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ABSTRACT
Many bugs in JavaScript applications manifest themselves
as objects that have incorrect property values when a failure
occurs. For this type of error, stack traces and log files are
often insufficient for diagnosing problems. In such cases, it
is helpful for developers to know the control flow path from
the creation of an object to a crashing statement. Such
crash paths are useful for understanding where the object
originated and whether any properties of the object were
corrupted since its creation.

We present a feedback-directed instrumentation technique
for computing crash paths that allows the instrumentation
overhead to be distributed over a crowd of users and to re-
duce it for users who do not encounter the crash. We imple-
mented our technique in a tool, Crowdie, and evaluated it
on 10 real-world issues for which error messages and stack
traces are insufficient to isolate the problem. Our results
show that feedback-directed instrumentation requires 5% to
25% of the program to be instrumented, that the same crash
must be observed 3 to 10 times to discover the crash path,
and that feedback-directed instrumentation typically slows
down execution by a factor 2x–9x compared to 8x–90x for
an approach where applications are fully instrumented.

1. INTRODUCTION
Despite the best efforts of software engineers and testers,

software shipped to end users still contains bugs, causing
applications to crash or produce incorrect results. Failures
that occur post-deployment are often reported via on-line
error reporting facilities,1 or in a bug reporting forum. De-
pending on the type of problem, additional information may

∗The work of these authors was carried out during intern-
ships at Samsung Research America.
1E.g. Windows Error Reporting [22] or CrashReporter [5].
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be available along with failure reports. For example, log files
may exist that contain a summary of an application’s exe-
cution behavior, or a dump of an application’s state at the
time of a crash. However, such information is often of lim-
ited value, because the amount of information can be over-
whelming (e.g., log files may span many megabytes, most
of which is typically completely unrelated to the failure), or
is woefully incomplete (e.g., a stack trace or memory dump
usually provides little insight into how an application arrived
in an erroneous state).

Many bugs that arise in JavaScript applications manifest
themselves as objects that have incorrect property values
when a failure occurs. This includes situations where an ob-
ject is created with incorrect or missing property values, and
where properties are corrupted after the object was created.
In such cases, it is helpful for developers to know the control-
flow path from the creation of the object of interest to the
crashing statement. We will refer to such a path as a crash
path. In the case studies reported on in this paper, we con-
sider real-life bugs where the error message and stack trace
provided with a bug report are insufficient to find and fix
the underlying cause of a bug. In these case studies, infor-
mation contained in the crash path provided crucial hints
to developers in a debugging scenario. In principle, crash
paths could be obtained by instrumenting applications so
that control-flow is recorded as the program executes and
exercising the application until the same failure is encoun-
tered. Unfortunately, such a“full instrumentation”approach
tends to incur prohibitive runtime overhead and is indiscrim-
inate in that much of the instrumentation occurs in regions
of the code unrelated to the failure. Furthermore, in many
cases, developers do not need an entire execution history as
much of it tends to be unrelated to the bug being pursued.

In this paper, we present a feedback-directed technique for
computing crash paths in scenarios where the same failure
can be observed repeatedly. The technique relies on repeat-
edly deploying new versions of the application in which the
amount of instrumentation is gradually increased to uncover
successively longer suffixes of the crash path. This process
continues until the complete crash path is found (i.e., the al-
location site for the object of interest is found). We believe
that our technique is particularly well-suited for a scenario
where users collectively isolate crash paths associated with
bugs in deployed software. In the scenario we envision, users
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install applications from a central software repository (e.g.,
through an app store or a package manager). When a crash
is encountered by a user, new versions of the application
that contain additional instrumentation can be distributed
to other users so that the effort of isolating crash paths is
distributed over a user population. Furthermore, while our
feedback-directed instrumentation approach occurs signifi-
cant overhead, this tends to be up to an order of magnitude
less than an approach where applications are fully instru-
mented. Similar crowdsourcing techniques for debugging
were pioneered by Liblit et al. [18, 19] and by Orso et al.
[10, 12], although they do not consider the specific problem
of computing crash paths. We implemented the technique
using Jalangi [28], and evaluated it on crashing executions of
JavaScript applications available from GitHub. We report
on instrumentation overhead and on the number of times
that the same crash needs to be encountered to recover the
complete crash path. In summary, the contributions are:

● We propose the notion of a crash path as a supple-
ment to error messages and stack traces. A crash path
records the path from the creation of an object of in-
terest to a crashing statement.

● We present a technique for computing crash paths based
on feedback-directed program instrumentation. This
technique identifies increasingly longer suffixes of crash
paths in successive executions of the application, by
gradually increasing the amount of instrumentation.

● We implemented a prototype of our technique in a tool
called Crowdie and used it to debug 10 real-world is-
sues previously reported on GitHub. Our case study
shows that error messages and stack traces are insuffi-
cient to debug these issues, and that crash paths pro-
vide useful hints to developers debugging these issues.

● Our experimental evaluation shows that only 5% to
25% of the program is instrumented, that the same
crash must be observed between 3 to 10 times to re-
cover complete crash paths, and that the feedback-
directed instrumentation has a typical slowdown of 2x–
9x compared to 8x–90x with full instrumentation.

Furthermore, we argue informally that our technique is
well-suited to a “crowdsourcing” scenario, where the effort of
identifying crash paths is distributed over a user population.

2. MOTIVATING EXAMPLES
In this section, we look at two real-world bugs in popular

JavaScript libraries. What these bugs have in common is
that traditional debugging information (e.g., the error mes-
sage, the line on which the crash occurs, and the stack trace)
is insufficient to locate the root cause of the defect. We will
show how, in each case, the crash path provides information
that is vital for understanding and fixing the bug.

Loki Issue #0046. Loki is a database written in Java-
Script. In issue #0046, entitled “Clearing collection breaks
index”,2 a user reports that “after clearing a collection I
wasn’t able to insert new objects without error.” Such a
report is typically not enough for the developer to reproduce
the bug and locate its cause. A stack trace, which may be
sent automatically to the server when a crash occurs, may
provide some hints but is also often insufficient. To keep

2https://github.com/techfort/LokiJS/issues/46

the example simple, imagine that we just try to execute the
following four lines (example1.js) inspired by the text in the
report, which happen to be enough to encounter the error:

1 var db = new loki(’Example ’);
2 var col = db.addCollection (/* omitted */);
3 col.clear ();
4 col.insert ({ /* omitted */});

Running this code makes Loki throw an exception with the
following stack trace:

TypeError: undefined is not a function
at Collection.add (loki.js:1789)
at Collection.insert (loki.js :1661)
at Object.<anonymous > (example1.js:4)

This stack trace tells us that the crash occurs at line 1789
in loki.js, which is executed due to the call col.insert on
line 4. Line 1789 in loki.js looks as follows:

1789 this.idIndex.push(obj.id);

As there is only one function call on this line, one can infer
that this.idIndex.push is undefined. From this, a devel-
oper may conclude that the value of this.idIndex or its
push property is incorrect. To find the root cause of the
crash we need to know what is the value of this.idIndex,
and why the push property is undefined. Was it never set,
or was it perhaps mistakenly overwritten?

We cannot answer these questions easily by inspecting
the stack trace and source code. We could use a tool such
as grep to search for this.idIndex, but such an approach
is very crude and may match statements unrelated to the
crash. What we want to know is (a) where was the object
referred to by this.idIndex created, and (b) how was the
push property of this object modified in the time between
its creation and the crash. Our Crowdie tool computes this
information automatically. Applying Crowdie to this pro-
gram reveals that the object referred to by this.idIndex
originates from line 1670 in loki.js:

1670 this.idIndex = {};

At this point, the root cause becomes clear: this line as-
signs the idIndex property with an empty object instead of
an empty array. Arrays have a push method, whereas ordi-
nary objects do not, which causes the expression
this.idIndex.push to evaluate to undefined, and calling the
push method on undefined results in the exception being
thrown. Crowdie also reveals that no writes to the push
property of the object occur before the crash.

Upon realizing this problem, a project maintainer fixed
the issue3 by assigning an array instead of an object to
this.idIndex on line 1670 of loki.js.

