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ABSTRACT

Developers of JavaScript web applications have little tool
support for catching errors early in development. In com-
parison, an abundance of tools exist for statically typed
languages, including sophisticated integrated development
environments and specialized static analyses. Transferring
such technologies to the domain of JavaScript web appli-
cations is challenging. In this paper, we discuss the chal-
lenges, which include the dynamic aspects of JavaScript and
the complex interactions between JavaScript, HTML, and
the browser. From this, we present the first static analysis
that is capable of reasoning about the flow of control and
data in modern JavaScript applications that interact with
the HTML DOM and browser API.

One application of such a static analysis is to detect type-
related and dataflow-related programming errors. We report
on experiments with a range of modern web applications,
including Chrome Experiments and IE Test Drive applica-
tions, to measure the precision and performance of the tech-
nique. The experiments indicate that the analysis is able to
show absence of errors related to missing object properties
and to identify dead and unreachable code. By measuring
the precision of the types inferred for object properties, the
analysis is precise enough to show that most expressions
have unique types. By also producing precise call graphs,
the analysis additionally shows that most invocations in the
programs are monomorphic. We furthermore study the use-
fulness of the analysis to detect spelling errors in the code.
Despite the encouraging results, not all problems are solved
and some of the experiments indicate a potential for im-
provement, which allows us to identify central remaining
challenges and outline directions for future work.
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1. INTRODUCTION

A JavaScript web application is in essence an HTML page
with JavaScript code and other resources, such as CSS style-
sheets and image files. Program execution is driven by
events in the user’s browser: the page is initially loaded, the
user interacts with the mouse and keyboard, timeouts occur,
AJAX response messages are received from the server, etc.
The event handler code reacts by modifying the program
state and the HTML page via its DOM (Document Object
Model) and by interacting with the browser API, for exam-
ple to register new event handlers. Compared to other soft-
ware platforms, the state of the art in development of such
web applications is rather primitive, which makes it difficult
to write and maintain robust applications. Statically typed
languages, such as Java and C#, have long benefited from
advanced IDEs and static analysis techniques with rich capa-
bilities of locating likely programming errors during develop-
ment. Examples of such tools include Eclipse, Visual Studio,
FindBugs, and Klocwork. In contrast, existing tool support
for JavaScript web application development is mostly lim-
ited to syntax highlighting and primitive code completion
in IDEs, such as Eclipse, NetBeans, and Visual Studio, of-
ten combined with record/play testing frameworks, such as
Selenium, Watir, and Sahi.

The goal of our research is to develop static program
analysis techniques that can detect—or show absence of—
potential programming errors in JavaScript web applica-
tions. We focus on general errors that can be detected with-
out the use of application-specific code annotations. Exam-
ples of such errors are (1) dead or unreachable code, which
often indicates unintended behavior, (2) calls to built-in
functions with a wrong number of arguments or with ar-
guments of unexpected types, and (3) uses of the special
JavaScript value undefined (which appears when attempt-
ing to read a missing object property) at dereferences or at
function calls. The existence of the undefined value and im-
plicit type coercions in the language means that even minor
spelling errors, for example in a property name, often has
surprising consequences at runtime. With statically typed
languages, the type systems provide a strong foundation for
detecting such errors. In contrast, because of the dynamic
nature of JavaScript web application code, our analysis must
be capable of reasoning about the flow of control and data
throughout the applications.

We strive to make the analysis sound, meaning that all
control flow and dataflow that is possible in the program
being analyzed is captured by the analysis such that guar-
antees can be made about absence of errors. Also, it must



be sufficiently precise and fast such that the user is not over-
whelmed with spurious warnings and that the analysis can
be integrated into the development cycle.

As an example, Figure 1 shows excerpts from a modern
JavaScript web application. If one wants to detect or show
absence of errors of the kinds discussed above, a static analy-
sis must reason about the subtle flow of control and data be-
tween the JavaScript code, the HTML code, and the browser
event system, as explained in the figure text.

TAJS is a program analysis tool for JavaScript [11,12]. To
this point, TAJS has been developed to faithfully model the
JavaScript language and the core library as specified in the
ECMAScript standard [4]. Most real JavaScript programs,
however, exist in the context of an HTML page and operate
in browsers where they access the HTML DOM and the
browser API, which causes considerable challenges to the
analysis of the flow of control and data [18]. We now take
the step of extending TAJS to also model these aspects of
JavaScript web applications.

In summary, the contributions of this paper are the fol-
lowing:

e We discuss the key challenges (Section 2) and suggest
an approach toward modeling the JavaScript web ap-
plication platform in static analysis (Section 4). In
particular, this involves considerations about model-
ing the HTML pages and the event system.

e We show how the TAJS analysis (Section 2.2) can be
extended to accommodate for the HTML DOM and
the browser API. As result, we obtain the first static
analysis tool that is capable of reasoning about the flow
of control and data in JavaScript web applications.

e Through experimental evaluation we demonstrate that
our model is sufficient to show absence of errors and
to detect dead and unreachable code. In addition, we
evaluate the precision of the types and call graphs in-
ferred by the analysis (Section 5). We identify strengths
and weaknesses of the approaches we have taken and
suggest directions for future work (Section 7).

Several program analysis tools and techniques for Java-
Script have been developed [1,3,5-11,15,19], however, none
of them provide a detailed model of the HTML DOM and
the browser API, although all JavaScript web applications
utilize those mechanisms. We describe connections to re-
lated work in Section 6.

2. CHALLENGES

We begin with a brief tour of the technologies involved
and explain the central challenges that exist when develop-
ing static analyses for JavaScript web applications. Expe-
rienced JavaScript programmers who are used to reasoning
“manually” about the behavior of their programs will recog-
nize the issues brought forth here.

2.1 The JavaScript Language

The first obstacle we face is the JavaScript language it-
self. JavaScript has higher-order functions and closures, ex-
ceptions, extensive type coercion rules, and a flexible object
model where methods and fields can be added or change
types and inheritance relations can be modified during exe-
cution. As shown by Richards et al. [18], commonly made

1http ://www.chromeexperiments.com/detail/js-touch/

assumptions in the research literature about JavaScript pro-
grams are often violated by the code actually being written
by programmers, and JavaScript is described as “a harsh
terrain for static analysis”.

