
Time Lower Bounds for Nonadaptive Turnstile Streaming
Algorithms

Kasper Green Larsen
∗

Aarhus University
larsen@cs.au.dk

Jelani Nelson
†

Harvard University
minilek@seas.harvard.edu

Huy L. Nguy ˜̂en
Simons Institute

hlnguyen@cs.princeton.edu

ABSTRACT
We say a turnstile streaming algorithm is non-adaptive if,
during updates, the memory cells written and read depend
only on the index being updated and random coins tossed
at the beginning of the stream (and not on the memory con-
tents of the algorithm). Memory cells read during queries
may be decided upon adaptively. All known turnstile stream-
ing algorithms in the literature, except a single recent exam-
ple for a particular promise problem [7], are non-adaptive.
In fact, even more specifically, they are all linear sketches.

We prove the first non-trivial update time lower bounds
for both randomized and deterministic turnstile streaming
algorithms, which hold when the algorithms are non-adaptive.
While there has been abundant success in proving space
lower bounds, there have been no non-trivial turnstile up-
date time lower bounds. Our lower bounds hold against clas-
sically studied problems such as heavy hitters, point query,
entropy estimation, and moment estimation. In some cases
of deterministic algorithms, our lower bounds nearly match
known upper bounds.
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F.2.0 [Analysis of Algorithms and Problem Complex-
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1. INTRODUCTION
In the turnstile streaming model of computation [36] there

is some vector v ∈ Rn initialized to ~0, and we must provide a
data structure that processes coordinate-wise updates to v.
An update of the form (i,∆) causes the change vi ← vi+∆,
where ∆ ∈ {−M, . . . ,M}. Occasionally our data structure
must answer queries for some function of v. In many ap-
plications n is extremely large, and thus it is desirable to
provide a data structure with space consumption much less
than n, e.g. polylogarithmic in n. For example, n may be
the number of valid IP addresses (n = 2128 in IPv6), and vi
may be the number of packets sent from source IP address i
on a particular link. A query may then ask for the support
size of v (the “distinct elements” problem [14]), which was
used for example to estimate the spread of the Code Red
worm after filtering the packet stream based on the worm’s
signature [13, 35]. Another query may be the `2 norm of v
[2], which was used by AT&T as part of a packet monitor-
ing system [31, 42]. In some examples there is more than
one possible query to be asked; in “point query” problems a
query is some i ∈ [n] and the data structure must output
vi up to some additive error, e.g. ε‖v‖p [6, 12]. Such point
query data structures are used as subroutines in the heavy
hitters problem, where informally the goal is to output all i
such that vi is “large”. If the data structure is linearly com-
posable (meaning that data structures for v and v′ can be
combined to form a data structure for v− v′), heavy hitters
data structures can be used for example to detect trending
topics in search engine query streams [20, 21, 6]. In fact the
point query structure [6] has been implemented in the log
analysis language Sawzall at Google [41].

Coupled with the great success in providing small-space
data structures for various turnstile streaming problems has
been a great amount of progress in proving space lower
bounds, i.e. theorems which state that any data structure
for some particular turnstile streaming problem must use
space (in bits) above some lower bound. For example, tight
or nearly tight space lower bounds are known for the dis-
tinct elements problem [2, 43, 44, 25], `p norm estimation
[2, 3, 5, 43, 29, 22, 24, 26, 44, 25], heavy hitters [27], entropy
estimation [4, 29], and several other problems.

While there has been much previous work on understand-
ing the space required for solving various streaming prob-
lems, much less progress has been made regarding time com-
plexity: the time it takes to process an update in the stream
and the time it takes to answer a query about the stream.
This is despite strong motivation, since in several applica-
tions the data stream may be updated at an extremely fast



rate, so that in fact update time is often arguably more im-
portant than space consumption; for example, [42] reported
in their application for `2-norm estimation that their system
was constrained to spend only 130 nanoseconds per packet
to keep up with high network speeds. If for example n is
the number of IP addresses 2128, then certainly the (com-
puter connected to the) router has much more than lgn bits
of memory or even cache, which is a regime much previous
streaming literature has focused on. Arguably this primary
focus on space was not because of the greater practical in-
terest in space complexity, but simply because up until this
point there was a conspicuous absence of understanding con-
cerning the tradeoff between update time and memory con-
sumption (especially from the perspective of lower bounds).
In short, many previous research targets were defined by
what our tools allowed us to prove. In fact, in high-speed
applications such as in networking, one could easily imagine
preferring a solution using nε memory (as long as it fit in
cache) with a very fast update time than, say, polylogarith-
mic memory with worse update time.

Of course, without any space constraint achieving fast up-
date and query times is trivial: store v and its norm in mem-
ory explicitly and spend constant time to add ∆ to vi and
change the stored norm after each update. Thus an inter-
esting data structural issues arises: how can we simultane-
ously achieve small space and low time for turnstile stream-
ing data structures? As mentioned, surprisingly very little
is understood about this question for any turnstile stream-
ing problem. For some problems we have very fast algo-
rithms (e.g. constant update time for distinct elements [30],
and also for `2 estimation [42]), whereas for others we do
not (e.g. super-constant time for `p estimation for p 6= 2
[28] and heavy hitters problems [6, 12]), and we do not have
proofs precluding the possibility that a fast algorithm exists.
Indeed, the only previous time lower bounds for streaming
problems are those of Clifford and Jalsenius [8] and Clif-
ford, Jalsenius, and Sach [9, 10] for streaming multiplica-
tion, streaming edit distance and streaming Hamming dis-
tance computation. These problems are significantly harder
than e.g. `p estimation (the lower bounds proved apply even
for super-linear space usage) and there appears to be no way
of extending their approach to obtain lower bounds for the
problems above. Importantly, the problems considered in
[8, 9, 10] are not in the turnstile model.

