the set of all arguments
with which the analysis will call eshIntra), then we would
already know which pairs are reachable and there would be
no need to run the IFDS analysis. Alternatively, tabulating
eshIntra for all possible pairs pn, dq would be much more
costly than performing the IFDS algorithm itself, which calls
eshIntra only on the much smaller subset of pairs pn, dq
that are reachable.

Another important detail not discussed in the IFDS pa-
per is that the algorithm applies not only the eshCallStart
function (in the third rule) but also its inverse (in the fourth,
SummaryEdge rule). Since computing the inverse is usually
impractical, any implementation of the algorithm must tab-
ulate the function for the arguments on which it is called in
the forward direction. The FLIX program explicitly tabulates
the function in the EshCallStart relation. As a result, the
relation can be consulted in both directions in the third and
fourth rule, and this can be written declaratively as it is in the
original formulation of the IFDS algorithm.

Both of these issues are discussed by Naeem et al. [48].

JumpFn(d1, m, d3, comp(long, short)) :́
CFG(n, m),
JumpFn(d1, n, d2, long),
(d3, short) <́ eshIntra(n, d2).

JumpFn(d1, m, d3, comp(caller, summary)) :́
CFG(n, m),
JumpFn(d1, n, d2, caller),
SummaryFn(n, d2, d3, summary).

JumpFn(d3, start, d3, identity()) :́
JumpFn(d1, call, d2, _),
CallGraph(call, target),
EshCallStart(call, d2, target, d3, _),
StartNode(target, start),

SummaryFn(call, d4, d5, comp(comp(cs, se), er)) :́
CallGraph(call, target),
StartNode(target, start),
EndNode(target, end),
EshCallStart(call, d4, target, d1, cs),
JumpFn(d1, end, d2, se),
(d5, er) <́ eshEndReturn(target, d2, call).

EshCallStart(call, d, target, d2, cs) :́
JumpFn(_, call, d, _),
CallGraph(call, target),
(d2, cs) <́ eshCallStart(call, d, target).

InProc(p, start) :́ StartNode(p, start).
InProc(p, m) :́ InProc(p, n), CFG(n, m).

Result(n, d, apply(fn, vp)) :́
ResultProc(proc, dp, vp),
InProc(proc, n),
JumpFn(dp, n, d, fn).

ResultProc(proc, dp, apply(cs, v)) :́
Result(call, d, v),
EshCallStart(call, d, proc, dp, cs).

Figure 6. FLIX implementation of the IDE analysis [53].

4.3 IDE
IDE is a more general framework that can be instantiated
to solve a larger class of interprocedural context-sensitive
dataflow analyses, the interprocedural distributive environ-
ment analyses [53]. The original presentation of IDE as an
imperative algorithm requires two pages. Conceptually, the
IDE framework is a direct extension of the IFDS framework,
but that is not obvious at all from the worklist-based algo-
rithmic specifications in the two papers. The IDE framework
computes the same edges as IFDS, but each edge is decorated
with a representation of a so-called micro-function. This cor-
respondence between IFDS and IDE is immediately clear
from the declarative specification of IDE shown in Figure 6.
Notice that the rules mirror those of the IFDS implementa-
tion (with the names PathEdge and SummaryEdge replaced
with JumpFn and SummaryFn to match the terminology used
in the IFDS and IDE papers). In the IDE algorithm, each
rule has just one additional component corresponding to the
micro-function on each edge. The first, second, and fourth
rules use a FLIX function comp in the head to compute the
composition of micro-functions.
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def comp(t1: Transformer, t2: Transformer): Transformer = match (t1, t2) with {
case (_, BotTransformer) => BotTransformer
case (BotTransformer, NonBotTransformer(a, b, Value.Bot)) => BotTransformer
case (BotTransformer, NonBotTransformer(a, b, Value.Cst(k))) => NonBotTransformer(0, k, Value.Cst(k))
case (BotTransformer, NonBotTransformer(a, b, Value.Top)) => NonBotTransformer(0, 0, Value.Top)
case (NonBotTransformer(a2, b2, c2), NonBotTransformer(a1, b1, c1)) =>
NonBotTransformer(a1 ∗ a2, (a1 ∗ b2) + b1, lub(sum(prod(c2, a1), b1), c1))

}

Figure 7. Micro-function join operation for the example IDE analysis [53].