Implementations largely follow the ECMAScript standard
[4], however, there are subtle deviations. One such exam-
ple is that many browsers for performance reasons do not
implement the specified behavior of deleting properties of
the arguments object (as in delete arguments[0]). An-
other example is that many browsers for security reasons do
not correctly invoke the currently defined Object function
when constructing objects from literals (as in x={}). Other
peculiar JavaScript features and incompatibility issues are
discussed in the paper on JavaScript semantics by Maffeis
et al. [16]. One choice we must make is whether to model
the standard or one or more of the existing implementations.
We return to this issue in Section 3.

On top of the language, ECMAScript contains a standard
library consisting of 161 functions and other objects that
all need to be modeled somehow by any tool that analyzes
JavaScript web applications. Of particular interest is the
eval function and its variant Function that allow dynamic
construction of program code from text strings. Reasoning
statically about the behavior of such code obviously requires
knowledge about which strings may appear. Even so, studies
of how these constructs are used in practice indicate that
many cases are amenable to static analysis [14,17,18].

For now, we focus on the 3rd edition of ECMAScript
(ECMA-262), which is currently the most widely used ver-
sion. Supporting the more recent 5th edition requires the
analysis to also reason about getters and setters, sealed and
frozen objects, stronger reflection capabilities, and the so-
called strict mode semantics, in addition to a range of new
standard library functions.

2.2 The HTML DOM and Browser API

The browser environment gives rise to additional chal-
lenges. The JavaScript representation of HTML documents,
CSS properties, and the event system is specified by the
W3C DOM standards?. The HTMLS5 specification is cur-
rently being developed by the WHATWG group®. Together,
these specifications contribute additional hundreds of func-
tions and other objects to the program state. It is well
known to all web application programmers that browsers
do not adhere to these standards. Browsers provide non-
standard functionality, and many standard features are not
supported?. In particular the event systems differ between
browsers. Another problem is that no standard exists for
the window object that acts as the global JavaScript object.
Incompatibilities in the underlying JavaScript interpreters
mostly involve subtle corner cases in the language, as dis-
cussed above, and often go unnoticed by the programmers.
In contrast, incompatibilities in the browser environments
are a major concern. When developing a program analysis,
we need to choose which of these variations to model.

A typical workaround is seen in the following function
addEvent from the Google Chrome Experiment Tetris®.

’http://www.w3.org/DOM/

Shttp://www.whatwg.org/
“http://www.quirksmode.org/

5http ://www.chromeexperiments.com/detail/domtris/



<html>
<head>
<script type=’’text/javascript’’>
window.P3D = {
texture: null,
g: null
b
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P3D.clear = function(f, w, h) {
10 var g = this.g;
11 g.beginPath();
12 g.fillStyle = f£;
13 g.fillRect(®, 0, w, h);
14|}

16| function TouchApp() {
17 var _this = this;

19 this.canvas = document.getElementById("cv");
20 P3D.g = this.canvas.getContext("2d");
21 /).

23 this.mViewport {};

24 this.mViewport.w = 480;
25 this.mViewport.h = 300;
26 // ..

27

28 var tex = new Image();
29 this.ipod. texture = tex;
30 tex.onload = function(){ _this.start(Q); };

31 tex.src = "20090319144649.png";
32 // ..

33|}

34

35| TouchApp.prototype = {
36 start: function() {

37 V7

38 this.onInterval(Q);

39 1,

40

41 onInterval: function() {

42 V7

43 P3D.clear("#000",

44 this.mViewport.w,
45 this.mViewport.h);
46 // ..

47 setTimeout(function(){

48 _this.onInterval();

49 }, 20);

50 }

51 // ..

52|}

53| // ...

54| </script>

55| </head>

56 <body onload="void( new TouchApp() );">
57 <canvas id="cv" width="480" height="300"/>
58 V7

59 </body>

60| </html>

The code at the left is an excerpt from the Google Chrome Experi-
ment js touch (where //... indicates omitted code). It displays a 3D
model of an iPhone and allows the user to interact with it by moving
the mouse. The application is written in pure JavaScript and uses
the new HTML5 canvas object.

Obviously, many things could go wrong when programming such
an application. Three examples of correctness properties that the
programmer may consider are: (1) Is the parameter g on line 11
always an object with a beginPath function? If not, a runtime error
will occur when that line is executed. (2) In the call to the function
fillRect on line 13, are the arguments always numeric? If not, the
function call will not have the desired effect. (3) Is the function
P3D.clear on line 9 reachable in some execution? If not, presumably
there is an error in the control flow.

To catch such errors — or to show their absence, a static analysis
must know about the flow of control and data in the program. In
brief, the browser first loads the HTML page and executes the top-
level JavaScript code and load event handlers. It then executes other
event handlers for user input, timeouts, and other events that occur.

In this example application, the code on line 56 in the onload
attribute of the body element creates a new TouchApp object and
invokes its constructor function defined on line 16. This func-
tion looks up the JavaScript DOM object representing the canvas
element on line 19 and then stores a reference to its associated
CanvasRenderingContext2D in the g property of the P3D object on
line 20. Note that P3D is a globally available object. Next, on
line 28, the constructor function creates a new Image object, sets
its load event handler to the start function and finally sets its src
property. The browser loads the requested image and fires the load
handler. The start function, defined on line 36, does some work
and then invokes the onInterval function. This function, defined
on line 41, calls P3D.clear with appropriate arguments taken from
the this.mViewport object. Finally, using a call to setTimeout, it
registers itself to be invoked by the browser 20ms later.

By automating this kind of reasoning, a static analysis can detect
likely errors in the application code. Analyzing a complex JavaScript
program, such as this one, requires a precise model of the JavaScript
language, the HTML DOM, and the browser API. For this appli-
cation, our analysis tool is capable of showing in 9 seconds among
many other properties that (1) the variable g does always hold an ob-
ject with a beginPath function, (2) the fillRect function is always
called with numeric arguments, and (3) the function P3D.clear is
likely to be reachable. In addition, the analysis reports that 98.9% of
all property access operations are guaranteed free from TypeError ex-
ceptions caused by dereferencing undefined or null and that all calls
to browser API functions are given arguments of meaningful types.
More statistics for the unabridged experiment is in Section 5.