A natural model for upper bounds in the streaming liter-
ature (and also for data structures in general), is the word
RAM model: basic arithmetic operations on machine words
of w bits each cost one unit of time. In the data structure
literature, one of the strongest lower bounds that can be
proven is in the cell probe model [34, 15, 45], where one
assumes that the data structure is broken up into S words
each of size w bits and cost is only incurred when the user
reads a memory cell from the data structure (S is the space).
Lower bounds proven in this model hold against any algo-
rithm operating in the word RAM model. In recent years
there has been much success in proving data structure lower
bounds in the cell probe model (see for example [39, 33])
using techniques from communication complexity and infor-
mation theory. Can these techniques be imported to obtain
time lower bounds for clasically studied turnstile streaming
problems?

Question 1. Can we use techniques from cell probe lower
bound proofs to lower bound the time complexity for classical
streaming problems?

Indeed the lower bounds for streaming multiplication and
Hamming distance computation were proved using the in-
formation transfer technique of Pǎtraşcu and Demaine [40],
but this approach does not seem effective against the turn-
stile streaming problems above.

There are a couple of obvious problems to attack for Ques-
tion 1. For example, for many streaming problems one can
move from, say, 2/3 success probability to 1−δ success prob-
ability by running Θ(lg(1/δ)) instantiations of the algorithm
in parallel then outputting the median answer. This is possi-
ble whenever the output of the algorithm is numerical, such
as for example distinct elements, moment estimation, en-
tropy estimation, point query, or several other problems.
Note that doing so increases both the space and update
time complexity of the resulting streaming algorithm by a
Θ(lg(1/δ)) factor. Is this necessary? It was shown that the
blowup in space is necessary for several problems by Jayram
and Woodruff [26], but absolutely nothing is known about
whether the blowup in time is required. Thus, any non-
trivial lower bound in terms of δ would be novel.

Another problem to try for Question 1 is the heavy hitters
problem. Consider the `1 heavy hitters problem: a vector
v receives turnstile updates, and during a query we must
report all i such that |vi| ≥ ε‖v‖1. Our list is allowed to
contain some false positives, but not “too false”, in the sense
that any i output should at least satisfy |vi| ≥ (ε/2)‖v‖1.
Algorithms known for this problem using non-trivially small
space, both randomized [12] and deterministic [19, 37], re-

quire Ω̃(lgn) update time. Can we prove a matching lower
bound?

Our Results.
In this paper we present the first update time lower bounds

for a range of classical turnstile streaming problems. The
lower bounds apply to a restricted class of randomized stream-
ing algorithms that we refer to as randomized non-adaptive
algorithms. We say that a randomized streaming algorithm
is non-adaptive if:

• Before processing any elements of the stream, the al-
gorithm may toss some random coins.

• The memory words read/written to (henceforth jointly
referred to as probed) on any update operation (i,∆)
are completely determined from the index i and the
initially tossed random coins.

Thus a non-adaptive algorithm may not decide which mem-
ory words to probe based on the current contents of the
memory words. Note that in this model of non-adaptivity,
the random coins can encode e.g. a hash function chosen
(independent of the stream) from a desirable family of hash
functions and the update algorithm can choose what to probe
based on the hash function. It is only the input-specific con-
tents of the probed words that the algorithm may not use
to decide which words to probe. To the best of our knowl-
edge, all the known algorithms for classical turnstile stream-
ing problems are indeed non-adaptive, in particular linear
sketches (i.e. maintaining Πv in memory for some r × n
matrix Π, r � n). One exception we are aware of is an



adaptive algorithm given for a promise problem in [7] (it is
also worth mentioning that for the non-promise version of
the problem, the algorithm given in the same work is again
non-adaptive). We further remark that our lower bounds
only require the update procedure to be non-adaptive and
still apply if adaptivity is used to answer queries.

Remark 2. One common technique in turnstile stream-
ing (e.g. see [28]) is to batch some number of updates then
process them all more time-efficiently once the batch is large
enough. In all examples we are aware of using this technique,
a time savings is gained solely because batching allows for
faster evaluation of the hash functions involved (e.g. using
fast multipoint evaluation of polynomials). Thus, such tech-
niques have only ever found application to decreasing word
RAM time complexity, but have thus far never been effec-
tive in decreasing cell probe complexity, which is what our
current work here lower bounds. Thus, in all these cases,
there is a non-adaptive algorithm achieving the best known
cell probe complexity.

For the remainder of the paper, for ease of presentation we
assume that the update increments are (possibly negative)
integers bounded by some M ≤ poly(n) in magnitude, and
that the number of updates in the stream is also at most
poly(n). We further assume the trans-dichotomous model
[16, 17], i.e. that the machine word size w is Θ(lgn) bits.
This is a natural assumption, since typically the stream-
ing literature assumes that basic arithmetic operations on a
value |vi|, the index of the current position in the stream,
or an index i into v can be performed in constant time.

We prove lower bounds for the following types of queries
in turnstile streams. For each problem listed, the query
function takes no input (other than point query, which takes
an input i ∈ [n]). Each query below is accompanied by a
description of what the data structure should output.

• `1 heavy hitter: return an index i such that |vi| ≥
‖v‖∞ − ‖v‖1/2.

• Point query: given i at query time, returns vi ±
‖v‖1/2.

• `p/`q norm estimation (1 ≤ q ≤ p ≤ ∞): returns
‖v‖p ± ‖v‖q/2.

• Entropy estimation. returns a 2-approximation of
the entropy of the distribution which assigns probabil-
ity |vi|/‖v‖1 to i for each i ∈ [n].

The lower bounds we prove for non-adaptive streaming
algorithms are as follows (n−O(1) ≤ δ ≤ 1/2 − Ω(1) is the
failure probability of a query):

• Any randomized non-adaptive streaming algorithm for
point query, `p/`q estimation with 1 ≤ q ≤ p ≤ ∞, and
entropy estimation, must have worst case update time

tu = Ω( lg(1/δ)√
lgn lg(eS/tu)

).

We also show that any deterministic non-adaptive stream-
ing algorithm for the same problems must have worst
case update time tu = Ω(lgn/ lg(eS/tu)).