To instantiate the IDE framework with a specific anal-
ysis, one must not only implement the transfer functions
eshIntra, eshCallStart, and eshEndReturn, but also
specify two lattices: the value lattice V that is the domain and
range of each micro-function, and the micro-function lattice
F that efficiently represents certain functions from V Ñ V .
Thus, the formulation of the IDE algorithm requires both
functions and lattices.

The IDE paper uses a running example of a linear constant
propagation analysis in which V is the constant propagation
lattice. The elements of the micro-function lattice F are λl.K
and functions of the form λl.paˆ l ` bq \ c, where a and b
are integers and c is an element of the constant propagation
lattice. Figure 7 shows the FLIX implementation of the micro-
function composition operation comp that is called from the
rules. The functions that implement Ď and \ on the lattice of
micro-functions have a similar structure.

4.4 Shortest Paths
We have shown how to express several static analyses in
FLIX, but FLIX is applicable to other types of fixed-point
problems. For example, to compute all-pairs shortest paths,
let pN ,8, 0,ě, min, maxq be a lattice over the natural num-
bers. Then we can compute the shortest paths as follows:

Dist(y, d + c) :́ Dist(x, d), Edge(x, y, c).

4.5 Performance of the Current FLIX Solver
We have not yet looked closely at the performance of the
FLIX solver. Instead, we have focused on language design
and semantics. For that reason, the solver contains many inef-
ficiencies that can be overcome with additional engineering.
For example, primitive values (e.g. integers) are represented
as (boxed) Java objects, functions (including the partial order
and least upper bound) are evaluated using an AST-based
interpreter, rules are always evaluated left-to-right instead of
using a cost-plan, relations are represented as hash maps but
some would be more efficiently represented as dense arrays,
and our index selection strategy is not optimal.

Table 1 compares the performance of three implementa-
tions of the Strong Update analysis on the benchmark pro-
grams evaluated in the Strong Update paper. First, we imple-
mented the Strong Update analysis in Datalog by embedding
the Strong Update lattice within the relational powerset lat-
tice as described in the introduction. We used the well-known
DLV Datalog solver [38] to run this implementation.

The Datalog version of the analysis did not scale beyond
the 458.sjeng benchmark (13.9 kSLOC), which it analyzed in
425 seconds. The FLIX formulation of the analysis analyzed
the same benchmark in 27 seconds, and was able to scale up
to the 300.twolf benchmark (20.5 kSLOC). We confirmed
that both implementations compute the same results. The C++
implementation in LLVM from the original Strong Update
paper is still much faster. This is partly, but not entirely, due
to the constant overheads of the current implementation of
FLIX. In addition, the C++ implementation uses a clever data
structure to implement a map from abstract objects. Thanks
to subtle properties of the Strong Update analysis, the data
structure can avoid explicitly representing the objects whose
corresponding lattice value is either J or K in the common
case. FLIX, on the other hand, explicitly represents all objects
whose corresponding lattice value is either a singleton or J.
The number of objects whose lattice value is J is very large,
which accounts for much of the performance difference.

We also evaluated the performance of the IFDS analysis
described previously. As a concrete example of a specific
IFDS analysis, we selected the object abstraction from the
multi-object typestate analysis of Naeem et al. [47]. In the
FLIX implementation, we provided an interface that enables
monotone transfer functions to be implemented using Java or
Scala code, rather than the FLIX functional language. This
made it possible for the declarative FLIX IFDS program to
call the same implementations of the transfer functions that
were evaluated in the original typestate analysis paper.

Specifically, our evaluation compares two implementa-
tions of the object abstraction analysis. The baseline is the
complete implementation that was used in the original paper.
It includes a hand-coded imperative Scala implementation of
the IFDS algorithm, and Scala implementations of the IFDS
functions that instantiate the IFDS framework to compute
the object abstraction analysis. The FLIX implementation
includes the declarative IFDS formulation, which is instan-
tiated with the same Scala implementations of the object
abstraction analysis functions. Thus, the evaluation compares
the hand-coded imperative implementation of IFDS with the
declarative FLIX implementation. We verified that both im-
plementations produce the same outputs.