Figure 1: Excerpts from the Google Chrome Experiment JS Touch'.

function addEvent(el, event, handler) {
if (el.addEventListener)

el.addEventListener(event, handler, false);

else if (el.attachEvent)
el.attachEvent("on" + event, handler);

Reasoning statically about the behavior of such code re-
quires not only modeling of different browsers but also flow
sensitivity (i.e. taking statement order into account) and
even path sensitivity (i.e. considering the branch conditions)
to see that the calls to addEventListener and attachEvent

do not cause TypeError exceptions.

Since all execution is driven by events, the analysis must
also model the event system, which includes the dynamic
registration and removal of different kinds of event handlers,
as in the addEvent function above, the event bubbling and
capturing mechanism, and the event object properties that
depend on the specific kind of event. The event handlers
work as callbacks, which often leads to fragmented code
with unclear flow of control that the static analysis must
resolve. A small example is seen in the Chrome Experiment
Aquarium® (abbreviated for presentation):

6http ://www.chromeexperiments.com/detail/aquarium/



function mmouse(event) {
mousex=event.pageX;
mousey=event.pageY;

}

function work() {
var dx=mousex-pesti[x].x;
var dy=mousey-pesti[x].y;
// ...

}

setInterval(work,10);

The function mmouse, which is elsewhere registered as an
event handler, stores information about the event in two
global variables, mousex and mousey, that are read in an-
other event handler, work. Unless these two variables are
properly initialized, dx and dy will get the special value NaN
if the work function happens to be triggered before mmouse,
which will likely result in an error later in the execution.
For event handlers defined as HTML attributes, the HTML

document structure interferes with the execution scope chains
that are used when resolving variables. If an event handler
defined literally as an attribute in an HTML element is trig-
gered, the scope chain includes all the DOM objects that
make up the path from the HTML element to the root of the
document. This means that dataflow in the JavaScript code
in general cannot be analyzed separately from the HTML
code. The following example illustrates this mechanism:

<script type=’’text/javascript’’>

var src = "foo.png";
</script>
<img src="bar.png" onclick="alert(src)"/>

The value of src inside the onclick event handler is that
of the src attribute of the img element, not foo.png as one
might have expected.

Many properties in the ECMAScript native objects have
special attributes, such as ReadOnly, which also must be
accounted for unless sacrificing either soundness or preci-
sion. Likewise, many DOM objects behave differently from
ordinary objects. As an example, a new form element is cre-
ated with document.createElement(’ form’), not with new
HTMLFormElement although all form elements inherit from
HTMLFormElement.prototype.

Besides the extent and the variations of browser environ-
ments, other concerns when developing a static analysis tool
relate to the prevalence of nontrivial built-in setters, that is,
assignment operations that involve complex conversions or
other side-effects. For example, writing to the onclick prop-
erty of an HTML element object causes a string to be treated
as event handler code. Another example is the use of value
correspondence where HTML element attributes are repre-
sented in multiple JavaScript objects. For instance, the src
attribute value of an img element appears both directly as a
property of the img element object and indirectly as a prop-
erty of an object that can be reached via the attributes
property of the img element object. These are essentially
aliases (although the former is always an absolute URL even
when the latter is a relative URL), and modifications to one
also affect the other, much like the connection between or-
dinary JavaScript function parameters and the arguments
object. Consider also the window.location property, which
holds a Location object. Assigning a new URL string to
this property causes the browser to go to that URL after
the current event handler and various unload handlers have
been executed. As yet another example, writing a string to
the (also nonstandard but widely used) innerHTML property
of an element object causes the string to be parsed as HT'ML

and converted to a DOM object structure, which then re-
places the element contents.

A related issue is the element lookup mechanism, which
provides support for getElementById and related functions.
If an element with an id attribute is inserted into the HTML
document, it is automatically added to the browser’s element
ID table for quick lookup. Similarly, documents.images au-
tomatically contains references to all images in the current
HTML document.

2.3 Application Development Practice

Further complications are introduced by common applica-
tion development practice. Although JavaScript is an inter-
preted language (perhaps with JIT compilation, transpar-
ently to the programmer) in practice it makes sense to dis-
tinguish between “source code” and “executable code”. The
reason is that JavaScript web application code is often sub-
jected to minification (and sometimes also obfuscation) to
reduce the code size and thereby make the applications load
faster. A related trick is lazy loading where the applications
are divided into parts that are loaded incrementally using
AJAX or dynamically constructed script elements.

An example of lazy loading using a dynamically created
script tag occurs in the Google Analytics” tool for collect-
ing visitor statistics:

<script type="text/javascript">

(function() {
var ga = document.createElement(’script’);

ga.type = ’text/javascript’;
ga.async = true;
ga.src =
(’https:’ == document.location.protocol ?

’https://ssl’

http://www’) + ’.google-analytics.com/ga.js’;
var s = document.getElementsByTagName(’script’)[0]
s.parentNode. insertBefore(ga, s);

HO;

</script>

Since our aim is to develop an analysis tool that can
help the programmers catch errors during development, we
choose to focus on the source code stage, as the programmers
see the application before these techniques are applied. This
means that we in many cases sidestep the issue of analyzing
dynamically generated code. It also means, however, that
the analysis tool we develop is not designed to be used for
all the JavaScript web application code that is immediately
available on public web sites, such as Gmail or Office Web
Apps.

Many applications build on libraries that alleviate browser
incompatibility problems, provide class-like abstractions and
advanced GUI widgets and effects, and simplify common
tasks, such as navigation in the HTML DOM structures and
AJAX communication. This includes general libraries, for
example jQuery, MooTools, and Prototype, but also a myr-
iad of more specialized libraries, such as plugins for jQuery.
From a static analysis point of view, libraries such as these
in many cases make it difficult to track flow of control and
data. By providing their own abstractions on top of event
handling and DOM objects, a high degree of context sensi-
tivity and detailed modeling of heap structures may be re-
quired by the analysis. An example of a challenging library
construct is the $ function in jQuery, which has very differ-
ent behavior depending on whether it is passed a function,
an HTML string, a CSS string, or a DOM element.

