
New Unconditional Hardness Results for Dynamic and Online

Problems

Raphael Clifford∗ Allan Grønlund† Kasper Green Larsen‡

Abstract

There has been a resurgence of interest in lower bounds whose truth rests on the conjectured hardness
of well known computational problems. These conditional lower bounds have become important and
popular due to the painfully slow progress on proving strong unconditional lower bounds. Nevertheless,
the long term goal is to replace these conditional bounds with unconditional ones. In this paper we make
progress in this direction by studying the cell probe complexity of two conjectured to be hard problems
of particular importance: matrix-vector multiplication and a version of dynamic set disjointness known
as Pǎtraşcu’s Multiphase Problem. We give improved unconditional lower bounds for these problems as
well as introducing new proof techniques of independent interest. These include a technique capable of
proving strong threshold lower bounds of the following form: If we insist on having a very fast query
time, then the update time has to be slow enough to compute a lookup table with the answer to every
possible query. This is the first time a lower bound of this type has been proven.

∗Bristol University. Raphael.Clifford@bristol.ac.uk
†Aarhus University. jallan@cs.au.dk. Supported by Center for Massive Data Algorithmics, a Center of the Danish National

Research Foundation, grant DNRF84.
‡Aarhus University. larsen@cs.au.dk. Supported by Center for Massive Data Algorithmics, a Center of the Danish National

Research Foundation, grant DNRF84.

1 Introduction

Proving lower bounds for basic computational problems is one of the most challenging tasks within computer
science. Where optimal bounds can often be found for space requirements, we are still a long way from being
able to establish similar results for time complexity for all but a relatively small subset of the problems
we wish to study. Due to the difficulty in obtaining these lower bounds, in recent years there has been
a resurgence in interest in finding bounds which hold conditioned on the conjectured hardness of a small
number of widely studied problems. Perhaps the most prominent examples are 3SUM-hardness (see e.g. [13]),
reductions from the Strong Exponential Time Hypothesis (SETH) [25, 28, 1, 2, 3, 4, 5] and specifically for
dynamic problems, reductions from a version of dynamic set disjointness known as Pǎtraşcu’s Multiphase
Problem [22] and most recently online Boolean matrix-vector multiplication [14]. Of course the holy grail
remains to prove strong unconditional lower bounds for these problems. Unfortunately the state-of-the-art
techniques for proving lower bounds for data structure problems such as Boolean matrix-vector multiplication
can only prove time lower bounds of Ω(lgm), where m is the number of queries to the problem. For the
online Boolean matrix-vector multiplication problem there are 2n queries, which means we cannot hope to
prove bounds beyond Ω(n) without ground breaking new insight. This is quite disappointing given that the
conjectured complexity of the problem is n2−o(1).

In this paper we add to the understanding of the true complexity of dynamic and online problems by
giving new unconditional lower bounds for Pǎtraşcu’s Multiphase Problem as well as online and dynamic
matrix-vector multiplication over finite fields. Our focus is to prove unconditional polynomial lower bounds
for restricted ranges of trade-offs between update time, query time and space.

For Pǎtraşcu’s Multiphase Problem, we prove a new type of threshold lower bound saying that if we
insist on having a very fast query time, then the update time essentially has to be high enough to compute
a lookup table of the answer to every possible query. This is the first threshold lower bound of this form.

For matrix-vector multiplication, the lower bounds we prove demonstrate that if a data structure doesn’t
explicitly try to exploit that it is dealing with a small finite field, then it is doomed to spend n2−o(1) time
per operation. Furthermore, our lower bounds are as strong as current techniques allow. Matrix-vector
multiplication is a basic computational primitive in applied mathematics and so our new bounds for this
problem are also of separate and independent interest.

The lower bounds we prove are all in the cell probe model of computation. We present this model in the
following.

Cell probe model

A data structure in the cell probe model consists of a set of memory cells, each storing w bits. Each cell of
the data structure is identified by an integer address, which is assumed to fit in w bits, that is each address
is amongst [2w] = {0, . . . , 2w−1}. So that a cell has enough bits to address any update operation performed
on it, we will assume w ∈ Ω(lg n) when analysing a data structure’s performance on a sequence of n updates.

During an update operation, the data structure reads and updates a number of the stored cells to reflect
any changes. The cell read or written to in each step of an update operation may depend arbitrarily on both
the update and the contents of all cells previously probed during the update. The update time of a data
structure is defined as the number of cells probed, that is read or written to, when processing an update.

In order to answer a query, a data structure probes a number of cells from the data structure. From
the contents of the probed cells, the data structure must return an answer to the query. As with update
operations, the cell probed at each step, and the answer returned, may be an arbitrary function of the query
and the previously probed cells. We define the query time of a data structure as the number of cells probed
when answering a query.

The cell probe model was introduced originally by Minsky and Papert [19] in a different context and then
subsequently by Fredman [11] and Yao [30]. The generality of the cell probe model makes it particularly
attractive for establishing lower bounds for dynamic data structure problems. The cell probe model, for
example, subsumes the popular word-RAM model.

1

Previous cell probe lower bounds

The main approaches for proving dynamic data structure lower bounds in the cell probe model have his-
torically been based on the chronogram technique of Fredman and Saks [12], which until approximately a
decade ago was able to prove Ω(lg n/ lg lg n) lower bounds at best. This technique was based on partitioning
a sequence of updates into epochs of geometrically decreasing size and then arguing that, amongst the cells
updated during each epoch, any correct data structure has to probe Ω(1) of them. In 2004 a breakthrough
led by Pǎtraşcu and Demaine developed the information transfer technique which gave the first Ω(log n)
lower bound per operation for several data structure problems [26]. Later on it was also shown that an
Ω(lg n) time lower bound can be derived using the same approach for the related questions of streaming
and online computation, including multiplication and various string matching problems [7, 8, 6]. The key
difference between the streaming and online problems and a standard dynamic data structure setting is that
although there are still many different possible updates at each step, there is only one query which is simply
to output the latest result.

In 2012 there was another breakthrough for dynamic data structure lower bounds. The new idea was
to combine the cell sampling approach of Panigrahy et al. [20] with the chronogram technique of Fredman
and Saks. In essence, this approach allows one to argue that when answering a query, one has to probe
Ω(lgm/ lg(wtu)) cells from each epoch instead of Ω(1). With around lg n/ lg(wtu) epochs, this gives lower
bounds of roughly Ω(lg n lgm/(lg(wtu))2). Here m is the number of queries that can be asked in the data
structure problem. This resulted in an tq = Ω((lg n/ lg(wtu))2) lower bound for dynamic weighted range
counting and tq = Ω(lg |F| lg n/ lg(wtu/ lg |F|) lg(wtu)) for dynamic polynomial evaluation when computing
over a field F of size at least Ω(n2) [15, 16]. This latter bound was, until this current work, the only such
bound that holds for randomised data structures which can err with constant probability. Perhaps due to
the technical difficulties involved, no further lower bounds of this form have been shown to date.

Attacking the problem of finding lower bounds from a different angle, Pǎtraşcu and Thorup showed a
sharp query/update time trade-off for dynamic connectivity in undirected graphs. They showed that any
data structure that supports edge insertions in o(lg n) probes, must have worst case connectivity time n1−o(1)

in the cell probe model assuming cells of Θ(lg n) bits [24]. In other words, really fast updates imply nearly
naive running time for queries.

Towards the aim of giving yet higher lower bounds, in [22] Pǎtraşcu introduced a dynamic version of set
disjointness which he termed the Multiphase Problem. He showed reductions for this problem, first from
3SUM and then to dynamic reachability, dynamic shortest path as well as subgraph connectivity and other
problems of general interest. Assuming that there is no truly sub-quadratic time solution for 3SUM, he was
then able to give the first known polynomial time lower bounds for many dynamic data structure problems.

Online matrix-vector multiplication [14] can also be viewed as a static problem in classic data structure
terminology, that is we receive some data to preprocess (a matrix) and then we answer queries (vectors).
Thus we find it relevant to also list previous techniques and barriers for proving static cell probe lower
bounds.

One of the early techniques for proving static lower bounds was based on a reduction from asymmet-
ric communication complexity by Miltersen et al. [17]. This technique led to lower bounds of the form
Ω(lgm/ lgS) where m is the number of queries in the data structure problem and S is the space usage. For
most natural data structure problems, m is only polynomial in the input size n and S ≥ n. This means that
for most problems, the lower bounds degenerates to Ω(1).

This barrier was overcome in the seminal papers of Pǎtraşcu and Thorup [27, 23] where they intro-
duced a refined reduction from communication complexity that pushed the barrier to lower bounds of
t = Ω(lgm/ lg(Sm/n)). Extending upon ideas of Panigrahy et al. [20], Larsen [16] tweaked their cell
sampling technique to give slightly higher lower bounds of Ω(lgm/ lg(S/n)). This remains the highest static
lower bound to date.

2

1.1 Our Results

Pǎtraşcu’s Multiphase Problem. In the Multiphase Problem, we have three phases. In Phase I, we
receive k subsets X1, . . . , Xk of a universe [n] and must preprocess these into a data structure. In Phase II,
we receive another set Y ⊆ [n] and we are allowed to update our data structure based on this set Y . Finally,
in Phase III, we receive an index i ∈ [k] and the goal is to return whether Xi∩Y = ∅. The three performance
metrics of interest to us are the following: The space usage, S, is defined as the number of memory cells
of w = Ω(lg k) bits used by the data structure produced in Phase I. The update time, tu, is the number of
probes used in Phase II. The query time, tq, is the number of probes spend in Phase III.