To find this problem using Crowdie, this.idIndex is des-
ignated as an object of interest. Then, Crowdie produces
the following crash path (shown simplified here; details of
the path format are described in Section 3.1, and details
about the actual path for this bug appear in Table 1):

Start(loki.js:1670) this.idIndex = {};
Return(example1.js:3) col.clear();
Call(example1.js:4) col.insert({ .. });
Call(loki.js:1661) this.add(doc);
Crash(loki.js:1789) this.idIndex.push(obj.id);

With this information, the developer would be able to quickly
identify the buggy assignment on line 1670.

3Commit 5da46aeecda6046f738c6a612c2f181b21487108
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Immutable Issue #0381. Immutable is a JavaScript
collection library created by Facebook. In issue #0381, enti-
tled“subCursor (cursor.cursor(’a’)) returns improper type”,4

a user reports that the cursor method may return the wrong
type of cursor. The following code fragment (example2.js),
reported by the user, is a highly simplified version of the
actual application code that triggers the bug:

1 var data = Immutable.fromJS ({a: [1 ,2 ,3]});
2 var cursor = Cursor.from(data);
3 var deepCursor = cursor.cursor(’a’);
4 assert(deepCursor instanceof IndexedCursor );

In this example, the stack trace only tells us that the
assertion on line 4 fails:

Error: AssertionError
at Object.<anonymous > (example2.js:4)

We see that the value of deepCursor returned by the call
to cursor.cursor has the wrong type, causing the asser-
tion to fail. However, it is not obvious whether the call
Cursor.from(data) on line 2 or the call cursor.cursor(’a’)
on line 3 is at fault.

At this point, we ask Crowdie to find where the erro-
neous deepCursor object was allocated and by what path it
reached the assertion. In response, Crowdie produces the
following crash path:

Start(cursor.js:242) ..new CursorClass(r,k,c,s);
Return(cursor.js:250) return makeCursor(
Return(cursor.js:187) ..subCursor(this, s);
Return(example2.js:3) ..cursor.cursor(’a’);
Crash(example2.js:4) assert(deepCursor ..);

This crash path shows that the object was created on line 242
in function makeCursor in cursor.js, which looks as follows:

236 function makeCursor(r, k, c, value) {
237 if (arguments.length < 4) {
238 value = r.getIn(k);
239 }
240 var s = value && value.size;
241 var CursorClass = Iterable.isIndexed(

value) ? IndexedCursor : KeyedCursor;
242 return new CursorClass(r, k, c, s);
243 }

Looking at this code, we see that an object with the
wrong type could be allocated for two reasons: (1) function
isIndexed is buggy, or (2) value somehow has an incorrect
value. We also note that makeCursor implements overload-
ing by checking the number of arguments on line 237.

The crash path produced by Crowdie not only tells us
that the object originated from line 242 but also provides in-
formation about the call stack when this object was created.
This call stack can be obtained by observing that Return la-
bels on the produced path must have had matching calls
that occurred earlier. From this call stack, we learn that
makeCursor was invoked by subCursor:

249 function subCursor(cursor , k, value) {
250 return makeCursor(
251 cursor._rootData ,
252 newKeyPath(cursor._keyPath , k),
253 cursor._onChange ,
254 value
255 ); }

Crucially, we observe that subCursor always passes four
arguments to makeCursor on line 250 and that the fourth

4https://github.com/facebook/immutable-js/pull/381

argument value is an argument to subCursor itself. Since
it always passes four arguments, the condition on line 237
will always evaluate to false when called from subCursor.
Furthermore, our tool tells us that subCursor, in turn, was
called by KeyedCursorPrototype.cursor. The calling code of
that function looks as follows:

187 .. subCursor(this , s);

Here, we can see that subCursor is passed two arguments
even though it has three parameters, so the third parameter
will take on a default value of undefined. The subCursor
function in turn calls makeCursor with this parameter, which
checks if it received four arguments instead of checking if the
fourth argument has the default value undefined! The core
issue is thus that makeCursor implements an overloading
check in a way that subCursor did not anticipate.

The fix5 for the issue is to change the overloading check
in line 237 to value === undefined.

These examples demonstrate how Crowdie can provide
information that is vital for understanding and fixing bugs,
especially in cases where the error message and stack trace of
a crash provides insufficient information. Note that Crowdie
is not a fully automated debugging process: a nontrivial
amount of human ingenuity may still be needed. However,
in both cases, the crash path was sufficient to debug the
issue. In particular, the (typically much longer) full execu-
tion path from the start of the application was not needed.
Here, we have presented the crash paths as plain text, but
we can imagine a scenario where IDEs naturally show the
paths and allow the programmer to “jump” forwards and
backwards through the statements on the path.

3. TECHNIQUE
A high-level architecture of the kind of system in which we

envision our technique to be embedded is depicted in Fig-
ure 1. We assume a distribution model where users (shown
on the left) install their applications through a central server
(shown on the right). For example, in the case of client-side
web applications the server is responsible for sending the
JavaScript code to the users. As another example, in the
case of a server-side application, the group of “users” may
consist of a cluster of servers running the application. Fi-
nally, we envision that app stores for (mobile or non-mobile)
devices could be extended with the techniques presented in
this paper. To make this practical, an approach to feedback-
directed instrumentation would be required that does not
require pushing out new versions to users frequently. The
latter could be accomplished by having selected parts of the
instrumentation in an application be enabled or disabled
based on an instrumentation policy that it periodically re-
ceives from the server.

The server in Figure 1 has several components, includ-
ing an instrumentor component for instrumenting applica-
tions according to an instrumentation policy that specifies
the functions that need to be traced. It also contains an
analyzer component that decides which functions should be
instrumented based on an analysis of traces of crashing ex-
ecutions that it receives from users and produces an instru-
mentation policy accordingly. In the scenario we envision,
the instrumentation policy is updated repeatedly, each time
the same failure is encountered.

5Commit 91afb4100eaed6375ceba239ad624a4453684429
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Figure 1: A central server deploys instrumented ver-
sions of the program to its users. Crashing users
report information back to the server.

As users execute the application, some of them will in-
evitably encounter a crash (e.g., an uncaught exception, an
assertion failure, a suspicious operation [11], or a security
policy violation). When this happens, the added instrumen-
tation ensures that a crash path is recorded that reflects the
set of functions specified in the instrumentation policy. This
crash path identifies at least in what function the crash oc-
curred and what local and global variables may be relevant
to the crash (see Section 4 for more details). The instru-
mentation ensures that this crash path is uploaded to the
analyzer component of the server, which in response up-
dates the instrumentation policy accordingly. Note that, in
general, the crash paths that users upload to the server are
partial crash paths, in the sense that they may not contain
the full flow of control from the allocation of an object to the
point where the crash occurred. However, when the analyzer
component determines that a bug was localized because the
crash path is complete, the complete crash path is passed
to the developer and all instrumentation is disabled for the
entire user population.

Various features can be added to the architecture dis-
cussed above. For example, the server can be configured
to trace multiple bugs concurrently, and these efforts can be
crowdsourced over different subsets of the user population.
Furthermore, the server can compare crash paths for differ-
ent bugs that it is tracking concurrently, try to determine
when they are duplicates, and prefer the shortest candidate.

3.1 Execution Paths
The grammar shown in Figure 2 defines the structure of

execution paths constructed by our technique. An execution
path p ∈ Path is a sequence of labels that are recorded during
program execution. We capture intra-procedural control-
flow using the three labels:

Intra ∶= Branch(s, c) ∣ Start(s) ∣ Crash(s)

The Branch(s, c) label records the value of a conditional c
in an if or while statement s. The Start(s) label records
that the object of interest originates from statement s. The
Crash(s) label records the statement s where the program
crashed. We use heuristics to determine the object(s) of
interest in an a crashing statement. For example, if the
statement o.f() crashes because o.f is undefined then the
object o is of interest. On the other hand, if the statement
crashes because o.f is not a function then o.f is of interest.
We define similar heuristics for other types of statements.

We say that an execution path that begins with a Start
label and ends with a Crash label is a crash path. Intu-

Intra ∶= Branch(s, c) ∣ Start(s) ∣ Crash(s, v)
Inter ∶= Call(s, f) ∣ Return(s) ∣ Enter(f) ∣ Exit(f)

` ∈ Label ∶= Intra ∣ Inter

p ∈ Path ∶= Label,⋯,Label

f ∈ Fun = the set of functions in the program

s ∈ Stm = the set of statements in the program

Figure 2: Grammar for execution paths.

itively, a crash path identifies a statement where an object
was created and a sequence of control-flow decisions leading
to a crash where that object was somehow involved. A path
that ends with the Crash label, but does not begin with the
Start label is a partial crash path.