7http ://www.google.com/analytics/



3. THE TAJS ANALYZER

We base the current work on the TAJS analysis tool that is
described in previous publications [11,12]. TAJS is a whole-
program flow analysis that supports the full JavaScript lan-
guage as defined in the ECMA-262 specification [4], includ-
ing the entire standard library except eval. The analysis is
designed to be sound (although working with a real-world
language and having no standardized formal semantics of the
language nor of the HTML DOM and browser API, sound-
ness is not formally proven). To this point, we do not con-
sider the deviations from the ECMAScript standard that
are discussed in Section 2.1, the reason being that these de-
viations are mostly corner cases that are irrelevant to most
applications we have studied. If the need should arise, for all
the deviations we are aware of, it is only a matter of making
minor adjustments to the analysis tool.

TAJS is based on the classic monotone framework [13]
using a highly specialized analysis lattice structure. The
lattice is based on constant propagation for all the possible
primitive types of JavaScript values. In addition, the lat-
tice includes call graph information, allowing on-the-fly con-
struction of the call graph to handle higher-order functions.
It also contains a model of the heap based on allocation site
abstraction extended with recency abstraction [2].

The analysis is object sensitive, meaning that it distin-

guishes between calling contexts with different values of this.

It is also flow sensitive, meaning that it distinguishes be-
tween different program points (maintaining separate ab-
stract states for different program points), and it has a sim-
ple form of path sensitivity to distinguish between different
branches of conditionals.

On top of this, lazy propagation is used to ensure that
only relevant parts of the abstract states are propagated,
which improves both performance and precision [12].

Altogether, this foundation largely addresses the chal-
lenges that are directly related to the ECMAScript language
specification.

4. MODELING THE HTML DOM AND
BROWSER API

‘We now present our approach to extending the analysis to
accommodate for the HTML DOM and the browser API.

Regarding the multitude of APIs supported by different
browsers that exist, we choose to model the parts that we
believe is most widely used: the DOM Core, DOM HTML,
and DOM Events modules of the W3C recommendations
(Level 2, plus selected parts of Level 3), the essential parts
of window® and related nonstandard objects, and the canvas
and related objects from WHATWG’s HTML5 (as of Jan-
uary 2011). The latter allows us to test the analysis on
web applications that exploit cutting edge functionality sup-
ported by the newest browsers.

In total, the extensions comprise around 250 abstract ob-
jects with 500 properties and 200 transfer functions. To give
an impression of the complexity, Figure 2 shows a small part
of the object hierarchy of the initial abstract state. Each
node represents an abstract object with its associated prop-
erties and functions, and the edges represent internal pro-
totype links. The symbols @ and * in the names indicate
whether the abstract objects represent single or multiple
concrete objects.

8https ://developer.mozilla.org/en/DOM/window

4.1 HTML Objects

The HTML page and resources linked to from the page de-
fine not only the program code but also the initial state for
the execution, including the HTML document object struc-
ture, element lookup tables, and event handlers.

At runtime, each HTML element gives rise to a range of
JavaScript objects, and new HTML elements can be cre-
ated dynamically. We need a bounded representation to
ensure that the program analysis terminates (technically,
the analysis lattice must have finite height), thus abstrac-
tion is necessary. A simple approach is to represent all
HTML objects as one abstract object. This is essentially
what is done in other program analyses [7,8] that perform
a less detailed analysis than what we aim for. To preserve
the inheritance relationships between the DOM objects, we
choose an abstraction where all constructor objects and pro-
totype objects are kept separate and that distinguishes be-
tween HTML elements of different kinds but where multi-
ple elements of the same kind are merged. As an example,
the HTMLInputElement abstract object (see Figure 2) mod-
els all HTML input elements. It has properties such as
accessKey and checked, which in the analysis have types
String and Boolean, respectively. The abstract object in-
herits from HTMLInputElement.prototype. This object con-
tains common functionality, such as the focus function,
shared by all HTMLInputElement objects. Looking further
up the prototype chain we find HTMLElement.prototype,
Element.prototype and finally Node.prototype, which de-
fine shared functionality of increasingly general character.
Other types of HTML elements, such as form or canvas el-
ements are similarly modeled by separate abstract objects.
This approach respects the inheritance relationships and it
smoothly handles programs that dynamically modify the
central DOM objects, for example by adding new methods
to the prototype objects.

To model the element lookup mechanism (see Section 2.2),
we extend TAJS’s notion of abstract states with appropriate
maps, e.g. from element IDs to sets of abstract objects. The
initial abstract state is populated with the IDs that occur
in the HTML page. If the HTML page contains an input
element with an attribute id="foo" then the ID map in the
abstract state maps foo to the HTMLInputElement abstract
object. These maps are updated during the dataflow analy-
sis if new id attributes are inserted into the page. As result,
getElementById and related functions are modeled soundly
and with reasonable precision.

4.2 Events

As discussed in Section 2.2, the analysis must be extended
to model dynamic registration, triggering, and removal of
event handlers. This can be done with various levels of pre-
cision. We describe our choices in the following and evaluate
the resulting system in Section 5.

First, we extend TAJS’s abstract states again, this time
with a collection of set of references to abstract objects
that model the event handler function objects. To distin-
guish between different kinds of events and event objects, we
maintain one such set for each of the following categories of
events: load, mouse, keyboard, timeout, ajax, and other. Ob-
ject references are added to these sets either statically, due
to presence of event attributes (onload, onclick, etc.) in
the HTML page, or dynamically when encountering calls to
addEventListener or assignments to event attributes during
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soundness is preserved.

Next, we need to model how events are triggered. A
JavaScript web application is executed by first running the
top-level code and then, until the page is unloaded, running
event handlers as reaction to events. Each event handler is
executed until completion, without being interrupted when
new events occur.

In TAJS, JavaScript program code is represented by flow
graphs, which are graphs where nodes correspond to primi-
tive instructions and edges correspond to control flow
(see [11]). We have considered different approaches to incor-
porating the event handler execution loop after the top-level
code in the flow graph:

e As a single loop where all event handlers in the cur-
rent abstract state are executed non-deterministically.
This is a simple and sound approach, but it does not
maintain the order of execution of the individual event
handlers.

e Using a state machine to model the currently regis-
tered event handlers. This is a considerably more com-
plex approach, but it can in principle more precisely
keep track of the possible order of execution of the
event handlers.