The running times of the two implementations on the six
DaCapo benchmarks [6] that were evaluated in the original
paper are shown in Table 2. In general, the current FLIX im-
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Benchmark DLV Flix C++
Program kSLOC Input Facts Memory (MB) Time (s) Memory (MB) Time (s) Time (s)

470.lbm 1.2 1,205 17 1.8 142 0.9 0.05
181.mcf 2.5 3,377 114 30.9 650 3.0 0.08
429.mcf 2.7 3,392 115 31.8 630 3.1 0.09
256.bzip2 4.7 5,017 49 5.9 244 1.8 0.09
462.libquantum 4.4 6,196 215 32.3 877 5.2 0.14
164.gzip 8.6 9,259 463 133.4 1,271 9.4 0.14
401.bzip2 8.3 11,844 1,100 696.4 2,264 17.5 0.30
458.sjeng 13.9 20,154 1,077 424.8 3,107 27.1 0.27
433.milc 15.0 22,147 - timeout 3,846 88.6 0.45
175.vpr 17.8 25,977 - - 4,039 99.7 0.54
186.crafty 21.2 32,189 - - 3,556 73.0 0.41
197.parser 11.4 32,606 - - 5,104 663.5 0.92
482.sphinx3 25.1 42,736 - - 6,767 399.7 1.06
300.twolf 20.5 44,041 - - 5,273 222.8 1.25
456.hmmer 36.0 68,384 - - - timeout 2.22
464.h264ref 51.6 89,898 - - - - 3.41

seven more benchmarks

Table 1. Summary of performance results for the Strong Update analysis. Timeout means more than 15 minutes.

Program Scala Flix Slowdown
Time (s) Time (s)

luindex 133.6 366.7 2.7x
antlr 176.7 437.3 2.5x
hsqldb 187.4 469.2 2.5x
bloat 203.5 584.1 2.9x
pmd 247.7 680.1 2.7x
jython 4,614.7 14,344.8 3.1x

Table 2. Summary of performance results for IFDS.

plementation of the IFDS algorithm is about 3x slower than
the imperative Scala implementation. Importantly, the perfor-
mance of FLIX scales with the imperative implementation.

5. Related Work
Static Analysis Frameworks. Many static analysis frame-
works have been proposed over the years. The Program
Analysis Generator (PAG) generates C code for static an-
alyzers from specifications of lattices and descriptions of
transfer functions [44]. The TJ Watson WALA library is a
static analysis library written in Java [22]. WALA includes
implementations of many common static analyses such as
points-to analysis, class hierarchy analysis, and the IFDS al-
gorithm [52]. Soot is a Java bytecode analysis framework that
has seen wide use in compilation and as a frontend for other
static analyses [60]. Hoopl is a generic dataflow analysis and
transformation framework written in Haskell [51]. Frama-C
is a source code analysis platform for C programs written
in OCaml [16]. A weakness of all these frameworks is the
implicit assumptions that they make about the analysis, for
instance, the existence of a control-flow graph or other in-
termediate representation, and the choice of flow-sensitivity,

context-sensitivity, and memory abstraction. FLIX, like Dat-
alog, makes no such assumptions and is applicable to least
fixed point problems in general.

Datalog. Datalog has roots in the database community as a
general-purpose query language, but has found uses in many
areas of computer science. A comprehensive introduction
to Datalog is given by Ceri et al. [9]. A distilled version is
given by Huang et al. who argue that interest in Datalog is
re-emerging [32]. Further evidence of this is provided by the
Datalog 2.0 Workshop [19].

The use of negation in logic programs, such as Datalog and
Prolog, has long been studied and there is extensive literature
on the subject [2, 20, 21, 23, 25, 26, 36]. The theoretical
complexity of logic programs, including Datalog, has also
been studied extensively [17].

Datalog has been used in several static analysis tools.
codeQuest is a tool for querying various aspects of the source
code of a program [30]. Binary decision diagrams (BDDs)
have been used to implement efficient points-to analyses
specified as relations, both using a custom relational language
and Datalog [40, 63]. The Doop framework is a precise and
scalable context-sensitive points-to analysis for Java specified
in Datalog [7, 54, 55].