As mentioned earlier, Pǎtraşcu showed hardness results for the Multiphase Problem by a reduction from
3SUM. His reduction shows that for k = Θ(n2.5), it is 3SUM hard to design a word-RAM data structure for
the Multiphase Problem that simultaneously spends kn0.5−Ω(1) time in Phase I, n1.5−Ω(1) time in Phase II
and n0.5−Ω(1) time in Phase III. Proving such polynomial lower bounds in the cell probe model is far out of
reach. Nevertheless, we still find it extremely important to see what actually can be said unconditionally
and try to understand the limitations of our techniques better.

In Section 2, we introduce a new technique for proving strong threshold lower bounds for dynamic data
structures. We apply our technique to the Multiphase Problem and show the following: Any cell probe data
structure for the Multiphase Problem with w4 ≤ n ≤ k, using space knO(1) cells of w = Ω(lg k) bits and
answering queries in o(lg k/ lg n) probes, must have tu = k1−o(1)/w. This lower bound holds even if the set
Y inserted in Phase II has size O(lg k/ lg n).

In the most natural case of w = Θ(lg k), we can set n = lg4 k and the lower bound says that any

data structure for the Multiphase Problem with lg4 k-sized sets, which uses k lgO(1) k words of space and
supports queries in o(lg k/ lg lg k) time, must have update time k1−o(1). And this applies even if Y has size
O(lg k/ lg lg k). This lower bound has quite a remarkable statement: If we want to do anything better in
Phase III than checking each element in Y one at a time for inclusion in Xi, then Phase II has to compute
a table of all the answers to all the k possible queries. There is essentially no strategy in-between the two
extremes.

The previous result that comes closest in spirit to our new lower bound is the threshold results of
Pǎtraşcu and Thorup [24], showing that any data structure for dynamic connectivity in undirected graphs
with n nodes, having update time tu = o(lg n), must have query time tq = n1−o(1). Thus their lower bound
is essentially the opposite way around.

Since our lower bound is proved for the Multiphase Problem, we immediately get a similar lower bound
for a number of problems, simply by reusing the previous conditional hardness reductions. We mention two
examples from [22] here: For dynamic connectivity in directed graphs with n nodes and m = n lgO(1) n edges,

any data structure using m lgO(1)m space and supporting connectivity queries in o(lg n/ lg lg n) time, must

have update time n1−o(1). For dynamic shortest paths in undirected graphs with n nodes and m = n lgO(1) n
edges, any data structure using m lgO(1)m space and supporting distance queries in o(lg n/ lg lg n) time,
must have update time n1−o(1). Both lower bounds hold even if one node in the connectivity/distance query
is a fixed source node (common to all queries).

Online matrix-vector multiplication. Given an n× n matrix M with coefficients from a finite field F,
preprocess M into a data structure, such that when given a query vector v ∈ Fn, we can quickly compute
Mv.

In Section 3, we show a lower bound of

t = Ω

min

 n lg |F|

lg
(

Sw
n2 lg |F|

) , n2 lg |F|
w

cell probes to compute Mv for a query vector v ∈ Fn. This holds even if the data structure is allowed to err
with probability 1− 1/|F|n/4 on average over all pairs of a matrix M and a query vector v. This is the first
lower bound of this type which applies even under such extreme probability of error.

3

For the natural range of parameters |F| = nΩ(1) and w = Θ(lg |F|), the lower bound simplifies to t =
Ω(min{n lg |F|/ lg(S/n), n2}) and is the strongest current techniques can show for a static problem with |F|n
queries. For linear space, this is t = Ω(min{n lg |F|, n2}). As the size of the field F tends to 2n, the lower
bound says that any data structure with near-linear space has to “read” the entire matrix to compute Mv,
even if allowed to err with overwhelming probability. While this might sound odd at first, note that it also
means that any data structure that doesn’t explicitly try to exploit that it is dealing with a small field is
doomed to use n2 time to compute Mv.

Frandsen et al. [10] also proved lower bounds for online matrix-vector multiplication, where the first term
in the min-expression above is replaced by n lg |F|/ lgS. Their lower bound thus also shows that as the field
size grows, the trivial solution is the only option. Comparing their lower bound to ours, we see that for linear
space, our lower bound is a factor lg n stronger. Furthermore, their lower bound holds only for deterministic
data structures, whereas ours allow an only exponentially small probability of returning the correct answer.

Dynamic online matrix-vector multiplication. Maintain an n× n matrix M with coefficients from a
finite field F under

• updates of the form Mi,j ← x for a row index i, column index j and an x ∈ F;

• matrix-vector queries. Given an n-vector v return the product Mv.

In Section 4, we prove that any cell probe data structure for the dynamic online matrix-vector multipli-
cation problem on an n× n matrix M , with w bit cells and worst case update time tu, must use

tq = Ω

min

n lg |F| lg(n/w)

lg2
(
tuw
lg |F|

) ,
n2 lg |F|
w

cell probes to compute Mv for a query vector v ∈ Fn. This holds if the data structure errs with probability
no more than 1/3 when answering any query vector v after any sequence of n2 updates. The lower bound
we prove for dynamic online matrix-vector multiplication equals the highest that have ever been achieved
for any dynamic data structure problem (in fact it is slightly stronger than any previous bound for update
time tu = O(lg |F|/w), making it the strongest to date). It is also only the second example, after [16], of
such a lower bound that holds under constant probability of error.

Given that progress on proving these (lgm lg n)-type dynamic lower bounds has been very slow, we find it
an important contribution in itself to give a new lower bound of this form. We hope that the proof eventually
will inspire new ways of proving lower bounds and will push the barriers further. In particular, one of the
biggest problems with the current lower bound technique of Larsen [15] is that it can only be applied for
problems where the answer to a query carries more information (bits/entropy) than it takes to describe a
query. This in particular implies that the technique cannot be applied to decision problems. Our proof of
the above lower bound makes some progress on this frontier. In the proof, we eventually end up with a
collection of queries whose answers “reveal” only a small constant fraction of the “information” needed to
describe them. We elegantly circumvent the limitations of the lower bound technique by using a randomized
encoding argument that allows us to save a constant fraction in the “description size” of the queries. We
refer the reader to the proof itself for the details.

2 Threshold Bounds for The Multiphase Problem

We prove our lower bound for the Multiphase Problem in the cell probe model. The lower bound we prove
is the following

Theorem 1. Any cell probe data structure for the Multiphase Problem on k sets from a universe [n], where
w4 ≤ n ≤ k, using knO(1) cells of w = Ω(lg k) bits of space and answering queries in tq = o(lg k/ lg n) probes,
must have tu = k1−o(1)/w. This holds even if the update set in Phase II contains O(lg k/ lg n) elements.

4

We prove Theorem 1 by a reduction from a variant of the communication game Lop-sided Set Disjointness,
or LSD for short. In LSD, we have two players Alice and Bob. Alice and Bob receive subsets V and W of
a universe [U] and must determine whether V ∩W = ∅ while minimizing their communication. The term
Lop-sided stems from Alice’s set having size N , where NB = U for some value B > 1. As mention, we use a
variant of LSD known as Blocked-LSD [21]. In Blocked-LSD, the universe is the Cartesian product [N]× [B].
Bob receives a subset W of [N] × [B], which may be of arbitrary size. Alice’s set V satisfies that for all
j ∈ [N], there is exactly one bj ∈ [B] such that (j, bj) ∈ V , i.e. V has the form {(0, b0), . . . , (N − 1, bN−1)}.
Pǎtraşcu proved the following lower bound for Blocked-LSD:

Theorem 2 (Pǎtraşcu [21]). Fix δ > 0. In any deterministic protocol for Blocked-LSD, either Alice sends
δN lgB bits or Bob sends NB1−O(δ) bits.

In our reduction, we will need the following lemma:

Lemma 1. Consider a communication game in which Bob receives a set B ⊆ [2w] of size S and Alice
receives a set A ⊆ B of size k. There is a deterministic protocol in which Alice sends O(k lg(S/k)) bits, Bob
sends O(kw) bits, and after communicating, Bob knows Alice’s set A.

The proof of Lemma 1 is based on a simple application of hashing and is given in Section 2.1. We note
that a similar trick has been used by Miltersen [18], but only for k = 1. His proof thus “costs” lgS bits in
Alice’s communication per element in A, whereas we shave this down to lg(S/k) bits. We are now ready to
give the reduction from Blocked-LSD to the Multiphase Problem.

Proof (of Theorem 1). Assume we have a data structure D for the Multiphase Problem with k sets from the
universe [n], where w4 ≤ n ≤ k. Let S be the space usage of D in number of cells of w = Ω(lg k) bits each.
Let tq be its query time and tu its update time. We assume S = knO(1) and tq = o(lg k/ lg n) and show
this implies tu = k1−o(1). Note that for this setting of parameters, we have n = ko(1) since otherwise it is
impossible to have tq = o(lg k/ lg n).

Define ` =
√
tq lg k/ lg n. Since we assumed tq = o(lg k/ lg n), we have ` = o(lg k/ lg n) and ` = ω(tq).

We use D to give an efficient communication protocol for Blocked-LSD on the universe [k`]× [n/`]. For this
setting of parameters, Theorem 2 says that either Alice sends Ω(k` lg(n/`)) = ω(ktq lg n) bits, or Bob sends
k`(n/`)3/4 ≥ k`(w3/`) = ω(kw2) bits.