Through preliminary experiments we have found for the cor-
rectness properties that we focus on, the execution order of
event handlers is often not crucial for the analysis precision.
However, we found that it is important to model the fact
that load handlers are executed before the other kinds of
event handlers. For this reason, we model the execution of

trigger all other event
handlers

noop

Figure 3: Modeling events in the flow graphs.

event handlers as shown in Figure 3. (To simplify the illus-
tration we here ignore flow of runtime exceptions.) The flow
graph for the top-level JavaScript is extended to include two
non-deterministic event loops, first one for the load event
handlers and then one for the other kinds.

If only a single load handler is registered (and it is not
subsequently removed) then we know that it is definitely ex-
ecuted once, and thus we can effectively remove the dashed
edges. This increases precision because otherwise all state
initialized by load handlers would be modeled as maybe ab-
sent.

When triggering event handlers, we exploit the fact that
the abstract states distinguish between the different event
categories listed above. This allows us to model the event
objects appropriately, for example using the abstract ob-
ject KeyboardEvent (see Figure 2) to model keyboard event
objects. Moreover, the analysis abstraction used in TAJS
already has a fine-grained model of scope chains, so it is
relatively easy to incorporate the HTML element objects to
take the issues regarding scope chains (see Section 2.2) into
account.



4.3 Special Object Properties

As discussed in Section 2.2, writes to certain object prop-
erties, such as onclick, src, and innerHTML, have special
side-effects. The TAJS analysis infrastructure conveniently
supports specialized transfer functions for such operations.
This allows us to trigger the necessary modifications of the
abstract state when property write operations occur for cer-
tain combinations of abstract objects and property names.
With this, we can easily handle code such as the following
that dynamically constructs an img element and sets the id
and onclick properties, which affects not only the img ob-
ject itself but also the element ID lookup map and the event
handler set:

var i = document.createElement("img");
f.id = "myImage";
f.onclick = function {...}

With this approach, the abstractions made elsewhere in
the analysis can in principle lead to a cascade of spurious
warnings. If the analysis detects a property write opera-
tion that involves one of the relevant objects but where the
property name is unknown due to abstraction, a fully sound
analysis would be required to trigger all the possible spe-
cialized transfer functions, which could cause a considerable
loss of analysis precision. Instead, if this situation occurs, we
choose to sacrifice soundness such that the analysis simply
emits a general warning and skips the modeling of the spe-
cial side-effects for that particular property write operation.
In our experiments (see Section 5), this occurs 0 times, indi-
cating that the analysis is generally precise enough to avoid
the problem.

4.4 Dynamically Generated Code

We extend TAJS to support certain common cases involv-
ing eval and the related functions Function, setTimeout,
and setInterval. Programmers who are not familiar with
higher-order functions often simulate them by using strings
instead, such as in this example from the program Fractal
Landscape®:

animInterval = setInterval("animatedDraw()", 100);

This code works because the function setInterval sup-
ports being called with a string that will get evaluated in
the global scope at the specified intervals. To accommodate
for this, TAJS recognizes the syntax of a string consisting
of a simple function call. The analysis transfer function for
setInterval collects not only function objects but also such
strings that represent event handler functions. When mod-
eling the triggering of event handlers, the latter functions
are then looked up in the global scope.

An often used application of eval is to parse JSON data
received using AJAX. JSON data describes simple JavaScript
object structures that cannot contain functions. TAJS can
be configured to assume that string values that are read from
AJAX connections contain only JSON data. We model this
with the special dataflow value JSSONString. If this abstract
value is passed to eval, the analysis knows that no side-
effects can happen, so the result can be modeled using an
abstract value consisting of a generic abstract object and
unknown primitive values.

9http ://10k.aneventapart.com/Entry/60
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Figure 4: The TAJS analysis plug-in for Eclipse,
reporting a programming error and highlighting the
type inferred for the selected expression.

S. EVALUATION

We have extended the pre-existing TAJS analysis tool ac-
cording to Section 4. The tool is implemented in Java and
uses the JavaScript parser from the Mozilla Rhino project®.
The new extensions amount to 7,500 lines of code on top of
the existing 21,000 lines (excluding Rhino). Separately, the
analysis is integrated into the Eclipse IDE as a plug-in that
allows the programmer to view various aspects of the anal-
ysis results, as demonstrated in Figure 4.

5.1 Research Questions

With the implementation, we consider the following re-
search questions regarding the quality of the analysis:

Q1 We wish to study the ability of the tool to detect pro-
gramming errors of the kinds discussed in Section 1.
Given that we do not expect many errors in the bench-
mark programs that presumable are thoroughly tested
already, one way to study the analysis precision is to
ask: To what extent can the analysis show the ab-
sence of errors in real programs? Since the analysis
is designed to be sound (however see Section 4.3), ab-
sence of a warning from the tool can be interpreted as
absence of an error in the program being analyzed.

Q2 For programs with errors (again, of the kinds discussed
in Section 1), can the analysis help the programmer
find the errors? Specifically, are the warning messages
produced by the tool useful toward leading the pro-
grammer to the source of the errors?

Q3 Having a good approximation of the call graph of a pro-
gram is a foundation for other potential applications,
such as program comprehension or optimization. This
leads to the question: How precise is the call graph
inferred by the analysis?

Q4 Similarly to the previous question, how precise are the
inferred types?

Q5 Does the analysis succeed in identifying dead or un-
reachable code? In some situations, dead or unreach-

Onttp://www.mozilla.org/rhino



able code is unintended by the programmer and hence
indicates errors. The ability of the analysis tool to de-
tect such code can in principle also be used to reduce
application code size before deployment.

5.2 Benchmark Programs

Our benchmark programs are drawn from three different
sources: Chrome Ezperiments'', Internet Explorer 9 Test
Drive*? and the 10K Apart Challenge'®. Chrome Experi-
ments consist of JavaScript web applications that demon-
strate the JavaScript features of the Chrome browser. De-
spite the name, the majority of these applications can be
executed in any modern browser. Most of the applications
use the new HTML5 canvas element to create graphics in
various ways including games and simulations. Internet Ex-
plorer 9 Test Drive is a collection of applications written to
test and demonstrate features of the newest version of the
Internet Explorer browser. We exclude applications that
contain no or very little JavaScript code or rely on Flash or
other browser plug-ins. The 10K Apart Challenge collection
consists of JavaScript web applications that are less than
10KB in size including code and markup.

