
162

Finding Broken Promises in Asynchronous JavaScript

Programs

SABA ALIMADADI, Northeastern University, USA

DI ZHONG, Northeastern University, USA

MAGNUS MADSEN, Aarhus University, Denmark

FRANK TIP, Northeastern University, USA

Recently, promises were added to ECMAScript 6, the JavaScript standard, in order to provide better support for

the asynchrony that arises in user interfaces, network communication, and non-blocking I/O. Using promises,

programmers can avoid common pitfalls of event-driven programming such as event races and the deeply

nested counterintuitive control flow referred to as łcallback hellž. Unfortunately, promises have complex

semantics and the intricate controlś and data-flow present in promise-based code hinders program compre-

hension and can easily lead to bugs. The promise graph was proposed as a graphical aid for understanding and

debugging promise-based code. However, it did not cover all promise-related features in ECMAScript 6, and

did not present or evaluate any technique for constructing the promise graphs.

In this paper, we extend the notion of promise graphs to include all promise-related features in ECMAScript 6,

including default reactions, exceptions, and the synchronization operations race and all. Furthermore, we

report on the construction and evaluation of PromiseKeeper, which performs a dynamic analysis to create

promise graphs and infer common promise anti-patterns. We evaluate PromiseKeeper by applying it to 12

open source promise-based Node.js applications. Our results suggest that the promise graphs constructed by

PromiseKeeper can provide developers with valuable information about occurrences of common anti-patterns

in their promise-based code, and that promise graphs can be constructed with acceptable run-time overhead.

CCS Concepts: • Software and its engineering→ Software testing and debugging; Concurrent program-

ming structures;

Additional Key Words and Phrases: JavaScript, Promises, Promise Graph, Dynamic Analysis, PromiseKeeper

ACM Reference Format:

Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. 2018. Finding Broken Promises in Asynchronous

JavaScript Programs. Proc. ACM Program. Lang. 2, OOPSLA, Article 162 (November 2018), 26 pages. https:

//doi.org/10.1145/3276532

1 INTRODUCTION

Recently, promises where added to ECMAScript 6 [Ecmascript 2015], the JavaScript standard,
in order to provide better support for the asynchrony that arises in user-interfaces, network
communication, and non-blocking I/O. Such asynchrony has traditionally been implemented using
event-driven programming, which leads to awkward nonlinear control flow commonly referred to
as łcallback hellž. Event-driven programming also provides poor support for error handling, and
unless programmers are careful, event-driven programs may experience non-deterministic failures

Authors’ addresses: Saba Alimadadi, Northeastern University, Boston, MA, USA, saba@northeastern.edu; Di Zhong,

Northeastern University, Boston, MA, USA, zhong.d@husky.neu.edu; Magnus Madsen, Aarhus University, Aarhus, Denmark,

magnusm@cs.au.dk; Frank Tip, Northeastern University, Boston, MA, USA, f.tip@northeastern.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART162

https://doi.org/10.1145/3276532

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3276532
https://doi.org/10.1145/3276532
https://doi.org/10.1145/3276532


162:2 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip

due to event race errors [Adamsen et al. 2017b,a; Petrov et al. 2012; Raychev et al. 2013; Zhang and
Wang 2017; Zheng et al. 2011], and lost events and dead listeners [Madsen et al. 2015] that are hard
to debug.
Promises aim to overcome these problems by providing an abstraction for the result of an

asynchronous computation. A promise is in one of three states: pending, fulfilled, or rejected.
A pending promise has not yet been settled, i.e., resolved or rejected with a value. A fulfilled
promise holds the result of an asynchronous computation that has successfully completed, whereas
a rejected promise holds an error value of an asynchronous computation that somehow failed.
Once a promise has been fulfilled or rejected, its value cannot change, i.e. a promise can only be
settled once. Each promise object is equipped with two functions, resolve and reject, that are
used to to fulfill or reject the promise. Promises enable programmers to compose asynchronous
computations by associating reactions with a promise. When a promise is resolved or rejected, the
corresponding reaction is executed and the resulting value is wrapped in another promise, enabling
programmers to create a chain of asynchronous computations where each computation depends
on the value of the previous computation. Promises support proper error-handling by allowing
errors to be propagated along these promise chains.
Unfortunately, promises are complex in their own right and JavaScript programmers are eas-

ily confused by their semantics, causing them to make mistakes that result in hard-to-debug
errors [Madsen et al. 2015]. For example, programmers may forget to resolve or reject a promise
on all paths through the program, or forget to register a resolve and reject reaction on a promise.
Other common mistakes are situations where a promise is unintentionally resolved with the value
undefinedwhen a function that was registered as a reaction returns implicitly, where an attempt is
made to resolve or reject a promise that was already settled, or where programmers unintentionally
construct a promise chain that has an fork.
Prior work [Madsen et al. 2017] provided a formal semantics for a core subset of JavaScript

promises, and proposed the promise graph as a visual aid for understanding and debugging promise-
based programs. This work argued for the usability of promise graphs, but it did not handle all
promise-related features in ECMAScript 6, and it did not present any technique for computing
promise graphs. Moreover, its evaluation was limited to a case study in which promise graphs were
constructed manually for small program fragments taken from the StackOverflow website.
In this paper, we present an extension of the promise graph to handle all promise-related

features of the ECMAScript 6 standard, including exceptions, default reactions, and the race

and all constructs that are used for synchronization on multiple promises. We report on the
implementation of a tool, PromiseKeeper, that automatically constructs promise graphs based
on dynamic analysis. In an empirical evaluation, we apply PromiseKeeper to 12 promise-based
Node.js applications taken from GitHub. Our findings show that PromiseKeeper is capable of
constructing promise graphs for large and complex applications with acceptable run-time overhead.
Furthermore, we show that PromiseKeeper is able to detect anti-patterns such as missing reject
reactions, attempts to settle a promise multiple times, unsettled promises, unnecessary promises,
implicit returns in reactions, and unreachable reactions that warrant further investigation by a
developer. Such anti-patterns manifest questionable coding practices that are often, but not always
correlated with bugs [Gamma 1995]. We convey these findings using a visual representation that
enables developers to quickly obtain an understanding of the behavior of, and identify potential
problems in promise-based code.
In summary, this paper makes the following contributions:

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



Finding Broken Promises in Asynchronous JavaScript Programs 162:3

• We extend the promise graph proposed by Madsen et al. [2017] to handle all aspects ECMA-
Script 6 promises, including default reactions, exceptions, and the synchronization operations
all and race.
• We implement a dynamic analysis in an open-source tool called PromiseKeeper to automati-
cally construct the promise graph for a specific execution [PromiseKeeper 2018]. We also
discuss how PromiseKeeper can be used to detect common anti-patterns related to promises.
• We show that PromiseKeeper is capable of producing promise graphs for realistic applica-
tions, and identify instances of anti-patterns that are known to cause problems in promise-
based code.

The remainder of the paper is structured as follows. Section 2 provides a brief primer on JavaScript
promises. Next, in Section 3 we use three examples taken from GitHub to illustrate the problems
that can arise in promise-based code. Section 4 defines the promise graph, as an extension of the
promise graphs of Madsen et al. [2017]. Section 5 discusses how the promise graph can be used to
aid debugging by detecting occurrences of several anti-patterns. Section 6 describes the dynamic
analysis implemented in PromiseKeeper. Section 7 presents the evaluation of PromiseKeeper.
Finally, related work is presented in Section 8 and Section 9 concludes.

2 REVIEW OF JAVASCRIPT PROMISES

This section presents a brief review of JavaScript promises. Readers already familiar with this
feature may skip to the next section.
A promise represents the result of an asynchronous computation, and is in one of three states:

łpendingž, łfulfilledž, or łrejectedž. Upon creation, a promise is in the pending state, from which it
can transition to the fulfilled state by invoking a function resolve with a result value, or it can
transition to the rejected state by invoking a function reject with an error value. A promise that
is in the fulfilled or rejected state is also referred to as being łsettledž. Once settled, the state of a
promise cannot change again.

Creating promises. Creating a promise is accomplished by invoking the Promise constructor with
callback that takes two functions, resolve and reject, as arguments. The body of this function
may invoke these functions to resolve or reject the promise with a specific value, respectively. For
example, the following code:

1 var p0 = new Promise(function(resolve, reject) {

2 if (Math.random() > 0.5) {

3 resolve(17);

4 } else {

5 reject(new Error('An error has occurred'));

6 }

7 });

randomly decides to fulfill the promise with the value 17, or to reject it with an Error object.
Alternatively, promises may be created and immediately resolved with a value by calling the

function Promise.resolve, or created and immediately rejected with a value by calling the function
Promise.reject. For example, the expression Promise.resolve(17) creates a promise that is
immediately resolved with the value 17.

Registering reactions. Programmers can register reactions on promises using the method then.
Continuing the above example, the following code:

8 p0.then(function f1(v){

9 console.log('value: ' + v);

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



162:4 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip

10 return v + 1;

11 }, function f2(e){

12 console.log('error: ' + e);

13 throw e;

14 });

15 console.log('done');

defines the function f1 to be a fulfill reaction for the promise in variable p0, and the function f2

to be a reject reaction for p0. This means that, if p0 is resolved, f1 will be invoked with the value
that p0 was resolved with, and that, if p0 was rejected, then f2 will be invoked with the value
that p0 was rejected with. Note that only one of these reactions will execute, because a promise
can be settled only once. Furthermore, it is important to realize that the execution of a reaction
will not take place until control flow returns to the main event loop. In other words, the above
code first prints łdonež, followed by łvalue: 17ž or łerror: foož depending on whether p0 was
resolved or rejected. The above example showed a situation where then was invoked with two
arguments representing the resolve reaction and reject reaction. However, it is possible to omit the
reject reaction as we shall see in the next example.

