
86

A Model for Reasoning About JavaScript Promises

MAGNUS MADSEN, University of Waterloo, Canada

ONDŘEJ LHOTÁK, University of Waterloo, Canada

FRANK TIP, Northeastern University, USA

In JavaScript programs, asynchrony arises in situations such as web-based user-interfaces, communicating with

servers through HTTP requests, and non-blocking I/O. Event-based programming is the most popular approach

for managing asynchrony, but suffers from problems such as lost events and event races, and results in code

that is hard to understand and debug. Recently, ECMAScript 6 has added support for promises, an alternative

mechanism for managing asynchrony that enables programmers to chain asynchronous computations while

supporting proper error handling. However, promises are complex and error-prone in their own right, so

programmers would benefit from techniques that can reason about the correctness of promise-based code.

Since the ECMAScript 6 specification is informal and intended for implementers of JavaScript engines, it

does not provide a suitable basis for formal reasoning. This paper presents λp , a core calculus that captures the
essence of ECMAScript 6 promises. Based on λp , we introduce the promise graph, a program representation that

can assist programmers with debugging of promise-based code. We then report on a case study in which we

investigate how the promise graph can be helpful for debugging errors related to promises in code fragments

posted to the StackOverflow website.

CCS Concepts: • Theory of computation → Operational semantics; Program reasoning; • Software
and its engineering→ Object oriented languages;

Additional Key Words and Phrases: EcmaScript 6, Promises, JavaScript, Formal Semantics, Promise Graph

ACM Reference Format:
Magnus Madsen, Ondřej Lhoták, and Frank Tip. 2017. A Model for Reasoning About JavaScript Promises. Proc.
ACM Program. Lang. 1, 1, Article 86 (January 2017), 25 pages.

https://doi.org/10.1145/3133910

1 INTRODUCTION
Asynchronous control flow is widely used in the JavaScript community for a variety of tasks

such as implementing web-based user-interfaces, communicating with servers through HTTP

requests, and non-blocking I/O. The most popular approach for accommodating asynchrony in

JavaScript applications is event-based programming. In this programmingmodel, a callback function

is associated with a specific type of event on a specific object. Events are typically emitted in

response to some external activity, e.g., a button being clicked by a user, or a network response

arriving, and enqueued for processing. In the main event loop, an event is selected from the queue

and its associated callback is invoked and executed until completion. Unfortunately, event-based

programming in JavaScript leads to highly convoluted and deeply nested control flow that is

sometimes referred to as “callback hell”. Such code is highly error-prone due to the non-obvious

Authors’ email addresses: mmadsen@uwaterloo.ca, olhotak@uwaterloo.ca, f.tip@northeastern.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

2475-1421/2017/1-ART86

https://doi.org/10.1145/3133910

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

https://doi.org/10.1145/3133910
https://doi.org/10.1145/3133910

86:2 Magnus Madsen, Ondřej Lhoták, and Frank Tip

flow of control and lack of support for error handling. In particular, errors do not propagate between

different event handlers, and when an exception occurs during the execution of one event handler,

other event handlers may still be scheduled for execution. As a result, the effects of errors may

not manifest themselves until much later during a program’s execution, making the debugging of

event-based code extremely challenging. Furthermore, several types of errors may occur that are

specific to the event-driven programming model, such as lost events (situations where an event is

emitted before a handler is registered) and dead listeners (situations where an event handler is never

executed because the handler was registered too late or on the wrong object) [Madsen et al. 2015],

and event race errors, i.e., situations where program behavior fails non-deterministically depending

on the order in which event handlers are scheduled for execution [Adamsen et al. 2017; Hong et al.

2014; Jensen et al. 2015; Mutlu et al. 2015; Petrov et al. 2012; Raychev et al. 2013; Zhang and Wang

2017; Zheng et al. 2011].

In response to these problems, the JavaScript community has adopted promises, a programming

model for asynchronous computing that was originally proposed by Friedman and Wise [1976].

A promise represents the value of an asynchronous computation, and is in one of three states

(pending, fulfilled, or rejected). Promises come equipped with two functions, resolve and reject,
which are used to resolve or reject the promise with a particular value, respectively. The then
operation creates a new promise whose value is determined by how the original promise is resolved

or rejected. This enables programmers to chain asynchronous computations and propagate errors

from one asynchronously executed function to another. Several implementations of promises have

been developed in the form of libraries, including BlueBird [Antonov 2013] and Q [Kowal 2010], and

popular frameworks such as jQuery provide implementations of promises as well. More recently,

ECMAScript 6 introduced a standard implementation of promises that has been gaining acceptance

[ECMA 2015, Section 25.4]. However, the semantics of JavaScript promises are quite complex, and

since the feature is implemented by way of ordinary function calls, there are no static checks to

ensure correct usage. As a result, programmers often make mistakes in promise-based code that

lead to pernicious errors, as is evident from many reported issues on forums such as StackOverflow.

One of the key contributions of this paper is a classification of common types of errors related to

JavaScript promises.

The long-term goal of our research is to develop tools for detecting errors in promise-based

JavaScript code. However, the ECMAScript 6 standard specifies the semantics of promises informally

and in operational terms, and is not a suitable basis for formal reasoning or program analysis.

This paper overcomes this obstacle by presenting λp , a calculus in which the behavior of promises

is expressed as an extension of λJS [Guha et al. 2010]. The λp calculus reflects the behavior of

ECMAScript 6 promises, and includes its most important features, while omitting unnecessary

and distracting details. Based on λp , we introduce the promise graph as a program artifact to help

understand and debug promise-based programs. We demonstrate the usefulness of the promise

graph by reporting on a case study in which we investigate how the promise graph can be used to

understand promise-related problems reported on StackOverflow.

In summary, the paper makes the following contributions:

• a classification of common programming errors related to JavaScript promises.

• the λp calculus, which provides a formal semantics for a subset of JavaScript promises.

• the promise graph, a program artifact which can be used to detect promise-related errors.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

A Model for Reasoning About JavaScript Promises 86:3

2 MOTIVATION
This section presents a brief primer on JavaScript promises, discusses some common questions

about promises, and presents an example that illustrates the types of errors that may arise in

JavaScript programs that use them.

2.1 Brief Primer on JavaScript Promises
A promise is an object that represents the result of an asynchronous operation. A promise is always

in one of three states:

Pending: The asynchronous operation has not yet completed and the promise holds no value.

This is the initial state of every promise.

Fulfilled: The asynchronous operation has succeeded and the promise holds a result value.

Rejected: The asynchronous operation has failed and the promise holds an error value.

A promise is settled if it is either fulfilled or rejected.

Promises are constructed using a Promise constructor that takes a single callback function with

two parameters. The parameters of this function are two functions (typically called resolve and
reject in idiomatic JavaScript) that must be invoked to resolve or reject the promise, respectively.

For example, the code fragment in Figure 1(a) creates a promise that is immediately resolved with

the value 42. Once a promise is settled, subsequent calls to resolve or reject do not affect the

promise’s state.

The then function can be used to register resolve reactions and reject reactions with promises.

Such reactions are ordinary functions that are invoked in the event loop when the promise they

are associated with is resolved or rejected, respectively. However, the then function goes beyond

merely executing the associated resolve reaction or reject reaction by creating a dependent promise
that is resolved (or rejected) with the result computed by the resolve (reject) reaction. This enables

the construction of a chain of promises, where computed values or error values are passed from

one computation to the next. For example, the code in Figure 1(b) first creates a promise that is

resolved with the value 42. Subsequently, a resolve reaction is associated with this promise that

prints this value and that creates a dependent promise that is resolved with the value 84.
Note that, in the example of Figure 1(b), only a resolve reaction was supplied, but it is possible to

provide both resolve and reject reactions, as shown in Figure 1(c)
1
. Here, if the promise assigned

to p1 is resolved with value 17, then the resolve reaction will print ‘x = 17’ and the dependent

1
Furthermore, reactions can in turn return promises, as we will see in the example of Figure 2.

1 var p = new Promise((resolve, reject) => {
2 resolve(42);
3 });

(a)
1 var p = new Promise((resolve, reject) => {
2 resolve(42);
3 });
4 var p2 = p.then(value => {
5 // prints 42
6 console.log(value)
7 // resolves p2 with 84.
8 return value + 42;
9 })

(b)

1 var p1 = new Promise((resolve, reject) => {
2 if (...) {
3 resolve(17);
4 } else {
5 reject(18);
6 };
7 });
8 var p2 = p.then(function(x) {
9 console.log("x = " + x);
10 return 19;
11 },
12 function(y) {
13 console.log("error");
14 return 20;
15 });

(c)
Fig. 1. Examples of JavaScript promises.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

86:4 Magnus Madsen, Ondřej Lhoták, and Frank Tip

promise p2 will be resolved with the value 19. If p1 is rejected with the value 18, the reject reaction
will be executed, causing “error” to be printed, and the dependent promise p2 will be resolved

with the value 20.
2
Thus, the then function can be used to construct a chain of promises of the

form: p1.then(...,...)..then(...,...).then(...,...).
The use of promises has several advantages over event-driven programming:

• Unlike event handlers, reactions will still be scheduled for execution when their association

with a promise is created after that promise has already been settled. This prevents “lost

event” errors that may arise in event-driven programs [Madsen et al. 2015].