• Any randomized non-adaptive streaming algorithm for
`1 heavy hitters, must have worst case update time

tu = Ω(min{
√

lg(1/δ)
lg(eS/tu)

, lg(1/δ)√
lg tu·lg(eS/tu)

}). Any deter-

ministic and non-adaptive streaming algorithm for `1
heavy hitters must have worst case update time tu =
Ω( lgn

lg(eS/tu)
).

Remark 3. The deterministic lower bound above for
point query matches two previous upper bounds for point
query [37], which use error-correcting codes to yield deter-
ministic point query data structures. Specifically, for space
S = O(lgn), our lower bound implies tu = Ω(lgn), match-
ing an upper bound based on random codes. For space
O((lgn/ lg lgn)2), our lower bound is tu = Ω(lgn/ lg lgn),
matching an upper bound based on Reed-Solomon codes.
Similarly, the deterministic bound above for deterministic
`2/`1 norm estimation matches the previous upper bound
for this problem [37], showing that for the optimal space
S = Θ(lgn), the fastest query time of non-adaptive algo-
rithms is tu = Θ(lgn).

These deterministic upper bounds are also in the cell
probe model. In particular, the point query data struc-
ture based on random codes and the norm estimation data
structure require access to combinatorial objects that are
shown to exist via the probabilistic method, but for which we
do not have explicit constructions. The point query struc-
ture based on Reed-Solomon codes can be implemented in
the word RAM model with tu = Õ(lgn) using fast multi-
point evaluation of polynomials. This is because perform-
ing an update, in addition to accessing O(lgn/ lg lgn) mem-
ory cells of the data structure, requires evaluating a degree-
O(lgn/ lg lgn) polynomial on O(lgn/ lg lgn) points to de-
termine which memory cells to access (see [37] for details).

Remark 4. The best known randomized upper bounds
are S = tu = O(lg(1/δ)) for point query [12] and `p/`p
estimation for p ≤ 2 [42, 28]. For entropy estimation the

best upper bound has S = tu = Õ((lgn)2 lg(1/δ)) [23]. For
`1 heavy hitters the best known upper bound (in terms of S
and tu) has S = tu = O(lg(n/δ)).

In addition to being the first non-trivial turnstile update
time lower bounds, we also managed to show that the update
time has to increase polylogarithmically in 1/δ as the error
probability δ decreases, which is achieved with the typical
reduction using lg(1/δ) independent copies of a data struc-
ture with constant error probability.

Our lower bounds can also be viewed in another light. If
one is to obtain constant update time algorithms for the
above problems, then one has to design algorithms that are
adaptive. Since all known upper bounds have non-adaptive
updates, this would require a completely new strategy to
designing turnstile streaming algorithms. Note that for ran-
domized algorithms, our lower bounds do not rule out con-
stant update time with constant error probability. If how-

ever the error probability is upper bounded by 2−ω(
√

lgn),
then adaptivity is necessary to achieve constant update time.

We also show a new cell probe upper bound for `1 point
query which outperforms the CountMin sketch [12] in terms
of query time, while matching it in both space and update
time (see Section 4.2). Our new algorithm is inspired by the
solution to the hard instance for our above lower bounds and
we believe this upper bound provides evidence that despite
the importance of the problems, the effort on understand-
ing the time complexity of them has been insufficient and



perhaps better algorithms are achievable. In fact, our up-
per bound even demonstrates the lg(1/δ)/

√
lgn behaviour

of our lower bounds, further supporting the hypothesis that
faster algorithms exist. Our upper bound is randomized,
non-adaptive and in the cell probe model, meaning that we
assume computation is free of charge and that we have ac-
cess to input independent truly random hash functions that
can be evaluated free of charge. Clearly our lower bounds
apply to this setting. It would be interesting to find a fast
implementation of our algorithm in the word-RAM model.

Technique.
As suggested by Question 1, we prove our lower bounds

using recent ideas in cell probe lower bound proofs. More
specifically, we use ideas from the technique now formally
known as cell sampling [18, 38, 32]. This technique derives
lower bounds based on one key observation: if a data struc-
ture/streaming algorithm probes t memory words on an up-
date, then there is a set C of t memory words such that at
least m/St updates probe only memory words in C, where
m is the number of distinct updates in the problem (for data
structure lower bound proofs, we typically consider queries
rather than updates, and we obtain tighter lower bounds by
forcing C to have near-linear size).

We use this observation in combination with the stan-
dard one-way communication games typically used to prove
streaming space lower bounds. In these games, Alice receives
updates to a streaming problem and Bob receives a query.
Alice runs her updates through a streaming algorithm for
the corresponding streaming problem and sends the result-
ing Sw bit memory footprint to Bob. Bob then answers his
query using the memory footprint received from Alice. By
proving communication lower bounds for any communica-
tion protocol solving the one-way communication game, one
obtains space lower bounds for the corresponding streaming
problem.

At a high level, we use the cell sampling idea in combi-
nation with the one-way communication game as follows: if
Alice’s non-adaptive streaming algorithm happens to “hash”
her updates such that they all probe the same t memory
cells, then she only needs to send Bob the contents of those
t cells. If t < S, this gives a communication saving over
the standard reduction above. We formalize this as a gen-
eral sketch-compression theorem, allowing us to compress
the memory footprint of any non-adaptive streaming algo-
rithm at the cost of increasing the error probability. This
general theorem has the advantage of allowing us to re-use
previous space lower bounds that have been proved using
the standard reduction to one-way communication games,
this time however obtaining lower bounds on the update
time. We demonstrate these ideas in Section 2 and also give
a more formal definition of the classic one-way communica-
tion game.

2. SKETCH COMPRESSION
In the following, we present a general theorem for com-

pressing non-adaptive sketches. Consider a streaming prob-
lem in which we are to maintain an n-dimensional vector v.
Let U be the update domain, where each element of U is a
pair (i,∆) ∈ [n] × {−M, . . . ,M} for some M = poly(n).
We interpret an update (i,∆) ∈ U as having the effect
v[i] ← v[i] + ∆. Initially all entries of v are 0. We also de-
fine the query domain Q = {q1, . . . , qr}, where each qi ∈ Q

is a function qi : Zn → R. With one-way communication
games in mind, we define the input to a streaming prob-
lem as consisting of two parts. More specifically, the pre-
domain Dpre ⊆ Ua consists of sequences of a update op-
erations. The post-domain Dpost ⊆ {U ∪ Q}b consists of
sequences of b updates and/or queries. Finally, the input
domain D ⊆ Dpre×Dpost denotes the possible pairings of a
initial updates followed by b intermixed queries and updates.
The set D defines a streaming problem PD.