Inter-procedural control-flow is tracked using four labels:

Inter ∶= Call(s, f) ∣ Return(s) ∣ Enter(f) ∣ Exit(f)

The Call(s, f) label records a function invocation from call
site s to function f . The Return(s) label records the com-
pletion of a call at statement s. The Enter(f) label records
that the control-flow has entered function f . The Exit(f)
label records that the control-flow has left function f .

Intuitively, the call/return labels represent a function in-
vocation as seen from the caller, whereas the enter/exit la-
bels represent a function invocation as seen from the callee.
The reason for requiring both is that our technique does not
instrument every function, and thus to observe whether or
not calls are missing from a trace, we must record informa-
tion inside both the caller and the callee. In particular, an
execution path that has the labels

Call(s, f)→ Enter(f)→ Exit(f)→ Return(s)

is complete because it records the invocation of f from s,
the execution inside f and the return of control to s. On
the other hand, the execution path Call(s, f)→ Return(s),
which lacks the Enter and Exit labels, records a call to an
uninstrumented function f (if f was instrumented then its
execution would have generated the appropriate enter/exit
labels). We will discuss in Section 3.3 how this information
is used to determine whether a crash path is complete.

Example I. Consider the code fragment of Figure 3 and
the execution path that is generated when f is invoked with
the arguments x = 7, y = 8 and o = {} (the empty object):
For this example, execution crashes when line 5 is reached,
because o.missingMethod has the value undefined at that
point, and any attempt to call undefined as a function results
in a crash. The full crash path6 is:

Start(s1)→ Call(s7,f)→ Enter(f)⤦
→ Branch(s3,true)→ Branch(s4,true)→ Crash(s5)

Example II. In the example of Figure 3, the crash hap-
pened due to the arguments passed to f and a stack trace
would contain all neccessary information to debug the issue.
However, this is not always the case as illustrated by the
program of Figure 4. For this example, the crash path is:

Start(s9)→ Branch(s10,true)→ Exit(f)⤦
→ Return(s13)→ Branch(s14,true)→ Crash(s15)

6 We will use the notation sl where l is some line number
in this example and subsequent examples to identify the
program construct at line l.
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1 var empty = {};
2 function f(x, y, o) {
3 if (x > 5)
4 if (y > 5)
5 o.missingMethod ();
6 }
7 f(7, 8, empty);

Figure 3: Example I.

8 function f(x) {
9 var o = {};

10 if (x > 5)
11 return o;
12 }
13 var o = f(7);
14 if (?)
15 o.missingMethod ();

Figure 4: Example II.

16 var x;
17 function f() { g(); }
18 function g() { h(); j(); k(); }
19 function h() { i(); }
20 function i() { }
21 function j() { x = {}; /* empty object */ }
22 function k() { l(); m(); }
23 function l() { }
24 function m() { x.missingMethod (); }
25 f();

Figure 5: A JavaScript program.

Note that the path begins inside function f when the object
o is created on line 9 and that it includes the branch choices
made until the crash at line 15. Anything that occurred prior
to that time is not part of the crash path. In particular, the
crash path does not record the initial Call and Enter labels
for f, but it does record the Exit and Return labels since
they occurred after the object was created.

3.2 Feedback-Directed Instrumentation
Figure 5 shows a small program that we will use to illus-

trate our feedback-directed instrumentation approach. In
this example, the function f is called by top-level code and
invokes g. This function, in turn, invokes h, j, and k. The
call to h invokes i. Function j creates an empty object and
assigns it to variable x. The call to k invokes l and m. Inside
m a crash occurs due to a missing method on x.

Our goal is to discover the crash path beginning with the
creation of the empty object inside j and ending with the
crash inside m. We could discover such paths by instrument-
ing the entire program, but that would be costly. Instead,
we propose to perform instrumentation of the program in
a feedback-directed manner, where we gradually instrument
more functions until the complete crash path is discovered.

The intuition behind our approach is that instrumenta-
tion is performed in a breadth-first manner starting back-
wards from the function in which the crash occurs. Fig-
ure 6 illustrates this concept. Initially, the crash is ob-
served to occur inside m, which causes m to be instrumented.
The next time the crash is seen, it is observed that m was
called from k, so k is instrumented as well. Since k con-
tains two call sites its execution will produce a path that
includes two call labels, labeled k1 and k2 in Figure 6. In
the third iteration, k and m are instrumented and calls from
g to k and from k to l are observed. In the fourth iter-

k1

l

g1

h

m

f
i

j

g2

g3

k2

Figure 6: Control flow for the program in Figure 5.
The object is created inside function j. The crash
occurs inside function m. The crash path is shown in
dashed red lines.

ation, g, k, l, and m are instrumented and calls to h and
j are observed. In the fifth and final iteration, functions
f, g, h, j, k, l, and m are instrumented. Now j is instru-
mented, and each object that is allocated inside a function
is tagged with a special property recording where it was
created. When the crash occurs, the instrumentation dis-
covers that this property is set, and reports the crash path:
Start(j) → Return(g2) → ⋯ → Call(k2,m) → Crash(s24)
(this path is highlighted in Figure 6 using dashed red lines).
Note that the path does not include any control-flow that
happened prior to entering j. In the end, f, g, h, j, k, l,
and m have been instrumented, whereas function i and the
top-level-code are left uninstrumented.

This feedback-directed process continues until the creation
site of the object is discovered. In the worst case, the entire
program may end up being instrumented, including func-
tions whose execution was irrelevant to the observed crash
(e.g., function h in the example). However, as we shall see in
Section 5, it is often the case that only a small fraction of the
code is instrumented in practice. A limitation of the tech-
nique is that it cannot locate the “source” of uninitialized
variables and fields, since the absence of data flow cannot
be attributed to any particular statement in the program.

3.3 Algorithm
We now present a high-level description of our algorithm

for feedback-directed instrumentation. A key challenge in
computing crash paths in a feedback-directed manner is deal-
ing with situations where fragments of a path are missing be-
cause functions are called that have not been instrumented
yet. For example, assume we have a situation where an in-
strumented function f invokes an uninstrumented function
g. This gives rise to a path like:

⋯→ Call(s, g)→ Return(s)→ ⋯

Note that, since g is not instrumented, no enter/exit labels
are generated for it. Such a path is incomplete and indicates
that g should be instrumented in the next iteration.

Figure 7 shows our algorithm as a function that takes one
argument, s, the statement where the crash occurred. We
maintain the last seen execution path in variable p and the
set of instrumented functions in I. Initially, the path con-
tains only the Crash label. We then repeatedly instrument
and execute the program until a crash occurs. The outer

5



Feedback-Directed-Instrumentation(s ∈ Stm)
1 var p ∶ Path = Crash(s) // the current path
2 var I ∶ P(Fun) = {s. fun} // instrumented functions
3 repeat
4 for each label l on path p
5 // instrument callee:
6 if l ≡ Call(s, f) do I = I ∪ {f}
7 // instrument caller:
8 if l ≡ Enter′(c, f) do I = I ∪ {c}
9 repeatedly execute the program until a crash occurs

10 p′ = the path recorded in the last execution
11 if p′ is a (partial) crashing path that matches p
12 p = p′ // a longer path has been found
13 until p begins with a Start label and contains

a matching Enter label for each Call label
14 return p // report the crashing path to the developer

Figure 7: Pseudo-code for the algorithm.

loop terminates once we have found a complete crash path
by checking that p begins with a Start label and contains a
matching Enter label for each Call label. Inside the loop,
we perform two actions: (i) adding instrumentation for unin-
strumented callers and callees based on the last observed
partial crash path, and (ii) repeatedly execute the program
until the same crash is encountered (i.e., deploy a new in-
strumentation policy and wait for a user to encounter the
crash again) We say that two crashes are the same if their
crash paths match. Formally, a crash p matches another
crash path p′ if the sequence of labels in p can be obtained
by removing from p′ any labels that do not occur in p.

We use a slightly extended version of the Enter label in
Figure 7. Specifically, Enter′(c, f) represents both function
f being entered and its caller, c. This is necessary in cases
where a callee is instrumented, but not its caller. Our imple-
mentation obtains a function’s caller by runtime inspection
of the stack via the special JavaScript caller property.