Alice receives V and Bob receives W , both subsets of [k`] × [n/`]. Alice’s set V satisfies that for all
j ∈ [k`], there is exactly one bj ∈ [n/`] such that (j, bj) ∈ V . Alice and Bob now conceptually partition
[k`] into k consecutive groups G1, . . . , Gk of ` elements each, i.e. the first group is G1 = {0, . . . , `− 1}, the
second is G2 = {`, . . . , 2`− 1} etc. For i = 1, . . . , k we let Vi denote the subset of pairs (j, bj) ∈ V for which
j ∈ Gi. Similarly we let Wi denote the subset of pairs (j, h) ∈ W for which j ∈ Gi. Observe that |Vi| = `
for each i. There is no size bound on Wi other than the trivial bound |Wi| ≤ `(n/`) = n.

Alice now interprets each of the subsets Vi ⊆ {i`, . . . , (i + 1)` − 1} × [n/`] as an `-sized subset of the
universe [n], denoted Yi. This is done by mapping a pair (j, bj) ∈ Vi to the element (j mod `)(n/`) + bj .
Bob similarly interprets each of his subsets Wi ⊆ {i`, . . . , (i + 1)` − 1} × [n/`] as a subset of the universe
[n], denoted Xi. He also does this by mapping a pair (j, h) ∈ Wi to the element (j mod `)(n/`) + h. The
crucial property of this reduction is that V ∩W = ∅ if and only if Xi ∩ Yi = ∅ for all i = 1, . . . , k. The goal
now is for Alice and Bob to use D to test whether Xi ∩ Yi = ∅ for all i = 1, . . . , k and thereby determine
whether V ∩W = ∅. This is done using the following protocol:

1. Bob starts by running Phase I of the Multiphase Problem on D with the sets X1, . . . , Xk as input. This
creates a data structure using only S = knO(1) memory cells. Note that Bob does not communicate
with Alice in this step and thus the constructed data structure is only known to Bob.

2. Alice now iterates through all `-sized subsets of [n]. For each such subset Y , she runs Phase II of
the Multiphase Problem on the data structure held by Bob with Y as input. This is done as follows:
For a subset Y , Alice first initializes an empty set of cells C(X1, . . . , Xk, Y). She then starts running
the update algorithm of D with Y as input. This either requests a memory cell or overwrites the

5

contents of a memory cell. In the latter case, Alice stores the overwritten cell in C(X1, . . . , Xk, Y),
including its address and its new contents. In the first case, Alice checks whether the requested
cell is in C(X1, . . . , Xk, Y). If so, she has the contents herself and can continue running the update
algorithm. Otherwise, she asks Bob for the contents of the cell by sending him w bits specifying the
cell’s address. Bob then replies with its w bits of contents. When this terminates, each of the cell
sets C(X1, . . . , Xk, Y) held by Alice stores the contents and addresses of every cell that is updated if
running Phase II on D with Y as input, after having run Phase I on D with the sets X1, . . . , Xk as
input. Since D has update time tu, Alice and Bob both send no more than tuw bits for each `-sized
subset of [n]. Since we chose ` = o(lg k/ lg n), this is no more than ko(1)tuw bits in total. Note that
Bob performs no other actions in this step than to reply to Alice with the contents of the requested
cells (with the contents right after processing X1, . . . , Xk in Phase I).

3. Alice now runs the Phase III query algorithm of D for every possible query i ∈ [k] in parallel. The
execution for a query index i will be run as if the updates Yi had been performed in Phase II. The
query i will thus return whether Xi ∩ Yi = ∅. More formally, Alice does as follows: For t = 1, . . . , tq
in turn, Alice will simulate the t’th probe of D for every query i ∈ [k]. She will do this so that the
execution is identical to having run the updates Yi in Phase II. For the t’th probe, the query algorithm
of D requests a memory cell ct,i for each i. For the cell ct,i, she checks whether that cell is contained
in C(X1, . . . , Xk, Yi). If so, she has the contents of the cell as if update Yi was performed in Phase II
and she can continue to the next probe for that i without communicating with Bob. If not, she knows
that the contents of ct,i was not changed when performing the updates Yi in Phase II. She then adds
the address of ct,i to a set of addresses Zt. The set Zt thus holds the addresses of all cells needed to
execute the t’th probe for each query i ∈ [k], and Alice needs the contents of these cells as they were
right after Phase I. Alice will now ask Bob for the contents of all cells in Zt. The point of collecting the
cells needed in one set Zt, rather than asking for them one at a time, is to save on the communication,
i.e. Alice wants to send less than w bits (the address) to Bob per cell in Zt. This is done by invoking
Lemma 1, with the B in Lemma 1 being the addresses of all cells written to in Phase I on input
X1, . . . , Xk and A is the set Zt. After using Lemma 1, Bob knows Zt and sends the contents of all cells
in Zt to Alice. By Lemma 1, Bob will send O(kw) bits and Alice will send O(k lg(S/k)) = O(k lg n)
bits. Alice can now continue with probe t+ 1 and eventually the data structures determines whether
Xi ∩Yi = ∅ for each i. Since Xi ∩Yi = ∅ for each i iff V ∩W = ∅, this completes the description of the
protocol.

We have thus given a protocol for Blocked-LSD on [k`]× [n/`] in which Alice sends ko(1)tuw+O(tqk lg n) bits
and Bob sends ko(1)tuw+O(tqkw) = ko(1)tuw+o(kw2) bits. But the lower bound says that either Alice must
send ω(tqk lg n) bits or Bob must send ω(kw2) bits. This implies tuwk

o(1) = ω(k)⇒ tu = k1−o(1)/w.

2.1 Communicating a Subset (Proof of Lemma 1)

Let B ⊆ [2w] with |B| = S and let A ⊆ B with |A| = k. Bob receives B and Alice receives A. Consider
the 2/2M -universal hash function ha(x) = b(ax mod 2w)/2w−Mc of Dietzfelbinger et al. [9], where a is a
uniform random odd integer less than 2w. By 2/2M universal we mean that for any two distinct x, y ∈ [2w],
we have Pra[ha(x) = ha(y)] ≤ 2/2M (note there are 2M possible values ha(x) can take). Letting M = dlgSe,
we have for any two distinct b1, b2 ∈ B that Pra[ha(b1) = ha(b2)] ≤ 2/S. The expected number of distinct
pairs (b1, b2) ∈ B for which ha(b1) = ha(b2) is at most 2S. Thus there must exist an odd integer a∗ ∈ [2w]
such that the number of pairs (b1, b2) ∈ B where ha∗(b1) = ha∗(b2) is at most 2S. Bob starts by sending Alice
such an odd integer a∗, costing w bits of communication from Bob. Alice now computes ha∗(A) ⊆ [2M] and
sends ha∗(A) to Bob by specifying it as a subset of [2M]. Since |ha∗(A)| ≤ k and 2M ≤ 2S, this costs at most
lg
(

2S
k

)
= O(k lg(S/k)) bits. For each i in ha∗(A), Bob computes the set Bi consisting of all elements in b ∈ B

such that ha∗(b) = i. Since the total number pairs b1, b2 ∈ B with ha∗(b1) = ha∗(b2) is no more than 2S, we
have

∑
i∈ha∗ (A) |Bi|2 ≤ 2S. For each i ∈ ha∗(A), Bob now picks Mi = dlg

(
8|Bi|2

)
e and finds an odd integer

a∗i ∈ [2Mi] such that for all b1, b2 ∈ Bi, we have ha∗i (b1) 6= ha∗i (b2). Bob sends all these a∗i ’s to Alice, costing

6

at most O(|ha∗(A)|w) = O(kw) bits. Finally Alice computes for each i ∈ ha∗(A) the set Ai of elements a ∈ A
such that ha∗(a) = i. For each Ai, Alice computes ha∗i (Ai) ⊆ [2Mi]. Since

∑
i∈ha∗ (A) 2Mi = O(S), Alice can

now send ha∗i (Ai) to Bob for every i with a total communication of at most lg
(
O(S)
k

)
= O(k lg(S/k)) bits.

Since A ⊆ B and ha∗i (b1) 6= ha∗i (b2) for any two b1, b2 ∈ Bi, Bob has learned A.
In the protocol above, Bob sends O(kw) bits and Alice sends O(k lg(S/k)) bits. Note that the protocol

is deterministic, the randomness of the hash functions is only used to argue that there exists a choice of a∗

and a∗i ’s. We have thus proved Lemma 1.

3 Online Matrix-Vector Multiplication

In this section, we consider the online matrix-vector multiplication problem: Given an n×n matrix M with
coefficients from a finite field F, preprocess M into a data structure, such that when given a query vector
v ∈ Fn, we can quickly compute Mv. We consider the problem in the cell probe model with w bit cells where
w is assumes to be at least lg n and at least lg |F|. Our lower bound is as follows:

Theorem 3. Any cell probe data structure for the online matrix-vector multiplication problem, using S cells
of w bits of space to store an n× n matrix with coefficients from a finite field F, must use

t = Ω

min

 n lg |F|

lg
(

Sw
n2 lg |F|

) , n2 lg |F|
w

cell probes to compute Mv for a query vector v ∈ Fn. This holds even if the data structure is allowed to err
with probability 1− 1/|F|n/4 on average over all pairs of a matrix M and a query vector v.