We say that a randomized streaming algorithm for a prob-
lem PD uses S words of space if the maximum number of
memory words used when processing any d ∈ D is S. Here
a memory word consists of w = Θ(lgn) bits. The worst case
update time tu is the maximum number of memory words
read/written to upon processing an update operation for any
d ∈ D. The error probability δ is defined as the maximum
probability over all d ∈ D and queries qi ∈ d ∩ Q, of re-
turning an incorrect results on query qi after the updates
preceding it in the sequence d.

A streaming problem PD of the above form naturally de-
fines a one-way communication game: on an input (d1, d2) ∈
D, Alice receives d1 (the first a updates) and Bob receives
d2 (the last b updates and/or queries). Alice may now send
a message to Bob based on her input and Bob must answer
all queries in his input as if streaming through the concate-
nated sequence of operations d1 ◦ d2. The error probability
of a communication protocol is defined as the maximum over
all d ∈ D and qi ∈ {d∩Q}, of returning an incorrect results
on qi when receiving d as input.

Traditionally, the following reduction is used:

Theorem 5. If there is a randomized streaming algorithm
for PD with space usage S and error probability δ, then there
is a private coin protocol for the corresponding one-way com-
munication game in which Alice sends Sw bits to Bob and
the error probability is δ.

Proof. Alice simply runs the streaming algorithm on her
input and sends the memory image to Bob. Bob continues
the streaming algorithm and outputs the answers. �

Recall from Section 1 that a randomized streaming algo-
rithm is non-adaptive if:

• Before processing any elements of the stream, the al-
gorithm may toss some random coins.

• The memory words read/written to (henceforth jointly
referred to as probed) on any update operation (i,∆) is
completely determined from i and the initially tossed
random coins.

We show that for non-adaptive algorithms, one can effi-
ciently reduce the communication by increasing the error
probability. We require some additional properties of the
problem however: we say that a streaming problem PD is
permutation invariant if for any permutation π : [n] → [n],
it holds that π(qi(v)) = (π(qi)(π(v))) for all qi ∈ Q. Here
π(v) is the n-dimensional vector with value v[i] in entry π[i],
π(qi) maps all indices (if any) in the definition of the query
qi wrt. π and π(qi(v)) maps all indices in the answer qi(v)
(if any) wrt. π.

Observe that point query, `p estimation, entropy estima-
tion and heavy hitters all are permutation invariant prob-
lems. For point query, we have π(qi(v)) = qi(v) since an-
swers contain no indices, but π(qi) might differ from qi



since queries are defined from indices. For `p estimation
and entropy estimation, we simply have π(qi(v)) = qi(v)
and π(qi) = qi since neither queries or answers involve in-
dices. For heavy hitters we have π(qi) = qi (there is only
one query), but we might have that π(qi(v)) 6= qi(v) since
the answer to the one query is an index. We now have the
following:

Theorem 6. If there is a randomized non-adaptive stream-
ing algorithm for a permutation invariant problem PD with
a ≤

√
n, having space usage S, error probability δ, and

worst case update time tu ≤ (1/2)(lgn/ lg(eS/tu)), then
there is a private coin protocol for the corresponding one-way
communication game in which Alice sends at most a lg e +
tua lg(eS/tu) + lg a + lg lg(en/a) + tuw + 1 bits to Bob and
the error probability is 2ea · (eS/tu)tuaδ.

Before giving the proof, we present the two main ideas.
First observe that once the random choices of a non-adaptive
streaming algorithm have been made, there must be a large
collection of indices I ⊆ [n] for which all updates (i,∆),
where i ∈ I, probe the same small set of memory words
(there are at most

(
S
tu

)
distinct sets of tu words to probe). If

all of Alice’s updates probed only the same set of tu words,
then Alice could simply send those words to Bob and we
would have reduced the communication to tuw bits. To
handle the case where Alice’s updates probe different sets of
words, we make use of the permutation invariant property.
More specifically, we show that Alice and Bob can agree on
a collection of k permutations of the input indices, such that
one of these permutes all of Alice’s updates to a new set of
indices that probe the same tu memory cells. Alice can then
send this permutation to Bob and they can both alter their
input based on the permutation. Therefore Alice and Bob
can solve the communication game with lg k + tuw bits of
communication. The permutation of indices unfortunately
increases the error probability as we shall see below. With
these ideas in mind, we now give the proof of Theorem 6.

Proof (of Theorem 6). Alice and Bob will permute the
indices in their communication problem and use the random-
ized non-adaptive streaming algorithm on this transformed
instance to obtain an efficient protocol for the original prob-
lem.

By Yao’s principle, we have that the randomized com-
plexity of a private coin one-way communication game with
error probability δ equals the complexity of the best deter-
ministic algorithm with error probability δ over the worst
distribution. Hence we show that for any distribution µ on
D ⊆ Dpre×Dpost, there exists a deterministic one-way com-
munication protocol with tua lgS+lg a+lg lgn+tuw bits of
communication and error probability 2ea · (eS/tu)tuaδ. We
let µ1 denote the marginal distribution over Dpre and µ2 the
marginal distribution over Dpost.

Let µ = (µ1, µ2) be a distribution on D. Define a new
distribution γ = (γ1, γ2): pick a uniform random permuta-
tion π of [n]. Now draw an input d from µ and permutate
all indices of updates (and queries if defined for such) using
the permutation π. The resulting sequence π(d) is given to
Alice and Bob as before, which defines the new distribution
γ = (γ1, γ2). We use A ∼ µ1 to denote the r.v. providing
Alice’s input drawn from distribution µ1 and π(A) ∼ γ1

denotes the random variable providing Alice’s transformed
input. We define B ∼ µ2 and π(B) ∼ γ2 symmetrically.