Discussion. Our algorithm assumes that the same crash
path is encountered repeatedly by users suffiently many times
to localize the error. For high-priority bugs that occur only
once (or rarely), the instrumentation overhead associated
with tracking such bugs should remain low because the crash
path will remain short unless the same bug is encountered
repeatedly. Thus, we expect our technique to have reason-
able performance characteristics. However, one could easily
imagine a scenario where the techniques presented in this pa-
per are deployed only on high-priority bugs that have been
seen a certain number of times, to avoid introducing over-
head due to bugs that occur only rarely.

In each iteration of the algorithm at least one additional
function is instrumented, so the algorithm is guaranteed to
terminate. In the worst case, this may result in the entire
program being instrumented.

3.4 Events
Until now, we have assumed that the control-flow in a pro-

gram is determined by the usual intra-procedural constructs
(if, while, for, ...) together with inter-procedural calls and
returns. However, in the case of JavaScript, we must also
consider asynchrony and events. In an event-based program,
event listeners (also commonly referred to as callbacks), are
registered and executed in response to certain events, e.g.,
the completion of a network request. For such programs,
the call stack does not contain information about what hap-
pened prior to the execution of the current event listener.

26 var cache = {};
27 var net = require(’net’);
28 var server = net.createServer(function(c) {
29 if (cache.data.length != 0) {
30 c.write(cache.data);
31 }
32 });
33 server.listen (80, function () {
34 fs.readFile(’a.txt’, function(err , data) {
35 cache.data = data;
36 });
37 });

Figure 8: An event-driven Node.js program.

Figure 8 shows an example of an event-driven Node.js ap-
plication. This program contains a subtle race condition
that may cause an exception. In particular, there is no
guarantee that the initialization of the cache.data property
by the function declared on line 34 will take place before
this property is accessed inside the function declared on
line 28. If the access takes place before the initialization,
an undefined de-reference error will occur on line 29.

Applying our technique to such an execution of this pro-
gram would reveal the following crash path:

Start(s26)→ ⋯→ Enter(f33)→ ⋯→ Exit(f33)→ ⋯⤦

→ Enter(f28)→ ⋯→ Crash(s29)

which shows that the listener function on line 28 was exe-
cuted, but the listener function on line 34 was not. From
this, a developer can infer that the cache.data field was
uninitialized on line 29 and that the code should be changed
so that the initialization is guaranteed to happen.

Accurate tracking of event listeners presents a minor chal-
lenge for our technique since an event listener is invoked
without any corresponding call site in the source code. For-
tunately, event listeners are only executed when the call
stack is empty and they maintain the stack discipline. To
capture control-flow due to event listeners we instrument
every Node.js function that may cause the registration of
a listener. For example, in Figure 8 the Node.js functions
net.createServer, server.listen and fs.readFile are instru-
mented to record that the functions declared on lines 28,
33 and 33 are event listeners. With this knowledge, we can
detect which event listeners were (and were not) executed
when a crash occurs. Once we know the relevant event lis-
teners, we instrument them as well as the functions where
they were registered. In the example, we discover that event
listeners declared on lines 28 and 33 were executed. Thus,
the registration sites net.createServer and server.listen are
relevant, so their containing function will be instrumented.
This allows the technique to trace control flow backwards
through event listeners.

In general, many similar executions may exist in which
event handlers are scheduled in different orders. In its cur-
rent form, our technique does not attempt to identify and ex-
ploit similarities between executions. For example, consider
a scenario where a failing execution involves a sequence of
event handlers f, g, and another involving a sequence f, h, g,
where event handler h is unrelated to the failure. In such
cases, it may be preferable to focus only on the crash path
for the former execution, because it omits information un-
related to the failure. In principle, our technique can be
extended to give priority to executions in which the fewest
number of event listeners is executed before a crash.
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4. IMPLEMENTATION
We have implemented our technique using the Jalangi in-

strumentation framework [28] in a tool called Crowdie.

Overall Structure. The implementation splits the tech-
nique into two phases. In the detection phase, the program is
instrumented to assign every function object a unique iden-
tifier and a global error handler is installed. This handler
catches any thrown exception that reaches the top-level and
records in which function the exception was thrown. The de-
tection phase also determines which event listeners (if any)
were executed before the crash. The detection phase is run
repeatedly until an exception is encountered. Its runtime
overhead is negligible since only one instruction per func-
tion declaration is added. A separate isolation phase imple-
ments the feedback-directed technique of Section 3.3. Only
the last 10,000 labels are tracked, to prevent the crash path
from growing too large.

Instrumentation Details. Figure 9 presents some of
the instrumentation rules used in our tool. Here, we aim
to be informal and do not describe the finer details of the
transformations used, and just sketch their overall struc-
ture. More details can be found in the original paper on
the Jalangi instrumentation framework [28]. A conditional
statement labeled s is instrumented to record the Branch
label (lines 38–41). Lines 42–43 show how a function call
s is instrumented to record Call and Return labels. Like-
wise, lines 44–47 show how a function declaration f is in-
strumented to record the Enter and Exit labels7. Finally,
an object creation statement s is instrumented to record the
length of the path at the moment of creation (lines 48–50).
This means that every object (created inside a function se-
lected for instrumentation) knows its offset inside the path.
In addition to these instrumentation steps, we assume that
the program contains a special crash(o) function call where
o is the object of interest. This call is intercepted by the in-
strumentation and generates the Crash(s) label, but it also
checks if __path_offset__ is set to the object o. If so, the
origin of o has been found, and the Start label is inserted
at the offset. If not, we have not yet instrumented the func-
tion in which the object was created and no Start label is
generated.

Other JavaScript Features. Our tool implements the
technique of Section 3.3 as well as the mechanisms related
to event handling discussed in Section 3.4. Features such as
exceptions, getters and setters, and native functions require
additional support, and can be added with modest effort.
Support for these features is in progress, but has not been
needed in any of the case studies discussed in Section 5 (and
we did not exclude any candidate programs due to lack of
feature support).

5. EVALUATION
The evaluation of our technique aims to answer the fol-

lowing research questions:

Q1: How useful are the crash paths computed by our tool
for understanding and fixing real bugs?

7 In reality this instrumentation is more complicated since
the body may contain multiple exit points, e.g. explicit re-
turn statements or exceptional control-flow, which must be
taken into account by the instrumentation.

38 s: if (e) { s1 } else { s2 }
39 => var c = e;
40 rec(Branch(s, c));
41 if (c) { s1 } else { s2 }
42 s: f()
43 => rec(Call(s, f)); f(); rec(Return(s));
44 f: function () { body }
45 => function () {
46 rec(Enter(f)); body; rec(Exit(f))
47 }
48 s: new Object ();
49 => var tmp = new Object ();
50 tmp.__path_offset__ = ...;

Figure 9: Instrumentation rules.

Q2: How many times must a crash be observed before the
crash path has been found?

Q3: How much runtime overhead is incurred by users of
our tool for computing crash paths?

The rationale behind Q1 is to determine whether the infor-
mation computed by our tool is useful for debugging, par-
ticularly in cases where the information contained in error
messages and stack traces is insufficient. The purpose of Q2
is to determine if the number of times that a bug needs to
be encountered is reasonably low. This is relevant because if
the same crash path needs to be encountered many times by
different users, then the usefulness of the technique would
be limited to bugs that occur very often. Lastly, Q3 aims to
determine whether runtime overhead is acceptable.

5.1 Experimental Methodology
Crowdie produces information that is intended to assist

developers with debugging, but manual effort remains re-
quired in diagnosing the problem. Therefore, we opt for an
evaluation based on case studies, in which we apply our tool
to 10 real bugs in open source programs taken from GitHub.
For these programs, we compute crash paths with our tool,
manually inspect these crash paths to determine whether
they are helpful (Q1), and measure various aspects of the
tool’s execution behavior to answer Q2 and Q3.

Selection Criteria. We chose subject programs by look-
ing at bug reports for popular JavaScript projects on GitHub.
These applications had to satisfy some limitations of our im-
plementation: (a) the program did not make use of eval,
and (b) the program was runnable on Node.js version 0.12.
Furthermore, we required that the reported bug could be
reproduced with modest effort, and that the reported issue
had an identifiable place in the source code where the prob-
lem was observable (i.e., a crash caused by an exception
being thrown, an assertion failure, or an incorrect returned
value). Lastly, we excluded “easy bugs” where the bug was
local to the same function in which the crash occurred, i.e.,
situations where the line number in an error message or in
a stack trace would suffice to diagnose the problem quickly.