Creating a chain of promises. Each call to the then method creates a new promise. If the reaction
that executed returned a value, the returned value is used to resolve that promise. If the reaction
that executed threw an exception, the thrown value is used to reject that promise. This enables the
creation of a chain of asynchronous computations. For example, the following code fragment:

16 var p0 = Promise.resolve(17);

17 p0.then(function g1(v){ return v + 1; })

18 .then(function g2(v){ return v + 1; })

19 .then(function g3(v){ console.log(v); })

creates 4 promises that are resolved with the values 17, 18, 19, and undefined, respectively.
Note that, since the function g3 does not explicitly return a value, it implicitly returns the value
undefined, causing the last promise in the chain to be resolved with the value undefined.

Error handling. So far, we have seen how then can be used to register fulfill and reject reactions
with a promise. A method catch can be used to register a reject reaction on a promise. For example,
in the following code fragment:

20 var p0 = Promise.reject('foo');

21 p0.catch(function f(e){

22 console.log('error: ' + e);

23 });

a promise p0 is rejected with the value foo, causing the function f to be executed, which will print
the message łerror: foož.
One of the key advantages of promises over traditional event-based programming is the fact

that errors propagate through a chain of asynchronous computations. This is accomplished using a
mechanism that we will refer to as default reactions: An expression p.then(f) that only specifies a
fulfill reaction has an implicitly defined default reject reaction function(v){ throw v; }.1 This
means that programmers can write:

24 var p0 = new Promise(function(resolve, reject){ ... };

25 p0.then(function(v){ ... })

26 .then(function(v){ ... })

27 .then(function(v){ ... })

1 Likewise, an expression p.catch(f) has an implicit default fulfill reaction function(v){ return v; }.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



Finding Broken Promises in Asynchronous JavaScript Programs 162:5

28 .catch(function(err){ ... })

where a single catch at the end of a promise chain suffices to handle errors that occur during any
of the preceding computations.

It is possible to pass non-function arguments to then and catch as reactions. These are interpreted
as default reactions. For example, the following code:

29 var p0 = Promise.resolve(17);

30 p0.then(undefined)

31 .then(function(v){ console.log(v); });

prints ł17ž because the value undefined is interpreted as the default reaction function(v){

return v; }.

Linking. When an application that performs asynchronous computations needs to interact with
other components that use promises, it is helpful to link the state of two promises. This can be
accomplished by having a function f that is used as a reaction return a promise p (as opposed to
some other kind of value)2. In such cases, the state of the promise p ′ created by an expression
p.then(f) becomes linked with the state of p. In particular, if/when p is resolved with value v ,
then p ′ will be resolved with value v , and if p is rejected with value e , then p ′ will be rejected with
value e as well. In other words, in the following code fragment:

32 var p0 = Promise.resolve(17);

33 var p1 = Promise.reject("foo");

34 p0.then(function(v){ return p1; });

the promise created on the last line is rejected with the value foo.

all and race. The JavaScript promises API supports two synchronization operations, all and
race, that enable programmers to perform synchronization actions involving multiple promises.
In particular, given an array a of promises [p0, · · · ,pn], Promise.all(a) returns a promise that
is fulfilled if all of the promises pi are fulfilled, and rejected if at least one of the promises pi is
rejected. Furthermore, Promise.race(a) returns a promise that is fulfilled or rejected as soon as
one of the promises pi is fulfilled or rejected.

3 CHALLENGES AND MOTIVATION

JavaScript developers utilize Promises to remedy the error handling and nesting problems associated
with asynchronous callbacks. However, the complex semantics of promise-based code can impede
comprehension of its dynamic behavior. As a result, developers often make mistakes while creating,
settling, linking, and synchronizing various promise objects. As such, common error-prone patterns
manifest in promise-based JavaScript applications [Madsen et al. 2017]. We use three examples,
presented in Figures 1ś6, to illustrate the challenging nature of understanding and debugging
promise-based code.

3.1 Unhandled Promise Rejections

A promise is typically fulfilled or rejected by an invocation of the resolve and reject functions
associated with a promise. However, a promise might also be imlicitly rejected when an exception
is thrown by a promise reaction. Such uncaught exceptions are not propagated through regular
exception handling mechanism of JavaScript, but instead cause the dependent promise to be rejected.

2 Similarly, promises can be linked at promise creation time by resolving a promise with another promise. This feature was

omitted from the semantics by Madsen et al. [Madsen et al. 2017].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



162:6 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip

35 tcpPortUsed.check(port, 'localhost').then(function(inUse) {

36 if (inUse) {

37 console.error(port + ' is in use');

38 process.exit(1);

39 } else {

40 console.log('Starting Docusaurus server on port ' + port + '...');

41 // start local server on specified port

42 var server = require('./server/server.js');

43 server(port);

44 }

45 });

Fig. 1. JavaScript code fragment from start-server.js in Docusaurus.

Thus, if no rejection reaction is registered with the dependent promise, such an unhandled exception
will be completely swallowed.

Example 3.1. Docusaurus3 is an open source application for building, deploying, and maintaining
open source websites. It provides a set of scripts for helping users create and manage their websites
through running a local server. Figure 1 shows a code fragment from the start-server.js file,
responsible for starting the Docusaurus web server.

The code fragment is trying to determine whether some selected port on the machine is free and
can be bound to. Line 35 calls the check() function to determine the availability of the hostname
and port and check() returns a promise which we will refer to as p. At line 35, the program registers
an anonymous function as the fulfill reaction for p. The anonymous function is executed when p is
resolved, i.e., the availability of selected hostname and port is checked. If the address is in use, the
program prints a descriptive error message and exits, unable to start the server (lines 36ś38). If the
address is available, the program prints a message to the console, declaring that it is starting the
server (line 40). It then instantiates a server object and starts the server locally on the specified
port (lines 42ś43). The anonymous fulfill reaction ends at line 45 with a running server, ready to
support the user’s website. Executing this file, the user initially observes the two printed messages
regarding availability of the server’s address and then starting it. However, according to issue #2384

of the repository, the server silently fails if there is a mistake in a configuration file required by
the server, such as the website’s sidebars config file. In this case, the program informs the user of
starting the server through the messages, as it normally would. However, the server silently crashes
when being instantiated at line 42, without a warning or an indication of failure. Investigating
the issue, we find that the exceptions occurred during the server startup are not properly handled.
Since the server is instantiated within the anonymous fulfill reaction of promise p, its exceptions
only reject the promise created by p.then(), and do not surface during the execution. As such, the
viewer only sees the printed message indicating a successful server startup, while the server has
failed due to the exception. A month after the issue is first submitted to the GitHub repository, a
developer finds the root cause of the issue, which as they state: łmakes tracking down bugs in config
files super frustrating.ž They propose to solve the issue by capturing and handling such exceptions
by printing the error along with a stack trace in order to locate the broken configuration. In reality,
the submitted fix, depicted in Figure 2, merely adds a catch statement that rethrows the exceptions.

3https://github.com/facebook/Docusaurus
4https://github.com/facebook/Docusaurus/issues/238

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.

https://github.com/facebook/Docusaurus
https://github.com/facebook/Docusaurus/issues/238


Finding Broken Promises in Asynchronous JavaScript Programs 162:7

46 tcpPortUsed.check(port, 'localhost').then(function(inUse) {

47 /*same as before*/

48 })

49 + .catch(function(ex) { setTimeout(function() {throw ex;}, 0); });

Fig. 2. The fix made to start-server.js by the Docusaurus developers.

51 let mysql = require("promise-mysql"), mysqlPool = mysql.createPool({ ... });

52 mysqlPool.getConnection().then(connection => {

53 console.log("Releasing connection...");

54 return connection.release().then(

55 () => console.log("Released successfully!"),

56 () => console.log("Release failed!"));

57 }, err => {

58 console.log("Failed to connect to MySQL " + err); }

59 );

60 mysqlPool.on("release", () => {

61 console.log("The pool reports that release succeeded!");

62 });

Fig. 3. JavaScript code fragment from a client of Mysql Promise.

While the fix does not handle the exception in a systematic manner, it causes it to at least be
revealed to the user. From the discussion of the pull request, it appears the developers plan to add
support for proper handling of the rethrown exception in the future. The pull request is merged
nearly two months after the issue is first raised. This particular issue has a simple solution, yet it
imposes a severe consequence on the system. Nonetheless, the issue and its accompanying pull
request indicate the challenging nature of understanding and debugging promise-based code.

3.2 Unsettled Promises

Every new promise is in the pending state, until resolved or rejected. However, not settling a
promise results in a dead promise, forever pending, preventing the execution of reactions that
depend on the promise being settled.

Example 3.2. The Mysql Promise5 module is a promise-based wrapper for mysqljs,6 the Node.js
client implementation of the MySql protocol. It supports standard database functions for handling
connections and connection pools required for communicating with a database server. A pool is
a cache of database connections maintained so that the connections can be reused when future
requests to the database are required. When done with a pool connection, the programmer must
release the connection to return it to the pool, ready to be reused.

The Mysql Promise library is available to developers as an npmmodule, allowing them to interact
with databases through promises. Clients of the Mysql Promise module can create connections
and pools, through two functions made available for them, namely createConnection() and
createPool(). Figure 3 displays a typical code snippet of a client of this module. In this example,
the developer creates a pool at line 51, which returns a pool object, assigned to mysqlPool. At
line 52, the developer requests a connection to the mysqlPool, which returns a promise. The input
to the fulfill reaction of this promise is a connection, used for querying the database (line 52).