Recall we want to solve the one-way communication game
on A and B. To do this, first observe that by fixing the
random coins, the randomized non-adaptive streaming al-
gorithm gives a non-adaptive and deterministic streaming
algorithm that has error probability δ and space usage S
under distribution γ. Before starting the communication
protocol on A and B, Alice and Bob both examine the algo-
rithm (it is known to both of them). Since it is non-adaptive
and deterministic, they can find a set of tu memory words C,
such that at least n/

(
S
tu

)
> n/(eS/tu)tu ≥

√
n ≥ a indices

i ∈ [n] satisfy that any update (i,∆) probes only memory
words in C. We let IC denote the set of all such indices
(again, IC is known to both Alice and Bob). Alice and Bob
also agree on a set of permutations {ρ1, . . . , ρk} (we deter-
mine a value for k later), such that for any set of at most
a indices, I ′, that can occur in Alice’s updates, there is at
least one permutation ρi where:

• ρi(j) ∈ IC for all j ∈ I ′
• Let I(A) denote the (random) indices of the updates

in A. Then the probability that the non-adaptive and
deterministic protocol errs on input ρi(A), conditioned
on I(A) = I ′, is at most 2ea ·(eS/tu)tua ·εI(A)=I′ where
εI(A)=I′ is the error probability of the deterministic
and non-adaptive streaming algorithm on distribution
γ, conditioned on I(A) = I ′.

Again, this set of permutations is known to both players.
The protocol is now simple: upon receiving A, Alice finds
the index i of a permutation ρi satisfying the above for the
indices I(A). She then sends this index to Bob and runs
the deterministic and non-adaptive algorithm on ρi(A). She
forwards the addresses and contents of all memory words in
C as well. This costs a total of lg k+ |C| ·w ≤ lg k+ tu(n)w
bits. Note that no words outside C are updated during
Alice’s updates. Bob now remaps his input B according to
ρi and runs the deterministic and non-adaptive streaming
algorithm on his updates and queries. Observe that for each
query qj ∈ B, Bob will get the answer ρi(qj)(ρi(v)) if the
algorithm does not err, where v is the“non-permuted”vector
after processing all of Alice’s updates A and all updates in B
preceeding the query qj . For each such answer, he computes
ρ−1
i (ρi(qj)(ρi(v))). Since PD is permutation invariant, we

have ρ−1
i (ρi(qj)(ρi(v))) = ρ−1

i (ρi(qj(v))) = qj(v). The final
error probability (over µ) is hence at most 2ea ·(eS/tu)tua ·δ
since EI′ εI(A)=I′ = δ.

We only need a bound on k. For this, fix one set I ′ of at
most a indices in [n] and consider drawing k uniform random
permutations. For each such random permutation Γ, note
that Γ(I ′) is distributed as I(π(A)) conditioned on I(A) =
I ′. Hence, the expected error probability when using the
map Γ (expectation over choice of Γ) is precisely εI(A)=I′ .
We also have

P(Γ(I ′) ⊆ IC) =

(|IC |
|I′|

)(
n
|I′|

) ≥ ( |IC |
en

)|I′|
≥ e−a ·

(
eS

tu

)−tua
By Markov’s inequality and a union bound, we have both
Γ(I ′) ⊆ IC and error probability at most 2ea · (eS/tu)tua ·
εI(A)=I′ with probability at least e−a · (eS/tu)−tua/2

def
= p

over the choice of Γ. Thus if we pick k = (1/p)a lg(en/a) >
(1/p) · lg

(
n
a

)
and use that 1 + x ≤ ex for all real x, then

setting the probability that all permutations Γ chosen fail
to have the desired failure probability and Γ(I ′) ⊆ IC is at



most (1− p)k < 1/
(
n
a

)
. Thus by a union bound over all

(
n
a

)
size-a subsets of indices, we can conclude that the desired
set of permutations exists. �

3. IMPLICATIONS
In this section, we present the (almost) immediate im-

plications of Theorem 6. All these results follow by re-
using the one-way communication game lower bounds orig-
inally proved to obtain space lower bounds of heavy hitters
[27]. Consider the generic protocol in Figure 1. For differ-
ent streaming problems, we will show the different ways to
implement the function Check(t, j) using the updates and
queries of the problems, where Check(t, j) is supposed to be
able to tell if t is equal to ij with failure probability δ. We
show first that if this is the case, we obtain a lower bound
on the update time tu. The lower bounds then follow from
the implementation of Check(t, j).

1: Alice chooses a indices i1, . . . , ia randomly without re-
placement in [n].

2: Alice performs updates v[ij ] ← v[ij ] + Cj for j =
1, . . . , a, where C is a large constant.

3: Alice sends her memory state to Bob.
4: for j from a down to 1 do . Bob decodes ia, . . . , i1

from Alice’s message.
5: for all t ∈ [n] do
6: if Check(t,j) then
7: Bob declares ij = t.
8: Bob performs the update v[ij ]← v[ij ]− Cj
9: end if

10: end for
11: end for

Figure 1: The communication protocol for Alice to
send a random numbers in [n] to Bob.

The proofs of the following two theorems follow easily from
Theorem 6:

Theorem 7. Any randomized non-adaptive streaming al-
gorithm that can implement all the Check(t, j) calls using no

more than k ≤ nO(1) queries with failure probability n−Ω(1) ≤
δ ≤ 1/2 − Ω(1) each, must have worst case update time

tu = Ω

(
min

{√
lg 1/δ

lg(eS/tu)
, lg 1/δ√

lg k lg(eS/tu)

})
.