For the natural range of parameters |F| = nΩ(1) and w = Θ(lg |F|), the lower bound simplifies to t =
Ω(min{n lg |F|/ lg(S/n), n2}). For linear space, this is t = Ω(min{n lg |F|, n2}). As the size of the field F
tends to 2n, the lower bound says that any data structure with near-linear space has to “read” the entire
matrix to compute Mv, even if allowed to err with overwhelming probability.

We give the proof in the following. The proof is based on an encoding argument.

Encoding Argument. Consider a randomized data structure D for online matrix-vector multiplication
using S cells of w bits of space. Assume the data structure answers queries in t probes with error probability
1− 1/|F|n/4 on average over all pairs of an input matrix M and query vector v. Now consider the following
hard distribution: The input matrix is a uniform random matrix M in Fn×n and the query to be answered
after preprocessing is a uniform random v ∈ Fn. By fixing the random coins of D, there exists a deterministic
data structure D∗ with space S cells of w bits, query time t and error probability 1− 1/|F|n/4 over the hard
distribution. Using Markov’s inequality, we conclude that there must be a family of matrices M ⊆ Fn×n,
with

|M| ≥ |F|n
2

(
1−

1− 1
|F|n/4

1− 1
|F|n/2

)
= |F|n

2

(
1

|F|n/4 −
1

|F|n/2

1− 1
|F|n/2

)
≥ |F|n

2−n/2,

such that for every matrix M ∈M, D∗ answers at least |F|n/|F|n/2 = |F|n/2 of the possible query vectors v
correctly after having preprocessed M . To derive the lower bound, we show that D∗ can be used to efficiently
encode every matrix M ∈M into a bit string with length depending on t, S, w and |F|. If every M ∈M can
be uniquely recovered from these bit strings, we know that at least one of the bit strings must have length
lg |M| ≥ (n2 − n/2) lg |F| resulting in a lower bound trade-off for t, S, w and |F|.

To encode a matrix M ∈M, we do as follows:

1. Construct D∗ on M . This gives a memory representation consisting of S cells of w bits. Now iterate
over all vectors v ∈ Fn and collect the subset V consisting of those vectors v for which D∗ does not err
when answering v after having preprocessed M . Since M ∈M, we know |V | ≥ |F|n/2.

7

2. Interpret every vector v ∈ Fn as an integer f(v) in the range [Fn] = {0, . . . , |F|n−1} in the natural way
f(v) =

∑n
i=1 v(i)|F|i−1. Consider the random hash function ha : [Fn] → [Fn/8] with h(x) = (x + a)

mod |F|n/8 for a uniform random a ∈ [Fn/8]. Let W 0
a denote the set of all vectors v ∈ Fn for which

ha(f(v)) = 0. We always have |W 0
a | = |F|7n/8. Furthermore, Ea[|W 0

a ∩ V |] = |V |/|F|n/8 ≥ |F|3n/8.
Hence there exists a choice of a ∈ [Fn/8] such that |W 0

a ∩ V | ≥ |F|3n/8. The first part of the encoding
is such a value a∗ ∈ [Fn/8], costing 3n lg |F|/8 bits.

3. Having chosen a∗, we now consider every set C of ∆ = n2 lg |F|/(1024w) memory cells in the data
structure. For each such set C, let QC denote the set of query vectors v ∈ Fn for which D∗ probes
only cells in C when answering v after having preprocessed M . We let C∗ be the the set of ∆ memory
cells for which |QC∗ ∩W 0

a∗ ∩ V | is largest. We then write down the addresses and contents of cells in
C∗. This costs no more than ∆(w + lgS) ≤ 2∆w = n2 lg |F|/512 bits.

4. We now consider the set of query vectors V ∗ = QC∗ ∩W 0
a∗ ∩ V . Since any k-dimensional subspace of

Fn contains at most |F|k vectors, we know that dim(span(V ∗)) ≥ lg|F| |V ∗|. We can thus find a set
of lg |V ∗|/ lg |F| linearly independent vectors in V ∗. We write down such a set of vectors U . Since
U ⊆W 0

a∗ , we can specify U as indices into W 0
a∗ , costing only (lg |V ∗|/ lg |F|)(7n lg |F|/8) = 7n lg |V ∗|/8

bits.

5. Finally we initialize a set of vectors X = ∅ and iterate through all vectors in Fn in lexicographic order.
For such vector x, we check if x ∈ span(U ∪X). If so, we continue to the next vector. If not, we add
x to X. This terminates with dim(span(U ∪ X)) = |U | + |X| = n. In the last step of our encoding
procedure, we examine each row vector mi of M in turn. For the i’th row vector, we compute the
inner product 〈mi, x〉 over F for every x ∈ X. We write down each of these |X| inner products for a
total of n|X| lg |F| bits. This concludes the description of the encoding procedure.

Before presenting the decoding procedure, we make a few remarks regarding the ideas in the above encoding
procedure. Intuitively each query in U can be answered solely from the contents of C∗. Furthermore, the
query vectors in U are linearly independent and thus in total reveal |U | lg |F| bits of information about each
of the n rows of M . The hashing trick in steps 2-3 ensure that the vectors in U can be described using only
lg |W 0

a∗ | = 7n lg |F|/8 bits each. Thus each vector reveals n lg |F|/8 more bits of information about M than
it costs to describe. Thus U will have to be small, leading to a space time trade off.

We now show how M can be recovered from the encoding produced above. The decoding procedure is
as follows:

1. From the bits written during step 2. and 3. of the encoding procedure, we recover a∗ and C∗. From
a∗ we also obtain W 0

a∗ .

2. Now that W 0
a∗ has been recovered, we use the bits written in step 4. of the encoding procedure to

recover the set of vectors U . We now run the query algorithm of D∗ for every v ∈ U . Since U ⊆ QC∗ ,
the query algorithm only probes cells in C∗ when answering these queries. Since we have the addresses
and contents of all cells in C∗, we thus obtain Mv for every v ∈ U , i.e. we know 〈mi, v〉 for every row
vector mi and every v ∈ U .

3. Finally we initialize an empty set of vectors X = ∅ and iterate through all vectors x ∈ Fn in lexico-
graphic order. For each vector x, we check if x ∈ span(U ∪X). If so, we continue to the next vector.
If not, we add x to X and continue. This recovers the exact same set of vectors X as in step 5. of
the encoding procedure. From the bits written during step 5. of the encoding procedure, we obtain
〈mi, x〉 for every x ∈ X. Since dim(span(U ∪X)) = n and we know 〈mi, u〉 for every u ∈ U ∪X, this
uniquely determines mi which completes the decoding procedure.

Analysis. Above we argued that the above procedures allow us to encode and decode every matrix M ∈M
into a bit string. Thus there must be a matrix M ∈M for which the bit string produced has length at least

8

lg |M| ≥ (n2 − n/2) lg |F|. But the encoding produced has length

3n lg |F |/8 + n2 lg |F|/512 + 7n lg |V ∗|/8 + n|X| lg |F|

bits. Since |U | = lg |V ∗|/ lg |F|, we have |X| = n − |U | = n − lg |V ∗|/ lg |F| and we conclude that we must
have

(n2 − n/2) lg |F| ≤ 3n lg |F|/8 + n2 lg |F|/512 + 7n lg |V ∗|/8 + n(n− lg |V ∗|/ lg |F|) lg |F|
= 3n lg |F|/8 + n2 lg |F|/512 + n2 lg |F| − n lg |V ∗|/8

This implies

n lg |V ∗|/8 ≤ 7n lg |F|/8 + n2 lg |F|/512⇒
lg |V ∗| ≤ 7 lg |F|+ n lg |F|/64⇒
lg |V ∗| ≤ n lg |F|/32.

Since C∗ was chosen such that |V ∗| was largest possible, we know by averaging that if the data structure
has query time t ≤ ∆/2, then

|V ∗| ≥
|W 0

a∗ ∩ V |
(
S−t
∆−t

)(
S
∆

)
=
|W 0

a∗ ∩ V |(S − t)!(S −∆)!∆!

S!(S −∆)!(∆− t)!

=
|W 0

a∗ ∩ V |(S − t)!∆!

S!(∆− t)!

≥ |W 0
a∗ ∩ V |(∆− t)t

St

≥ |W 0
a∗ ∩ V |

(
∆

2S

)t
≥ |F|3n/8

(
n2 lg |F|
2048Sw

)t
Taking logs, we conclude that we must have

3n lg |F|/8 + t lg

(
n2 lg |F|
2048Sw

)
≤ n lg |F|/32⇒

t lg

(
2048Sw

n2 lg |F|

)
≥ 11n lg |F|/32⇒

t = Ω

 n lg |F|

lg
(

Sw
n2 lg |F|

)
 .

Since the above calculation needed t ≤ ∆/2 = n2 lg |F|/(2048w), we conclude that

t = Ω

min

 n lg |F|

lg
(

Sw
n2 lg |F|

) , n2 lg |F|
w

 .

9

4 Dynamic Online Matrix-Vector Multiplication

In this section, we prove a lower bound for the dynamic online matrix-vector multiplication problem: Main-
tain an n × n matrix M with coefficients from a finite field F, such that we can efficiently support entry
updates of the form mi,j ← x for a row index i, column index j and an x ∈ F. The matrix M is initialized
to the all 0’s matrix, and at any time, we may ask a query v ∈ Fn and the data structure must return Mv.
We prove the following lower bound for this problem:

Theorem 4. Any cell probe data structure for the dynamic online matrix-vector multiplication problem on
an n× n matrix M , with w bit cells and worst case update time tu, must use

tq = Ω

min

n lg |F| lg(n/w)

lg2
(
tuw
lg |F|

) ,
n2 lg |F|
w

cell probes to compute Mv for a query vector v ∈ Fn. This holds if the data structure errs with probability
no more than 1/3 when answering any query vector after any sequence of n2 updates.