Subject Programs and Issues. For triggering the bug
of interest we use small bug triggering examples provided in
the bug reports, as seen twice in Section 2. This creates a
much simpler scenario than the one Crowdie is intended to
be used in, but no bug reports describe a complete scenario
where the bug is encountered in a production environment.
Each bug reporter has spent time manually creating these
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Program and Issue Instrumentation Recorded Path

Program Issue Lines Func. Iterations Func. (%) Length Lines Func. (%)

AlaSQL (v0.0.36) #0092 12,561 752 5 (+ 1) 34 (5%) 74 38 8 (1%)

Bucket-JS (v1.81) #0006 2,393 167 4 (+ 1) 10 (6%) 44 8 4 (3%)

Esprima (v2.1) #0299 4,410 182 8 (+ 1) 45 (25%) 349 78 26 (14%)

Esprima (v1.2) #0560 3,762 151 7 (+ 1) 37 (25%) 219 54 24 (16%)

Esprima (v2.2) #1042 5,314 222 8 (+ 1) 49 (22%) 185 53 23 (10%)

Immutable (v3.6.2) #0381 5,147 674 3 (+ 1) 10 (2%) 13 9 3 (1%)

Immutable (v3.7.3) #0489 4,935 635 9 (+ 1) 52 (8%) 90 30 14 (2%)

Loki (v1.0) #0042 2,599 132 5 (+ 1) 20 (15%) 46 19 4 (3%)

Loki (v1.0) #0046 2,599 132 4 (+ 1) 8 (6%) 26 14 4 (3%)

Redis (v0.7.1) #0067 1,529 87 3 (+ 1) 27 (31%) 17 9 4 (5%)

Table 1: Summary of main results from the case study.

Performance benchmarks Unit tests
Program Issue Tests Orig. Partial instr. Full instr. Tests Orig. Partial instr. Full instr.

Alasql (v0.0.36) #0092 14 95 s 188 s (2x) 1929 s (20x) 415 15s 43 s (3x) 158 s (11x)
Esprima (v2.1) #0299 7 40 s 315 s (8x) 321 s (8x) 1229 5 s 86 s (17x) 96 s (19x)
Esprima (v1.2) #0560 7 40 s 297 s (7x) 325 s (8x) 1229 6 s 70 s (12x) 82 s (14x)
Esprima (v2.2) #1042 7 40 s 332 s (8x) 332 s (8x) 1229 6 s 91 s (15x) 102 s (17x)
Immutable (v3.6.2) #0381 6 6 s 27 s (5x) 726 s (121x) 258 5 s 13 s (3x) 422 s (84x)
Immutable (v3.7.3) #0489 6 6 s 360 s (60x) 718 s (120x) 258 4 s 116 s (29x) 414 s (104x)
Loki (v1.0) #0042 9 13 s 112 s (9x) 1164 s (90x) 50 5 s 19 s (4x) 25 s (5x)
Loki (v1.0) #0046 9 13 s 15 s (1x) 1172 s (90x) 50 5 s 13 s (3x) 25 s (5x)

Table 2: Summary of performance results.

small examples before the reporting the bug, Crowdie could
potentially alleviate the need for this manual work.

The leftmost four columns of Table 1 identify the selected
subject programs and their associated bug reports (all taken
from GitHub). Each row in the table corresponds to one bug
report and one debugging scenario. The Program column
shows the name of the application/library, the Issue column
shows the number assigned to the bug report. The Lines and
Functions columns show the number of lines in the source
code (including whitespace and comments) and the total
number of function declarations, respectively.

AlaSQL is a JavaScript SQL database. Buckets is a data
structure library. Esprima is a JavaScript parser. Immutable
is a collection library. Loki is a JavaScript database. Redis
is a Redis client for JavaScript. The bugs include incor-
rectly returned objects, field values that are inadvertently
corrupted, incorrect control-flow due to argument passing,
and various type-related errors.

Process. In the case studies, we used the following 5-step
process for diagnosing a bug report using our tool: (1) run
the program and observe that a crash occurs; (2) manually
identify the function and line which caused the crash; (3)
manually select a subset of relevant local and global variables
related to the function and line of interest (frequently only a
single variable was selected). In the fully automated scenario
the variables would be selected by heuristics, as discussed
earlier; (4) run our tool with the given line and variables
as input to compute a crash path; (5) manually understand
and debug the issue using the computed crash path. In
some cases, the crash was caused by an exception that was
thrown from a generic error handling function. In such cases,
we followed the above steps, except that we focused on the
previous function on the call stack.

5.2 Experiments
We now discuss the results obtained by running our tool.
Quantitative Results: Instrumentation and Paths.

The columns under the header Instrumentation in Table 1
show some key characteristics of our feedback-directed in-
strumentation method. The column Iterations shows the
number of times the same bug had to occur for the tech-
nique to find the complete crash path. Moreover, the col-
umn Functions shows the number of functions instrumented
by the technique in its final iteration, both as an absolute
number and as a percentage of the total number of func-
tions. For example, for Esprima issue #0560, 7 executions
were required before the complete crash path was found plus
one execution to detect the crash in the first place.

The columns under the header Recorded Path report char-
acteristics of the complete crash path found by the tech-
nique. Here, the column Length reports the length of the
crash path (i.e., the total number of labels), and the column
Func. counts the number of functions on the crash path.
Regarding the last metric, recall that a function might be
instrumented although it is not on the crash path, so it is
interesting to see whether the technique instruments many
functions unnecessarily. Returning to Esprima issue #0560,
during the last iteration 37 functions where instrumented
corresponding to 25% of the total number functions in the
program. Finally, the crash path contained 219 labels dis-
tributed over 54 source code lines in 24 functions correspond-
ing to only 16% of the total number of functions. Looking at
219 labels might seem like a daunting task for a programmer,
but multiple labels can be present on each of the 54 source
code lines, e.g., in the case of loops, and some labels are
implied by others, e.g. Call/Enter. Thus, the programmer
has to look at significantly fewer statements/labels.
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Quantitative Results: Performance. Column Func.
under the heading Instrumentation in Table 1 shows the
number (and percentage) of functions instrumented in the
final iteration by the feedback-directed technique. Only
between 2% and 31% of functions are ultimately instru-
mented, suggesting good potential for performance improve-
ment compared to full instrumentation.

To measure actual impact on runtime performance we ex-
ercised the programs using benchmarks and unit tests avail-
able in the source repositories. Table 2 shows the results.

Starting with the performance benchmarks, the row for
AlaSQL issue #0092 shows that the benchmark program
contained 14 different executions and the original program
took 95 seconds to execute them all. Using our feedback-
directed approach, 34 functions are instrumented (see Ta-
ble 1), resulting in a total running time of 188 seconds, i.e.,
a slowdown by a factor 2x. In contrast, running the bench-
mark with full instrumentation took 1929 seconds, i.e., a
factor 20x overhead. Continuing, AlaSQL’s unit test suite
comprises 415 individual tests which took 15 seconds to run
originally; this was 3x slower with feedback-directed instru-
mentation, and 11x slower with full instrumentation. For the
three Esprima issues there is negligible difference in perfor-
mance between feedback-directed and full instrumentation.
For the remaining 5 programs there are significant differ-
ences ranging from 1.1x to 121x.

In general, the performance benchmarks show a larger per-
formance difference than the unit tests when comparing par-
tial and full instrumentation. We postulate this is because
the unit tests cover a broad range of functionality and exer-
cise the code more evenly (including the instrumented code),
whereas the benchmark programs presumably exercise only
performance critical components of the code that may avoid
instrumentation with our technique.

We investigated why our technique worked so poorly for
Esprima. We found that Esprima is divided into two com-
ponents; a lexer and a parser. In each case, an unexpected
token was generated by the lexer, and then caused a crash in
the parser. The problem was not the actual token itself, but
the control-flow that followed. Regardless, this architecture
and the tight connectedness of the parser itself meant that
large parts of the program were ultimately instrumented.

The Buckets and Redis programs were not included in
Table 2 since they had no performance benchmark suites.