5https://github.com/lukeb-uk/node-promise-mysql
6https://github.com/mysqljs/mysql

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.

https://github.com/lukeb-uk/node-promise-mysql
https://github.com/mysqljs/mysql


162:8 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip

63 poolConnection.prototype.release = function() {

64 - return promiseCallback.apply(this.connection, [’release’, arguments]);

65 + this.connection.release();

66 };

67 poolConnection.prototype.destroy = function() {

68 - return promiseCallback.apply(this.connection, [’destroy’, arguments]);

69 + this.connection.destroy();

70 };

Fig. 4. The fix made to Mysql Promise by its developers.

Once done with the connection, the programmer releases it at line 54, to return it back to the pool.
The connection.release() returns a promise, which itself has both fulfill and reject reactions
registered in the code, at lines 55 and 56, respectively. The programmer expects the release()
function of the Mysql Promise module to resolve this promise once the connection is successfully
released, or reject it otherwise. However, when the programmer executes this code, neither of
the two reactions is invoked, meaning neither of the messages at lines 55ś56 is printed to the
console. According to issue #777 of the Mysql Promise module repository, the promises returned by
poolConnection.prototype.release() are never resolved or rejected by the module. As a result,
any client code depending on the fulfillment of release() promises is never executed. Trusting
the functionality of the module, the developer in our example tries to debug the code, while the
code is correct and must function properly according to the documentation of the module. To make
matters more confusing, the listener for the release event on mysqlPool (line 60) gets executed
and prints a successful release message(line 61). Meanwhile, the original fulfill reaction at line 55 is
never triggered.

When the issue is brought to the attention of the developers of the module, they acknowledge the
error and update the implementation of the release() function in the module. They directly release
the database connections instead of returning unnecessary promises that never settle (Figure 4, line
65). They discover the same problem in their implementation of destroying connections, which is
neither reported nor detected prior to this issue (line 69). The library developers fix the issue and
publish it to npm in version 3.1.4 of the module. However, as a result, any client programs using
these features of the module must update their legacy code to remain consistent with the latest
API of the module.

3.3 Implicit Returns in Reactions

Developers often need to execute two or more promises, where execution of each subsequent
promise depends on the resolution or rejection of the previous one. To accomplish this, developers
use then() and catch(), returning promises, to create promise chains. However, promise chains
break silently when the developer forgets to explicitly include a return statement.

Example 3.3. Google Assistant8 is a virtual personal assistant that helps users find, organize, and
get things done in their world. The main way users interact with the Assistant is by carrying on a
conversation with it. Apps can extend the Google Assistant by allowing developers to build actions
that let users interact with the assistant. Actions on Google9 client library makes it easy to create
apps for the Google Assistant.

7https://github.com/lukeb-uk/node-promise-mysql/issues/77
8https://assistant.google.com
9https://developers.google.com/actions/

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.

https://github.com/lukeb-uk/node-promise-mysql/issues/77
https://assistant.google.com
https://developers.google.com/actions/


Finding Broken Promises in Asynchronous JavaScript Programs 162:9

71 handleRequest (handler) { // class AssistantApp

72 if (typeof handler === 'function') {

73 const promise = handler(this);

74 if (promise instanceof Promise) {

75 promise.then((result) => {

76 debug(result);

77 return result;

78 }).catch((reason) => {

79 this.handleError_('function failed');

80 this.tell(!reason.message ? ERROR_MESSAGE : reason.message);

81 return reason;

82 });

83 }

84 }

85 }

Fig. 5. Partial JavaScript code segment from the handleRequest() method of the Actions on Google library.

The AssistantApp class of this library provides methods for supporting the conversation API
protocol of the assistant. The handleRequest() method of this class uses a Map of handlers, to
asynchronously address incoming Assistant requests (Figure 5). handleRequest() takes a handler
as an input argument, which can be a function callback or a promise (line 71). After confirming
that the type of the input handler is a function at line 72, the program invokes the handler at line 73
and assigns its result to variable promise. Next, the program checks the type of the result (line 74),
and if it is a promise, registers both fulfill and reject reactions (lines 75 and 78, respectively). If
the promise is resolved and the anonymous fulfill reaction at line 75 is invoked, the result is
returned at line 77. However, the return takes place from within the anonymous fulfill handler of
the promise. The result is wrapped in a promise and returned by the then() method at line 75,
where it is neither returned from the handleRequest() function, nor assigned to a variable for
future use. Hence, the result of performing the handler function is lost. Similarly, if the promise
is rejected, the reject reaction is triggered (line 78). The anonymous reject reaction returns the
reason of the rejection at line 81, which is again ignored when wrapped in a promise and returned
to the handleRequest() at line 75. Thus, developers are unable to handle the fulfill and reject
reactions of the promises returned by their own handlers.
The discussions revolving around pull request #5410 of the library’s repository, indicate more

instances in the code, where the app does not receive the result of handling its request, if the
provided handler returns a promise. The fix, depicted in Figure 6, simply returns the promises
created based on the outcome of both fulfill and reject reactions, as shown in lines 88 and 95,
respectively.

Examples 3.1ś3.3 are simplified and summarized instances of a few of the problems developers
encounter while taking advantage of the benefits of promises. It is a challenging endeavor to
understand the flow of execution and data, and locate the faults in promise-based code. Further,
there are more categories of anti-patterns and misuses of promises observed in asynchronous code,
as we discuss later in the paper. The prevalence of such issues in real-world applications indicate a
need for analyses that can facilitate understanding the semantics of promise-based code.

10https://github.com/actions-on-google/actions-on-google-nodejs/pull/54

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.

https://github.com/actions-on-google/actions-on-google-nodejs/pull/54


162:10 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip

86 if (promise instanceof Promise) {

87 - promise.then(result) => {

88 + return promise.then(result) => {

89 debug(result);

90 return result;

91 }).catch((reason) => {

92 this.handleError_('function failed');

93 this.tell(!reason.message ? ERROR_MESSAGE : reason.message);

94 - return reason;

95 + return Promise.reject(reason);

96 });

97 }

Fig. 6. JavaScript code segment from the Promise-mysql web application.

4 THE PROMISE GRAPH

In this section, we define the notion of a promise graph. Our definition is based on the original
definition of a promise graph by Madsen et al. [Madsen et al. 2017], but a key difference is that our
promise graphs are computed using dynamic analysis, whereas the definition by Madsen et al. is
assumed to be computed using static analysis11. To emphasize this distinction, we will henceforth
use the term static promise graphs to refer to the static notion proposed by Madsen et al., and
dynamic promise graphs to refer to the dynamic notion used in the present paper.
There are several important differences between static and dynamic promise graphs. Dynamic

promise graphs reflect promises that are actually created, resolved and rejected during a program
execution, whereas static promise graphs reflect all possible executions of a program. Consider an
expression that creates a promise (e.g., Promise.resolve(· · · )). If such an expression executes
multiple times, a static promise graph would contain a single promise node that abstracts all
promises created at that expression. On the other hand, a dynamic promise graph would contain a
distinct promise node for each execution of that expression. Furthermore, in a static promise graph,
a promise node may have multiple incoming resolve and reject edges, reflecting the fact that
the promises created by a specific expression may be resolved or rejected with different values. By
contrast, a dynamic promise graph will reflect that each promise is resolved or rejected exactly
once, so it will contain only one incoming edge in such cases.

Beyond the difference between static and dynamic promise graphs, our work extends the notion of
promise graphs of Madsen et al. [Madsen et al. 2017] by accommodating all aspects of ECMAScript 6
promises,12 whereas Madsen et al. only consider a small, idealized subset of promises as embodied
in their λp calculus. Concretely, some of the key aspects of promises that this paper covers for the
first time are: default reactions associated with then and catch, exceptions, and synchronization
constructs such as all and race. Our analysis also supports linked promises that arise during
promise creation, which is not covered in the semantics by Madsen et al.

4.1 Nodes and Edges

The promise graph contains the following nodes:

11 Note that Madsen et al. do not present any technique for computing promise graphs; all the promise graphs shown in

their paper were constructed manually.
12http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.

http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects


Finding Broken Promises in Asynchronous JavaScript Programs 162:11

• A promise node p⃝ for each execution of a promise allocation site p in the program. The
following idioms give rise to promise nodes: (i) calls to the Promise constructor, (ii) calls
to the functions Promise.resolve and Promise.reject, and (iii) calls to methods then,
catch, all and race.
• A value node v⃝ for each value v that is used to resolve or reject a promise. Note that such
values may be lambdas or named functions. Separate value nodes are created for multiple
usages of an object, preserving its contextual information at the time is is used to settle a
promise.
• A function node f⃝ for every lambda or named function in the program that is registered as a
reaction for a promise. The same node is utilized if the function is registered as a reaction for
multiple promises.
• A synchronization node s⃝ for each synchronization operation s , where s is an expression
consisting of a call Promise.all([p1, · · · ,pn]) or Promise.race([p1, · · · ,pn]). The pur-
pose of synchronization nodes is to visualize how the state of the promise created by all or
race depends on the state of their input promises pi , and the order in which they are fulfilled
and/or rejected.

The promise graph contains the following edges:

• A resolve or reject edge v⃝
ℓ

−→ p⃝ from a value node v⃝ to a promise node p⃝, where ℓ is a
label łresolvež or łrejectž, reflecting that value v is used to resolve or reject the promise p,
respectively.

• A registration edge p⃝
ℓ

−→ f⃝, where ℓ is a label łonResolvež or łonRejectž, from a promise
node p⃝ to a function node f⃝ represents that the function f is registered as resolve or reject
reaction on the promise p, respectively. In other words, it represents the fact that, when the
promise p is resolved or rejected, the execution of f is triggered.
• A link edge p1⃝→ p2⃝ from a promise node p1⃝ to a dependent promise node p2⃝ represents the
dependency that when a parent promise p1 is resolved (or rejected) the dependent promise p2
will be resolved (or rejected) with the same value. Such link edges arise in situations where
reactions return values that are promises, or when promises are resolved with values that
are promises (see Section 2).