Proof. We first prove the lower bound for the case where√
lg 1/δ

lg(eS/tu)
is the smaller of the two terms. This is the case

at least from n−Ω(1) ≤ δ ≤ k−3. Assume for contradic-
tion that such a randomized non-adaptive algorithm exists
with tu = o(

√
lg(1/δ)/ lg(eS/tu)). Set a = c0tu for a suf-

ficiently large constant c0. We invoke Theorem 6 to con-
clude that Alice can send her memory state to Bob using
a lg e+ tua lg(eS/tu) + lg a+ lg lg(en/a) + tuw+ 1 bits while
increasing the failure probability of Bob’s k queries to

2ea · (eS/tu)tuaδ ≤ (eS/tu)c0t
2
uδ1−o(1) ≤ δ1−o(1) ≤ k−2

each. By a union bound, the answer to all Bob’s queries
are correct with probability at least 1 − 1/k ≥ 9/10, so
Bob can recover i1, . . . , ia with probability 9/10. By Fano’s
inequality, Alice must send Bob at least Ω(H(i1, . . . , ia)) =

Ω(a lg(n/a)) ≥ c0c1tu lgn bits for some constant c1 (where
c1 does not depend on c0). But the size of her message was

a lg e+ tua lg(eS/tu) + lg a+ lg lg(en/a) + tuw + 1 ≤
c0t

2
u lg(eS/tu) + tuw + o(tu lgn).

We assumed

tu = o
(√

lg(1/δ)/ lg(eS/tu)
)

= o
(√

lgn/ lg(eS/tu)
)

and thus the above is bounded by tuw + o(tu lgn). Setting
c0 high enough, we get that w ≥ (c0c1 lgn)/2 and thus we
have reached a contradiction.

For the case k−3 < δ < 1/2−Ω(1), observe that we can de-
crease the failure probability to k−3 by increasing the space,
update time and query time by a factor α = Θ(lg1/δ k):
simply run α independent copies of the streaming algorithm
and return the majority answer on a query. Hence the lower
bound becomes

Ω


√

lg k
lg(eSα/(tuα))

α

 = Ω

(
lg 1/δ√

lg k lg(eS/tu)

)
.

�

Theorem 8. Any deterministic non-adaptive streaming
algorithm that can implement Check(t, j) must have worst
case update time tu = Ω( lgn

lg(eS/tu)
).

Proof. The proof is similar to that of Theorem 7. As-
sume for contradiction there is a deterministic non-adaptive
streaming algorithm with tu = o(lgn/ lg(eS/tu)). Choose
a = c0tu for sufficiently large constant c0. By Theorem 6,
Alice can send her memory state to Bob using

a lg e+ tua lg(eS/tu) + lg a+ lg lg(en/a) + tuw + 1 ≤
c0t

2
u lg(eS/tu) + tuw + o(tu lgn) ≤

tuw + o(tu lgn)

bits and Bob can still answer every query correctly. Since
Bob can recover i1, . . . , ia, Alice must send Bob at least
H(i1, . . . , ia) = Ω(a lg(n/a)) = c0c1tu lgn for some con-
stant c1 (independent of c0). Setting c0 large enough gives
w ≥ (c0c1 lgn)/2, thus deriving the contradiction. �

3.1 Applications to specific problems

Point query.
We can implement each Check(t, j) by simply querying

for the value of v[t] and check if the returned value is at
least Cj/3. By the guarantee of the algorithm, if it does
not fail, the returned value is within a factor 3 from the
right value and thus, Check(t, j) can correctly tell if t = vj .

Thus we run a total of na = nO(1) queries to implement all
Check(t, j)’s.

`p/`q estimation.
We can implement Check(t, j) as follows.

• v[t]← v[t]− Cj

• Check if ‖v‖p is at most Cj/3

• v[t]← v[t] + Cj



By the guarantee of the algorithm, if it does not fail, the
estimated `p/`q norm is at most 3Cj−1 < Cj/3 if t = ij
and it is greater than Cj/3 if t 6= ij . Thus, Check(t, j) can

correctly tell if t = vj . Again we used nO(1) queries in total.
We can also implement Check(t, j) for entropy estimation.

Entropy estimation.
We implement Check(t, j) as follows.

• v[t]← v[t]− Cj

• Check if the entropy is at most 1/3

• v[t]← v[t] + Cj

Consider the case the algorithm does not fail. First, if t = ij
then the entropy is at most

j∑
i=1

Ci(C − 1)

Cj+1 − C lg
Cj+1 − C
Ci(C − 1)

≤
j−1∑
i=1

Ci(C − 1)

Cj+1 − C lg 2Cj−i +
Cj(C − 1)

Cj+1 − C lg
Cj+1 − C
Cj(C − 1)

≤ O
(

lgC

C − 1

)
+
Cj(C − 1)

Cj+1 − C ·
Cj − C
Cj(C − 1)

≤ O
(

lgC

C − 1

)
≤ 1/10.

On the other hand, if t 6= ij then after the first operation,

‖v‖1 ≤ 2Cj+1−Cj−C
C−1

< 3Cj so the entropy is at least the
binary entropy of whether the index ij is picked, which is
greater than H(1/3) > 0.9. Thus, by the guarantee of the

algorithm, Check(t, j) correctly tells if t = vj using nO(1)

queries.

Corollary 9. Any randomized non-adaptive streaming
algorithm for `1 heavy hitters with failure probability n−O(1) ≤
δ ≤ 1/2 − Ω(1) must have worst case update time tu =

Ω(min{
√

lg(1/δ)
lg(eS/tu)

, lg(1/δ)√
lg tu·lg(eS/tu)

}). Any deterministic non-

adaptive streaming algorithm must have worst case update

time tu = Ω
(

lgn
lg(eS/tu)

)
.