The programmers of some of the 10K Apart Challenge
applications have applied eval creatively to reduce the code
size in ways that we believe are not representative of or-
dinary JavaScript web applications. For this reason, we
disregard applications that syntactically use eval in other
ways than those covered in Section 4.4. Moreover, analyz-
ing applications that involve large libraries, such as jQuery,
MooTools, and Prototype, is particularly challenging for the
reasons discussed in Section 2.3. At present, we limit our
level of ambition to applications that do not depend on such
libraries. The applications we thereby exclude can form an
interesting basis for future work on static analysis in relation
to eval or libraries.

The resulting collection of 53 JavaScript web applications
is listed in Table 1 and available at http://www.brics.
dk/TAJS/dom-benchmarks. In the table, the columns LOC,
BB, and Time show the number of lines of code (pretty-
printed and including HTML), the number of basic blocks
of JavaScript code, and the analysis time (running on a
2.53Ghz Mac OS X computer with 4GB of memory). Dy-
namically generated code of the kind discussed in Section 4.4
appears in 17% of the applications. All the applications in-
volve HTML and the event system, so none of them could
be analyzed with TAJS before the new extensions described
in this paper.

5.3 Experiments and Results

We address each research question, Q1-Q5, in turn with
experiments and evaluation.
For Q1, we focus on the following kinds of likely errors:

e Invoking a non-function value as a function.

e Accessing a property of the special values undefined
or null.

e Reading an absent object property using the fixed-
property notation (we here ignore operations that use

the notation for dynamically computed property names).

Yhttp://www.chromeexperiments.com/
2http://ie.microsoft.com/testdrive/
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The first two cause TypeError exceptions; the third yields
the value undefined. Technically, these situations are not
necessarily errors, but they are rarely intended by the pro-
grammer. One exception is that absent properties may ap-
pear in browser feature detection code, in which case the
analysis can help ensuring that the code works for the browser
being modeled.

For each error category we measure the percentage of flow
graph nodes for which TAJS decides not to issue a warning
of the particular kind. The results are shown in the three
columns labelled CF, PA and FPU in Table 1, corresponding
to the three kinds of likely errors. We see that TAJS is
able to show absence of these particular kinds of errors for
most of the program code, in many cases more than 90%
of the places in the code where the errors could potentially
occur. There are a few outliers that get lower results: Both
Tetris and Minesweeper rely on multi-dimensional arrays for
most of their state, which leads to imprecision in property
reads. Complex object models, such as in the Raytracer
benchmark, are also the cause of some imprecision.

As we do not expect our benchmarks to contain any of
the error conditions listed above, we answer Q2 by intro-
ducing errors into the benchmark programs at random. We
simulate spelling errors made by the programmer by pick-
ing a random read or write property operation that uses the
fixed-property notation (i.e. the . operator) and replacing
the property name with a different one. For each bench-
mark, we run the analysis repeatedly and manually inspect
whether each spelling error results in a warning by the anal-
ysis tool and how “useful” this warning is. We measure use-
fulness by two criteria: the source location of the warning
that is issued should be close to where the error is inserted,
and the warning should be prominent, i.e. appear near the
top in the list of analysis messages.

This process has been carried out for a random subset
of our benchmark programs. All show a common pattern:
Spelling errors at read operations are reliably detected with
a warning that appears at the top of the list of analysis mes-
sages. Not surprisingly, spelling errors introduced at write
operations have more diverse consequences, as any warning
will only occur when the program later attempts to read the
property that was affected. Furthermore, errors introduced
in connection to side-effects that are not modeled by TAJS,
such as the DOM property style, are often not detected.

We present the results for the Mr. Potato Gun benchmark
as a representative example. We analyzed it 50 times with
a different spelling error introduced each time. In 84% of
the cases the error resulted in one or more warnings. Of
the errors introduced, 7 were in write operations and 43
in read operations. Only one of the write operation errors
was detected, resulting in the warning ReferenceError,
reading absent property: (computed name), which is a
high-priority warning that is issued for the location where
the program tries to read the property that was misspelled.
For the read operations, each error was reported as a warn-
ing such as ReferenceError, reading absent property:
AQ issued for the exact source location of the error.

These experiments indicate that the information obtained
by the analysis can be useful for detecting spelling errors
in the program code, but a more thorough investigation is
necessary to give a solid answer to Q2.

For Q3 we wish to evaluate the precision of the computed
call graph. This is measured by calculating the ratio of call