• In a chain of promises, it is possible to propagate error values (e.g., exceptions, error values,

or error messages) from a promise to a dependent promise. By contrast, in event-driven

programs, exceptions propagate to the top-level and cannot be propagated to a subsequently

executed event handler.

• The chaining of promises leads to code where subsequently executed reactions appear

sequentially, at the same level. By contrast, traditional event-driven programming leads to

deeply nested code that is difficult to understand, a situation that is sometimes referred to as

“callback hell” or the “pyramid of doom”.

2.2 Debugging a Program with Promises – StackOverflowQuestion Q42408234
Figure 2(a) shows a simplified program fragment from StackOverflow question Q42408234, entitled

“Difficulty handling Promises in javascript”. The example has considerable complexity, but in our

experience, it is representative of the types of problems that programmers face with promise-

based programming. In his question, the programmer writes: “I’m not sure why the promise from a
mongoose find is returning undefined.” and provides two code fragments. Here, “mongoose” refers

to a JavaScript interface for the MongoDB database.

The high-level structure of the code is as follows: The function login (lines 1–5) calls the

function validateLogin (lines 7–32), passing the parameters nameOrEmail and password. The
login function expects validateLogin to return a promise that is eventually resolved with an

object that represents whether or not the login was successful. Unexpectedly, on line 3, the result
parameter is undefined when the reaction is called. This is a classic debugging problem: Why

does the parameter result have the value undefined? Is the bug in the library, as hinted at in the

programmer’s comments, or in his own code? The use of promises obscures both the control– and

data flow, making it very difficult to understand from where the value undefined originates.

Let us manually try to debug the program. The implementation of login looks reasonable

suggesting that the bug is in the function validateLogin. Inside validateLogin, lines 8–14
perform some simple validation of the values of the parameters nameOrEmail and password that
seems unrelated to the problem at hand.

Line 15 contains a call db.User.find(...) to find a user in the database. This call returns a

promise that is eventually resolvedwith an object that represents a user with the given nameOrEmail
and password. On line 16, the programmer calls then on this promise to register the function on

lines 16–31 as a resolve reaction with this promise. This creates a dependent promise that is the

promise that is actually returned by validateLogin. At this point, it becomes clear that it is this

dependent promise that is eventually resolved with the value undefined.
To understandwhy, consider the resolve reaction on lines 16–31, and observe that it is a big if-then-

else statement. The else-branch (lines 27–30) always returns an object literal, so we conclude that

the bug must be located somewhere in the then-branch. The then-branch (lines 18–26), contains a

call on line 20 to bcrypt.compare(...), which returns another promise that is eventually resolved

2
Replacing “return 20” in the reject reaction with “throw 20” would cause the dependent promise to be rejected instead.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

A Model for Reasoning About JavaScript Promises 86:5

1 function login(req, res) {
2 validateLogin(req.nameOrEmail, req.password).then((result) => {
3 // Question: Why is 'result' undefined here??
4 }
5 };
6
7 function validateLogin(nameOrEmail, password) {
8 var errors = {};
9 if (validator.isEmpty(nameOrEmail)) {
10 errors.nameOrEmail = 'username is required';
11 }
12 if (validator.isEmpty(password)) {
13 errors.password = 'password is required';
14 }
15 return db.User.find({$or:[{ username: nameOrEmail }, { email: nameOrEmail }]})
16 .then(existingUser => {
17 if (existingUser.length > 0) {
18 // User exists, check if password matches hash
19 var user = existingUser[0];
20 bcrypt.compare(password, user.password_digest)
21 .then(valid => {
22 if (!valid){
23 errors.password = 'Invalid Password';
24 }
25 return { isValid: isEmpty(errors), errors };
26 })
27 } else {
28 errors.nameOrEmail = 'username or email does not exist';
29 return { isValid: isEmpty(errors), errors };
30 }
31 });
32 }

p15

f16

v26

p16

f2

p20

f21

v25

p21

resolve resolve

resolve resolve

resolve

(a) (b)

Fig. 2. (a) Program fragment from StackOverflow question Q42408234. (b) Promise graph for this program

fragment.

with an object that indicates whether or not the correct password was entered. The call to then on

line 21 registers the function on lines 21–26 as a resolve reaction for this promise. After some more

validation steps, this function returns an object as expected, so what is wrong?

The problem has to do with the fact that the two return statements occur in different functions:

• The return on line 29 occurs in the function that spans lines 16–31. Note that this function is

registered as a reaction for the promise returned by the call db.User.find(...) on line 15.

• The return on line 25 occurs in the function that spans lines 21–26. Note that this function

is registered as a reaction for the promise returned by the call bcrypt.compare(...) on

line 20.

At this point, the problem becomes clear. If the then-branch of the if-statement on line 17 is

executed, the function on lines 16–31 does not explicitly return a value, so it implicitly returns

undefined, and this explains why the promise created by the call to then on line 16 is resolved

with the value undefined. As a related matter, one may observe that the value computed by the

dependent promise created by the call to then on line 21 is not used anywhere: the promise and its

result is “lost”. Clearly, the programmer’s intention was to return the promise created by the call to

then on line 21, and this can be accomplished by explicitly returning the value computed by the

expression bcrypt.compare(password, user.password_digest).then(...).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

86:6 Magnus Madsen, Ondřej Lhoták, and Frank Tip

The long-term goal of our research is to help programmers debug such issues. For that purpose,

we introduce the promise graph. The relevant parts of the promise graph for the program of

Figure 2(a) are shown in Figure 2(b). From this graph, one may observe that the function f2, on
line 2, receives the value v26 (the undefined value) from line 26 through the promise p16 created
on line 16. However, what the programmer intended to happen was for this promise to receive the

value v25 created on line 25. As the graph shows, the value v25 is returned by the function f21 on
line 21 and used to resolve the promise p21 created on line 20, but, and this is crucial, the promise

p21 is never used for anything and hence the value v25 is lost. At a high level, the problem is that

the two promise chains are disconnected. The programmer wanted these chains to be connected

by way of an edge p21 → p16. Specifically, the intention was to return the promise of bcrypt for
resolving the promise created by db.User.find(...).then.
As a testament to the complexity of this problem, upon getting the answer, the programmer

replied: “Wonderful! What a major slip up by me. I spent a solid two hours trying to fix this.” illus-
trating just how hard it can be to debug promise-based code.

3 SEMANTICS
We now turn our attention to a formal treatment of the semantics of promises in JavaScript. In this

section, we develop a reduction semantics for promises as an extension of the λJS calculus.
Using a minimal calculus allows us to focus on the essence of promises, and avoid obscuring

the important details by other complex JavaScript features, such as prototype-based inheritance,

dynamic property access, implicit coercions and on-the-fly code evaluation with eval, to which

much research has already been dedicated [Guha et al. 2010; Jensen et al. 2012, 2011, 2009; Kashyap

et al. 2014; Madsen and Andreasen 2014; Madsen et al. 2013; Madsen and Møller 2014].

3.1 The ECMAScript Specification
The ECMAScript 6 specification [ECMA 2015] describes the semantics of promises in JavaScript.

The description consists of approximately 3,500 words written in terse prose. It explains the

semantics in pseudo-code as a sequence of steps. Nomotivation or informal commentary is provided.

Furthermore, the semantics rests on many “specification specific” operations, such as Return-
IfAbrupt, IsCallable and data structures such as “records” and “internal slots” that do not exist

in the surface syntax of JavaScript.

We now proceed as follows: We begin with a discussion of the runtime environment for promises

as specified in ECMAScript 6. This gives us an idea of the complexities of the specification, but also

a sense of what promises really are. We use this to motivate some design choices. Next, we present

our syntax and runtime extensions of λJS before presenting the evaluation rules of our calculus λp .

Promise Objects and Functions. In ECMAScript 6, a Promise object has four internal slots:3

[[PromiseState]]: A string "pending", "fulfilled" or "rejected" representing the state of
the promise.

[[PromiseResult]]: The value that the promise has been settled (i.e., fulfilled or rejected) with.

If the promise is pending the value is undefined.
[[PromiseFulfillReactions]]: A list of promise reactions. A fulfill reaction is a function that

should be executed asynchronously when the promise is fulfilled.

[[PromiseRejectReactions]]: A list of promise reactions. A reject reaction is a function that

should be executed asynchronously when the promise is rejected.

3
An internal slot is a hidden property. Internal slots are written as [[name]].

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

A Model for Reasoning About JavaScript Promises 86:7

Informally, we can think of promise reactions as event handlers that are triggered when a promise

is resolved or rejected. However, unlike event handlers, promise reactions also determine the values

that are used to resolve or reject dependent promises, as will be explained shortly.

A PromiseCapability object has three internal slots:

[[Promise]]: A reference to a Promise object.

[[Resolve]]: A function that resolves the promise. This function expects a single argument,

which is the value to resolve the promise with.

[[Reject]]: A function to reject the promise. This function also expects a single argument, which

is the value (typically an exception value, an error value, or an error message) to reject the

promise with.

A PromiseCapability is really what the programmer sees as a promise object. Its [[Resolve]]
and [[Reject]] functions, which themselves are objects, have two internal slots:

[[Promise]]: A reference to a Promise object.

[[AlreadyResolved]]: A boolean indicating whether the promise has been settled (i.e., resolve or

rejected). The name is confusing, it would have been more accurate to call it AlreadySettled.

Finally, we get to PromiseReaction, which has two slots:

[[Capabilities]]: A reference to a PromiseCapability object. Note that despite the name

being plural, the slot only refers to a single capability.