Proof. We use a slightly different decoding procedure for
Bob. Instead of running Check(t, j) all indices t ∈ [n], in
iteration j, Bob can simply query for the heavy hitter to

find ij . Note that in iteration j, we have ‖v‖1 = Cj+1−C
C−1

<

2Cj = 2v[ij ] so if the algorithm is correct, Bob will find the
index ij . We have thus implemented all the Check(t, j)’s
using only a queries. Recall from the proof of Theorem 7
that a = O(tu). �

4. UPPER BOUNDS
In this section we first present an upper bound for the con-

crete hard instance used in Section 3 to derive our update
time lower bounds. The upper bound nearly matches our
lower bound and in particular exhibits the lg(1/δ)/

√
lgn be-

haviour with optimal space usage. In Section 4.2 we present
an algorithm for `1 point query which outperforms the Count-
Min sketch in terms of query time, while matching it in both
space and update time. Our new algorithm is inspired by

the solution to the hard instance from Section 3 and we be-
lieve this upper bound provides evidence that it might actu-
ally be the known upper bounds and not the lower bounds
we present that are sub-optimal. Both our upper bounds
are randomized, non-adaptive and in the cell probe model,
meaning that we assume computation is free of charge and
that we have access to truly random hash functions that can
be evaluated free of charge. Clearly our lower bounds ap-
ply to this setting. Obtaining similar upper bounds in the
word-RAM seems to require more ideas. We discuss this in
further detail in Section 4.1 and Section 4.2.

4.1 Solving the Hard Instance
Recall from Section 3 that the hard instance used to derive

the lower bounds has the following form: We have k distinct
indices i1, . . . , ik and k values ∆1, . . . ,∆k ∈ V where V =
{1, . . . , nO(1)}. We perform the updates vij ← vij + ∆j

for j = 1, . . . , k. Following that, we perform the updates
vij ← vij − ∆j for j = k, . . . , 1 possibly intermixed with
queries asking whether a given index i satisfies vi = Γi for
a query value Γi ∈ V . We present a randomized and non-
adaptive algorithm for this problem, where we assume the
availability of truly random hash functions. Our solution
uses optimal space Θ(k lg(1/δ)/ lgn) words, each word of
w = Θ(lgn) bits. The query time and update time are both
Θ(lg(1/δ)/

√
lgn) for any δ ≤ exp(−Θ(

√
lgn)).

Algorithm.
Construct a table T with t rows and r columns. We denote

the rows by T1, . . . , Tt. Every entry of the table stores a w
bit word, which is initialized to 0. We have t truly random
hash functions h1, . . . , ht : [n] → [r] mapping indices to
uniform random table cells. We also have t truly random
hash functions σ1, . . . , σt : [n]× V →

(
w√
w

)
mapping indices

and a value to uniform random length w bit strings with
precisely

√
w 1-bits. Upon an update vi ← vi + ∆ or vi ←

vi − ∆ for some ∆ ∈ V , we do a bitwise XOR of σj(i,∆)
onto the word stored in entry Tj [hj(i)] for j = 1, . . . , t.

To answer whether an index i satisfies vi = Γ for some Γ ∈
V , we compute the standard inner product 〈Tj [hj(i)], σj(i,Γ)〉
for all j = 1, . . . , t (interpreting the words as {0, 1}-vectors
in Rw). Note that such an inner product is simply a count of
how many 1’s Tj [hj(i)] and σj(i,Γ) have in common. Since
σj(i,Γ) has only

√
w 1’s, this number of always bounded by√

w. If the majority of the Tj [hj(i)]’s have

〈Tj [hj(i)], σj(i,Γ)〉 ≥
√
w/2,

we return that vi equals Γ and otherwise that vi 6= Γ.

Analysis.
In the cell probe model, we measure query time and up-

date time only as the number of memory words read/updated.
Thus the query time and update time is t and the space
usage is tr words. Given a desired error probability δ ≤
exp(−Θ(

√
lgn)), we set t = Θ(lg(1/δ)/

√
lgn) and let r =

ck/
√

lgn for some constant c > 0. This gives optimal space
and an update and query time of O(lg(1/δ)/

√
lgn). What

remains is to show that the error probability is bounded by
δ. For this, consider a query asking whether vi = Γ for
some Γ ∈ V . Since the hash functions used for the different
rows are independent, we restrict our attention to one row
Tj . Let Kj(i,Γ) be set of pairs (i′,∆i′) such that ∆i′ ∈ V ,
vi′ = ∆i′ and either i′ 6= i or ∆i′ 6= Γ. Note that ∆i′ ∈ V



implies ∆i′ 6= 0 and thus |Kj(i,Γ)| ∈ {k − 1, k} depending
on whether Γ = vi or not. From Kj(i,Γ) we also define
Cj(i,Γ) ⊆ Kj(i,Γ) as the pairs (i′,∆i′) ∈ Kj(i,Γ) satisfy-
ing hj(i

′) = hj(i), i.e. Cj(i,Γ) is the conflict list of pairs
hashing to the same word as index i in table Tj .

Let Σ denote the bitwise XOR of σj(i
′,∆i′) for all (i′,∆i′)

in Cj(i,Γ). Then if vi = Γ we have Tj [hj(i)] = (Σ XOR
σj(i,Γ)) and if vi 6= Γ we have Tj [hj(i)] = Σ. It follows
that if 〈Σ, σj(i,Γ)〉 <

√
w/2, then 〈Tj [hj(i)], σj(i,Γ)〉 >√

w/2 iff vi = Γ. Hence we let Eerr denote the event that
〈Σ, σj(i,Γ)〉 ≥

√
w/2. We wish to bound P(Eerr).

For this, let Efew denote the event |Cj(i,Γ)| ≤
√
w/4.

Now observe that conditioned on Efew, there are no more
than w/4 bits in Σ that are 1. Since σj is truly random
and (i,Γ) /∈ Cj(i,Γ), we have that σj(i,Γ) is independent of
these set bits and

E[〈Σ, σj(i,Γ)〉] ≤
√
w/4.

It follows that

P(Eerr | Efew) ≤ exp(−Ω(
√
w)) = exp(−Ω(

√
lgn)).

Next observe that

E[|Cj(i,Γ)|] ≤ k/r =
√

lgn/c.

For big enough constant c, this is less than
√
w/8 and we

get from a Chernoff bound that

P(¬Efew) = P(|Cj(i,Γ)| >
√
w/4) < exp(−Ω(

√
w)) =

exp(−Ω(
√

lgn)).

We conclude

P(Eerr) =

P(Eerr | Efew)P(Efew) + P(Eerr | ¬Efew)P(¬Efew) =

exp(−Ω(
√

lgn)).