In summary, if we exclude the best and worst running
times for both techniques, then feedback-directed instru-
mentation has a typical overhead of between 2x–9x com-
pared to an overhead of 8x–90x for full instrumentation.

Usefulness. We previously discussed two of our case
studies in Section 2 that illustrated how it can be useful to
know: (1) where an object was allocated, (2) what the call
stack looked like during that allocation and (3) what proper-
ties were not written since that allocation. Space limitations
keep us from discussing the remaining 8 case studies in de-
tail, but they cover similar, and more complex, issues. In
each case, the crash path provides crucial information about
object allocation and initialization, the call stack structure
at points of interest, and the presence or absence of writes to
a property of interest. In each case, some amount of human
ingenuity remains necessary but we believe that the crash
paths computed by Crowdie would be helpful for develop-
ers. In particular, the size of the code base that developers
need to consider is greatly reduced by allowing them to focus

on only the source lines in the crash path; these reductions
can be seen in Table 1. A detailed analysis of each of these
case studies can be found in a technical report [20].

5.3 Summary of Results
We can now answer the research questions stated earlier.
Q1. The crash paths computed by Crowdie can pro-

vide useful assistance to developers, but by themselves are
not a panacea: some amount of human ingenuity remains
necessary to complete the debugging task.

Q2. In our case studies, between 4 and 9 iterations (ex-
ecutions) were needed to discover the crash path. This is
a relatively low number, suggesting that our technique may
be generally useful for widely deployed software, except for
bugs that are very rarely encountered.

Q3. The typical runtime overhead of the feedback-directed
instrumentation in Crowdie ranges from 2x–9x. While this
is often dramatically better than the overhead of full instru-
mentation (8x–90x), work remains to be done on making the
instrumentation more efficient. Furthermore, as the results
for Esprima suggest, the architecture of certain applications
may make them unsuitable candidates for the technique.

5.4 Threats to Validity
We selected our subject programs based on issues reported

on GitHub. While these programs are widely used, they may
not be representative of all programs and likewise the re-
ported bugs that we investigated may not be representative
either. Furthermore, we selected bug reports that involved
crashes (thrown exceptions, assertions errors, ...) but not
every bug necessarily manifests itself as a crash. When we
debugged these issues we had no prior knowledge of the pro-
gram. Thus, it is possible that a developer familiar with
source code might have debugged the program differently.
On the other hand, the debugging scenario we faced, with
no prior knowledge of the codebase, is the hardest possible.

Another valid concern is that the experiments are all based
on small snippets of code that trigger the bugs. These sce-
narios may differ from real-life deployment scenarios, for
which the results could be very different from the ones we
report here. These more complex scenarios might require
longer crash paths and make Crowdie more expensive to
use, but extra complexity will also make the partial instru-
mentation of Crowdie even more tractable compared to
naive full instrumentation.

6. RELATED WORK
Numerous techniques have been developed to support de-

bugging. A key property of our approach is that it helps ob-
taining critical information about failures that occur in de-
ployed JavaScript programs. This setting is particularly well
suited for crowdsourced analysis that collects data from user
executions, since it is easy to deploy new instrumentation
policies. Although we focus on errors that manifest as un-
caught exceptions in the JavaScript programs, our technique
works more generally, for example, also when debugging as-
sertion failures, errors related to suspicious coercions and
other bad coding practices [11], or DOM-related faults [26].

Record and replay techniques. The ability to record
and replay failing executions is valuable for debugging, as
demonstrated by, e.g., Narayanasamy et al. [23]. We argue
that knowing the part of the execution history that we call
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the crash path is often sufficient for the developer to de-
bug the crash, and is cheaper to produce in a JavaScript
setting. The BugRedux framework by Jin and Orso [12]
gathers partial execution traces from deployed programs and
then uses symbolic execution to synthesize reproducible fail-
ures. SymCrash [8] instead uses dynamic symbolic execution
and more selective instrumentation. We avoid the need for
symbolic execution by the use of iterative instrumentation.
Some techniques utilize static analysis to reduce the instru-
mentation overhead [24, 31], however, the dynamic language
features in JavaScript are known to cause considerable chal-
lenges for static analysis [3].

One challenge to dynamic analysis of deployed JavaScript
applications is that instrumenting JavaScript programs is
known to incur a large runtime overhead. Techniques that
attempt to reduce the overhead by only logging sources of
nondeterminism, as e.g. Chronicler [6], are difficult to ap-
ply to JavaScript. Even though our implementation uses
the state-of-the-art Jalangi infrastructure [28], we observe a
substantial runtime overhead when full instrumentation is
enabled, which necessitates the more selective instrumenta-
tion. Several other tools described in the literature are capa-
ble of recording live executions, which can subsequently be
analyzed by the developers when debugging. Mugshot [21] is
capable of capturing events using unmodified browsers. Sim-
ilarly, WaRR [4] and, more recently, Timelapse and Dolos [7]
can in principle provide full information about failing exe-
cutions. Ripley [30] instruments JavaScript applications to
enable replaying executions on the server with the purpose of
ensuring computational integrity, and DoDOM [27] performs
replaying to infer DOM invariants, not to aid debugging of
crashes that users encounter. However, we have seen no con-
crete usage of these tools in real-world debugging. We be-
lieve that record/replay tools usually require that the record
and replay environments, which include browser configura-
tion, browser state, persistent data (e.g. cookies), network
speed, processor speed, and operating system configuration,
to be exactly same. Such a requirement is too strict and dif-
ficult to reproduce in real-world scenarios where an applica-
tion can be run by any user under any possible environment.
Crowdie does not suffer from such limitations because it
does not aim to faithfully replay a buggy execution—it sim-
ply tries to collect a relevant portion of the control-flow path
using light-weight and targeted instrumentation.

Fault localization techniques. Several automated fault
localization techniques [13, 14, 18] rely on statistical data
from user executions collected in order to assist developers
with debugging. Such information may be useful for de-
bugging, but it does not provide the crash paths that we
argue are valuable when debugging. For future work, it will
be interesting to perform a direct experimental comparison
with such techniques. Liblit et al. [19] interestingly note
that“the stack contains essentially no information about the
bug’s cause” in half of the bugs considered in their experi-
ments, which aligns well with our observation that more in-
formation about the failing executions is often needed. The
Holmes tool [9] localizes faults using path profiles, which are
constructed by iteratively instrumenting and re-deploying
programs similar to our technique. Unlike crash paths, path
profiles only provide statistical information about intrapro-
cedural and acyclic paths. The AutoFLox tool by Ocariza et
al. [25] performs fault localization for JavaScript under the
assumption that a complete failing execution is known, un-

like our technique that aims to automatically find the crash
path. Our algorithm for finding crash paths is also related
to algorithmic program debugging [29] but does not require
guidance by the programmer or by formal specifications.

Dynamic program slicing. Our notion of crash paths
is related to the use of dynamic slicing for debugging [1,
2, 17, 32]. Such techniques typically compute slices back-
wards, which resembles our construction of crash paths, but
usually assuming that a complete execution trace is already
known. Although many variations of dynamic slicing have
been proposed, they generally differ from our notion of crash
path, which comprises a path from the creation of an object
of interest to a crashing statement, without including all
dependencies earlier in the execution. In principle, slicing
may be applied subsequently to the crash path to filter away
instructions that are likely irrelevant.

Other crowdsourced analysis techniques. Crowd-
sourced analysis has also been suggested for other debugging
scenarios. For example, Kerschbaumer et al. [16] use crowd-
sourced analysis to test for information flow vulnerabilities
by letting different users track different information flows
so that a crowd of users can achieve high coverage of all in-
formation flows without imposing unacceptable performance
overhead on any single user. Likewise, Kasikci et al. [15] test
potential data races by distributing them over a set of users
by giving each user an instrumented version of an application
where the purpose of the added instrumentation code is to
confirm whether the potential race happens in practice. To
lower the overhead, instrumentation is enabled probabilis-
tically. In contrast, we enable instrumentation only when
a crash occurs, then increase instrumentation until a crash
path is discovered, and finally disable the instrumentation.

7. CONCLUSIONS AND FUTURE WORK
Many bugs manifest themselves as objects that have in-

correct property values when a failure occurs. For such bugs,
error messages and stack traces often provide insufficient in-
formation for diagnosing the problem. We have proposed
the notion of a crash path, which reflects the control flow
from the allocation of a selected object of interest to the
crashing statement, and argue that this often provides use-
ful information for debugging such problems.