[[Handler]]: This is either a function object, the string "Identity", or the string "Thrower".
The latter serve to compactly represent situations where a reaction consists of the identity

function, or a similar function that throws its argument.

Based on these data structures, ES6 defines the core operations on promises: resolve, reject,
then, catch.

3.2 Design Decisions
We formulate the λp calculus as an extension of the λJS calculus [Guha et al. 2010]. λp has a

small-step reduction semantics with additional runtime components to track, schedule, and execute

promises, and operations to create, chain, and resolve or reject promises. Similar to JavaScript and

λJS, we assume execution to be single-threaded and non-preemptive. Features such as prototype

chains, coercions, and dynamic fields, are as specified in λJS. In defining λp , we made the following

simplifying design decisions:

• Explicit syntax is introduced for creating a promise (promisify(e)), resolving a promise

(e.resolve(e)) and rejecting a promise (e.reject(e)).
• ECMAScript 6 distinguishes between Promise and PromiseCapability objects, λp merges

these two objects. Furthermore, we will allow any object to be turned into a promise.

• High-level operations such as then and catch are modeled using lower-level primitives.

Specifically, catch is a special case of then, and then is expressed as a combination of the

primitives onResolve, resolve, and link.
• The relationship between dependent promises is modeled using an explicit link operation.

3.3 Syntax of λp
λp extends the surface syntax of λJS

4
with six new expressions, as shown in Figure 3(a).

A promisify expression turns an object into a promise. As discussed, a promise is in one of three

states: pending (P), fulfilled (F), or rejected (R). Upon creation, a promise is in the pending (P)
state. A resolve expression fulfills a promise with a value and causes its resolve reactions to be

4
For convenience, the syntax of λJS can be found in Appendix A.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

86:8 Magnus Madsen, Ondřej Lhoták, and Frank Tip

e ∈ Exp = promisify (e) [create promise]

| e .resolve (e) [resolve promise]

| e .reject (e) [reject promise]

| e .onResolve (e) [chain promise]

| e .onReject (e) [chain promise]

| e .link (e) [link promises]

E = □
| promisify (E)
| E.resolve (e) | v .resolve (E)
| E.reject (e) | v .reject (E)
| E.onResolve (e) | v .onResolve (E)
| E.onReject (e) | v .onReject (E)
| E.link (e) | v .link (E)

(a) (b)

Fig. 3. (a) Syntax of λp . (b) Evaluation Contexts for λp .

σ ∈ Heap = Addr ↪→ Val
ψ ∈ PromiseState = Addr ↪→ PromiseValue

f ∈ FulfillReactions = Addr ↪→ (Reaction × Addr)⋆
r ∈ RejectReactions = Addr ↪→ (Reaction × Addr)⋆

π ∈ Queue = (PromiseValue × Reaction × Addr)⋆
ρ ∈ Reaction = Lam | default

Ψ ∈ PromiseValue = {P, F(Val), R(Val)}

Fig. 4. Runtime of λp .

scheduled for execution by the event loop. Similarly, a reject expression rejects a promise with a

value and causes its reject reactions to be scheduled for execution by the event loop. An onResolve
expression registers a resolve reaction on a promise and returns a dependent promise. Similarly,

an onReject expression registers a reject reaction on a promise and returns a dependent promise.

A link expression registers a dependency between two promises such that when the former is

resolved (or rejected) the latter is resolved (or rejected) with the same value.

As in λ JS [Guha et al. 2010], we use evaluation contexts [Felleisen et al. 2009] to explain how

sub-expressions are evaluated. Figure 3(b) shows the evaluation contexts for the extended language.

Here, the □ symbol represents the hole in the evaluation context.

3.4 Runtime of λp
The runtime state of λp is similar to that of λJS, but extended with four additional components:

A promises state ψ maps each address to an algebraic data type Ψ ∈ PromiseValue, which is one

of pending P, fulfilled F(v), or rejected R(v) where v is the result value of the promise. The fulfill
reactions f and reject reactions r each map an address to a list of reaction and dependent promise
pairs for a pending promise. A reaction ρ is lambda or the special default reaction. For now, the

default reaction can be thought of as the identity function. When a pending promise is resolved

(or rejected) with a value v , then the reaction, i.e. lambda expression or default, is evaluated with

argument v and the result of that evaluation is used to further resolve (or reject) the dependent

promise. The final component is a queue π of scheduled reactions, i.e., promises that have been

settled for which the reactions are awaiting asynchronous execution by the event loop.

A program state is a five tuple ⟨σ ,ψ , f , r ,π ⟩ of these components together with a heap σ . Figure 4
shows the grammar for the runtime of λp .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

A Model for Reasoning About JavaScript Promises 86:9

e ↪→ e ′

⟨σ ,ψ , f , r ,π ,E[e]⟩ → ⟨σ ′,ψ ′, f ′, r ′,π ′,E[e ′]⟩
[E-Context]

a ∈ Addr a ∈ dom(σ) a < dom(ψ)
ψ ′ = ψ [a 7→ P] f ′ = f [a 7→ Nil] r ′ = r [a 7→ Nil]

⟨σ ,ψ , f , r ,π ,E[promisify(a)]⟩ → ⟨σ ,ψ ′, f ′, r ′,π ,E[undef]⟩
[E-Promisify]

a ∈ Addr a ∈ dom(σ) ψ (a) = P
a′ ∈ Addr a′ < dom(σ) ψ ′ = ψ [a′ 7→ P] σ ′ = σ [a′ 7→ {}]

f ′ = f [a 7→ f (a) ::: (λ,a′)][a′ 7→ Nil] r ′ = r [a′ 7→ Nil]
⟨σ ,ψ , f , r ,π ,E[a.onResolve(λ)]⟩ → ⟨σ ′,ψ ′, f ′, r ′,π ,E[a′]⟩

[E-OnResolve-Pending]

a ∈ Addr a ∈ dom(σ) ψ (a) = F(v)
a′ ∈ Addr a′ < dom(σ) ψ ′ = ψ [a′ 7→ F(v)] σ ′ = σ [a′ 7→ {}]

f ′ = f [a′ 7→ Nil] r ′ = r [a′ 7→ Nil]
π ′ = π ::: (F(v), λ, a′)

⟨σ ,ψ , f , r ,π ,E[a.onResolve(λ)]⟩ → ⟨σ ′,ψ ′, f ′, r ′,π ′,E[a′]⟩
[E-OnResolve-Fulfilled]

a ∈ Addr a ∈ dom(σ) ψ (a) ∈ {F(v ′), R(v ′)}
⟨σ ,ψ , f , r ,π ,E[a.resolve(v)]⟩ → ⟨σ ,ψ , f , r ,π ,E[undef]⟩

[E-Resolve-Settled]

a ∈ Addr a ∈ dom(σ) ψ (a) = P
f (a) = (λ1,a1) · · · (λn ,an) π ′ = π ::: (F(v), λ1,a1) · · · (F(v), λn , an)

ψ ′ = ψ [a 7→ F(v)] f ′ = f [a 7→ Nil] r ′ = r [a 7→ Nil]
⟨σ ,ψ , f , r ,π ,E[a.resolve(v)]⟩ → ⟨σ ,ψ ′, f ′, r ′,π ′,E[undef]⟩

[E-Resolve-Pending]

a1 ∈ Addr a1 ∈ dom(σ) a2 ∈ Addr a2 ∈ dom(σ) ψ (a1) = P
f ′ = f [a1 7→ f (a1) ::: (default,a2)] r ′ = f [a1 7→ r (a1) ::: (default,a2)]

⟨σ ,ψ , f , r ,π ,E[a1.link(a2)]⟩ → ⟨σ ,ψ , f ′, r ′,π ,E[undef]⟩
[E-Link-Pending]

a1 ∈ Addr a1 ∈ dom(σ) a2 ∈ Addr a2 ∈ dom(σ) ψ (a1) = F(v)
π ′ = π ::: (F(v), default,a2)

⟨σ ,ψ , f , r ,π ,E[a1.link(a2)]⟩ → ⟨σ ,ψ , f , r ,π ′,E[undef]⟩
[E-Link-Fulfilled]

Fig. 5. Semantics of λp . Here Nil is the empty list, the notation x :: xs is cons, and the notion xs ::: ys is append.
The rules for [E-OnReject-Pending], [E-OnReject-Rejected], [E-Reject-Pending], [E-Reject-Settled], and

[E-Link-Rejected] are not shown, but are conceptually similar to other rules.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

86:10 Magnus Madsen, Ondřej Lhoták, and Frank Tip

π = (F(v ′), λr ,a) :: π ′

⟨σ ,ψ , f , r ,π ,v⟩ → ⟨σ ,ψ , f , r ,π ′,a.resolve(λr (v ′))]⟩
[E-Loop-Fulfilled-Lambda]

π = (R(v ′), λr ,a) :: π ′

⟨σ ,ψ , f , r ,π ,v⟩ → ⟨σ ,ψ , f , r ,π ′,a.resolve(λr (v ′))]⟩
[E-Loop-Rejected-Lambda]

π = (F(v ′), default,a) :: π ′

⟨σ ,ψ , f , r ,π ,v⟩ → ⟨σ ,ψ , f , r ,π ′,a.resolve(v ′)]⟩
[E-Loop-Fulfilled-Default]

π = (R(v ′), default,a) :: π ′

⟨σ ,ψ , f , r ,π ,v⟩ → ⟨σ ,ψ , f , r ,π ′,a.reject(v ′)]⟩
[E-Loop-Rejected-Default]

Fig. 6. Loop Semantics of λp .