• A return or throw edge f⃝
ℓ

−→ v⃝, where ℓ is a label łreturnž or łthrowž, reflects situations
where a function f returns or throws the valuev , respectively. Return edges have an optional
label łimplicitž, which is present if a function returns implicitly, i.e., when the programmer
has not provided an explicit return statement. In such cases, a function returns the value
undefined.
• We distinguish two kinds of synchronization edges, which are associated with the use of
Promise.all and Promise.race. In particular, for an expression s ≡ p0.all([p1, · · · ,pn])

or s ≡ p0.race([p1, · · · ,pn]), a synchronization edge pi⃝
ℓ

−→ s⃝ is created that connects the
promise node associated with each input promise pi to the synchronization node s⃝, where ℓ
is a label łresolvedž, łrejectedž, or łpendingž, that reflects whether the input promise pi was
resolved, rejected, or remained unfulfilled, respectively13. Furthermore, a synchronization

edge s⃝
ℓ

−→ p⃝ connects the synchronization node s⃝ to the promise node p⃝, returned by
all or race. Here, the label ℓ is a label łresolvedž, łrejectedž, or łpendingž, reflecting the
state of the resulting promise.

13 It is also possible to provide values instead of input promises in calls to all or race. In such cases, the label łvaluež is

used.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



162:12 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip

4.2 Default Reactions

As discussed in Section 2, several situations exist where default reactions arise. In our experience,
it is very important for developers to be aware of default reactions when trying to understand
the behavior of a promise-based program. Therefore, our approach identifies all implicit default
reactions and explicitly represents them as function nodes with a special label łmissing default

reactionž. In addition, the promise graphs contains return edges and throw edges reflecting the
execution behavior of these default reactions. For example, a call to then of the form:

p.then(f )

is equivalent to:

p.then(f , function(e){ throw e; })

with a default reject reaction function(e){ throw e; }. If this default reject reaction is executed,
the promise graph will contain a throw-edge that connects the corresponding e to the node
corresponding to the promise created by the call to then.

5 UNDERSTANDING AND DEBUGGING WITH PROMISE GRAPHS

Our goal is to facilitate understanding and debugging of promise-based code, such as the code
shown in Figures 1ś6. To this end, we analyze the promise graph and identify a number of anti-
patterns that correspond to programming errors. We then visualize the promise graph, overlaid
with the findings of our anti-pattern analysis, to further assist developers with their program
understanding and debugging tasks. Through the visual graphs, developers can quickly gain an
overall understanding of the flow of execution and identify potentially problematic usages of
promises.

5.1 Inferring Promise Anti-Patterns

Our work on detecting anti-patterns in promise-based code builds on the work by [Madsen et al.
2017], who defined a semantics of JavaScript promises and proposed the promise graph as a method
for understanding and debugging of promise-based code. However, Madsen et al. only constructed
promise graphsmanually for small snippets of promise-based code, they did not design or implement
any analysis for constructing promise graphs and inferring anti-patterns, and they did not report
on any experiments that involved the construction of promise graphs for real-world applications.
Our work goes beyond the work by Madsen et al. by extending the promise graph to all aspects
of JavaScript promises, by identifying several additional anti-patterns, by constructing a dynamic
analysis that computes promise graphs, and by reporting on experiments in which promise graphs
are constructed for real-world applications.
In this section, we present the anti-patterns detected by our analysis and describe how the

collected information is visualized in a way that facilitates program understanding and debugging.

Missing reject reactions. As previously shown in example 3.1, an exception thrown within a
fulfill reaction, a reject reaction, or in a function passed to new Promise() merely causes
the associated promise to be rejected, and does not necessarily manifest itself with an error
message that is presented to the user. In other words, any raised exceptions are silently
ignored, unless they are explicitly handled in a subsequent reject reaction.
To diagnose unhandled promise rejections, our algorithm analyzes all promise nodes in the
graph. If there is no outgoing onReject edge from a promise node p (except for the default
reject reaction), the algorithm adds p to a list L of promises with potentially unhandled
rejections. The definition of the missing reject reaction bug pattern of Madsen et al. [2017]
would consider all members of L as instances of the missing reject reaction anti-pattern.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



Finding Broken Promises in Asynchronous JavaScript Programs 162:13

However, we can observe that the rejection of p will be handled if: (i) there is a promise p ′ in
the chain, which has registered a reject reaction (an outgoing onReject edge to a reaction
other than the default), and (ii) there is a directed path in the graph from p to p ′. In this case,
the rejection of p is handled by p ′’s reject reaction. We apply this heuristic to our algorithm
to avoid spurious warnings. Therefore, our analysis only reports missing reject reactions
that are not handled further down the promise chain. In such cases, our approach creates a
warning note identifying this anti-pattern, and attaches it to the promise node p.

Attempting to settle a promise multiple times. Once a promise is resolved or rejected, its
state cannot be changed. Subsequent attempts to settle a promise have no effect on the state
of the promise and are ignored, without raising an error.14 However, such an attempt may
reflect a situation where a developer does not understand the semantics of promises. Our
analysis detects this anti-pattern by examining the incoming edges to each promise node
p. If more than one resolve or reject edge enters p, the analysis uses the time-stamps
associated with these edges to identify the call that settled p. The edges associated with the
attempts to re-settle the promise are marked with warning notes indicating the issue.

Unsettled promises.

In some cases, the settling of promises may be contingent on external events (e.g., data
arriving at sockets) and an unsettled promise is not necessarily an indication of an error.
However, in other cases a promise may remain pending because of a programmer error or
if program execution follows an unexpected path, as previously shown in example 3.2. An
important consequence of unsettled promises is that their fulfill or reject reactions will never
be executed. Our approach detects this anti-pattern by examining all promise nodes. The
state attribute of each promise node records its state during execution, with all promises
initially in the pending state, until settled. As our algorithm evolves the graph by analyzing
the trace, the state attribute of the nodes changes to either fulfilled or rejected if the
promise is settled. When graph creation is complete, the algorithm inspects the graph for
nodes that are in the pending state, and attaches a warning note to such nodes indicating
that the promise is unsettled.

Unreachable reactions. Related to the previous anti-pattern, an unsettled promise p may have
registered fulfill and reject reactions that will not be executed. Further, an unresolved promise
can be linked to other promises, used to settle promises, or used as input to synchronization
operations such as all() and race(), and thus, prevent their fulfillment as well. To alert
programmers at such unreachable reactions, our analysis locates all unexecuted reactions.
All function nodes are in the unexecuted mode when instantiated. As the program runs,
the status of each invoked function is changed to executed. When the program execution
terminates, the algorithm traverses the graph. All unexecuted functions nodes are marked
as unreachable and are added to a list L. However, a subset of these functions may not be
executed due to the constraints imposed by the semantics of promises: the execution of
fulfill and reject reactions, registered to a promise through then(), is mutually exclusive.
To account for this, we devise another heuristic that eliminates infeasible reactions from L.
In particular, an unexecuted fulfill/reject reaction is no longer considered unreachable if its
corresponding reject/fulfill reaction is invoked. Warning notes are attached to the remaining
unreachable nodes in L to indicate the anti-pattern.
Note that, as a dynamic analysis, our analysis for constructing promise graphs only reflects
observed execution behavior. In general, the fact that promises remain pending or that
reactions remain unexecuted may be an artifact of the particular execution that was observed.

14Attempting to resolve or reject an already-settled promise is a valid (no-op) operation in JavaScript.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



162:14 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip

Therefore, warnings of these types produced by our analysis should be studied carefully to
determine if a bug exists.

Implicit Returns in Reactions. When a developer forgets to include a return statement in a
function, the function will implicitly return the value undefined when it finishes executing.
Recall example 3.3, where the developer forgot to return the promise created by then() at
line 75 of Figure 5. The newly-created promise was lost, since it was neither assigned to a
variable, nor returned from the function. Thus, the function implicitly returned undefined,
and this value was used to resolve the resulting promise with. As seen in that example, this
anti-pattern can entail severe consequences.
To locate instances of this anti-pattern in the graph, we search the graph for function nodes
corresponding to functions that returned implicitly. We could mark all such reaction functions
as suspicious. However, such an approach would lead to false positives in cases where the
promise is located at the end of a chain, in which case its outcome is not used. Therefore, we
employ another heuristic that eliminates cases where the return value is not used by another
node in the graph (i.e., a reaction function or a linked promise). Our algorithm determines this
by inspecting the outgoing edges of the target promise p. If p contains at least one outgoing
edge that may use and propagate the implicitly returned undefined value, a warning note is
attached.

Unnecessary Promises. This situation is also known as the łexplicit construction anti-patternž.
Unnecessary promises are one of the most common anti-patterns. They usually occur when
promises are used as a callback utility without a thorough understanding of their mechanisms.
We detect this anti-pattern by searching the graph for pairs of promises, p1 and p2, which are
connected by a link edge p1 → p2. This indicates that p2 settles when p1 does, and with the
same value or reason. However, if p1 is immediately settled through Promise.resolve() or
Promise.reject(), then its creation has been futile. Thus, if the node settling p1 is a value
node with no incoming edges (which indicates an immediate settlement), we report p1 as
an unnecessary promise because, in such cases, the value or the reason used for settling p1
could have been used to settle p2 directly.

5.2 Visual Graphs

In the last step of our approach, we create a visual representation of the graphs to assist developers
in understanding the behavior of promise-based code. Node-link diagrams are the most common
way of displaying graphs [Battista et al. 1998]. We devise a set of visual cues in the diagrams
to facilitate understanding of promises, their interactions, and the common anti-patterns. We
design a directed graph to manifest control- and data-flow dependencies. We lay out the graph
in an axes-oriented manner, to partially preserve the temporal order of execution, from top to
bottom. The graphs may contain cycles and thus we may not be able to present all graphs in a
topologically sorted manner. However, most edges are depicted in the same direction, which enables
us to effectively visualize hierarchical and temporal relationships, such as those of synchronization
nodes. An example of a visualized promise graph is displayed in Figure 7.