In principle, crash paths can be computed by executing a
fully instrumented version of a program, but this incurs pro-
hibitive runtime overhead. Therefore, we have developed a
feedback-directed instrumentation technique for computing
crash paths that we envision to be deployed in a crowd-
sourced scenario where the same failure can be observed
repeatedly. We implemented the technique in a tool called
Crowdie, and evaluated it in 10 case studies by using it to
debug real-world issues reported on GitHub for which error
messages and stack traces are insufficient to find and fix the
bugs. In these case studies, the feedback-directed technique
requires the same crash to be encountered 3 to 10 times, and
the runtime overhead generally compares favorably to that
of full instrumentation.

Directions for future work include achieving a deeper un-
derstanding in which situations the feedback-directed tech-
nique is useful, and reducing instrumentation overhead. We
also plan to explore the use of more detailed instrumentation
once a complete crashing path has been identified in order
to prune irrelevant statements from the path.
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APPENDIX
A. CASE STUDY

Here we report on our experience debugging the bug re-
ports not described in Section 2.

A.1 AlaSQL Issue #0092
In this issue entitled “Error: Something wrong with index

on table” reported for AlaSQL (v0.0.36) the developer re-
ports that an exception is thrown8 after the creation of sev-
eral tables, insertion of multiple rows and multiple queries:

1 Error: Something wrong with index on table
2 at table.delete (alasql.js :8311:27)
3 at statement (alasql :9262:41)
4 at Function.alasql.drun (alasql :3369:43)
5 at Function.alasql.dexec (alasql.js :3353:31)
6 at Function.alasql.exec (alasql.js :3296:27)
7 at alasql (alasql.js :106:31)

The error message hints that an index is corrupted. In-
specting the stack trace indicates that the error occurs when
rows are deleted from a table. The (simplified) source code
of the table.delete function is:

8298 table.delete = function(i) {
8299 // ...
8300 var r = this.data[i];
8301 var pk = this.pk;
8302 var addr = pk.onrightfn(r);
8303 if (typeof this.indices[pk.hh][addr]
8304 == ’undefined ’) {
8305 throw new Error(’Something␣wrong␣’
8306 + ’with␣index␣on␣table’);
8307 } else {
8308 this.indices[pk.hh][addr] = undefined;
8309 }
8310 }

We see that the exception is thrown in response to this.
indices[pk.hh][addr] being undefined. A closer look at the
code reveals that there are three values that may be incor-
rect: this.indices, pk.hh and addr (which originates from
this.data). Since the lookup this.indices[pk.hh] returned
some object, i.e., it didn’t throw an undefined dereference
exception, the value of addr seems most suspicious.

Looking further down the stack trace does not reveal any
new information: We cannot determine the location of the
fault from the error message and stack trace alone. Applying
Crowdie to find the crash path for each of these values gives
several paths for the developer to inspect. Looking at the
crash path for this.data reveals something interesting:

9152 ... = function(db, params , alasql) {
9153 var res = selectfn(params );
9154 db.tables[tableid ].data =
9155 db.tables[tableid ].data.concat(res);
9156 return res.length;
9157 }

which is a function used during a SELECT sub query, as re-
vealed by the crash path. Note that the value of the data
property is overwritten directly with the result of an array
concatenation operation. This is problematic, since this only
updates the array without updating the index accordingly.
Instead, the table.insert function should have been used,
which is responsible for keeping the index up-to-date. The
fix is simply to use this function instead of directly mutating
the data property.

8https://github.com/agershun/alasql/issues/92

In this case study the error message and stack trace were
insufficient the debug the issue. Crowdie helped find the
origin of several values of interest and revealed that the crash
was related to sub-queries (which was not knowable from the
stack trace). In the debugging scenario the developer still
had to use some ingenuity: First, to determine the value(s)
of interest. And, second, to know that the index is main-
tained by the table.insert function and that the data prop-
erty should not be updated directly.

A.2 Buckets Issue #0005
In this issue, entitled “Various Dictionary bugs”, appear-

ing in Buckets v1.82, the reporting user explains that a
Dictionary implementation contains several bugs related to
JavaScript semantics that the implementer did not take into
account9. One of the bugs is exposed with the following
code, extracted from the bug report:

1 var dict = new buckets.Dictionary ();
2 var obj = {};
3 dict.set("hasOwnProperty", obj);
4 dict.keys ();

The last call makes the library throw an exception: “Type-
Error: object is not a function”, with the stack trace:

TypeError: object is not a function
at buckets.Dictionary.keys (buckets.js:796)
at Object.<anonymous > (example.js:4)

The stack trace only reveals that a call at line 796 could
not be performed. Looking at that line:

796 if (this.table.hasOwnProperty(name)) {

We see that the property hasOwnProperty was supposed
to be a function, but according to the exception, it is not.

An experienced JavaScript programmer knows that has-
OwnProperty is a built-in method in the Object prototype-
chain, so the natural question is to find out what has over-
ridden it. So we instruct Crowdie to find the origin of
this.table.hasOwnProperty, Crowdie uses four iterations
to discover the following path:

Start(ex.js:2) var obj = {};
Call(ex.js:3) dict.set("hasOwnProperty", obj);
Enter(buckets.js:751) ...set = function(key, value) {
. . .
Exit(buckets.js:770) return ret;
Return(ex.js:3)) dict.set("hasOwnProperty", obj);
Call(ex.js:4) dict.keys();
Enter(buckets.js:793) ...keys = function() {
Crash(buckets.js:796) if (this.table.

hasOwnProperty(name)) {

From this path, it can be seen that the origin of the
object is the obj-object on line 2 in the above example
code. Crowdie also tells us that this object is used in
dict.set("hasOwnProperty", obj) on the very next line,
from which it is clear that the user-selected dictionary key,
“hasOwnProperty”, breaks the dictionary implementation
by creating a local property hasOwnProperty in the internal
dictionary datastructure that shadows the hasOwnProperty
property of a prototype object.

On line 796, Buckets relies on hasOwnProperty being the
native implementation of hasOwnProperty, but the call on
line 3 ends up shadowing that property with the object al-
located at line 2. The fix for this issue is to remove the
dependency in Buckets on hasOwnProperty being unmodi-

9https://github.com/mauriciosantos/Buckets-JS/issues/6
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fied by user-selected values. The following code illustrates
the principle behind the fix for line 796:

796 // if (this.table.hasOwnProperty(name)) {
797 var HOP = Object.prototype.hasOwnProperty;
798 if (HOP.call(this.table , name)) {

In this case study, we needed to know why a property had
been overridden, and the stack trace could not tell us that.
The crash path produced by Crowdie helped with finding
the cause of the overriding problem. In particular, the crash
path revealed that shortly after the object of interest was
allocated, it was used inside Buckets to override the prop-
erty of interest – this revealed that internal dependencies of
Buckets needed to be rethought10.

Although the bug report appears to originate from a code
review, we believe the bug could just as well have occurred
in the wild.

A.3 Esprima Issue #0560
In this issue entitled “LeftHandSideExpression in ForIn-

Statement not parsing when it contains an ‘in‘ operator”,
reported for Esprima (v1.2), the user states that Esprima
crashes on the input "for (a[b in c] in d);" which he
or she expected to parse11, 12.

Esprima crashes with the following error message and
stack trace13:

799 Error: Line 1: Unexpected token in
800 at throwError
801 at throwUnexpected
802 at expect
803 at parseComputedMember
804 at parseLeftHandSideExpressionAllowCall
805 at parsePostfixExpression
806 at parseUnaryExpression
807 at parseBinaryExpression
808 at parseConditionalExpression
809 at parseAssignmentExpression
810 at parseExpression
811 at parseForStatement
812 at parseStatement
813 at parseSourceElement
814 at parseSourceElements
815 at parseProgram
816 at Object.parse
817 at Object.<anonymous >

The error message says that the token “in” was unex-
pected. This may lead the developer to believe that the
token was somehow corrupted or that the token was ac-
cidently replaced by another token. The stack trace it-
self does not indicate whether or not this is the case. Us-
ing Crowdie we discover that the token was created in-
side scanIdentifier and was not changed along the crash
path. While this information is useful, it does not, by it-
self, help us to locate the bug: The bug cannot be iso-
lated with the error message, stack trace and Crowdie
alone. Looking at the fix on GitHub we can see that fix
involves intricate updates of a global variable state.allowIn
inside the functions parseLeftHandSideExpressionAllow-
Call, parseLeftHandSideExpression and parseForStatement.
Coming up with these changes seems to require a deep knowl-

10https://github.com/mauriciosantos/Buckets-JS/commit/
f58f2f0a3edcb9041fb5d26afec7bc57b7f21de2

11https://code.google.com/p/esprima/issues/detail?id=560
12https://github.com/jquery/esprima/pull/267
13Here line numbers have been omitted for brevity.

edge of the internals of Esprima.
Esprima issues #029914 and #104215 are similar to the

above: We can use Crowdie to rule out certain scenarios,
but such information by itself is not necessarily sufficient to
locate the bug. Nevertheless, we believe that even in such
scenarios, Crowdie provides developers with a useful new
tool for debugging.