3.5 Semantics of λp
We now present the reduction semantics of λp , which extends the semantics of λJS with the

evaluation rules shown in Figure 5 and Figure 6. We have omitted a few rules related to reject
since they are similar to the rules for resolve. The semantics consists of two evaluation relations:

The relation ↪→ represents expression-to-expression reductions, whereas the→ relation represents

state-to-state transitions. The rules we add are impure and are therefore defined as state transitions

in terms of →.

[E-Context]. This rule enables evaluation and recomposition of expressions according to the

evaluation contexts in Figure 3(b). That is, if some expression e1 can evaluate to e2 in the single step

relation ↪→, and e1 occurs in the hole of the evaluation context, then we can plug the hole with e2.

[E-Promisify]. This rule turns an address into a promise. The rule states that if there is an

expression promisify(a) where a is an address in the heap and the address is not already in one of

the three promise states, then we initialize the promise state to pending P and initialize the resolve

and rejection reactions to the empty list.

[E-OnResolve-Pending]. This rule registers a fulfill reaction on a pending promise. Specifically,

if the expression is a.onResolve(λ), where a is the address of an object allocated in the heap, λ is
the fulfill reaction, and the promise is in the pending state, then the rule allocates a dependent

promise with address a′, initializes its reactions to empty list, and—most importantly—adds the

pair (λ,a′) to the fulfill reactions of the original promise a. The idea is that when a is eventually

resolved, the function λ will be executed asynchronously by the event loop. Its return value will

then be used to resolve the dependent promise a′.

[E-OnResolve-Fulfilled]. This rule handles the case when a fulfill reaction is registered on

a promise that is already resolved. In this case, the fulfill reaction is immediately scheduled for

execution by placing it in the queue. Specifically, if the expression is a.onResolve(λ) where, as
before, a is an address allocated in the heap, and the promise has already been fulfilled with a

value v according to the promise state mapψ , then we allocate a dependent promise a′ but instead
of adding the pair (λ,a′) to the fulfill reaction of a we enqueue (append) the triple (P(v), λ,a′)
to the queue and return a′. The effect is that, despite the promise already having been resolved,

the reaction being registered is scheduled for execution. This behavior differs from that of event

handlers where registering a handler too late means that it will never be executed.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

A Model for Reasoning About JavaScript Promises 86:11

[E-Resolve-Settled]. This rule simply states that resolving a settled promise has no effect.

Specifically, if the expression is a.resolve(v) but the state of the promise a according to the

promise state mapψ indicates that the promise has already been resolved (or rejected), then the

resolve has no effect.

[E-Resolve-Pending]. This rule handles the case when a pending promise is resolved. Resolving

a promise requires multiple things to happen: (a) The fulfill reactions are extracted from the promise

and enqueued with the value used to resolve the promise with. (b) The fulfill and reject reactions

are cleared from the promise. (c) The promise state is changed from pending to fulfilled (or rejected).

Specifically, if the expression is a.resolve(v), then a must be an address allocated in the heap and

the promise state of a must be pending. Then the fulfill reactions of a are extracted. This is a list of

(λi ,ai) pairs where the λ is the reaction and ai is its dependent promise. We then enqueue a triple

(F(v), λi ,ai) for each such reaction. Finally, we clear out the reactions for a in the fulfill and reject

maps f and r and update the promise stateψ to F(v).

[E-Link-Pending]. This rule causes one promise to be “linked” to another. This means that when

the former is resolved (or rejected), the latter will be resolved (or rejected) with the same value.

Specifically, if the expression is a1.link(a2), then the rule registers two reactions on a1; a fulfill
reaction (default,a2) and a reject reaction (default,a2). The effect is that when a1 is resolved (or

rejected), then the registered reaction will be executed with what is effectively the identity function

causing a2 to be resolved (or rejected) with the same value as a1.

[E-Link-Fulfilled]. This rule is similar to [E-Link-Pending] but handles the case where the

parent promise is already settled. In this case, the dependent promise with the default reaction is

immediately scheduled for execution in the event loop.

[E-Loop-Fulfilled-Lambda] and [E-Loop-Rejected-Lambda]. These two rules extracts a fulfill or
reject reaction from the queue, executes it with the promise’s value, and uses the returned value to

resolve the dependent promise. Notice that the dependent promise is always resolved. This is what
allows a reject reaction to “recover” from an error situation. For example, if the entire expression

has been reduced to a value, and the event queue contains a triple (R(v), λr ,a) of a rejected promise

value v , a reject reaction λr and a dependent promise (address) a, then λr is evaluated with the

value v and that result is used to resolve the dependent promise a.

[E-Loop-Fulfilled-Default] and [E-Loop-Reject-Default]. These two rules are conceptually

similar to the two previous rules with an important difference. Each rule extracts a promise value

(either fulfilled or rejected) v and a dependent promise a from the queue. The rule then uses the

value v to resolve or reject the dependent promise a preserving the fulfilledness or rejectedness of

the promise value. In other words, if the promise value was rejected then the dependent promise is

also rejected.

The rules [E-OnReject-Pending], [E-OnReject-Rejected], [E-Reject-Pending], [E-Reject-

Settled] and [E-Link-Rejected] are conceptually similar to the ones discussed above.

3.6 Encoding of Then, Catch, and Other Promise Operations
We now describe how to encode several promise operations in terms of lower-level primitives.

Then. The expression e .then(λf , λr) is a heavily overloaded operation that contains a lot of

functionality. At a high level, then registers the reactions λf and λr on the promise e and returns a

dependent promise. Figure 7 shows a sketch implementation of then in JavaScript syntax using

the primitive promise operations of λp . The key details are as follows: The function expects

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

86:12 Magnus Madsen, Ondřej Lhoták, and Frank Tip

1 Promise.prototype.then =
2 function(resolveReaction, rejectReaction) {
3 if (!resolveReaction instanceof Function)
4 resolveReaction = identity
5 if (!rejectReaction instanceof Function)
6 rejectReaction = identity
7 var p = promisify({});
8 this.onResolve(function(value) {
9 var x = resolveReaction(value)

10 if (x instanceof Promise) {
11 x.link(p);
12 } else {
13 p.resolve(x);
14 }
15 })
16 // similarly for reject.
17 return p;
18 }

Fig. 7. A sketched implementation of then in λp

two arguments resolveReaction and rejectReaction. If either is a non-function value, then
implicitly uses the identity function instead. The function creates a new dependent promise p
which is ultimately the result of the call to then. On the this value, then registers the resolve

and reject reactions: The return value of resolveReaction and rejectReaction determine how

the promise p is resolved (or rejected). Specifically, if the reaction returns a promise, then that

promise is linked to the promise p. If, on the other hand, the reaction returns a regular value, then

the promise p is resolved (or rejected) with that value.

Catch. The catch expression e .catch(λr) is simply syntactic sugar for e .then(id, λr).

Race. The expression race(a1, · · · ,an) takes a sequence of promise objects a1 · · ·an and returns a
promise that is fulfilled (or rejected) with the value of the first promise that is resolved (or rejected).

We can encode this functionality by creating a new promise and adding a reaction to each of the

“racing” promises that will fulfill the newly created promise. Since fulfilling a promise twice has no

effect, this implements the desired functionality.

All. The expression all(a1, · · · ,an) takes a sequence of promise objects a1 · · ·an and returns

a promise that is fulfilled with an array of values when all the promises have been fulfilled, or

rejected with the value of the first promise to reject. To this end, we create a new promise and add

a counter to it. Whenever a promise is resolved, the counter is decremented. Once the counter

reaches zero, we fulfill the promise. If a promise ever rejects, we immediately reject the created

promise.

3.7 Promises & Exceptions
We have presented the core semantics without any reference to exceptions. As it turns out, ex-

ceptions are not purely orthogonal to promises. Whenever a fulfill or reject reaction throws an
exception, that exception does not propagate upwards through the call stack nor is it left uncaught.

Instead, the event loop catches the exception and uses it to reject the dependent promise. We

can account for this by a suitable adjustment to the [E-Loop-Fulfilled-Lambda] and [E-Loop-

Rejected-Lambda] rules. Specifically, these rules would catch an exception thrown by the reaction

λr and then use the exceptional value to reject the dependent promise.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

A Model for Reasoning About JavaScript Promises 86:13

4 THE PROMISE GRAPH
The promise graph captures control- and dataflow in a promise-based program to represent the

flow of values through promises, the execution of fulfill and reject reactions, and the dependencies

between reactions and promises. The promise graph contains a value node v○ for every value

allocation site in the program, a promise node p○ for every promise allocation site in the program,

and a function node f○ for every lambda or named function in the program. The edges in the graph

capture the following relationships between these nodes:

• A resolve or reject edge v○ ℓ−→ p○ from a value node v○ to a promise node p○, where the

label ℓ is either “resolve” or “reject”. Intuitively, such an edge represents that v is used to

resolve or reject the promise p.

• A registration edge p○ ℓ−→ f○ from a promise node p○ to a function node f○ where the

label ℓ is either “resolve” or “reject”. Intuitively, the edge represents that the function f is

registered as fulfill or reject reaction on the promise p. In other words, it represents the fact

that, when the promise p is resolved or rejected, the execution of f is triggered.