We encode a set of visual cues in the graphs in terms of attributes of nodes and edges. For each
node, we utilize its shape, color, label, and graphics style to convey its characteristics.

• Shape. The shape of a node represents its type. We choose ellipses, rectangles, egg shapes,
and triangles for promises, functions, values, and synchronization nodes, respectively.
• color. We use the fill color to indicate the state of execution of the node. The fill color is grey
if the node is not executed, orange if the executed node potentially causes a bug, and white

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



Finding Broken Promises in Asynchronous JavaScript Programs 162:15

Fig. 7. A visualized promise graph.

otherwise. The border color depicts the state of promise nodes, where green, orange, and
grey borders indicate fulfilled, rejected, and pending promises, respectively.
• Style. The state of the execution of a node is further conveyed with its style, where executed
nodes have a solid style, and unreached nodes are grayscaled.
• Label. Node labels are designed to display the ID, content, or name of a promise, value, or
function node, respectively.

We take advantage of colors, graphics styles, and labels, to represent edge attributes.

• color. The color of incoming and outgoing edges to promise and synchronization nodes are
determined by the status of the node. Consistent with the border color of the node, the edges
may be green, orange, or grey. Moreover, a red edge indicates an error in the edge, e.g., an
attempt to settle a promise more than once.
• Style. The solid style of an edge means it is executed (whether it is used for resolution or
rejection, which is depicted by its color). A dashed style of a node’s edges indicate the pending
state of the node, and thus its reaction edges.
• Label. The edge label represents the type of the edge, and varies depending on the source
and target nodes. Further, if the edge is faulty (e.g., double settle), the error is manifested in
the label of the edge.

Warning Notes. To further assist developers with understanding potential issues with promise-
based code, we attach auxiliary nodes, in form of notes, to problematic nodes. The notes are easily
distinguishable from regular nodes, by their shapes and the dashed style of their respective links.
Further, their red color not only sets them apart from the rest of the nodes, but it also immediately
draws the attention of the viewer to these warning signs that need further inspection. The label of
a warning note explains the warning, and its link locates the responsible node.

When adjusting our graph visualization framework, we took care to make nodes and links easy
to read and track visually. To this end, the drawn graphs have a small number of edge crossings
and bends across edges. They have small but uniform edge lengths, with minimal variance. We also
prohibit node overlaps, utilize the area by adjusting node sizes based on their labels, and maximize
path continuity.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



162:16 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip

6 IMPLEMENTATION

Our analysis is implemented using the Jalangi instrumentation framework [Sen et al. 2013] in a tool
called PromiseKeeper. Jalangi defines callbacks that are invoked at various instrumentation points
during program execution, at each such point enabling a client analysis to inspect or modify the
application’s state. PromiseKeeper’s analysis only requires access to the program state at a limited
number of instrumentation points: upon entry and exit to functions, before and after function calls,
when return and throw statements are executed, when variable declarations are executed, and
when the execution of a new file begins or ends. Below, we summarize the key steps taken by our
instrumentation.

Promise creation. When a call new Promise(· · · ), Promise.resolve or Promise.reject is
encountered, a unique identifier p is associated with the newly created promise and a
promise node is added to the promise graph to represent promise p. For calls of the form new

Promise(· · · ), we additionally record the names of the parameters that are bound to the
functions for resolving and rejecting this promise15 and we update a mapping that records,
for each such resolve/reject function, the promise that it is associated with.

Explicitly resolving and rejecting promises. When a call to a resolve or reject function is
encountered during execution, we create a value node for the value v that is passed as an
argument, use the mapping that was established during promise creation to identify the
promise p being resolved or rejected, and add a resolve or reject edge that connects v with p.

Calls to then.When a call p.then(f1,f2) is encountered, we (i) create function nodes for f1 and
f2 and connect these nodes with registration edges to the promise p that is bound to the
receiver variable p16, (ii) associate a unique identifier with the promise p ′ that is created by
the call to then and (iii) add a promise node for p ′ to the graph. If f1 is not a function, it
is replaced with a default reaction function(v){ return v; } and we keep track of this
fact so that the node can be highlighted in the graph. Similarly, if f2 is not a function

17, it is
replaced with a default function function(v){ return v; }. In all cases, functions used as
reactions are wrapped in another function that includes the code for adding nodes and edges
to the promise graph.

Calls to catch. When a call p.catch(f ) is encountered, we create a function node for f and
connect it with a registration edge to the promise p that is bound to the receiver variable
p, (ii) associate a unique identifier with the promise p ′ that is created by the call to catch

and (iii) add a promise node for p ′ to the graph. Similar to the case for then, f is replaced
with a default reject reaction function(e){ throw e; } if it is not a function, a function
node and a registration edge are created for a default resolve reaction function(v){ return

v; } that is associated with the catch, and all these reactions are wrapped in a function
that includes the code for adding nodes and edges to the graph. Since calls to catch can
only specify a reject reaction for a promise, we rewrite such calls into calls to then to allow
instrumentation of the (default) resolve reaction.

Executing reactions.When execution exits a function f that was registered as a reaction that
creates a promise p, there are several cases that we need to consider:

15 It is customary, but not required, to use the names resolve and reject for these parameters
16 Jalangi provides a mechanism that associated a unique object identifier (oid) with each object that is being created. Our

instrumentation maintains a mapping between Jalangi’s oids and the unique identifiers that we associate with promises.

This mapping is consulted to identify the promise p on which then is invoked.
17 This includes the case where then is invoked with only one argument, in which case f2 has the value undefined.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



Finding Broken Promises in Asynchronous JavaScript Programs 162:17

(1) If f exited due to the execution of a statement returnv , there are two cases. If the returned
value is a promise p ′, we create a link edge that connects p ′ to p. Otherwise, we create a
value node for v , a return edge from f to v , and a resolve edge from v to p.

(2) If f exited due to the execution of a statement throw e , we create a value node for e , a
throw edge from f to e , and a reject edge from e to p.

(3) If f exited without encountering a throw or return statement, the function implicitly
returns the value undefined. In such cases, we create an edge from f to a value node for
the value undefined, and a resolve edge from that node to p. Furthermore, we record the
fact that this edge is due to an implicit return, so that this fact can be highlighted in the
visual representation of the promise graph.

Calls to all and race. When a call to Promise.all(iterable) or Promise.race(iterable)
occurs, we create a synchronization node s . We then examine each element of the iterable
object that is passed as an argument to all or race. If the element is a promise, we locate its
respective node in the graph and create a pending edge from that promise to s . Otherwise,
we create a value node representing the element and connect it to s with a resolved edge,
reflecting the fact that all and race treat objects as instantly-fulfilled promises. Both all

and race return a promise p, which is initially in the pending state. A synchronization edge
from s to p is added to the graph. The promise p returned by all/race is settled as follows:
In the case of all, p is fulfilled when all input promises are fulfilled, and rejected when one
of the input promises is rejected. In the case of race, p is fulfilled/rejected as soon as one of
the input promises is fulfilled/rejected.

Our implementation supports a number of frameworks and practices commonly utilized by
promise-based projects in practice. In addition to native JavaScript promises, we support promises
created by bluebird,18 a promise library extensively used by web developers. We further extended
our implementation to include more advanced and custom usages of promises through mechanisms
such as proxies.

7 EVALUATION

In this section, we apply PromiseKeeper to a collection of open source JavaScript applications
from GitHub to investigate the following research questions:

RQ1 (Characteristics):What is the size of the promise graphs? How many promises are created?
How many of those are fulfilled? How many are rejected? How many are never settled?

RQ2 (Performance) What is the performance overhead of PromiseKeeper?
RQ3 (Anti-Patterns):Howmany instances of promise anti-patterns does PromiseKeeper detect?

How much do the proposed heuristics help reduce the number of reported false positives?
RQ4 (Debugging): Are the recorded promise graphs useful for understanding and debugging

promise-based applications?

7.1 Experimental Design

To answer these research questions, we run PromiseKeeper on 12 open source promise-based
Node.js applications from GitHub. We record the promise graphs, examine their characteristics,
and inspect any reported promise anti-patterns.

Experimental Subjects. We selected 12 promise-based Node.js applications from GitHub by search-
ing for JavaScript projects that rely on promises. We selected actively developed/maintained projects
that used promises considerably in their logic. A key search criterion was that the projects had a

18http://bluebirdjs.com/

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.

http://bluebirdjs.com/


162:18 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip

Table 1. Summary of characteristic of promise graphs and runtime overhead of PromiseKeeper.

Application Graph Nodes Promises Performance

Name LOC Tests Functions Values Total Fulfilled Rejected

Original

Runtime (ms)
Instr.

Runtime (ms)
Slowdown
Factor

Analysis

Time (ms)

1. Actions on Google 16466 25 52 44 44 31 13 560 16355 29.2X 4839
2. Feathers Express 4203 26 1570 577 1008 939 69 320 11280 35.3X 8539
3. Loader Runner 964 26 16 10 12 12 0 344 8485 24.7X 5154
4. Node Fetch 3682 159 846 542 1612 455 114 2230 102107 45.8X 5433
5. Node HN API 6330 10 224 210 2224 224 0 4965 70879 14.3X 5482
6. Promise MySQL 912 6 7 7 21 7 0 1110 7030 6.3X 5007
7. Node Rollout 869 16 57 88 468 88 0 294 10595 36X 18670
8. Node Serialport 11794 167 402 1048 2133 976 75 402 23959 59.6X 22186
9. Promise Branch 197 8 44 38 48 32 10 187 8093 43.3X 6556
10. Razorpay Node.js 7643 157 8 158 746 154 2 525 22376 42.6X 5593
11. Telegraf 4859 88 1124 861 1428 1400 18 1002 8714 8.7X 26710
12. Telegram Mobile 56926 2 0 2 22 2 0 375 17371 47.4X 5300

test suite available. The selected projects include Actions on Google, a library for interacting with
the Google Assistant, Node Fetch, a library that brings the fetch API to Node.js, and Telegraf, a
Telegram bot framework.