LOC BB CF PA FPU UF DC MC ATS | Time
3D Demo 1205 | 1770 99.2 97.9 98.9 | 125/58 7 1 100.0% 1.1 8.0s
Another World 1477 | 1437 | 100.0 99.3 98.3 45/0 0 | 100.0% 1.3 | 20.7s
Apophis 1140 | 1319 | 100.0 80.4 80.4 58/0 0 | 100.0% 1.1 | 16.3s
Agquarium 166 151 93.7 87.6 72.8 9/0 0 | 100.0% 1.3 3.2s
Bing-Bong 1148 | 1176 | 100.0 87.9 92.5 66/0 2 | 100.0% 1.1 | 17.9s
Blob 596 748 | 100.0 95.6 97.4 37/2 19 | 100.0% 1.0 6.4s
Bomomo 2905 | 3885 80.6 96.3 61.2 170/8 10 | 100.0% 1.3 | 57.1s
Breathing Galazies 101 101 94.7 | 100.0 91.3 5/0 0 | 100.0% 1.0 1.3s
Browser Ball 434 771 99.0 97.7 98.1 32/11 0 | 100.0% 1.0 4.2s
Burn Canvas 180 207 | 100.0 97.7 | 100.0 12/0 0 | 100.0% 1.1 0.9s
Catch It 207 200 97.2 86.0 98.6 11/0 0 | 100.0% 1.1 3.3s
Core 566 611 | 100.0 98.7 98.4 23/1 10 | 100.0% 1.0 5.6s
JS Touch 1452 762 | 100.0 98.9 98.1 48/8 9 | 100.0% 1.1 5.8s
Kaleidoscope 249 334 98.9 88.6 82.1 14/1 3 | 100.0% 1.1 6.1s
Keylight 731 791 99.4 96.1 98.7 37/0 24 | 100.0% 1.0 7.4s
Liquid Particles 253 205 | 100.0 98.5 | 100.0 11/4 2 | 100.0% 1.0 1.8s
Magnetic 415 339 | 100.0 95.5 | 100.0 19/0 1 | 100.0% 1.0 4.1s
Orange Tunnel 102 133 | 100.0 80.3 | 100.0 7/1 0 | 100.0% 1.1 2.6s
Plane Deformations 552 514 | 100.0 | 100.0 95.1 17/0 5 | 100.0% 1.5 1.5s
Plasma 204 228 | 100.0 | 100.0 [ 100.0 9/0 2 | 100.0% 1.1 1.6s
Raytracer 1380 | 1515 87.2 93.7 55.5 78/24 33 90.1% 1.3 | 20.6s
Starfield 231 393 98.7 79.0 87.6 21/6 2 | 100.0% 1.2 2.9s
Tetris 827 803 95.1 79.6 58.8 39/4 2 | 100.0% 1.8 9.7s
Trail 212 166 | 100.0 98.0 98.2 10/0 0 | 100.0% 1.0 12s
Voronot 525 | 1066 | 100.0 78.8 99.7 70/7 10 99.5% 1.1 | 10.5s
Water Type 309 266 | 100.0 95.0 97.2 14/0 0 | 100.0% 1.1 1.9s
Asteroid Belt 319 707 | 100.0 94.6 97.0 27/5 30 | 100.0% 1.1 3.1s
Browser Flip 507 324 | 100.0 88.5 97.6 10/0 1 | 100.0% 1.1 3.2s
FishlE 336 717 99.4 96.0 95.5 19/2 30 | 100.0% 1.0 3.3s
Flying Images 580 | 497 | 1000 | 975 | 91.8 | 33/0 | 0| 1000% | 1.0 | 3.9
Mr. Potato Gun 817 | 1015 98.7 97.6 95.0 31/1 12 | 100.0% 1.1 7.8s
10k World 439 930 | 100.0 86.9 91.4 47/2 3 | 100.0% 1.1 | 15.1s
3D Maker 427 773 | 100.0 67.3 70.5 29/3 0 | 100.0% 1.2 | 10.3s
Attractor 445 696 97.0 92.3 91.2 34/0 1 | 100.0% 1.3 5.8s
Defend Yourself 517 601 94.7 78.6 90.1 31/0 0 | 100.0% 1.1 7.9s
Earth Night Lights 129 245 | 100.0 | 100.0 | 100.0 14/0 0 | 100.0% 1.0 1.1s
Filterrific 697 995 96.5 86.7 72.3 55/0 4 99.0% 1.2 | 29.8s
Flatwar 444 685 99.2 97.4 93.6 19/1 0 | 100.0% 1.1 6.9s
Floating Bubbles 381 693 | 100.0 89.9 99.7 39/6 23 | 100.0% 1.1 6.4s
Fractal Landscape 171 162 | 100.0 | 100.0 97.7 7/0 0 | 100.0% 1.0 0.8s
Gravity 231 258 98.7 87.3 90.9 9/0 0 | 100.0% 1.0 5.2s
Heatmap 255 350 95.1 93.6 87.3 30/1 2 97.3% 1.1 3.1s
Last Man Standing 300 570 | 100.0 95.9 | 100.0 33/1 2 | 100.0% 1.1 4.2s
Lines 459 931 97.3 88.5 93.9 22/6 2 | 100.0% 1.2 4.7s
Minesweeper 175 358 | 100.0 81.4 68.5 15/0 3 | 100.0% 1.3 4.7s
NBody 479 450 99.1 68.7 43.6 15/0 0 | 100.0% 1.6 | 50.8s
RGB Color Wheel 455 700 97.7 82.7 85.0 38/0 2 | 100.0% 1.1 5.6s
Sinuous 349 488 | 100.0 96.3 98.5 23/0 10 | 100.0% 1.0 5.5s
Snowpar 338 519 | 100.0 88.6 88.6 31/0 0 | 100.0% 1.2 3.2s
Stairs to Heaven 210 422 | 100.0 94.5 | 100.0 25/8 1 | 100.0% 1.0 2.5s
Sudoku 316 612 96.2 81.0 60.4 33/0 0 | 100.0% 1.3 | 12.1s
TicTacToe 304 590 | 100.0 74.0 | 100.0 19/0 0 | 100.0% 1.2 7.4s
Zmeyko 344 601 | 100.0 96.7 96.3 33/1 0 | 100.0% 1.0 7.0s

Table 1: Benchmark results for Chrome Experiments, IE Test Drive and 10K Apart Challenge applications.
The columns from left to right are: lines of code (LOC), number of basic blocks (BB), percentage of call site
operations shown to invoke a function value (CF), property read operations where the base object is shown
to be non-null and non-undefined (PA), fixed-property read operations not resulting in undefined (FPU),
number of functions in total / number of functions shown to be definitely unreachable (UF), number of dead
code operations (DC), percentage of call sites that are shown to be monomorphic (MC), average type size
for all property read operations (ATS), and analysis time (Time).

sites with a single invocation target compared to the total
number of call sites in the program. If this ratio is one then
every call site is monomorphic, i.e. it has a single invocation
target. If a call site has a non-function value as a potential
invocation target this is not included in the number of tar-
gets, since such a value would always result in a runtime er-
ror. This measure can be seen in the MC column. In Table 1
we see that despite the fact that JavaScript supports both
the prototype lookup mechanism and higher-order functions,
the analysis is able to show for 49 of the 53 of the benchmark
programs that all call sites have a single invocation target,
which gives testimony to the high precision of the analysis.

For Q4 we wish to measure the precision of the computed
types. The analysis tracks values of the following types:
boolean, number, string, object (including null and function
values) and the special type undefined. This means that an
object property could potentially hold values of up to five
different types. We measure this aspect of the accuracy of
the analysis by calculating the average number of different
types for all property read operations in the given program
(excluding operations that the analysis finds to be unreach-
able). If this number is 1 then every read operation results
in values of a unique type on all possible executions. The
ATS column in Table 1 shows the resulting numbers. De-



spite the fact that the types of object properties may change
dynamically in JavaScript, we note that the analysis is pre-
cise enough to show that the average number of different
types for each property read operation in these benchmarks
is quite close to 1. Of the 26,870 property read operations
that appear in the benchmarks, the analysis finds that at
most 4,019 can have multiple types.