• A link edge p1○ → p2○ from a promise node p1○ to a dependent promise node p2○. The

edge represents the dependency that when the parent promise is resolved (or rejected) the

dependent promise will be resolved (or rejected) with the same value.

• A return edge f○ → v○ from a function node f○ to a value node v○. Intuitively, this

represents that the function f returns the value allocated at v .

4.1 Examples
We now illustrate the promise graph with a few examples. In these examples, we will use subscripts,

(e.g., v21, p42, f88) to indicate the line on which a value, promise, or function was allocated.

Example I. The execution of the program shown below:

1 var p1 = promisify({});
2 var p2 = p1.onResolve(x => x + 1)
3 p1.resolve(42)

v3 p1 f2 v2 p2
resolve resolveresolve

gives rise to the promise graph on the right. The graph shows that the value allocated on line 3 is

used to resolve the promise p1 allocated on line 1, the value then flows into the fulfill reaction f2
(the lambda function on line 2). Inside f2, the value is used to compute a new value allocated on

line 2 which is returned by the reaction and thus used to resolve the second promise p2 allocated
on line 2. Note that we can read the graph in a forwards manner starting from v3 to understand the
consequence of resolving the promise p1. Similarly, we can read the graph backwards starting from

p2 to understand how and why it was resolved.

Example II. The execution of the program shown below:

1 var p1 = promisify({});
2 var p2 = p1.onResolve(x => x + 1)
3 var p3 = p1.onReject(x => x − 1)
4 p1.resolve(42)

v4 p1 f2 v2 p2
resolve resolveresolve

f3 p3
reject

gives rise to the promise graph on the right. The graph shows that the value v4 flows into the

promise p1 which causes the execution of the fulfill reaction function f2. This function computes a

new value v2 which is then returned and used to resolve the promise p2. More importantly, the

promise p1 also has a reject reaction function f3 registered. But, since promise p1 is never rejected,
the function f3 is never executed, and hence the dependent promise p3 is never resolved or rejected.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

86:14 Magnus Madsen, Ondřej Lhoták, and Frank Tip

Example III. The execution of the program:

1 var p1 = promisify({});
2 var p2 = p1.onResolve(x => x + 1);
3 var p3 = p1.onResolve(y => y − 1);
4 p1.resolve(42);

v4 p1 f2 v2 p2
resolve resolveresolve

f3 p3
resolve v3

resolve

gives rise to the promise graph on the right. The graph shows that the value v4 flows into the

promise p1 which causes the execution of the fulfill reaction functions f2 and f3. These fulfill

reactions compute new valuesv2 andv3, respectively, which are then used to resolve the dependent

promises p2 and p3, respectively. This program and graph illustrates the scenario where multiple

reactions are registered on the same promise.

Example IV. The execution of the program:

1 var p1 = promisify({});
2 var p2 = promisify({});
3 var p3 = p2.onResolve(x => x + 1)
4 p1.link(p2)
5 p1.resolve(42)

v5 p1 f3 v3 p3
resolve resolveresolve

p2

gives rise to the promise graph on the right. The graph shows that the value v5 flows into the

promise p1 which, since it is linked to the promise p2, causes p2 to be resolved with the same value

and that in turn causes the execution of the resolve reaction function f3. This function computes

the value v3 which is returned and used to resolve the promise p3.

Example V. The execution of the program:

1 var p1 = promisify({});
2 var p2 = promisify({});
3 var p3 = p2.onReject(x => x + 1)
4 p1.link(p2)
5 p1.reject(42)

v5 p1 f3 v3 p3
reject resolvereject

p2

gives rise to the promise graph on the right. The graph shows that the value v5 flows into the

promise p1 which, since it is linked to the promise p2, causes p2 to be rejected with the same value

and that in turn causes the execution of the reject reaction function f3. This function computes

the value v3 which is returned and used to resolve the promise p3. Note in particular that the reject

reaction x => x + 1 returns 43 and hence the dependent promise p3 is resolved with 43.

4.2 Program Comprehension with the Promise Graph
We can use the promise graph to answer questions about the behavior of promise-based programs:

• Given a value, we can follow its outgoing resolve or reject edges to discover into which

promises it can flow and consequently to which functions it can be passed as an argument.

• Given a fulfill or reject reaction, we can discover what values flow to its arguments.

• Given a promise, we can discover what values it is resolved or rejected with.

• We can discover promises that are never resolved or rejected.

• We can discover fulfill or reject reactions that are never executed.

• We can discover promise chains that are disconnected, whether intended or not.

4.3 Bug Finding with the Promise Graph
We now explain how to use the promise graph to detect bugs or suspicious behavior in promise-

based programs. We consider three categories of behavior: (a) bugs that we can detect solely by

inspection of the promise graph, (b) bugs we can detect based on the promise graph in combination

with other information, e.g., a call graph or happens-before relation, and (c) bugs we can detect

based on the promise graph and simple syntactic checks.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

A Model for Reasoning About JavaScript Promises 86:15

1 var p = new Promise((resolve, reject) => {
2 // resolve and reject are not called.
3 });
4
5 // resolve and reject do not escape
6 // and are not called subsequently.
7
8 p.then(x => /* dead code */);

Dead Promise. We say that a promise is dead
if an object enters the Pending state, either

via an explicit promisify statement or as a

dependent promise created by onResolve or

onReject and it never transitions to either a

Fulfill or Reject state. That is, a promise is

created but it is never fulfilled nor rejected ei-

ther explicitly or implicitly.

Consider the code fragment above, on the right. Here a promise p is created, but neither resolve
nor reject associated with the promise is ever called. Consequently, the promise never leaves the

Pending state. Furthermore, any resolve or reject reactions associated with the promise are never

executed and are thus dead code. In this case, the function on line 8 is never executed. We can

use the promise graph to discover such issues. Specifically, whenever we have a promise with no

resolve or reject edges nor any link edge then the promise is dead, and any reactions registered on

it are never executed (by that promise).

1 var p = new Promise((resolve, reject) => {
2 setTimeout(5000, resolve(42))
3 });
4 // p.then is never called, and
5 // consequently the value 42 is lost.

Missing Resolve or Reject Reaction. We say

that a promise is missing a resolve (or reject)
reaction if an object enters the Pending state,

the promise is resolved (or rejected) with a non-

undefined value, and the promise lacks a fulfill

(or reject) reaction.

Consider the code fragment above, on the right. Here the promise p is created and after five

seconds it is resolved with the value 42 with a call to resolve. However, no fulfill reactions are

registered on the promise and hence the value is lost. We can use the promise graph to detect such

situations by looking for promises that have no outgoing registration edges.

An important point, which was briefly mentioned earlier, is that—unlike event handlers—it is

entirely acceptable for a fulfill (or reject) reaction to be registered after a promise has already been

fulfilled (or rejected). In that case the reaction is simply scheduled for execution with the promise

value. Thus, a promise could be fulfilled (or rejected) at a moment when it does not have any

reactions, and as long as a reaction is registered at some point in the future, the value is not lost.

1 var p1 = new Promise((resolve, reject) => {
2 setTimeout(5000, resolve(42))
3 });
4 var p2 = p1.then(function(x) {
5 throw Error("...")
6 });
7 // a reject reaction is never registered
8 // on `p2` with either `then` or `catch`.

Missing Exceptional Reject Reaction. A spe-

cial case of the previous bug pattern occurs

when a promise is implicitly rejected by throw-
ing an exception.
Consider the code fragment on the right.

Here, the resolve reaction on lines 4-6 reg-

istered for the promise p1 throws an exception,

which causes the second promise p2 to be rejected with the exceptional value. However, since no

reject reaction is registered on p2, the exception is silently ignored. We can discover such situations,

by looking for promises with a reject edge, but no reject registration edge.

1 var p1 = new Promise((resolve, reject) => {
2 resolve(42);
3 });
4 var p2 = p1.then(x => {
5 console.log(x);
6 });
7 var p3 = p2.then(x => {
8 alert(x);
9 });

Missing Return. A missing return occurs

when a fulfill or reject reaction unintention-

ally returns undefined and this value is used

to resolve or reject a dependent promises. Con-

sider the program fragment on the right. The

programmer intended to create a promise chain

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

86:16 Magnus Madsen, Ondřej Lhoták, and Frank Tip

passing through an integer which is ultimately

shown to the user in an alert box. However, the

resolve reaction which logs the value x to the console has no explicit return statement. Hence

the function returns undefined and not x as the programmer had in mind. Consequently, the

dependent promise is resolved with undefined which is the value passed into the subsequent

reaction and then shown to the user.

1 var p = new Promise((resolve, reject) => {
2 resolve(42);
3 resolve(21); // dead code, no effect
4 });

Double Resolve or Reject. A double resolve or
double reject occurs when a promise is created,

resolve (or reject) is called on it and the

promise enters the fulfilled or rejected state,

and later the promise is again resolved (or rejected). The second and any subsequent time a promise

is resolved (or rejected) has no effect on the state of the promise and does not cause any of its

reactions to be executed. Consider the program fragment above, on the right. We can use the

promise-graph to detect double resolves (or rejects) by checking if there are multiple resolve (or

reject) edges leading to the same promise. In some cases, some ingenuity by the programmer will

be required to understand whether a double resolve (or reject) can occur. Here, information such as

a happens-before relation could prove useful.