To prove the theorem, we follow the general approach ventured in [15]. The first step is to define a hard
distribution.

Hard Distribution. For the dynamic online matrix-vector multiplication problem, our hard distribution
is as follows: Let (in2 , jn2 , xn2), (in2−1, jn2−1, xn2−1), . . . , (i1, j1, x1) be a sequence of updates to the matrix
M . The triple (in2 , jn2 , xn2) is the first update and (i1, j1, x1) is the last update. A triple (ik, jk, xk)
corresponds to the update operation Mik,jk ← xk. The values xk are uniform random and independent
in F. The sequence of row and column indices ik, jk is some fixed sequence of well-spread indices, where
well-spread is defined as follows:

Definition 1. A sequence of row and column indices (in2 , jn2), . . . , (i1, j1) is well-spread if:

• All pairs (ik, jk) are distinct.

• For every index n4/3 ≤ r ≤ n2 and every set of n/2 row indices S ⊆ {1, . . . , n}, there exists a subset

S∗ ⊆ S with |S∗| ≤ 8n2/r, such that
∣∣∣⋃k≤r:ik∈S∗{jk}∣∣∣ ≥ n/4.

Note that our hard distribution only needs that the sequence of update indices is well-spread. We do not
care about the particular indices in the sequence. A well-spread sequence of indices basically guarantees that
in every big enough set of rows (size at least n/2), there exists a small subset of rows (S∗), such that the
indices updated in these rows “cover” at least n/4 columns. This must be true even if considering only the
last r updates for any n4/3 ≤ r ≤ n2. The following lemma shows that such a well-spread sequence indeed
exists:

Lemma 2. There exists a well-spread sequence (in2 , jn2), . . . , (i1, j1) of row and column indices.

The proof of the lemma is a rather straight forward counting argument. We thus defer it to Section 4.3.
Following the sequence of updates (in2 , jn2 , xn2), (in2−1, jn2−1, xn2−1), . . . , (i1, j1, x1), we ask a uniform

random query v ∈ Fn. This concludes the description of our hard distribution.
By fixing the random coins, a randomized data structure D for dynamic online matrix-vector multipli-

cation, with w bit cells, worst case update time tu, query time tq and error probability at most 1/3 on any
sequence of n2 updates followed by a query, yields a deterministic data structure D∗ with w bit cells, worst
case update time tu, query time tq and error probability 1/3 over the hard distribution. We thus continue
by proving a lower bound for such a deterministic data structures.

10

Chronogram Approach. Following [15], we partition the random updates (in2 , jn2 , xn2), . . . , (i1, j1, x1)
into epochs of roughly β` updates, where ` = 1, . . . , lgβ n

2 and β > 2 is a parameter to be fixed later. The

`’th epoch consists of the β` − β`−1 updates (iβ`−1, jβ`−1, xβ`−1), . . . , (iβ`−1 , jβ`−1 , xβ`−1). At the end of
epoch 1, the uniform random query v ∈ Fn is asked.

When a deterministic data structure D∗ processes the (random) sequence of updates

Π = (in2 , jn2 , xn2), . . . , (i1, j1, x1),

we say that a memory cell belongs to epoch ` if that memory cell’s contents where last updated while
processing the updates of epoch `, i.e. it was updated during epoch ` and it was not updated during epochs
`− 1, . . . , 1. We let C`(Π) denote the set of memory cells belonging to epoch ` after processing Π. If D∗ has
worst case update time tu, we have |C`(Π)| ≤ β`tu. We also define the set of probed cells P (Π, v) as the set
of memory cell probed when D∗ answers the (random) query v after processing the updates Π. With these
definitions, the main technical challenge is to prove the following:

Lemma 3. If D∗ is a deterministic data structure for dynamic online matrix-vector multiplication, with w
bit cells, worst case update time tu and error probability 1/3 over the hard distribution, then for all epochs
(4/6) lgβ n

2 ≤ ` ≤ lgβ n
2, we have

EΠ,v [|C`(Π) ∩ P (Π, v)|] = Ω

min

 n lg |F|

lg
(
tuw
lg |F|

) , β` lg |F|
w

 .

assuming β = 1024tuw/ lg |F|.

Before proving Lemma 3, we show that it implies Theorem 4. By the disjointness of the cell sets

Clgβ n
3(Π), . . . , C1(Π) we always have |P (Π, v)| ≥

∑lgβ n
2

`=1 |P (Π, v)∩C`(Π)|. Thus by linearity of expectation
we get

EΠ,v[|P (Π, v)|] ≥
lgβ n

2∑
`=1

EΠ,v[|P (Π, v) ∩ C`(Π)|].

By Lemma 3, this sum is at least

EΠ,v[|P (Π, v)|] ≥ Ω

 lgβ n
2∑

`=(4/6) lgβ n
2

min

 n lg |F|

lg
(
tuw
lg |F|

) , β` lg |F|
w

 .

If nw/ lg(tuw/ lg |F|) ≥ n2, we get a lower bound of Ω(n2 lg |F|/w) from Lemma 3 applied only to epoch
lgβ n

2. If nw/ lg(tuw/ lg |F|) ≤ n3/2, the first term in the min expression is smallest for every index ` in

the sum and we get a lower bound of Ω(n lg |F| lgβ n/ lg(tuw/ lg |F|)). If n3/2 ≤ nw/ lg(tuw/ lg |F|) ≤ n2,
there are lgβ n

2 − lgβ(nw/ lg(tuw/ lg |F|)) ≥ lgβ(n/w) terms where the first term in the min expression is
smallest, giving a lower bound of Ω(n lg |F| lgβ(n/w)/ lg(tuw/ lg |F|)). Since β = 1024tuw/ lg |F|, this proves
Theorem 4.

The next section is devoted to proving Lemma 3.

4.1 Probes to Epoch ` (Proof of Lemma 3)

In this section we prove Lemma 3. Let D∗ be a deterministic data structure for dynamic online matrix-
vector multiplication with w bit cells, worst case update time tu and error probability 1/3 over the hard
distribution. Let ` be an epoch satisfying (4/6) lgβ n

2 ≤ ` ≤ lgβ n
2. Our goal is to prove that

EΠ,v [|C`(Π) ∩ P (Π, v)|] = Ω

min

 n lg |F|

lg
(
tuw
lg |F|

) , β` lg |F|
w

11

assuming β = 1024tuw/ lg |F|. Our proof is based on an encoding argument. More specifically, we assume
for contradiction that

EΠ,v [|C`(Π) ∩ P (Π, v)|] = o

min

 n lg |F|

lg
(
tuw
lg |F|

) , β` lg |F|
w

 (1)

and use this assumption to encode the random updates of epochs `, . . . , 1 in less than H(xβ`−1 · · ·x1) =
β` lg |F| bits in expectation. Here H(·) denotes binary Shannon entropy. By Shannon’s source coding
theorem [29], this is a contradiction.

For reasons that become apparent later, our encoding and decoding procedures will share a random source
and also both need access to xn2 , . . . , xβ` . The randomness we need is a list Γ1, . . . ,Γm of m = |F|nk/512

independently chosen sets, where each Γi is a uniform random set of k = (β`−1)/n vectors from Fn. Observe
that xβ`−1 · · ·x1 are independent of xn2 · · ·xβ` and Γ1 · · ·Γm, thus H(xβ`−1 · · ·x1 | xn2 · · ·xβ`Γ1 · · ·Γm) =
β` lg |F| and we still reach a contradiction if we are able to encode xβ`−1 · · ·x1 in less than β` lg |F| bits in
expectation when the encoder and decoder share xn2 · · ·xβ` and Γ1 · · ·Γm.

The encoding argument will show that, assuming (1), we can often find a small set of queries, all probing
the same small set of cells, and that collectively reveal a lot of information about the updates of epochs
`, . . . , 1. To this end, we need to formalize exactly how these queries reveal a lot of information. We thus
need a few definitions:

Definition 2. Let S ⊆ {1, . . . , n} be a set of indices and let v ∈ Fn be a vector. Then v|S is the vector with
|S| entries, one for each index i ∈ S. The coordinate in v|S corresponding to an index i ∈ S has the value
v(i).

Definition 3. Let S1, . . . , Sn ⊆ {1, . . . , n} be n sets of indices and let v1, . . . , vk ∈ Fn be k vectors. Then
the rank sum of v1, . . . , vk with respect to S1, . . . , Sn, denoted RS(S1, . . . , Sn, v1, . . . , vk) is defined as

RS(S1, . . . , Sn, v1, . . . , vk) :=

n∑
i=1

dim(span(v
|Si
1 , . . . , v

|Si
k)).

Definition 4. For i = 1, . . . , n let R≤`i be the set of column indices updated in the i’th row during epochs

`, . . . , 1, i.e. R≤`i = {jk : k ≤ β` − 1 ∧ ik = i}. Let v1, . . . , vk ∈ Fn be a set of k vectors. Then the rank sum

of v1, . . . , vk wrt. epoch `, denoted RS≤`(v1, . . . , vk), is defined as:

RS≤`(v1, . . . , vk) := RS(R≤`1 , . . . , R≤`n , v1, . . . , vk).