For the last research question, Q5, we measure both un-
reachable code and dead code. Unreachable code consists of
operations (i.e. flow graph nodes) that are never executed,
and dead code is defined to be reachable assignments to
properties that are never read. Write operations to special
DOM properties, such as onload, may have side-effects, so
even if there are no corresponding read operations in the
program we do not count them as dead code.

The column labelled UF in Table 1 contains the total num-
ber of function in the program and how many of them are
determined by TAJS to be unreachable. Some of the bench-
marks use third-party libraries that are inlined directly in
the source code, which explains the large number of un-
reachable functions in some benchmarks, such as 3D Demo
and Raytracer. All code that is found to be unreachable can
safely be removed (unless the analysis detects the special sit-
uation discussed in Section 4.3), which would significantly
reduce code size in some cases. Most current minifiers either
unsoundly remove all functions not referenced syntactically
in the code or simply do not remove any functions at all.
With static analysis, guaranteed behavior preserving mini-
fication becomes possible.

The column labelled DC lists the number of dead code
operations in each program. We see that the analysis is ca-
pable of locating many instances of dead code. Most of the
dead code being detected appears to be code left from ear-
lier revisions of the programs. For example, in the Keylight
benchmark, a flag named mouseIsDown is set in all event
handlers but it is never read.

The main threat to validity of our conclusions is that our
benchmarks may not be representative for typical JavaScript
web applications. For the reasons described in Section 5.2
we have excluded applications that rely on large libraries or
on complex dynamically generated code. We will focus our
attention on these two remaining challenges in future work.
Nevertheless, the benchmarks we consider are written by
many different programmers, they exhibit a large variety of
the functionality supported by the HTML DOM and the
browser API, and our experiments show that the program
analysis is able to infer many nontrivial properties about
their behavior.

6. RELATED WORK

Previous work on static analysis of JavaScript code has
focused on the language itself, and often for restricted sub-
sets of the language. To the best of our knowledge, the
work reported on in this paper is the first that also models
the nontrivial connections between the HTML page and the
program code in JavaScript web applications.

One of the first attempts at developing static analysis
for JavaScript was done by Anderson et al. who developed
a type system and inference algorithm for modeling defi-
nite presence and potential absence of object properties in a
small subset of JavaScript [1]. The abstract domain used in
TAJS subsumes such information. Other early work includes
Thiemann’s type system [19]. It has a soundness proof but

no implementation. Although not tied to JavaScript in par-
ticular, Thiemann has also designed a type system for catch-
ing errors related to manipulation of DOM structures, in
particular to ensure that no loops occur [20].

More recently, Jang and Choe have presented a points-
to analysis for a restricted subset of JavaScript based on
set constraints [10]. The points-to results are used for opti-
mizations that inline property accesses. In comparison, our
analysis yields points-to information as part of the result
and supports more features of the language.

The Gatekeeper project by Guarnieri and Livshits includes
an Andersen-style points-to analysis for JavaScript [6, 7).
The results of the analysis are used for verifying custom
security policies expressed in datalog. The analysis uses a
mock-up of the DOM API written in JavaScript and essen-
tially ignores the HTML constituents.

Perhaps most closely related to our work is that of Guha et
al. who use a k-CFA analysis to extract a model of the client
behavior in an AJAX application as seen from the server [8].
Their paper briefly discusses some of the challenges that
relate to events, dynamically generated code, and libraries,
but the focus of the paper is on the application for building
intrusion-preventing proxies. In comparison, our analysis
has a more precise treatment of dataflow and event handlers
in connection to the DOM.

Recent work by Guha et al. considers a combination of
a type system and a flow analysis to reason about uses of
the typeof operator in JavaScript code with type annota-
tions [9]. The typeof operator appears in 11 of our 53 bench-
marks, and TAJS models it with a special transfer function.

Chugh et al. use staged information flow analysis to pro-
tect against dynamic loading of malicious code [3]. The anal-
ysis identifies fields that can flow into dynamically loaded
code and creates runtime monitors to ensure that they are
not accessed from untrusted code. The analysis uses a coarse
abstraction of the HTML page and the browser API, with-
out considering the challenges we describe in Section 2.

Logozzo and Venter’s RATA analysis uses light-weight
abstract interpretation to specialize the general JavaScript
number type to integer and floating point types for optimiza-
tion purposes [15]. Making this distinction in the abstract
domain used in TAJS would be a straightforward task.

One way to guide the design of an analysis is to survey the
practical use of the language. In one such survey by Richards
et al., it is shown that many of the dynamic features of
JavaScript are not widely used in practice [18]. The study
shows that the majority of method invocations in JavaScript
are monomorphic. Our experimental results confirm this ob-
servation, but using practically sound static analysis instead
of runtime measurements. In later work, the use of eval is
studied [17]. The authors show that the categories of eval
that are now supported by TAJS, i.e. JSON data and sim-
ple function calls, are often used. It is also shown that eval
is used for lazy loading and as artifacts of generated code,
which, as discussed in Section 2.3, is outside the scope of
TAJS.

7. CONCLUSION

We have presented the first static analysis that is capable
of reasoning precisely about the control flow and dataflow in
JavaScript applications that run in a browser environment.
The analysis has been implemented as an extension of the
TAJS tool and models both the DOM model of the HTML



page and browser API. This includes the HTML element
object hierarchy and the event-driven execution model. In
the process we have identified the key areas where modeling
the browser is important for precision and challenging for
static analysis.

Our experimental evaluation of the performance of the
analysis indicates that (1) the analysis is able to show ab-
sence of common programming errors in the benchmark pro-
grams, (2) the analysis can help detecting potential errors,
such as misspelled property names, (3) the computed call

graphs are precise as most call sites are shown to be monomor-

phic, (4) the computed types are precise as many expressions
are shown to have unique types, and (5) the analysis is able
to identify dead code and unreachable functions. Such in-
formation can give a foundation for providing better tool
support for JavaScript web application developers.

Interesting challenges remain.

First, more work is re-

quired for investigating the more complicated uses of dynam-
ically generated code. Second, better techniques are needed
to handle commonly used libraries. Third, the techniques
presented here can be adapted to model other JavaScript
environments, such as desktop widgets or browser exten-

sions.
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