1 function g() {
2 var p1 = new Promise((resolve, reject) => {
3 var p2 = f(); // assume f returns a promise
4 p2.then(x => resolve(x));
5 });
6 return p1;
7 }

Unnecessary Promise. An unnecessary promise
is a promise whose sole purpose is to act as

an intermediary between two other promises
5
.

Consider the code fragment on the right. The

programmer wants the function g to return a

promise. In order to do so he constructs a fresh

promise p1, then calls f which returns a promise p2, and finally registers a reaction on p2 such that

when it is fulfilled, it fulfills p1. However, the programmer could have simply returned the promise

from f. Furthermore, since only a fulfill reaction is registered, any errors (rejects) from the promise

p2 are silently lost. We can detect this pattern by inspecting the promise graph and the syntax of

the fulfill reaction: (a) The unnecessary promise is not resolved (or rejected) from anywhere else

and (b) The function passed to then is of the form x => resolve(x) where resolve is associated

with the unnecessary promise.

1 function f() {
2 var p = asyncOperation();
3 p.then(function() {
4 return complexOperation();
5 });
6 return p;
7 }
8 var p2 = f()
9 p2.then(x => /* ... */)

Broken Promise Chain. A broken promise
chain occurs when the programmer inadver-

tently creates a fork in a promise chain. Con-

sider the code fragment on the right. In-

side the function f, the programmer calls

asyncOperation, which returns a promise p.
The programmer then calls p.then to chain the
complexOperation to occur once the async op-
eration completes. At the end of the function, the programmer mistakenly returns p instead of the

promise returned by the call to p.then. The consequence is that when the programmer later calls

p2.then the promise p2 will not be resolved (or rejected) with the value of complexOperation as

intended, but instead with the value from asyncOperation. The promise graph cannot outright

detect such issues, since they could be legitimate behavior, but the programmer can use the promise

graph to inspect where the value of p2 comes from, to detect the broken promise chain.

5
This pattern is also sometimes called the Explicit-Constructor-Anti-Pattern, although that name is archaic.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

A Model for Reasoning About JavaScript Promises 86:17

5 CASE STUDY
We conducted a case study of questions posted to the popular StackOverflow forum to better

understand: (a) the types of problems that JavaScript programmers encounter that are related to

JavaScript promises, and (b) how the promise graph can help such developers understand and

debug their programs.

5.1 Methodology
At the time of writing, there are 5,275 questions tagged with both promise and javascript on

StackOverflow. Of these, 17 were posted in the last 24 hours. As it turns out, the majority of these

posts are not really about promises at all, but more about typical JavaScript misunderstandings. It

is common to see programmers struggle with type errors, non-lexical scoping, closures, exceptions,

recursion, and even syntax errors, and then mistakenly believe these errors are related to promises.

We manually examined the newest 600 StackOverflow questions to find posts about promises

where the promise graph could be useful for debugging. Specifically, we looked for posts that met

the following criteria: (a) The post contained a code fragment with a discussion of expected or

incorrect behavior, (b) The post had an answer, (c) The code fragment was not too long, at most 100

lines, (d) The root cause had to be related to promises, and (e) The post should not be a duplicate.

The case study was carried out by examining the StackOverflow post, looking at the code,

manually constructing the promise graph, and inspecting it for errors, as discussed in Section 4.

5.2 Summary of Results
Table 1 summarizes the results of our case study. The first column is the StackOverflow identifier

for the question. The second column is the bug type, as discussed in the previous section. The third

column categorizes each question according to our subjective understanding of the root cause of

the issue. The labels shown in the fourth column indicate what other information, in addition to

the promise graph, was necessary to debug the issue. These labels should be interpreted as follows:

HB happens-before information is necessary to debug the root cause (e.g., the knowledge that

one statement in the program always executes before another).

LU loop-unrolling is necessary to debug the root cause (e.g., the knowledge that a promise created

in one iteration of a loop affects a promise created in the next iteration of the loop).

EV event reasoning is necessary to debug the root cause (e.g., the knowledge that an event handler
for a button can be fired multiple times).

In cases where no label is listed in the third column, the promise graph by itself was sufficient to

understand and debug the issue.

5.3 Debugging using the Promise Graph
We now discuss how the promise graph can be used as an aid to understand and debug a represen-

tative subset of the StackOverflow questions listed in Table 1. The reader is referred to Appendix B

for a discussion of the remaining StackOverflow questions.

Q41268953. The programmer creates a promise, but never resolves or rejects it. As a result, the

reactions associated with the promise are never executed. The programmer gets lost in the details

and mistakenly believes the bug to be elsewhere in the program. He or she then proceeds to add

additional logging and reject reactions in all the wrong places and these are never executed. In this

scenario, the promise graph immediately identifies that the initial promise in the promise chain is

never resolved or rejected, and hence that no reaction on chain is ever executed.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

86:18 Magnus Madsen, Ondřej Lhoták, and Frank Tip

Question Bug Type Root Cause Extra Info

Q29210234 Broken Promise Chain Unintended fork in promise chain. -

Q41268953 Dead Promise A promise is neither resolved nor rejected. -

Q41488363 Dead Promise A promise is neither resolved nor reject on all paths. -

Q41512144 Missing Return A promise is lost. HB

Q41699046 Missing Return A reaction unintentionally returns undefined. -

Q41764399 Other A reaction unintentionally replaces an error. -

Q41993302 Other A reject reaction swallows an error. -

Q42076519 Other A promise is passed to then and ignored. -

Q42163367 Broken Promise Chain An unintended fork in promise chain. LU

Q42210068 Missing Return A reaction unintentionally returns undefined. -

Q42304958 Double Resolve A promise is resolved multiple times. HB + EV

Q42343372 Other A value is passed to then and ignored. -

Q42391252 Broken Promise Chain A reject reaction is registered too late. -

Q42408234 Missing Return A reaction unintentionally returns undefined. -

Q42551854 Double Resolve A promise is resolved multiple times. HB + EV

Q42577647 Missing Return A promise is lost. -

Q42672914 Dead Promise A promise is neither resolved nor rejected. -

Q42719050 Missing Return A reaction unintentionally returns undefined. -

Q42777771 Double Resolve A promise is resolved multiple times. LU

Q42788603 Missing Return A reaction unintentionally returns undefined. -

Q42828856 Missing Return A reaction unintentionally returns undefined. -

Table 1. StackOverflowQuestions about JavaScript Promises.

Q41488363. The programmer returns a promise from a function meant to perform authorization.

The authorization itself is delegated to another function that takes a callback. Inside this callback,

the programmer inspects the result of the authorization and resolves or rejects the promise based

on whether it was successful. However, on one path in the callback function where authorization

fails, the programmer has inserted an early return to exit the function. Unfortunately, this leaves

the promise in an unfulfilled state because the promise is not rejected, and hence the rest of the

promise chain never executes. When this happens, the program gets stuck instead of reporting an

error. In this case, the promise graph combined with happens-before information reveals that it is

possible to return from the callback without the promise being resolved or rejected.

Q41699046. The programmer returns a promise from a function. The outcome of this promise

is determined by a “die toss”; if the die shows six, then the promise is resolved, otherwise it

is rejected. The programmer creates a promise chain of die tosses. In the middle of the chain,

the programmer calls then to register two logging functions, logSuccess and logFailure, as
reactions. Unexpectedly, the subsequent reactions in the promise chain report that the thrown die is

undefined. The problem is that the two logging functions do not return the outcome of the die toss,

but instead implicitly return undefinedwhich is then used to resolve/reject the dependent promise.

The promise graph shows that the dependent promise is resolved/rejected with an undefined value
returned by logSuccess or logFailure.

Q41764399. The programmer creates a promise chain. Each reaction on this chain can fail for a

different reason. To track which reaction failed, the programmer creates a series of errors objects

for each type of error. At each step of the promise chain, the programmer registers a reject reaction

to check if the previous operation failed and to return the appropriate error object. However, this

does not achieve the desired effect. The problem is that each error object ends up masking the

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

A Model for Reasoning About JavaScript Promises 86:19

previous error. When an operation fails, the promise rejects with the correct error object, but this

causes the next reject reaction to reject with its own error object, which in turn causes the next

reject reaction to reject with its own error object, and so on. The result is that the entire promise

chain always rejects with the last error object. In this case, the promise graph shows that each

promise in the chain is rejected with the error object from the previous reject reaction.

Q41993302. The programmer creates a promise chain with a reject reaction. The reaction logs

the error message, but does not return or throw any value. As a consequence, the reject reaction

implicitly returns undefined, which causes the dependent promise to be (successfully) resolved.

Hence, later in the promise chain, the error is unexpectedly lost and the undefined value appears.

In this case, the promise graph shows that the reject reaction causes the dependent promise to be

resolved with undefined.

Q42210068. The programmer creates a promise chain. In one of the fulfill reactions, the pro-

grammer returns the result of an expression of the form someArray.forEach(f). The callback
function f returns a promise. However, the Array.prototype.forEach function discards any

value returned by the callback function f and always returns undefined. Hence, the promise is

resolved with undefined instead of with the value expected by the programmer. In this case, the

promise graph shows that the promise is resolved with the value undefined and that the value

and promise inside the callback are lost.