A.4 Immutable Issue #0489
In this issue, entitled “‘deleteIn‘ fails for Set within Map”

for Immutable v3.7.3 the user reports that a sequence of
operations on a collection object cause an exception16. The
user provides a code fragment:

1 new Map()
2 .set("decks", new Set([1, 12, 2]))
3 .deleteIn (["decks", 12])

which produces the error message and stack trace:

1 Error: invalid keyPath
2 at invariant (immutable.js :932:31)
3 at updateInDeepMap (immu.js :2509:9)
4 at updateInDeepMap (immu.js :2515:27)
5 at src_Map__Map.updateIn (immu.js :1816:28)
6 at src_Map__Map.deleteIn (immu.js :1802:21)

This somewhat cryptic error message does not provide
much information, at least for someone who is unfamiliar
with the Immutable library. The stack trace tell us that the
exception is thrown from:

7 function invariant(condition , error) {
8 if (! condition) throw new Error(error );
9 }

which is a generic error construction function. This function
is called from updateInDeepMap where the real error occurs17:

2495 function updateInDeepMap(existing , ...) {
2496 // ...
2497 invariant( /* ... */
2498 || (existing && existing.set),
2499 ’invalid␣keyPath ’);
2500 // ...
2501 );

From the error message and stack trace alone it is not clear
why the invariant is violated. Using Crowdie we discover
that the invariant is violated when the existing variable
points to an object without a set property 18. As in previous
case studies, it is not clear why this property is missing: Was
it never set? Was it overwritten? Does existing point to the
wrong object? Inspecting the crash path we discover that
the object is created by the makeSet function:

3700 function makeSet(map , ownerID) {
3701 var set = Object.create(SetPrototype );
3702 // ...
3703 return set;
3704 }

The call to Object.create(SetPrototype) creates a new ob-
ject whose internal prototype is the SetPrototype object.
This is a global object which holds all functionality com-

14https://github.com/jquery/esprima/pull/299
15https://github.com/jquery/esprima/issues/1042
16https://github.com/facebook/immutable-js/issues/489
17 Here the line number 2509 reported in the stack trace
corresponds to line 2497 in the example, due to the elision
of some irrelevant code.

18Here set should be understood as “assign” or “update”, and
not as the notion of a mathematical set.
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monly available on sets. Manual inspection of the crash
path shows that the set property is never set nor overwrit-
ten. Furthermore, the prototype object does not contain
any set property.

Pondering this, we realize that updateInDeepMap implicitly
assumes that it is only passed map objects (which have a
set property) and not sets (which lack such a property). We
can fix this issue by adding a set property to the prototype
SetProperty.

In this issue Crowdie was useful for finding the origin of
the existing object and determining that the set property
was not modified along the crash path, but was missing from
the time the object was created (due to its type).

A.5 Loki Issue #0042
In this issue, entitled “when not found findOne returns

Array[0] instead of null” for Loki (v1.0) the developer re-
ports that the findOne function should return null instead
of a zero-sized array when the result set is empty19. As
stated earlier, Loki is a JavaScript database and the findOne
function is used to retrieve the first row from a given query.

In the bug report, the developer does not provide any code
fragment, presumably because it is very easy to reproduce.
For the sake of exposition, we will assume that the developer
encountered the problem while trying to run the code:

1 var db = new loki (/* ... */);
2 var users = db.addCollection (* ... */);
3 var result = users.findOne (* ... */);
4 assert(result == null);

which crashes with the assertion failure:

5 AssertionError: false == true
6 at main.js:4:11

Here (and in general) the error message and stack traces
do not contain information about where the object came
from, since the object was created inside the library and
stack has since been collapsed. Using Crowdie to discover
the origin of result reveals that the Resultset.prototype.find
function returns an empty array:

607 Resultset.prototype.find = function (...) {
608 if (this.collection.data.length === 0) {
609 // ..
610 return [];
611 }
612 // ...
613 }

This function, as revealed by the crash path, is called from:

266 function Resultset (...) {
267 // ...
268 if (typeof (queryObj) !== "undefined"
269 && queryObj !== null) {
270 return this.find(queryObj , firstOnly );
271 }
272 // ...
273 }

which according to the crash path is called from:

2469 ... findOne = function (...) {
2470 // ...
2471 return new Resultset (...);
2472 };

Note that although Resultset is invoked as a constructor (us-
ing new ...) on line 2471 its result is thrown away by the state-

19https://github.com/techfort/LokiJS/issues/42

ment return this.find(...) on line 270 inside Resultset.
The issue is fixed by checking the size of the result set in-

side either Resultset.prototype.find or directly in the Resultset
constructor. Debugging this issue with Crowdie was easy
since the tool readily identified from where the object came
and the relevant functions on the crash path.

A.6 Redis Issue #0067
In this issue, entitled “hgetall returns when no results”,

reported for Loki v1.0, the user reports that “Testing for
if(results) ends up with a false positive.”20. The problem is
that the library breaks the JavaScript idiom of returning a
value that coerces to false in case of a query without any
results. The returned value is an empty object instead of a
value like null or undefined. In this case, the user did not
include a code snippet with the bug report that triggers the
problem. However, from the description of the issue, it was
easy for us to reconstruct what such a code example would
look like. In the discussion below, we will assume that the
user encountered the reported problem in the context of the
following example.

1 var client = redis.createClient ();
2 client.hgetall("does␣not␣exist", function (

err , results) {
3 if(results){
4 throw new Error("Redis -bug␣0067:␣

non -null␣results");
5 }
6 });

The following stack trace is produced by running the code:

Error: Redis -bug 0067: non -null result
at example.js:4
at try_callback (redis.js:980)
at RedisClient.return_reply (redis.js :1024)
at RedisReplyParser.<anonymous > (redis.js:773)
at RedisReplyParser.emit (events.js :107)
at RedisReplyParser.send_reply (redis.js:502)
at RedisReplyParser.execute (redis.js:387)
at RedisClient.on_data (redis.js:936)
at Socket.<anonymous > (redis.js :580)
at Socket.emit (events.js:107)
at readableAddChunk (_stream_readable.js:163)
at Socket.Readable.push (_stream_readable.js:126)
at TCP.onread (net.js:538)

The stack trace reveals that asynchronous JavaScript is
being used because the root of the stack trace is not in the
example code. This means that single-stepping the code
with a debugger would be harder than usual.

Nevertheless, Crowdie can find the origin of results in
three iterations, at line 1021 of redis.js. In the allocating
function it is seen that an empty results object is always
allocated, and that each individual query result from the
externals array is added to it later. The following code
illustrates the principle:

var results = {};
for(var i = 0; i < externals.length; i++){

var result = externals[i];
results[result.name] = result.value;

}
return result;

The fix21 for the issue is an early return of null if no

20https://github.com/NodeRedis/node redis/issues/67
21https://github.com/NodeRedis/node redis/commit/
69092a3f267b67c8067c19f98ab08bad2f936aad
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query results are found. This fix is applied where the empty
results object was allocated, i.e., at the root of the crash
path.

The following code illustrates the principle behind the fix:

var results = {};
if(externals.length === 0){

return null;
}
for(var i = 0; i < externals.length; i++){

var result = externals[i];
results[result.name] = result.value;

}
return result;

In this case study, the source location of interest is ac-
tually close to one of the lines mentioned in the long stack
trace, but Crowdie pinpoints exactly where the object was
allocated – saving the bug fixer from having to look through
a long stack trace for the right location to apply a fix.
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