Experimental Setup. We installed each project and its dependencies locally. We then ran the test
suite to ensure that our local environment was correctly configured. Next, we ran PromiseKeeper

on the application and its test suite to record the promise graphs. With this setup, each unit test gave
rise to one execution and one promise graph. In some cases, we had to perform minor adjustments
to the test suites to make them compatible with our infrastructure.

We now address each research question in turn and discuss the results.

7.2 RQ1: Characteristics of Promise Graphs

Table 1 shows the results of running PromiseKeeper on each of the 12 applications. The first
three columns of the table show the name of the application, the number of lines of source code
(excluding code in dependent modules), and the number of tests. The next three columns provide
statistics about the promise graphs and report: the number of function nodes, the number of value
nodes, and the total number of promise nodes. Then, the columns labeled łFulfilledž and łRejectedž
show how many of the created promises were fulfilled or rejected, respectively. The final four
columns report on the run-time overhead of the tool and will be discussed in Section 7.3.

As an example, the łFeathers Expressž application consists of 4203 lines of code without consid-
ering the project dependencies, and has 26 unit tests. Executing its test suite constructs promise
graphs that contained a total of 1570 function nodes, 577 value nodes, and 1008 promise nodes. Of
these 1008 promises, 939 were fulfilled and 69 were rejected. In other words, every single promise
was either fulfilled or rejected and no promise was left in a pending state after completion of the
unit tests.

Finding: Many Test Suites Lack Tests for Rejected Promises. From the results in Table 1, it can be
seen that the test suites for the five subject applications at rows 3, 5ś7, and 12 do not encounter
any rejected promises during their execution. However, promise rejection is an important aspect of
promise-based code, commonly utilized by developers as a means to recover from unforeseen error
conditions. Not testing any scenarios that entail promise rejection reflects significant shortcomings
in these test suites.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



Finding Broken Promises in Asynchronous JavaScript Programs 162:19

Table 2. Summary of detected anti-patterns.

Application
Unsettled
Promise

Missing
Reject

Broken
Chain

Unreachable
Reaction

Multiple
Settle

Unnecessary
Promise

Before After Before After Before After

1. Actions on Google 0 13 4 12 5 26 6 1 0
2. Feathers Express 0 230 4 10 9 349 12 0 66
3. Loader Runner 0 2 2 12 6 0 0 0 0
4. Node Fetch 1012 341 78 155 150 449 119 0 119
5. Node HN API 0 384 384 29 0 0 0 0 180
6. Node Rollout 380 85 47 3 0 52 52 0 15
7. Node Serialport 2170 410 8 320 183 650 83 0 182
8. Promise Branch 0 11 7 64 0 126 126 0 54
9. Promise MySQL 14 0 0 0 0 0 0 0 0
10. Razorpay Node.js 590 2 0 9 3 4 2 2 0
11. Telegraf 8 386 386 18 0 568 22 48 70
12. Telegram Mobile 20 0 0 0 0 0 0 0 0
Total 4194 1864 920 632 456 2224 185 51 686

7.3 RQ2: Performance Overhead

To assess the performance of PromiseKeeper, we measured the time required to analyze the subject
applications. We consider two types of performance overhead: (i) run-time overhead incurred by our
instrumentation as it gathers a trace of relevant operations, and (ii) time required for postprocessing
traces, generating promise graphs, detecting anti-patterns, and creating and persisting visual graphs
and their reports. The last set of columns in Table 1 show: the original time required to run the test
suite (column łOriginal Runtimež), the running time when our instrumentation for creating promise
graphs is enabled (column łInstr. Runtimež), the slowdown factor (computed by dividing the latter
by the former), and the time required to postprocess the trace gathered by the instrumentation
(łAnalysis Timež). To compute these numbers, we ran each experiment three times and report the
averages.

For example, running the test suite of łFeathers Expressž with PromiseKeeper’s instrumentation
enabled required 11280 milliseconds, which is 35.3X slower than running the original test suite.
Furthermore, PromiseKeeper required 8539 milliseconds to postprocess the results and generate
the promise graph for this application.

7.4 RQ3: Detecting Anti-Patterns

Table 2 reports on the total number of anti-patterns detected in the promise graph, as discussed in
subsection 5.1, and on the effectiveness of the proposed heuristics for filtering spurious warnings.
Overall, we found a total of 4194 unsettled promises, 1864 missing reject reactions, 632 broken
promise chains, 2224 unreachable reactions, 51 attempts to resettle a settled promise, and 686
unnecessary promises, prior to deploying the heuristics.
Table 3 displays the number of unique static locations with respect to each anti-pattern. For

instance, the 1012 instances of unsettled promises observed for the Node Fetch application in
row 4 of Table 2 are caused by various executions of only 17 uniques locations in the application.
Overall, the detected anti-patterns corresponded to 53 unique locations for unsettled promises,
299 for missing reject reactions, 186 for broken promise chains, 88 for unreachable reactions, 8 for
resettling settled promises, and 52 for unnecessary promises. Below, we provide further analysis
for each of the anti-patterns.

Unsettled Promises. In the aggregate over all subject applications, 43% of all promises remained
pending at the end of execution, which may reflect incompleteness of the test suite. We also
observed that many applications use non-native promise libraries like bluebird, which rely on

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



162:20 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip

Table 3. Summary of unique static locations of detected anti-patterns.

Application
Unsettled
Promise

Missing
Reject

Broken
Chain

Unreachable
Reaction

Multiple
Settle

Unnecessary
Promise

Before After Before After Before After

1. Actions on Google 0 9 3 9 4 6 6 1 0
2. Feathers Express 0 30 3 10 9 4 4 0 4
3. Loader Runner 0 2 2 4 2 0 0 0 0
4. Node Fetch 17 170 13 117 112 13 13 0 27
5. Node HN API 0 3 3 1 0 0 0 0 1
6. Node Rollout 15 20 11 1 0 8 8 0 1
7. Node Serialport 8 50 5 33 15 47 47 0 10
8. Promise Branch 0 11 6 8 0 5 5 0 5
9. Promise MySQL 4 0 0 0 0 0 0 0 0
10. Razorpay Node.js 2 1 0 2 1 2 2 2 0
11. Telegraf 4 3 3 1 0 3 3 5 4
12. Telegram Mobile 3 0 0 0 0 0 0 0 0
Total 53 299 52 186 143 88 88 8 52

unsettled promises as the basis for some optimizations. As such, the 4194 unsettled promises were
created at only 53 unique locations in code. We conclude that the detection of unsettled promises
can be helpful for developers to assess the quality and completeness of their test suite.

Missing Reject Reactions. We discovered a total of 1864 missing reject reactions across all applica-
tions, as shown in the łbeforež subcolumn of the łMissing Rejectž column of Table 2. However, a
missing-reject warning can be viewed as a false positive if promise rejection is handled downstream
in a promise chain. As the łafterž subcolumn of the łMissing Rejectž column shows, applying
this heuristic reduces the number of missing reject reactions to 920 across all subject applications,
rooted in only 299 unique locations in code.
Furthermore, we adjusted our analysis to report those cases where promises with unhandled

rejections were rejected in practice and found seven such cases in łNode Fetchž. Such cases are
easily overlooked due to missing error-handling code and incompleteness of test suites. However,
they can indicate real bugs and thus PromiseKeeper provides a mechanism for detecting them.

Implicit Returns in Reactions. This anti-pattern detects situations where a function that is regis-
tered as a reaction does not explicitly return a value. This scenario may arise when the programmer
accidentally forgets to include a return as in Figure 6. Note that, in the case where the value that
should have been returned is a promise, the lack of an explicit return may give rise to a broken
promise chain. Overall, we found 632 such cases, induced by 186 unique locations, across all subject
applications. However, the lack of a return is harmless if the reaction occurs at the end of a promise
chain, when there is no subsequent reaction that uses the value. Applying our heuristic reduces
the number of issues to 456, in 143 static locations.

Unreachable Reactions. The łbeforež subcolumn of the łUnreachable Reactionž column depicts
the number of function nodes in the promise graphs that are not executed. The results show a total
of 2224 unreachable function nodes observed across all applications, caused by multiple executions
of only 88 unique statement in code.
However, as explained in subsection 5.1, since a promise is settled only once, at most one of

its fulfill and reject reactions will be executed. Therefore, we can remove from the initial set of
unreachable reactions any function node for which the łoppositež reaction has been executed. As
can be seen in Table 2, this heuristic reduces the number of unreachable function nodes to just 422.

Multiple Attempts to Settle a Promise. We found 51 instances of this anti-pattern, which attributed
to only eight unique locations. 48 of the detected instances belonged to the łTelegrafž framework

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



Finding Broken Promises in Asynchronous JavaScript Programs 162:21

Fig. 8. Example of unsettled promise,

Actions on Google.

98 it('allow cloning a response, use both as stream'

99 , function () { var url = base + 'hello';

100 return (0, _src2.default)(url).then(function (res) {

101 var r1 = res.clone();

102 var handler = function dataHandler(chunk) {

103 expect(chunk.toString()).to.equal('world'); };

104 return Promise.all([streamToPromise(res.body,

105 handler), streamToPromise(r1.body, handler)]);

106 });

107 });

Fig. 9. [Simplified] test from Node Fetch.

(row 11). We are not aware of any reason for attempting to settle an already-settled promise and
were surprised to find 51 instances of this anti-pattern by only exercising the application’s test
suites.