Q42343372. The programmer creates a promise chain and passes the result of a function call into

then instead of passing the function itself. The then operation expects two functions (the resolve

and reject reactions), and when supplied with a value it simply discards it and uses the identity

function. The result is that the function is executed too early and that the rest of the promise chain

observes an unexpected value. The promise graph can help identify this problem by showing where

the unexpected value originates and that the function is not registered as a reaction on the promise.

Q42391252. The programmer creates a promise chain and asks why a reject reaction is handling

an error from one of the earlier promises. The problem is that the reject reaction is registered too

late in the chain. If the programmer only wants to handle an error specific to a certain promise,

then the reject reaction must be registered on that promise and not later in the chain. The promise

graph can help debug this problem by showing the full promise chain and where on the chain each

reject reaction is registered.

Q42577647. The programmer constructs a factory for delayed promises, i.e., promises that resolve

after some specific timeout. Inside the factory, the programmer calls setTimeout(f) passing a

function f that returns a fresh promise. However, setTimeout discards any value returned by the

callback function f and as a consequence the fresh promise is lost and never linked to the current

promise. The promise graph shows that (a) the value flowing into the fresh promise is lost and (b)

the current promise is implicitly resolved with the value undefined.

Q42719050. The programmer creates a promise chain. Inside one of the later resolve reactions, the

programmer passes a function f into the callback of a database operation connection.query(f).
Inside function f, the programmer performs various computations and then returns the computed

result. The programmer expected this result to be passed down the chain. However, since the

return happened inside the callback function f, and not in the reaction function, the value is

simply discarded, and the reaction implicitly returns undefined which is then used to resolve the

dependent promise. Here the problem is a matter of scoping: the programmer lost track of the

fact that the return occurred inside a callback instead of inside a reaction. The promise graph can

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

86:20 Magnus Madsen, Ondřej Lhoták, and Frank Tip

help pinpoint this problem by showing that the dependent promise is resolved with the undefined
value, and not the value from inside the callback function f.

Discussion. As we have seen, reasoning about promises is a complicated problem that many

JavaScript programmers struggle with. We have proposed the promise graph as an aid to understand

and debug the intricate control- and data-flow of promises. The case study has shown that the

promise graph often provides sufficient information to find the root cause of the issue. However,

some ingenuity by the programmer is still required, and in some cases other information is needed

too, for example the order in which statements can execute.

6 RELATEDWORK
In this paper, we have used the term promise for an object that represents the result of an asynchro-

nous operation. Other terms for the same concept are future, delay, and deferred. For simplicity, we

will continue to use the term promise in our discussion of related work, although some authors use

the other terms.

Promises. Promises were originally proposed by Friedman and Wise [1976]. Flanagan and

Felleisen [1995, 1999] present several operational semantics for promises in the context of functional

programming languages. A key contribution of their work is a program analysis to detect and

eliminate redundant synchronization points, i.e., to avoid synchronization between threads for

promises that are known to have already completed. In languages such as Java, where execution is

multi-threaded and different threads may access and mutate the same memory location, the use

of promises can lead to race conditions and other concurrency errors. Welc et al. [2005] present

safe futures, an API and programming model for safely using futures in Java. A key property of

their work is that a safe program, although executed concurrently, behaves as if it were executed

sequentially. Unlike Java, JavaScript is inherently single-threaded, i.e., execution is non-preemptive

and restricted to one thread. However, due to external events, e.g., the user pressing a button, it

is non-deterministic when a promise is resolved (or rejected) and hence when its reactions are

scheduled for execution. This means that, even with one thread, it is possible to have multiple

different interleavings of promise reactions. There has been notable recent work on the detection

of event races in JavaScript (see, e.g., Jensen et al. [2015]; Mutlu et al. [2015]; Petrov et al. [2012];

Raychev et al. [2013]), but, to our knowledge, none of this work explicitly considers promises.

Semantics. Maffeis et al. [2008] proposed one of the first formal semantics for the JavaScript

language. Their semantics was formulated as a small-step operational semantics capturing EC-

MAScript (3rd Edition). Later, Guha et al. [2010] proposed λJS, a reduction-style semantics for a

“core” JavaScript language. The key idea was to distill JavaScript into a small collection of constructs

forming the core calculus. In this way, many of the complex features of JavaScript could be handled

by translation into these more basic operations. Madsen et al. [2015] presented an extension of

λJS to formalize the registration and execution of event listeners in JavaScript. A part of this work

discusses common programming errors related to events in Javascript, including lost events and
dead listeners. In this work, we have shown how to extend the λJS calculus with promises, and how

some of the high-level operations of ECMAScript 6 can be emulated by the basic constructs of λp .

Static Analysis. Guarnieri and Livshits [2009] proposed one of the first static analyses for

JavaScript, a points-to analysis to detect potential harmful code in JavaScript widgets. Jensen

et al. [2009] describe TAJS (Type Analysis for JavaScript), a whole-program dataflow and points-to

analysis for JavaScript with the goal of finding type related errors. Later, this work was extended

with support for browser-based applications [Jensen et al. 2011], jQuery [Andreasen and Møller

2014], and handling eval [Jensen et al. 2012]. Madsen et al. [2015] presents a static analysis for

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

A Model for Reasoning About JavaScript Promises 86:21

detecting event-related bugs, including dead listeners and dead promises, as discussed above. In this

work, we have sketched how the technique by Horn and Might [2010] can be used to automatically

derive a static analysis from a reduction semantics. The key idea behind this technique is to derive

a series of abstract machines, starting from the control-environment-continuation (CEK) machine,

and through a series of other machines, until a final “abstract” abstract machine is obtained. The

most important step is the allocation of environments and continuations in the heap, and then

approximation of the heap to ensure that the analysis terminates.

7 CONCLUSIONS AND FUTUREWORK
Recently, ECMAScript 6 added support for promises, an alternative mechanism for managing

asynchrony that enables programmers to chain asynchronous computations while supporting

proper error handling. Unfortunately, JavaScript promises are complex and error-prone in their

own right, as is evident from a classification of promise-related errors that we compiled from a

manual study of 600 issues related to promises that were reported on the StackOverflow forum.

From this study, we concluded that programmers would benefit from techniques that can reason

about the correctness of promise-based code.

This paper presents a foundational step towards this goal, by presenting λp , a core calculus that
captures the essence of ECMAScript 6 promises. Based on λp , we introduced the promise graph, a
program representation that can assist programmers with the debugging of promise-based code.

We then reported on a case study in which we investigated how the promise graph can be helpful

for debugging errors in promise-based code fragments reported on the StackOverflow forum.

As futurework, we plan to derive static analyses from λp that compute sound over-approximations

of the promise graph using the mechanical technique of Abstracting Abstract Machines (AAM) of

Horn and Might [2010]. In this context, soundness means that the computed promise graph captures

all possible behaviors of the program under analysis. The over-approximate promise graph must

capture (i) all possible flows of values into promises via resolve/reject, (ii) all possible reaction
registrations via onResolve/onReject, and (iii) all possible promise dependencies created via link.
To apply the AAM technique, we must select an abstract domain to model each component of

the state in the dynamic semantics that was presented in Section 3. Here, the choice of abstract

domains will determine the precision and cost of the static analysis. In addition, we plan to extend

the abstract state with a representation of the promise graph, and instrument the semantics to

record the relevant operations on promises in that graph. From this, the AAM approach then

mechanically derives static transfer functions that are guaranteed to be sound by construction so

that the resulting static analysis soundly over-approximates the runtime behavior of the program

and generates a sound over-approximation of the promise graph.

ACKNOWLEDGMENTS
This research was supported by the Natural Sciences and Engineering Research Council of Canada.

This research was supported in part by NSF grant CCF-1715153.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

86:22 Magnus Madsen, Ondřej Lhoták, and Frank Tip

REFERENCES
Christoffer Quist Adamsen, Anders Møller, Rezwana Karim, Manu Sridharan, Frank Tip, and Koushik Sen. 2017. Repairing

Event Race Errors by Controlling Nondeterminism. In Proc. 39th International Conference on Software Engineering (ICSE).
Esben Andreasen and Anders Møller. 2014. Determinacy in static analysis for jQuery. In Proc. 29th ACM SIGPLAN Interna-

tional Conference on Object Oriented Programming Systems Languages, and Applications (OOPSLA).
Petka Antonov. 2013. bluebird. https://github.com/petkaantonov/bluebird. (2013). Accessed: 2016-10-27.

ECMA. 2015. 262: ECMAScript Language Specification. European Association for Standardizing Information and Communi-
cation Systems (ECMA) (2015).

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Semantics Engineering with PLT Redex. The MIT Press.

Cormac Flanagan and Matthias Felleisen. 1995. The Semantics of Future and its use in Program Optimization. In Proc. 22nd
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

Cormac Flanagan and Matthias Felleisen. 1999. The Semantics of Future and an Application. Journal of Functional
Programming (1999).

Daniel Friedman and David Wise. 1976. The Impact of Applicative Programming on Multiprocessing. In International
Conference on Parallel Processing.

Salvatore Guarnieri and Benjamin Livshits. 2009. GATEKEEPER: Mostly Static Enforcement of Security and Reliability

Policies for JavaScript Code. In Proc. 18th Usenix Security Symposium.

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The Essence of JavaScript. In Proc. 24th European Conference
on Object-oriented Programming (ECOOP).

Shin Hong, Yongbae Park, andMoonzoo Kim. 2014. Detecting Concurrency Errors in Client-Side Java ScriptWebApplications.