Note that R≤`i is not random since we always update the same fixed sequence of indices (ik, jk), it is only
the value xk that varies in our hard distribution. With these definitions, it should be intuitive that a set
of query vectors v1, . . . , vk and their corresponding answers Mv1, . . . ,Mvk will reveal a lot of information
about epochs `, . . . , 1 if RS≤`(v1, . . . , vk) is high. To exploit this in an encoding argument, we show that
assumption (1) implies that we can find a small subset of cells in C`(Π) that answers a set of queries with
high rank sum. The precise details are as follows

Lemma 4. Let ` ≥ (4/6) lg n2 and assume (1). Then with probability at least 1/4 over the choice of Π,
there exists a subset of cells C∗` (Π) ⊆ C`(Π) satisfying:

1. |C∗` (Π)| = β` lg |F|/(1024w).

2. There exists at least |F|(1−o(1))nk distinct sets of k = (β` − 1)/n query vectors v1, . . . , vk for which:

(a) D∗ does not err when answering vi after the updates Π for i = 1, . . . , k.

(b) P (Π, vi) ∩ (C`(Π) \ C∗` (Π)) = ∅ for i = 1, . . . , k.

(c) RS≤`(v1, . . . , vk) ≥ nk/32.

12

We briefly discuss the main intuition on why Lemma 4 eventually leads to a contradiction to assump-
tion (1): Assuming (1), the lemma says that for most outcomes of Π, one can find a relatively small subset
C∗` (Π) of cells in C`(Π), where there is a large number of queries that read nothing else from epoch ` than
the cells in C∗` (Π) (property 2.b). These queries must intuitively “collect” the information they need about
epoch ` from this small set of cells. But property 2.c says that they need a lot of information, in fact
even more than the bits in C∗` (Π) can possibly describe. This is the high level message of the lemma and
eventually gives the contradiction.

To not remove focus from bounding the probes to epoch `, we defer the proof of Lemma 4 to Sec-
tion 4.2 and instead show how we use it in the encoding argument. So let ` ≥ (4/6) lg n2 and assume (1).
Under this assumption, we show how to encode and decode xβ`−1 · · ·x1 in less than H(xβ`−1 · · ·x1 |
xn2 · · ·xβ`Γ1 · · ·Γm) = β` lg |F| bits in expectation. Note that we condition on Γ1 · · ·Γm and xn2 · · ·xβ` ,
which is shared information between the encoder and decoder.

Encoding Procedure. Given Π = (in2 , jn2 , xn2), . . . , (i1, j1, x1) to encode, first observe that the indices
ik and jk are fixed, thus we only need to encode xβ`−1 · · ·x1. We proceed as follows:

1. We start by running the updates Π on D∗. We then check if a cell set C∗` (Π) ⊆ C`(Π) satisfying the
properties in Lemma 4 exists. If not, our encoding consists of a 0-bit, followed by a naive encoding of
xβ`−1 . . . x1, costing 1 + β` lg |F| bits. In this case, we terminate the encoding procedure. Note that
under assumption (1), this happens with probability at most 3/4.

2. If a cell set C∗` (Π) ⊆ C`(Π) satisfying the properties in Lemma 4 does exists, we letM denote the family
of all sets of k = (β` − 1)/n query vectors satisfying 2.a-c in Lemma 4. We have |M| ≥ |F|(1−o(1))nk.
We then check if one of the sets in M equals one of the random sets Γ1, . . . ,Γm. If not, we also
write a 0-bit followed by a naive encoding of xβ`−1 . . . x1 and terminate the encoding procedure.
This costs 1 + β` lg |F| bits. Recalling that Γ1, . . . ,Γm are chosen independently of Π, we conclude
that the probability of using a naive encoding of xβ`−1 · · ·x1 in either step 1. or 2. is bounded by

3/4 + (1− |M|/
(|F|n
k

)
)m ≤ 3/4 + exp(−m|M|/|F|nk) ≤ 3/4 + exp(−|F|Ω(nk)) ≤ 4/5.

3. If we did not terminate and write a naive encoding in either step 1. or 2. above, we have found a
C∗` (Π) satisfying the properties in Lemma 4 as well as an index i∗ amongst {1, . . . ,m} such that the
vectors in Γi∗ satisfy properties 2.a-c in Lemma 4. We use γ1, . . . , γk to denote these vectors. We now
write a 1-bit, followed by an encoding of i∗ and the addresses and contents of cells in C∗` (Π). This
costs 1 + lgm+ |C∗` (Π)|2w ≤ 1 + nk lg |F|/512 + nk lg |F|/512 ≤ 1 + β` lg |F|/256 bits.

4. We then write down the addresses and contents of all cells in C`−1(Π), . . . , C1(Π). Since the worst

case update time is tu and we chose β = 1024tuw/ lg |F|, this costs no more than
∑`−1
j=1 |Cj(Π)|2w ≤

4β`−1tuw ≤ β` lg |F|/256 bits.

5. In the last step, we iterate through the rows of M from 1 to n. For row i, we create an initially

empty set Xi of vectors in F|R
≤`
i |. We now iterate through all vectors in F|R

≤`
i | in some arbitrary

but fixed order. For each such vector v, we check whether v is in span(γ
|R≤`i
1 , . . . , γ

|R≤`i
k , Xi). If

not, we add v to Xi. We then continue to the next vector in F|R
≤`
i |. Once this terminates, we

have dim(span(γ
|R≤`i
1 , . . . , γ

|R≤`i
k , Xi) = |R≤`i | and |Xi| = |R≤`i | − dim(span(γ

|R≤`i
1 , . . . , γ

|R≤`i
k)). Letting

mi denote the i’th row vector in M after having processed all the updates Π, we finally compute

〈m|R
≤`
i

i , v〉 for each v ∈ Xi. We write down these inner products, costing |Xi| lg |F| bits. Summing

over all rows i, this step costs
∑
i |Xi| lg |F| =

∑
i(|R

≤`
i | − dim(span(γ

|R≤`i
1 , . . . , γ

|R≤`i
k))) lg |F| = (β` −

RS≤`(γ1, . . . , γk)) lg |F| ≤ (β` − nk/32) lg |F| = (β` − (β` − 1)/32) lg |F| bits.

13

Examining the above encoding procedure, we see that the expected length of the encoding is upper bounded
by

1 + (4/5)(β` lg |F|) + (1/5)(β` lg |F|+ β` lg |F|/128− (β` − 1) lg |F|/32) ≤
1 + β` lg |F| − (1/5)(3β` lg |F|/128− lg |F|/32) =

H(xβ`−1 · · ·x1 | xn2 · · ·xβ`Γ1 · · ·Γm)− Ω(β` lg |F|) <

H(xβ`−1 · · ·x1 | xn2 · · ·xβ`Γ1 · · ·Γm).

Thus to reach the contradiction to assumption (1), we only need to show that we can recover xβ`−1 · · ·x1

from the above encoding and xn2 · · ·xβ`Γ1 · · ·Γm. We do this as follows:

Decoding Procedure.

1. First we check the first bit of the encoding. If this is a 0-bit, we recover xβ`−1 · · ·x1 directly from the
remaining part of the encoding and terminate.

2. If the first bit is a 1-bit, we first recover i∗, C∗` (Π) and C`−1(Π), . . . , C1(Π). From i∗ and Γ1, . . . ,Γm
we also recover γ1, . . . , γk. Since the update indices in2 , . . . , i1 and jn2 , . . . , j1 are fixed, we can also

compute γ
|R≤`i
1 , . . . , γ

|R≤`i
k for all rows i.

3. For each row i in turn, we create an initially empty set Xi of vectors in F|R
≤`
i |. We then iterate through

all vectors v ∈ F|R
≤`
i | in the same fixed order as in step 5. of the encoding procedure. For each such v,

we check if v is in span(γ
|R≤`i
1 , . . . , γ

|R≤`i
k , Xi). If not, we add v to Xi. We then continue to the next v.

When this terminates we have reconstructed the sets Xi for all rows i.

4. We now process the updates (in2 , jn2 , xn2), . . . , (iβ` , jβ` , xβ`) on D∗, that is, we process all updates
until just before epoch `. We have thus computed the contents of every memory cell at the time just
before epoch `.

5. We now run the query algorithm of D∗ for γ1, . . . , γk. When answering the query γi, the query
algorithm repeatedly asks for a memory cell. When asking for a memory cell, we first check if the
cell is amongst C`−1(Π), . . . , C1(Π). If so, we have its contents and can continue to the next probe.
Otherwise we check if the cell is amongst C∗` (Π). If so, we again have its contents and can continue
to the next probe. If not, we know by property 2.b of Lemma 4 that the cell is not in C`(Π), i.e.
it was not updated during epochs `, . . . , 1. Thus its contents after processing all of Π is the same as
after processing only updates preceding epoch ` and we thus have its contents from the previous step
of the decoding procedure (step 4.). Since we are able to run the entire query algorithm, we get from
property 2.a in Lemma 4 that we recover the vector Mγi for each i = 1, . . . , k.

6. Finally, for each row i = 1, . . . , n in M , we will recover all the values xh for which h ≤ β` − 1 and
ih = i. This is precisely the values corresponding to the updates of the columns given by R≤`i . We do
this as follows: First, from the query answer Mγh for h = 1, . . . , k we can directly read off 〈mi, γh〉
where mi is the i’th row of M after processing Π. Since the decoder is given access to xn2 , . . . , xβ` ,

this allows us to compute 〈m|R
≤`
i

i , γ
|R≤`i
h 〉. Finally from step 5. of the encoding procedure we also have

〈m|R
≤`
i

i , v〉 for every v ∈ Xi. Since dim(span(γ
|R≤`i
1 , . . . , γ

|R≤`i
k , Xi) = |R≤`i |, this uniquely determines

m
|R≤`i
i and thus the values xh for which h ≤ β` − 1 and ij = i. Doing this for all rows finally recovers

xβ`−1, . . . , x1.