Unnecessary Promises. The creation of unnecessary promises is a prevalent anti-pattern and
PromiseKeeper found 686 instances of it across all subject applications, which originated in 52
unique locations. This anti-pattern, also known as the explicit construction anti-pattern, is recognized
by the official bluebird documentation as the most common anti-pattern.19

7.5 RQ4: Debugging with Promise Graphs

In this section, we discuss five examples of issues found by our tool, depicted in Figures 8ś11b, and
explain how PromiseKeeper assists developers with understanding and locating these anti-patterns,
through reports and visualized graphs.

Example 7.1. Unsettled Promises. Figure 9 displays a simplified unit test from the test suite of
Node Fetch.20 This test aims at cloning an XMLHttpRequest (XHR) response, and promisifying
both streams of original and cloned versions of the incoming response. The test starts with creating
a URL (line 99) that is used for sending an XHR request at line 100. Next, the test creates a clone for
the response of the XHR request, res, at line 101. Finally, at line 105, the test creates two promises
for both response streams through the streamToPromise() method. This method returns a new
promise for each stream, which is resolved when the handling of the data steam terminates. At line
105, the test takes advantage of Promise.all(), to return when both promises settle. However, the
report of exercising this test with PromiseKeeper indicates that neither of these promises settles.
The graph generated by PromiseKeeper for this test is (partially) displayed in Figure 8. Nodes

14 and 15 of the graph represent the promises created for the two response streams, namely p9

and p10. As displayed in the graph, neither of these promises have settled, and thus promise p11,
created byPromise.all(), is pending as well. This part of the graph is greyscaled as it has not
been dynamically exercised. As such, all unexecuted reactions of unsettled promises are counted
towards unreachable reactions, reported in the łUnreachable Reactionž column of Table 1.

Example 7.2. Missing Reject Reactions. PromiseKeeper’s reports contain the information of
missing reject reactions, before and after applying the heuristic. However, we only mark the refined
set of missing reject reactions on the graph, to avoid overwhelming the viewer. An example of how
the promise graph guides developers toward detecting this anti-pattern is shown in Figure 10a, a

19http://bluebirdjs.com/docs/anti-patterns.html
20https://github.com/bitinn/node-fetch

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.

http://bluebirdjs.com/docs/anti-patterns.html
https://github.com/bitinn/node-fetch


162:22 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip

(a)
(b)

Fig. 10. Examples of missing reject reaction, Telegraf (10a) & unreachable reaction, Serialport (10b).

part of a graph generated for the test suite of Telegraf.21 It can be seen on the graph that node #103,
representing promise p13, is marked with red. The attached warning note identifies the issue as
the missing reject reaction anti-pattern. The graph and its accompanying report can be used to
recognize and locate the issue, which can then be solved by registering a reject reaction to p13.

Example 7.3. Unreachable Reactions. Greyscaled nodes and dashed edges enable the developers
to locate unreachable nodes and unexercised reactions in a glance. A promise graph inferred from
Node Serialport,22 partially shown in Figure 10b, entails an unexecuted (pending) promise (node
#77) and consequently, two unreachable reaction functions (nodes #78 and #79). Having the graph,
we can see that the pending promise p42 is linked to another promise p48, and based on semantics
of promises, we expect them to have the same state of settlement. However, we notice that p48 is
fulfilled, while p42 remains pending, indicating an error. Inspecting the code, we locate the root
cause of the problem, function (#88) used for resolving p48, which is an asynchronous callback,
preventing the settlement of p42.

Example 7.4. Multiple Attempts to Settle A Promise. Figure 11a shows a situation where an attempt
is made to re-settle a promise. The problematic operation, the reject edge from value node #8 to
promise p0 (node #0), manifests the anti-pattern utilizing its style, color, and label łredundantž.
Here, the program attempted to reject p0 with a Null value but p0 was already fulfilled by value
node #1. We discuss a common practice for remedying multiple settles in subsection 7.6.

Example 7.5. Unnecessary Promises. The graph shown in Figure 11b illustrates (part of) the
execution of a unit test from Promise Branch.23 Consider node #5, displaying promise p2, which is
linked to and resolved by promise p4 (node #9). However, p4 itself is immediately resolved by a
primitive value, i.e., the łtargetResolvedž string (value node #10). Examining the promise graph, we
suspect the reason for creation of p4, as it serves no purpose in the graph other than immediately
resolving p2. It seems that p2 could have been directly resolved with the value node #10, without
requiring to create another promise. Inspecting the code, we finds that a then() reaction in the test
case (line 108) is indeed returning an unnecessary promise from line 110. We find more instances
of unnecessary promises in the application, which complicate code unnecessarily. Eliminating
such intermediate promises will not affect program behavior, but it will make the code more
comprehensible, maintainable, and efficient.

21https://github.com/telegraf/telegraf/
22https://github.com/node-serialport/node-serialport
23https://github.com/danielglennross/promise-branch

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.

https://github.com/telegraf/telegraf/
https://github.com/node-serialport/node-serialport
https://github.com/danielglennross/promise-branch


Finding Broken Promises in Asynchronous JavaScript Programs 162:23

(a) (b)

Fig. 11. Examples of multiple settle, Razorpay (11a), and unnecessary promise, Promise Branch (11b).

108 Promise.resolve().then(function () {

109 return branch(Promise.resolve(), function () {

110 return Promise.resolve('targetResolved');})});

We find more instances of unnecessary promises in the application, which complicate the
execution. Eliminating the middle promise will not affect the semantics of the code, but it will make
the code more comprehensible and maintainable.

7.6 Common Developer Practices

While consulting online documentation, inspecting GitHub issues, and examining promise-based
projects, we noticed a set of common practices that developers use to prevent promise anti-patterns.

Multiple attempts to settle. This anti-pattern may occur when developers devise different sce-
narios for fulfilling or rejecting a promise. Alternatively, they can design the code such that the
methods łracež against each other to resolve a promise. However, extensive use of deferred promises
is an anti-pattern itself, as it impedes comprehension of the execution flow.

Unsettled promises. A band-aid solution we observed for this anti-pattern is manually rejecting
unsettled promises through a timeout. Obviously, this approach does not locate and resolve the
root cause of the issue.

Rethrowing exceptions. To prevent unexpected exceptions from rejecting promises and going un-
noticed, many applications re-throw such exceptions, in order to later handle the uncaughtException
event through either the JavaScript process,24 or bluebird’s error management configuration.25

The mere existence of such treatments indicate that developers find the use of promises challeng-
ing, and that they have formed common and informal practices to prevent or remedy the pitfalls of
using promises. Our observations support the need for facilitating this process through systematic
approaches, such as PromiseKeeper.

7.7 Threats to Validity

The representativeness of our subject applications is a threat to the validity of the experiments. We
addressed this threat by randomly selecting open-source Node.js applications of various domains
and sizes on GitHub. The second threat is the generalizability of the investigated scenarios and the
examiners’ bias, which we mitigated by using the test suites of the subject applications. Another
concern is the impact of the coverage of the test suites on the results of the experiments. Dynamic
analysis is incomplete and thus PromiseKeeper may miss anti-patterns in uncovered parts of

24https://nodejs.org/api/process.html#process_event_uncaughtexception
25http://bluebirdjs.com/docs/api/error-management-configuration.html

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.

https://nodejs.org/api/process.html#process_event_uncaughtexception
http://bluebirdjs.com/docs/api/error-management-configuration.html


162:24 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip

the applications. However, PromiseKeeper provides precise information regarding anti-patterns
within the application code as well as test code. Our experiments are reproducible since we plan to
release our implementation of PromiseKeeper, the experimental subjects, and all reports.

8 RELATED WORK

Promise graphs were originally proposed by Madsen et al. [2017], who also defined the semantics
of promises for λp , a small calculus that extends the λ J S calculus by Guha et al. [2010] with features
for promise creation, registering reactions, and resolving and rejecting promises. As was previously
discussed in Section 4, we extend the promise graphs of Madsen et al. to handle the full definition
of promises in the ECMAScript 6 specification. Furthermore, Madsen et al. did not present any
automated technique for constructing promise graphs as we do in this paper, nor did they report
on any experiments with an automated analysis tool such as PromiseKeeper .

Several other projects focus on JavaScript promises. Loring et al. [2017] propose λasync, a semantics
of the asynchronous execution model of Node.js. Similar to Madsen et al. [2017], they express
their model as an extension of the λ J S calculus by Guha et al. [2010]. Loring et al. sketch several
applications of their semantics, including race detection, time-travel debugging, and resource and
priority scheduling. Kambona et al. [2013] report on a case study that investigates the effectiveness
of promises and reactive extensions using an example of an online collaborative drawing editor.
Brodu et al. [2015] propose a technique to automatically refactoring legacy JavaScript code, written
using event-handling and callbacks, into promise-based code.
Gallaba et al. [2017] present an empirical study in which they report on the prevalence of

callback-accepting functions and callsites, and discuss several solutions for rewriting callback-
based code using alternative mechanisms for accommodating asynchrony, including Async.js and
promises. None of the above works present any automated analysis or tool for detecting errors in
promise-based code.

Several other papers target analysis of asynchronous JavaScript execution in different domains.
Frameworks such as Arrows [Khoo et al. 2009] have been proposed to facilitate understanding and
writing asynchronous code and help developers avoid asynchronous errors. Sahand [Alimadadi
et al. 2016a] is a comprehension tool that infers a temporal model of asynchronous interactions in
full-stack JavaScript. Tochal [Alimadadi et al. 2015] proposes a hybrid impact analysis technique
that includes XHR objects and their interactions with the code in the data- and control-flow analysis.
Unlike our work, these papers do not present program understanding tools for JavaScript promises.