In Proc. 7th IEEE International Conference on Software Testing, Verification and Validation (ICST).
David Van Horn and Matthew Might. 2010. Abstracting Abstract Machines. In Proc. 15th ACM International Conference on

Functional Programming (ICFP).
Casper Svenning Jensen, Anders Møller, Veselin Raychev, Dimitar Dimitrov, and Martin T. Vechev. 2015. Stateless Model

Checking of Event-Driven Applications. In Proc. 30th ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA).

Simon Holm Jensen, Peter Jonsson, and Anders Møller. 2012. Remedying the Eval That Men Do. In Proc. International
Symposium on Software Testing and Analysis (ISSTA).

Simon Holm Jensen, Magnus Madsen, and Anders Møller. 2011. Modeling the HTML DOM and Browser API in Static

Analysis of JavaScript Web Applications. In Proc. 8th joint meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE).

Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis for JavaScript. In Proc. 16th International
Static Analysis Symposium (SAS).

Vineeth Kashyap, Kyle Dewey, Ethan Kuefner, John Wagner, Kevin Gibbons, John Sarracino, Ben Wiedermann, and Ben

Hardekopf. 2014. JSAI: A Static Analysis Platform for JavaScript. In Proc. 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE).

Kris Kowal. 2010. Q. https://github.com/kriskowal/q. (2010). Accessed: 2016-10-27.

Magnus Madsen and Esben Andreasen. 2014. String Analysis for Dynamic Field Access. In Proc. 23rd International Conference
on Compiler Construction (CC).

Magnus Madsen, Benjamin Livshits, and Michael Fanning. 2013. Practical Static Analysis of JavaScript Applications in

the Presence of Frameworks and Libraries. In Proc. European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering (ESEC/FSE).

MagnusMadsen and Anders Møller. 2014. Sparse DataflowAnalysis with Pointers and Reachability. In Proc. 21st International
Static Analysis Symposium (SAS).

Magnus Madsen, Frank Tip, and Ondřej Lhoták. 2015. Static Analysis of Event-driven Node.Js JavaScript Applications.

In Proc. ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA).

Sergio Maffeis, John C. Mitchell, and Ankur Taly. 2008. An Operational Semantics for JavaScript. In Asian Symposium on
Programming Languages and Systems.

Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. 2015. Detecting JavaScript Races that Matter. In Proc. 10th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE).

Boris Petrov, Martin T. Vechev, Manu Sridharan, and Julian Dolby. 2012. Race Detection for Web Applications. In Proc. 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

Veselin Raychev, Martin T. Vechev, and Manu Sridharan. 2013. Effective Race Detection for Event-Driven Programs. In

Proc. 28th ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages, and Applications
(OOPSLA).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

https://github.com/petkaantonov/bluebird
https://github.com/kriskowal/q

A Model for Reasoning About JavaScript Promises 86:23

Adam Welc, Suresh Jagannathan, and Antony Hosking. 2005. Safe Futures for Java. Proc. 20th ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages, and Applications (OOPSLA) (2005).

Lu Zhang and Chao Wang. 2017. RClassify: Classifying Race Conditions in Web Applications via Deterministic Replay. In

Proc. 39th International Conference on Software Engineering (ICSE).
Yunhui Zheng, Tao Bao, and Xiangyu Zhang. 2011. Statically Locating Web Application Bugs Caused by Asynchronous

Calls. In Proc. 20th International Conference on World Wide Web (WWW).

A SYNTAX OF λJS

c ∈ Cst = bool | num | str | null | undef [constant]

v ∈ Val = c [literal]

| a [address]

| {str : v · · · } [object]

| λ (x · · ·) e [function]

e ∈ Exp = v [value]

| x [variable]

| e ; e [sequence]

| e = e [assignment]

| let (x = e) e [binding]

| e (e · · ·) [call]

| e . f [field load]

| e . f = e [field store]

| ref e [address of]

| deref e [value at]

x ∈ Var = is a finite set of variable names.

f ∈ Fld = is a finite set of field names.

a ∈ Addr = is an infinite set of memory addresses.

λ ∈ Lam = is the set of all lambda expressions.

Fig. 8. Syntax of λJS.

B CASE STUDY (CONTINUED)
Q41512144. The programmer presents a complicated program fragment with four levels of nested

promises and five uses of then operation. The programmer explains that this a simplification of a

larger piece of the code. In this specific piece of the code, the programmer is expecting one value to

be passed to the last reaction in the promise chain, but is observing an earlier value from the chain.

Looking at the code fragment, with its many levels of nesting and number of promises, it is hard to

understand the flow of values. The promise graph, however, reveals that in one of the last calls to

then a (resolved) promise is being passed, but in actuality then expects a function which either

returns a regular value or a promise value. Passing the promise object directly to then has no effect
and is silently ignored

6
, hence the value of that promise is lost, and the previous value is used. The

6
Technically it is treated as if the identity function was passed.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

86:24 Magnus Madsen, Ondřej Lhoták, and Frank Tip

promise graph identifies this problem by showing that the value flowing into the promise is lost

and more specifically that it does not flow into some other promise as expected.

Q42076519. The programmer creates two promises p1 and p2. Each promise is resolved after a

specified timeout. The programmer then writes p1.then(p2).then(f) expecting that p1 will be
resolved followed by p2 and that the value of p2 will be passed to f . However, the then operation

requires one or two function arguments, i.e. the fulfill and reject reactions. Passing a promise to

then is silently ignored and treated as if the identity function was passed. Consequently, there is

there is no causal relationship between p1 and p2. The promise graph shows that the promises p1
and p2 are not related and that the value passed to f originates from p1.

Q42163367. The programmer asks why two program fragments do not exhibit the same behavior.

In the first fragment, the programmer has created a promise chain with a “delayed promise” inserted

between every fulfill reaction. In the second fragment, the programmer is trying to construct the

same promise chain, but by using a loop. Unexpectedly, this code creates a tree of promises instead

of a single chain. The problem is that at each iteration of the loop, the dependent promise is

constructed from the first promise in the chain rather than from the promise created in the previous

iteration of the loop. The promise graph, if instantiated in a loop-unrolled version, shows that the

first program gives rise to a chain, whereas the second program gives rise to a tree.

Q42304958. The programmer creates a single global promise. The promise is resolved upon the

completion of an AJAX request which is triggered by the user submitting a form. As the programmer

reports, this only works the first time the form is submitted. The problem is that a promise can

only ever be resolved or rejected once. The programmer should create a new promise for every

AJAX request. The promise graph can help identify this problem by showing that the same promise

is resolved multiple times.

Q42408234. We discussed this StackOverflow question in the motivation (see Section 2).

Q42551854. The programmer has a web page with two buttons: “success” and “failure”. When a

button is pressed, a promise is either resolved or rejected, respectively. The promise has a resolve

and a rejection reaction to log to the console when something happens. The programmer asks why

nothing is printed to the console the second time either button is pressed. The problem is that

a promise can only be resolved or rejected once. Resolving or rejecting a promise a second time

has no effect. The promise graph can help identify this problem by showing that the promise is

resolved multiple times.

Q42672914. The programmer constructs a promise and performs various application-specific

tasks inside the promise constructor. In one case the promise is rejected, but there is no path on

which the promise is resolved. Hence the promise (and its chain) is dead. In this case, the promise

graph shows that the promise is only ever rejected, but never resolved.

Q42777771. The programmer creates a promise and resolves it inside a loop. However, only the

first call to resolve has any effect; the subsequent calls to resolve have no effect and their values

are lost. They are effectively dead code. In this case, the promise graph can show that the promise

is resolved multiple times.

Q42788603. The programmer creates a promise chain. In each resolve reaction the programmer

performs some computation, but forgets to return any value, and consequently undefined is

implicitly returned. Hence each dependent promise is resolved with undefined. The promise graph

shows this situation.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

A Model for Reasoning About JavaScript Promises 86:25

Q42828856. The programmer creates a promise chain. In each resolve reaction the programmer

performs an asynchronous operation and returns a promise. Except in the last reaction, where

the programmer has forgotten the return. Hence the program runs correctly, except the very last

promise is implicitly resolved with undefined. In this case, the promise graph shows that the value

of the pen-ultimate promise is lost, and that the last promise is resolved with undefined.

Q29210234. The programmer asks why two programmer fragments do not exhibit the same

behavior. The answer is that in the first fragment the programmer (correctly) creates a single

promise chain. But in the second fragment, the programmer unintentionally creates a tree of

promises, hence a promise is resolved not with the value of the “previous” resolve reaction, as

expected, but with the value of the root. The promise graph shows this difference in structure.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 86. Publication date: January 2017.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Brief Primer on JavaScript Promises
	2.2 Debugging a Program with Promises – StackOverflow Question Q42408234

	3 Semantics
	3.1 The ECMAScript Specification
	3.2 Design Decisions
	3.3 Syntax of p
	3.4 Runtime of p
	3.5 Semantics of p
	3.6 Encoding of Then, Catch, and Other Promise Operations
	3.7 Promises & Exceptions

	4 The Promise Graph
	4.1 Examples
	4.2 Program Comprehension with the Promise Graph
	4.3 Bug Finding with the Promise Graph

	5 Case Study
	5.1 Methodology
	5.2 Summary of Results
	5.3 Debugging using the Promise Graph

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References
	A Syntax of JS
	B Case Study (Continued)