To summarize, we showed how to encode and decode xβ`−1, . . . , x1 in less than H(xβ`−1 · · ·x1) bits under
assumption (1). This is a contradiction, completing the proof of Lemma 3.

14

4.2 Finding a Cell Set (Proof of Lemma 4)

In this section, we prove Lemma 4. For this, first define W (Π) as the set of query vectors w for which D∗

does not err when answering w after processing Π, and at the same time,

|C`(Π) ∩ P (Π, w)| ≤ 16EΠ,v[|C`(Π) ∩ P (Π, v)|].

Define E(Π, v) as the indicator random variable taking the value 1 if D∗ errs when answering v after updates
Π and 0 otherwise. We have EΠ,v[E(Π, v)] ≤ 1/3. By Markov’s inequality and a union bound, we conclude
that with probability at least 1/4 over the choice of Π, we have both Ev[|C`(Π)∩P (Π, v)|] ≤ 4EΠ,v[|C`(Π)∩
P (Π, v)|] and Ev[E(Π, v)] ≤ 2/3. We say that the update sequence Π is good when this happens. We can
again use Markov’s inequality and a union bound to conclude that |W (Π)| ≥ |F|n/12 when Π is good. Now

consider a vector w ∈ W (Π) and let ∆ = β` lg |F|/(1024w). Observe that there are
(|C`(Π)|−|C`(Π)∩P (Π,w)|

∆−|C`(Π)∩P (Π,w)|
)

subsets C ′ ⊆ C`(Π) of ∆ cells, satisfying P (Π, w) ∩ (C`(Π) \ C ′) = ∅. By averaging, this means that there

is a set C∗` (Π) ⊆ C`(Π) of ∆ cells, with at least |W (Π)|
(|C`(Π)|−|C`(Π)∩P (Π,w)|

∆−|C`(Π)∩P (Π,w)|
)
/
(|C`(Π)|

∆

)
distinct vectors

w ∈W (Π) satisfying P (Π, w) ∩ (C`(Π) \ C∗` (Π)) = ∅. This is lower bounded by

|W (Π)|
(|C`(Π)|−|C`(Π)∩P (Π,w)|

∆−|C`(Π)∩P (Π,w)|
)(|C`(Π)|

∆

) =
|W (Π)|(|C`(Π)| − |C`(Π) ∩ P (Π, w)|)!∆!(|C`(Π)| −∆)!

|C`(Π)|!(∆− |C`(Π) ∩ P (Π, w)|)!(|C`(Π)| −∆)!

≥ |W (Π)|(∆− |C`(Π) ∩ P (Π, w)|)|C`(Π)∩P (Π,w)|

|C`(Π)||C`(Π)∩P (Π,w)| .

When Π is good, assumption (1) implies |C`(Π)∩P (Π, w)| = o(β` lg |F|/w) and we chose ∆ = β` lg |F|/(1024w).
Thus for good Π, the above is at least

≥ |W (Π)|
(

∆

2|C`(Π)|

)|C`(Π)∩P (Π,w)|

≥ |W (Π)|
(

∆

2β`tu

)|C`(Π)∩P (Π,w)|

= |W (Π)|
(

lg |F|
2048tuw

)|C`(Π)∩P (Π,w)|

.

For good Π, assumption (1) also implies |C`(Π) ∩ P (Π, w)| = o(n lg |F|/(lg((tuw)/ lg |F|))). Inserting this
above we get

≥ |W (Π)||F|−o(n)

= |F|(1−o(1))n.

Thus for good Π, we have at least |F|(1−o(1))n vectors w such that D∗ does not err when answering w after
processing Π and also P (Π, w) ∩ (C`(Π) \ C∗` (Π)) = ∅. Let the set of these vectors be denoted U(Π). Now

let k = (β` − 1)/n and consider all k-sized subsets of U(Π). There are
(|U(Π)|

k

)
= |F|(1−o(1))nk distinct such

sets. We want to show that most of these sets have high rank sum. For this, we have the following lemma:

Lemma 5. If ` ≥ (4/6) lgβ n
2 and k = (β` − 1)/n, then there exists no more than |F|(27/32)nk distinct sets

of k vectors, v1, . . . , vk in Fn, such that RS≤`(v1, . . . , vk) < nk/32.

Observe that combined with |U(Π)| = |F|(1−o(1))nk for good Π and Pr[Π is good] ≥ 1/4, Lemma 5
immediately implies Lemma 4. We thus finish our proof of Lemma 4 by proving Lemma 5.

15

Vectors and Rank Sum (Proof of Lemma 5). In the following, we prove Lemma 5. Let ` ≥ (4/6) lgβ n
2

and let V be the family of all sets of k = (β`−1)/n distinct vectors in Fn for whichRS≤`(v1, . . . , vk) < nk/32.
Our goal is to show that V has to be small. The intuition for why this is true is as follows: If a set of vectors

v1, . . . , vk has small rank sum wrt. epoch `, then for most rows i, we have that dim(span(v
|R≤`i
1 , . . . , v

|R≤`i
k))

is small. This means that, when restricted to the columns in R≤`i , the vectors v1, . . . , vk must be contained
in a low dimensional space. Since there are not too many vectors in a low dimensional space, this gives a
bound on the size of V when restricted to the coordinates in R≤`i . From there, our choice of well-separated
update indices also comes into play. This property of the update indices basically ensures that different rows
put constraints on different coordinates of v1, . . . , vk, effectively ensuring that if v1, . . . , vk is a set in V , then
they must lie in a low dimensional subspace no matter which subset of columns we consider. This finally
gives a bound on |V |. We formalize this intuition using an encoding argument.

Encoding Argument. Let v1, . . . , vk be a set of k = (β`−1)/n vectors from the family V . We present an
efficient encoding and decoding procedure for v1, . . . , vk. This gives a bound on |V |. The encoding procedure
is as follows:

1. Given v1, . . . , vk, we let I be the set of all row indices i for which dim(span(v
|R≤`i
1 , . . . , v

|R≤`i
k)) ≤ k/16.

Since we assumed RS≤`(v1, . . . , vk) < nk/32 and by definition RS≤`(v1, . . . , vk) = RS(R≤`1 , . . . , R≤`n),
it follows from Markov’s inequality that |I| ≥ n/2.

2. Since our update indices (ih, jh) were chosen as well-spread, and since ` ≥ (4/6) lgβ n
2, it follows from

Definition 1 that we can find a subset I∗ ⊆ I of indices satisfying |I∗| ≤ 8n2/(β` − 1) = 8n/k and∣∣∣⋃h≤β`−1:ih∈I∗{jh}
∣∣∣ ≥ n/4. The first part of our encoding is such a set of indices I∗. This costs no

more than 8n lg n/k bits.

3. For each i ∈ I∗, in increasing order, let R̃≤`i = R≤`i \
{⋃

i′∈I∗:i′<iR
≤`
i′

}
. If R̃≤`i is empty, we continue

to the next index in I∗. Otherwise, find some basis w1, . . . , wd for span(v
|R̃≤`i
1 , . . . , v

|R̃≤`i
k). Observe that

d ≤ k/16 since I∗ ⊆ I. We write down d and w1, . . . , wd. This costs no more than lg n+ d|R̃≤`i | lg |F|
bits. After having specified w1, . . . , wd, we also write down 〈wj , v

|R̃≤`i
h 〉 for each pair j ∈ {1, . . . , d}

and h ∈ {1, . . . , k}, costing dk lg |F| bits. Summing over all i ∈ I∗, the total cost of this step is

thus at most |I∗| lg n + (k/16) lg |F|
∑
i∈I∗ |R̃

≤`
i | + |I∗|(k/16)k lg |F| bits. This is at most 8n lg n/k +

(k/16) lg |F|
∑
i∈I∗ |R̃

≤`
i |+ nk lg |F|/16.

4. Finally we let X be the set of column indices not contained in any R≤`i with i ∈ I∗. For each vector
v1, . . . , vk in turn, we write down each coordinate corresponding to a column in X. This costs k|X| lg |F|
bits.

Next we show that we can recover v1, . . . , vk from the encoding produced by the above procedure. This is
done as follows:

1. From the bits written in step 2. of the encoding procedure, we recover I∗.

2. For each i ∈ I∗, in increasing order, compute R̃≤`i = R≤`i \
{⋃

i′∈I∗:i′<iR
≤`
i′

}
(these sets depend only

on i and the fixed update indices). If R̃≤`i is empty, we continue with the next index in I∗. If not, we

read the value d and the basis w1, . . . , wd written for this index i ∈ I∗. We then read 〈wj , v
|R̃≤`i
h 〉 for

each pair j ∈ {1, . . . , d} and h ∈ {1, . . . , k}. Since each v
|R̃≤`i
h is in span(v

|R̃≤`i
1 , . . . , v

|R̃≤`i
k), these inner

products allows us to recover each coordinate vh(c) for any column index c in R̃≤`i and any h = 1, . . . , k.

16

3. What remains is to recover all coordinates corresponding to column indices c where c /∈ R̃≤`i for any

h = 1, . . . , k. But
⋃
i∈I∗ R̃

≤`
i =

⋃
i∈I∗ R

≤`
i and thus we recover the remaining coordinates from the bits

written in step 4. of the encoding procedure.