FLIX has some similarities to Bloom, a programming
language designed to ensure consistency of distributed pro-
grams [13]. Bloom, like FLIX, takes inspiration from Datalog
and adds support for lattices and monotone functions, but
for different reasons. In Bloom, the purpose is to ensure con-
fluence, i.e. that regardless of the order in which messages
are received over the network, the same result is computed.
Unlike Datalog and FLIX, where the user is interested in
some minimal model, Bloom programs are intended to run
continuously as network services.
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Logic Programming. Prolog [10, 56] is a Turing-complete
logic programming language related to Datalog. Every Dat-
alog program is also a Prolog program; however, Prolog
allows constructors, negation, and the cut operator. Datalog
programs can be efficiently solved by Prolog engines that use
tabulation, e.g. XSB [57]. Such Prolog engines have been
used to implement different types of program analyses [18].
FLIX is less expressive than Prolog, but ensures that every
program terminates and has a unique minimal model. In fu-
ture work we plan to compare FLIX to Prolog engines.

Constraint Logic Programming (CLP) schemes extend
logic programming with a decidable background theory, such
as lists, trees, and linear arithmetic [12, 33, 34, 41]. Intuitively,
a CLP program is a set of Horn clauses, each equipped with
a formula over the background theory. During evaluation,
term unification is augmented with the decision procedure of
the theory. CLP has been used in program verification and
abstract interpretation [5, 24].

Alternation-free Least Fixed Point (ALFP) logic is an ex-
tension of Horn clauses with nested universal and existential
quantification, stratified negation, and disjunction [49, 50]. It
is more powerful than Datalog, but is still guaranteed to have
a minimal solution, provided that the program is stratifiable.

Answer Set Programming (ASP) is a logic tailored to
solving NP-hard problems that may involve non-monotonic
reasoning [8, 42, 43]. A key development was the introduc-
tion of stable models (later known as answer sets) that allow
models to be defined even in the presence of negative cy-
cles in the implication graph [25]. FLIX does not yet support
negation, so the challenges of monotonicity are restricted to
ensuring that user-defined functions are monotone.

Prolog, CLP, ALFP, ASP, and other logic languages all
offer various trade-offs in terms of performance, expressive
power and safety (i.e. the existence of least models). FLIX
is yet another point in this large design space and is more
general than Datalog, but less general than Prolog.

Static Analyzers based on Horn Clauses. Logic programs,
such as Prolog and CLP programs, have also been the subject
of static analysis. In this line of research, static analyzers
such as PLAI [46] compute the least fixed point of a set of
Horn clauses over one or more lattices. These lattices and
their associated operations are specified as “plug-ins” to the
analysis. A key difference between these techniques and FLIX
is the choice of evaluation strategy: FLIX uses bottom-up
semi-naïve evaluation rather than top-down evaluation with
tabulation, as in XSB. These developments have been used
to translate object-oriented programs into constraint Horn
clauses on which the static analysis is then performed [45].

6. Conclusion
We have presented FLIX, a declarative programming lan-
guage for expressing and solving least fixed point problems,
particularly static program analyses. FLIX is inspired by Dat-
alog and extends it with lattices and monotone functions. We

have defined a model-theoretic semantics for FLIX that is
the foundation for any FLIX fixed-point solver, independent
of its specific evaluation strategy. We have demonstrated the
expressiveness of FLIX by implementing several well-known
static analyses, including the IFDS and IDE algorithms. The
declarative formulation of these analyses clearly reveals their
close relationship. Experimental results show that the current
FLIX interpreter is slower than hand-crafted analyzers, but
we plan to address this in future work.

7. Future Work
We briefly outline three directions for future work:

Negation. FLIX does not support negation. We believe it is
straightforward to extend the semantics and implementation
to support stratified FLIX programs. However, we want to
explore whether stratification is the right choice for specifying
static analyses. Furthermore, we want to look at potentially
interesting connections between negation and lattices.

Safety. Every Datalog program is guaranteed to terminate
with the unique minimal model. As discussed previously, a
FLIX program is also guaranteed to terminate with the mini-
mal model, provided that every lattice is actually a complete
lattice, of finite height, and every function is strict and mono-
tone. Unfortunately, a FLIX programmer may inadvertently
violate one or more of the required properties when speci-
fying a lattice or function. We plan to investigate the use of
automatic program verification techniques to guarantee that
FLIX programs are meaningful.

Performance. As discussed in the evaluation, the current
implementation of FLIX has many opportunities for improved
performance, such as eliminating boxing, replacing the inter-
preter with compiled JVM bytecode, and using query plan-
ning and better index selection.
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