Much previous research has been dedicated to dynamic analysis of JavaScript for various different
purposes. Sen et al. present Jalangi, an instrumentation framework for dynamic program analysis
of JavaScript applications [Sen et al. 2013]. Jalangi has been used as the basis for various tools,
such as DLint, a łlintž tool based on dynamic program analysis [Gong et al. 2015], MemInsight, a
platform-independent memory debugging tool [Jensen et al. 2015], and Crowdie, a feedback-directed
debugging tool [Madsen et al. 2016]. Considerable research has been devoted to tools for detecting
and repairing event races in JavaScript applications [Adamsen et al. 2017b,a; Petrov et al. 2012;
Raychev et al. 2013; Zhang and Wang 2017; Zheng et al. 2011]. Barr et al. [2016] investigate time-
travel debugging for JavaScript, which enables a precise analysis of the history of statements and
values that lead to an error. There are numerous dynamic analysis techniques based on collecting
and analyzing JavaScript traces selectively [Amalfitano et al. 2014; Hibschman and Zhang 2015].
Some assist with the process of comprehension and debugging by utilizing information visualization
techniques and providing higher-level models of execution [Alimadadi et al. 2018, 2016b; Maras
et al. 2013; Zaidman et al. 2013]. Andreasen et al. [2017] present a survey of dynamic analysis
techniques for JavaScript. However, we are not aware of previous dynamic analysis techniques
that target the use of promises.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



Finding Broken Promises in Asynchronous JavaScript Programs 162:25

9 CONCLUSIONS

In previous work, Madsen et al. [2017] formalized the semantics of JavaScript promises and defined
the promise graph, a data structure for helping programmers understand and debug promise-based
code. However, their notion of the promise graph did not cover all promise-related features in the
ECMAScript 6 specification, and they did not propose or evaluate any technique for constructing
promise graphs.
In this paper, we have presented a dynamic analysis for constructing promise graphs for all

promise-related features in the ECMAScript 6 specification. We also reported on its implementation
in PromiseKeeper , and on an evaluation in which we apply PromiseKeeper to 12 promise-based
Node.js applications taken from GitHub. Our findings show that PromiseKeeper is capable of
constructing promise graphs for large and complex applications with acceptable run-time overhead.
Furthermore, we demonstrate the tool’s ability to detect anti-patterns such as missing reject
reactions, attempts to settle a promise multiple times, unsettled promises, unnecessary promises,
and unreachable code that warrant further investigation by a developer. We convey these findings
using a visual representation that enables developers to quickly obtain an understanding of the
behavior of, and potential problems in promise-based code.

10 ACKNOWLEDGEMENTS

This work was supported in part by NSF grant CCF-1715153 and the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

REFERENCES

Christoffer Quist Adamsen, Anders Mùller, Rezwana Karim, Manu Sridharan, Frank Tip, and Koushik Sen. 2017b. Repairing

Event Race Errors by Controlling Nondeterminism. In Proc. 39th International Conference on Software Engineering (ICSE).

Christoffer Quist Adamsen, Anders Mùller, and Frank Tip. 2017a. Practical Initialization Race Detection for JavaScript Web

Applications. In Proc. ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA).

Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. 2015. Hybrid DOM-Sensitive Change Impact Analysis for JavaScript.

In Proceedings of the European Conference on Object-Oriented Programming (ECOOP). LIPIcs, 321ś345.

Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. 2016a. Understanding Asynchronous Interactions in Full-Stack

JavaScript. In Proceedings of the ACM/IEEE International Conference on Software Engineering (ICSE). ACM, 1169ś1180.

Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. 2018. Inferring Hierarchical Motifs from Execution Traces. In

Proceedings of the ACM/IEEE International Conference on Software Engineering (ICSE). ACM, 12 pages.

Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and Karthik Pattabiraman. 2016b. Understanding JavaScript Event-Based

Interactions with Clematis. ACM Transactions on Software Engineering and Methodology (TOSEM) 25, 2 (2016), 38.

Domenico Amalfitano, AnnaRita Fasolino, Armando Polcaro, and Porfirio Tramontana. 2014. The DynaRIA tool for the

comprehension of Ajax web applications by dynamic analysis. Innovations in Systems and Software Engineering 10, 1

(2014), 41ś57.

Esben Andreasen, Liang Gong, Anders Mùller, Michael Pradel, Marija Selakovic, Koushik Sen, and Cristian-Alexandru

Staicu. 2017. A Survey of Dynamic Analysis and Test Generation for JavaScript. ACM Computing Surveys (CSUR) 50, 5

(2017), 66.

Earl T. Barr, Mark Marron, Ed Maurer, Dan Moseley, and Gaurav Seth. 2016. Time-travel Debugging for JavaScript/Node.Js.

In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE 2016).

ACM, 1003ś1007.

Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis. 1998. Graph drawing: algorithms for the

visualization of graphs. Prentice Hall PTR.

Etienne Brodu, Stéphane Frénot, and Frédéric Oblé. 2015. Toward automatic update from callbacks to Promises. In Proceedings

of the 1st Workshop on All-Web Real-Time Systems. ACM, 1.

ECMA Ecmascript. 2015. Language Specification. (2015).

Keheliya Gallaba, Quinn Hanam, Ali Mesbah, and Ivan Beschastnikh. 2017. Refactoring Asynchrony in JavaScript. In

Proceedings of the International Conference on Software Maintenance and Evolution (ICSME). IEEE Computer Society, 11

pages.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.



162:26 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip

Erich Gamma. 1995. Design patterns: elements of reusable object-oriented software. Pearson Education India.

Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. 2015. DLint: dynamically checking bad coding practices in

JavaScript. In Proceedings of the 2015 International Symposium on Software Testing and Analysis. ACM, 94ś105.

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The essence of JavaScript. In European conference on

Object-oriented programming. Springer, 126ś150.

Joshua Hibschman and Haoqi Zhang. 2015. Unravel: Rapid Web Application Reverse Engineering via Interaction Recording,

Source Tracing, and Library Detection. In Proceedings of ACM User Interface Software and Technology Symposium (UIST).

ACM, 270ś279.

Simon Holm Jensen, Manu Sridharan, Koushik Sen, and Satish Chandra. 2015. MemInsight: platform-independent memory

debugging for JavaScript. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM,

345ś356.

Kennedy Kambona, Elisa Gonzalez Boix, and Wolfgang De Meuter. 2013. An evaluation of reactive programming and

promises for structuring collaborative web applications. In Proceedings of the 7th Workshop on Dynamic Languages and

Applications. ACM, 3.

Yit Phang Khoo, Michael Hicks, Jeffrey S Foster, and Vibha Sazawal. 2009. Directing JavaScript with arrows. ACM SIGPLAN

Notices 44, 12 (2009), 49ś58.

Matthew C Loring, Mark Marron, and Daan Leijen. 2017. Semantics of asynchronous JavaScript. In ACM SIGPLAN Notices,

Vol. 52. ACM, 51ś62.

Magnus Madsen, Ondřej Lhoták, and Frank Tip. 2017. A Model for Reasoning About JavaScript Promises. In Object-Oriented

Programming, Systems, Languages & Applications (OOPSLA).

Magnus Madsen, Frank Tip, Esben Andreasen, Koushik Sen, and Anders Mùller. 2016. Feedback-directed instrumentation

for deployed JavaScript applications. In Software Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on.

IEEE, 899ś910.

Magnus Madsen, Frank Tip, and Ondřej Lhoták. 2015. Static Analysis of Event-Driven Node.js JavaScript Applications. In

Object-Oriented Programming, Systems, Languages & Applications (OOPSLA).

Josip Maras, Maja Stula, and Jan Carlson. 2013. Generating Feature Usage Scenarios in Client-side Web Applications. In

Proceeding of the International Conference on Web Engineering (ICWE). Springer, 186ś200.

Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. 2012. Race detection for web applications. In ACM SIGPLAN

Notices, Vol. 47. ACM, 251ś262.

PromiseKeeper 2018. PromiseKeeper. https://github.com/nuprl/PromiseKeeper. (2018).

Veselin Raychev, Martin Vechev, and Manu Sridharan. 2013. Effective race detection for event-driven programs. In ACM

SIGPLAN Notices, Vol. 48. ACM, 151ś166.

Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013. Jalangi: a selective record-replay and dynamic

analysis framework for JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering.

ACM, 488ś498.

Andy Zaidman, Nick Matthijssen, Margaret-Anne Storey, and Arie van Deursen. 2013. Understanding Ajax applications by

connecting client and server-side execution traces. Empirical Software Engineering 18, 2 (2013), 181ś218.

Lu Zhang and Chao Wang. 2017. RClassify: Classifying Race Conditions in Web Applications via Deterministic Replay. In

Proc. 39th International Conference on Software Engineering (ICSE).

Yunhui Zheng, Tao Bao, and Xiangyu Zhang. 2011. Statically locating web application bugs caused by asynchronous calls.

In Proceedings of the 20th international conference on World wide web. ACM, 805ś814.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 162. Publication date: November 2018.

https://github.com/nuprl/PromiseKeeper

	Abstract
	1 Introduction
	2 Review of JavaScript Promises
	3 Challenges and Motivation
	3.1 Unhandled Promise Rejections
	3.2 Unsettled Promises
	3.3 Implicit Returns in Reactions

	4 The Promise Graph
	4.1 Nodes and Edges
	4.2 Default Reactions

	5 Understanding and Debugging with Promise Graphs
	5.1 Inferring Promise Anti-Patterns
	5.2 Visual Graphs

	6 Implementation
	7 Evaluation
	7.1 Experimental Design
	7.2 RQ1: Characteristics of Promise Graphs
	7.3 RQ2: Performance Overhead
	7.4 RQ3: Detecting Anti-Patterns
	7.5 RQ4: Debugging with Promise Graphs
	7.6 Common Developer Practices
	7.7 Threats to Validity

	8 Related Work
	9 Conclusions
	10 Acknowledgements
	References