We have thus shown that we can encode and decode every set of k vectors v1, . . . , vk into a string of at most:

16n lg n/k + (k/16) lg |F|
∑
i∈I∗
|R̃≤`i |+ nk lg |F|/16 + k|X| lg |F|

bits. But
∑
i∈I∗ |R̃

≤`
i | = n− |X|, and we rewrite |X| = n−

∑
i∈I∗ |R̃

≤`
i |. The above is thus equal to

nk lg |F|+ 16n lg n/k + nk lg |F|/16− (15/16)k lg |F|
∑
i∈I∗
|R̃≤`i |.

We also have
∑
i∈I∗ |R̃

≤`
i | =

∣∣∣⋃h≤β`−1:ih∈I∗{jh}
∣∣∣ ≥ n/4. This means that our encoding uses no more than

nk lg |F|+ 16n lg n/k + nk lg |F|/16− (15/64)nk lg |F| =

(53/64)nk lg |F|+ 16n lg n/k <

(54/64)nk lg |F|

bits. We thus conclude |V | ≤ 2(27/32)nk lg |F|.

4.3 Well-Spread Sequence (Proof of Lemma 2)

Let r be some value in the range n4/3 ≤ r ≤ n2/8 and let S be a set n/2 row indices. Partition S into
|S|/(n2/r) = r/(2n) consecutive groups G1, . . . , Gr/(2n) of n2/r rows each. Now let (in2 , jn2), . . . , (i1, j1) be
a uniform random permutation of the n2 pairs of indices in {1, . . . , n}×{1, . . . , n}. We bound the probability

that
∣∣∣⋃k≤r:ik∈Gh{jk}∣∣∣ < n/4 for all h = 1, . . . , r/(2n). This probability is upper bounded by(

n
n/2

)r/(2n)(5n2/8
r

)(
n2

r

) .

To see why, observe that if
∣∣∣⋃k≤r:ik∈Gh{jk}∣∣∣ < n/4 for all h = 1, . . . , r/(2n), then for all h = 1, . . . , r/(2n),

there must exist a set of 3n/4 column indices Ch such that
(⋃

k≤r{(ik, jk)}
)⋂

(Gh × Ch) = ∅. Thus we

must have: ⋃
k≤r

{(ik, jk)}

⋂r/(2n)⋃
h=1

(Gh × Ch)

 = ∅ (2)

At the same time, we have ∣∣∣∣∣∣
r/(2n)⋃
h=1

(Gh × Ch)

∣∣∣∣∣∣ = (r/(2n))(n2/r)(3n/4) = 3n2/8.

These inequalities explain our upper bound. The
(
n
n/4

)r/(2n)
term counts the number of possible families of

sets C1, . . . , Ch that could satisfy (2). For a particular choice of C1, . . . , Ch, there are only
(

5n2/8
r

)
choices of⋃

k≤r{(ik, jk)} that gives the required disjointness. The denominator just counts the total number of choices
of
⋃
k≤r{(ik, jk)}. We continue our calculations:(

n
n/4

)r/(2n)(5n2/8
r

)(
n2

r

) ≤ (4e)r/8
(5n2/8)!r!(n2 − r)!
(n2)!r!(5n2/8− r)!

≤ (4e)r/8
(5n2/8)r

(n2 − r + 1)r
.

17

Since r ≤ n2/8, this is at most

(4e)r/8
(5n2/8)r

(7n2/8)r
< 1.35r

(
5

7

)r
< 0.97r

= 2−Ω(n4/3).

Thus for a particular choice of n4/3 ≤ r ≤ n2/8 and set S of n/2 rows, the probability that there does not

exist a subset S∗ ⊆ S with |S∗| ≤ n2/r and
∣∣∣⋃k≤r:ik∈S∗{jk}∣∣∣ ≥ n/4 is at most 2−Ω(n4/3). Since there are

less than n2
(
n
n/2

)
< 22n possible choices for r and S, we can union bound over all of them and conclude that

there exists a sequence of update indices (in2 , jn2), . . . , (i1, j1) such that for any n4/3 ≤ r ≤ n2/8 and any

set S of n/2 rows, there exists a subset S∗ ⊆ S with size n2/r satisfying
∣∣∣⋃k≤r:ik∈S∗{jk}∣∣∣ ≥ n/4. For the

case n2/8 < r ≤ n2 and any set S of n/2 rows, the same sequence of updates must necessarily have a subset

S∗ of size at most 8n2/r for which
∣∣∣⋃k≤r:ik∈S∗{jk}∣∣∣ ≥ n/4. Thus (in2 , jn2), . . . , (i1, j1) is well-spread.

References

[1] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for
dynamic problems. In FOCS ’14: Proc. 55th Annual Symp. Foundations of Computer Science, 2014.

[2] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment of
sequences. In ICALP ’14: Proc. 41st International Colloquium on Automata, Languages and Program-
ming, pages 39–51, 2014.

[3] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless SETH is false). In STOC ’15: Proc. 47th Annual ACM Symp. Theory of Computing, 2015.

[4] Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquadratic
algorithms unless SETH fails. In FOCS ’14: Proc. 55th Annual Symp. Foundations of Computer Science,
pages 661–670, 2014.

[5] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string problems and
dynamic time warping. CoRR, abs/1502.01063, 2015.

[6] R. Clifford, M. Jalsenius, and B. Sach. Cell-probe bounds for online edit distance and other pattern
matching problems. In SODA ’15: Proc. 26th ACM-SIAM Symp. on Discrete Algorithms, 2015.

[7] Raphaël Clifford and Markus Jalsenius. Lower bounds for online integer multiplication and convolution
in the cell-probe model. In ICALP ’11: Proc. 38th International Colloquium on Automata, Languages
and Programming, pages 593–604, 2011.

[8] Raphaël Clifford, Markus Jalsenius, and Benjamin Sach. Tight cell-probe bounds for online hamming
distance computation. In SODA ’13: Proc. 24th ACM-SIAM Symp. on Discrete Algorithms, pages
664–674, 2013.

[9] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. A reliable randomized
algorithm for the closest-pair problem. Journal of Algorithms, 25(1):19 – 51, 1997.

[10] G.S. Frandsen, J.P. Hansen, and P.B. Miltersen. Lower bounds for dynamic algebraic problems. Infor-
mation and Computation, 171(2):333–349, 2001.

[11] M. Fredman. Observations on the complexity of generating quasi-Gray codes. SIAM Journal on Com-
puting, 7(2):134–146, 1978.

18

[12] M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In STOC ’89: Proc.
21st Annual ACM Symp. Theory of Computing, pages 345–354, 1989.

[13] A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in computational geometry. Compu-
tational Geometry, 5(3):165–185, 1995.

[14] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and strengthening hardness
for dynamic problems via the online matrix-vector multiplication conjecture. In STOC ’15: Proc. 47th

Annual ACM Symp. Theory of Computing, 2015.

[15] Kasper Green Larsen. The cell probe complexity of dynamic range counting. In STOC ’12: Proc. 44th

Annual ACM Symp. Theory of Computing, pages 85–94, 2012.

[16] Kasper Green Larsen. Higher cell probe lower bounds for evaluating polynomials. In FOCS ’12: Proc.
53rd Annual Symp. Foundations of Computer Science, pages 293–301, 2012.

[17] P.B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures and asymmetric communica-
tion complexity. Journal of Computer System Sciences, 57(1):37–49, 1998.

[18] Peter Bro Miltersen. Lower bounds for union-split-find related problems on random access machines.
In STOC ’94: Proc. 26th Annual ACM Symp. Theory of Computing, pages 625–634, 1994.

[19] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. MIT Press, 1969.

[20] Rina Panigrahy, Kunal Talwar, and Udi Wieder. Lower bounds on near neighbor search via metric
expansion. In FOCS ’10: Proc. 51st Annual Symp. Foundations of Computer Science, pages 805–814,
2010.

[21] Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. In FOCS ’08: Proc. 49th Annual
Symp. Foundations of Computer Science, pages 434–443, 2008.

[22] Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In STOC ’10: Proc. 42nd

Annual ACM Symp. Theory of Computing, pages 603–610, 2010.

[23] Mihai Pǎtraşcu and Mikkel Thorup. Higher lower bounds for near-neighbor and further rich problems.
SIAM Journal on Computing, 39(2):730–741, 2010. See also FOCS’06.

[24] Mihai Pǎtraşcu and Mikkel Thorup. Don’t rush into a union: take time to find your roots. In Lance
Fortnow and Salil P. Vadhan, editors, STOC ’11: Proc. 43rd Annual ACM Symp. Theory of Computing,
pages 559–568, 2011.

[25] Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In SODA ’10: Proc.
21st ACM-SIAM Symp. on Discrete Algorithms, pages 1065–1075, 2010.

[26] M. Pătraşcu and E. D. Demaine. Logarithmic lower bounds in the cell-probe model. SIAM Journal on
Computing, 35(4):932–963, 2006.

[27] Mihai Pătraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In STOC ’06: Proc.
38th Annual ACM Symp. Theory of Computing, pages 232–240, 2006.

[28] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and
radius of sparse graphs. In STOC ’13: Proc. 45th Annual ACM Symp. Theory of Computing, pages
515–524, 2013.

[29] Claude Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–423,
623–656, July, October 1948.

[30] Andrew Chi-Chih Yao. Should tables be sorted? Journal of the ACM, 28(3):615–628, 1981.

19