The probability that we fail in most of the t rows is thus
bounded by exp(−Ω(t

√
lgn)) ≤ δ which completes the anal-

ysis.

Discussion.
There are two places in the above algorithm where we

make use of free computation in the cell probe model: Com-
puting 〈Tj [hj(i)], σj(i,Γ)〉 and in the efficient truly random
hash functions. There seems to be hope of getting around
the true randomness by resorting to Θ(lgn)-wise indepen-
dent hash functions and batching several evaluations to ex-
ploit algorithms such as fast multipoint evaluation of polyno-
mials to obtain close-to-constant amortized evaluation time,
see e.g. [28]. Hashing only to bit strings with exactly

√
w

1’s in near-constant time might need some additional ideas.

4.2 Faster `1 Point Query in the Cell Probe
Model

Below we present our improved algorithm for `1 point
query. In this problem we must support updates vi ← vi+∆
for ∆ ∈ {−nO(1), . . . , nO(1)}. Given a query index i, we
must return vi up to an additive error of ε‖v‖1 with proba-
bility at least 1− δ. For the reader familiar with the classic
CountMin sketch, our basic idea is to use the word-packing
approach from Section 4.1 to pack roughly lgn counters in
one word. The difficulty here is that ∆ requires Θ(lgn)
bits and not just one bit as in Section 4.1, thus no more

than one counter fits in a word. We get around this by
storing a summary word for groups of roughly lgn coun-
ters. The summary words store (1 + ε)-approximations of
the values of the counters and hence several approximations
can be packed in one word. When answering queries, it
suffices to use the approximate counters and thus we have
effectively reduced the number of words that must be read.
Our final result, in the cell probe model, is O(ε−1 lg(1/δ))
words of space, update time O(lg(1/δ)), and query time

O(1 + ε lg(1/δ) + lg(1/δ)√
lgn

·
√

lg lgn+ lg(1/ε)). The space

and update time match the CountMin sketch, whereas the
query time strictly outperforms it for 1/no(1) ≤ ε ≤ o(1)
and δ = o(1). The details are as follows.

Algorithm.
Let k = Θ(min{lg−2(1/δ), ε−2, lgn/ lg lg1+ε n}). We store

a table T with t rows denoted T1, . . . , Tt. Each row Tj is
partitioned into r blocks of k entries each. We use Tj [h, `]
to denote the `’th entry of the h’th block in Tj for any
(h, `) ∈ [r] × [k]. Each of the trk entries stores a Θ(lgn)-
bit counter which is initialized to 0. In addition to T , we
store a table A with t rows and r columns. The rows of A
are denoted A1, . . . , At and entry Aj [h] stores a (1 + ε/4)-
approximation of Tj [h, `] for each ` ∈ [k] and thus an entry
of A takes O(k lg lg1+ε n) ≤ O(lgn) bits.

We have t truly random hash functions h1, . . . , ht : [n]→
[r] mapping indices to blocks and t truly random hash func-
tions σ1, . . . , σt : [n]→

(
k√
k

)
mapping indices to a subset of√

k counters inside a block.
Upon an update vi ← vi + ∆, we add ∆ to all counters

Tj [hj(i), `] for j = 1, . . . , t and ` ∈ σj(i). We also update
the corresponding (1 + ε/4)-approximations of the counters.
These are stored in Aj [hj(i)] for j = 1, . . . , t.

To answer a query for index i, we read Aj [hj(i)] for j =
1, . . . , t. For each j, we extract from Aj [hj(i)] a (1 + ε/4)-
approximations of Tj [hj(i), `] for each ` ∈ σj(i). We finally
return the median of these approximations as our estimate
of vi.

Analysis.
We first analyse the resource requirements. The space

usage is O(trk) words. In the cell probe model, the query
time and update time is defined as the number of words
read/updated and thus the algorithm has update timeO(t

√
k)

and query time O(t).
We fix the parameters in the following. Given a desired

error probability δ, we set t = 1+O(lg(1/δ)/
√
k). To obtain

asymptotically optimal space, we set r = c(ε−1 lg(1/δ))/(tk)
for a large constant c > 0. Note that by our choice of k,
we have r ≥ c(ε−1 lg(1/δ))/(k + O(lg(1/δ)

√
k)) ≥ 1 if c is

sufficiently large. What remains is to show that this gives
the desired error probability on a query for index i. What
makes the analysis more cumbersome than for the standard
CountMin sketch is mainly the dependencies introduced by
the blocking.

For the analysis, first observe that if we consider a counter
Tj [hj(i), `] for an ` ∈ σj(i) and let β denote the sum of ab-
solute values of all other indices contributing to Tj [hj(i), `],
i.e. β =

∑
i′ 6=i:hj(i)=hj(i′)∧`∈σj(i′) |vi′ |, then if β ≤ ε‖v‖1/2

we have

(vi−ε‖v‖1/2)/(1+ε/4) ≤ Aj [hj(i)] ≤ (vi+ε‖v‖1/2)(1+ε/4).



Since vi ≤ ‖v‖1, this implies

Aj [hj(i)] ≥ (1− ε/4)(vi − ε‖v‖1/2)

≥ vi − ε‖v‖1/2− ε‖v‖1/4− ε‖v‖1/8
≥ vi − ε‖v‖1.

and

Aj [hj(i)] ≤ (vi + ε‖v‖1/2)(1 + ε/4)

≤ vi + ε‖v‖1/2 + ε‖v‖1/4 + ε‖v‖1/8
≤ vi + ε‖v‖1.

It follows that our median estimate is correct if more than
half of the counters Tj [hj(i), `] satisfy∑

i′ 6=i:hj(i)=hj(i′)∧`∈σj(i′)

|vi′ | ≤ ε‖v‖1/2.

To bound the probability this happens, let Cj denote the
subset of indices i′ 6= i such that hj(i

′) = hj(i). We say

that the event Eerr happens if there are more than
√
k/4

indices ` ∈ σj(i) for which
∑
i′∈Cj :`∈σj(i′) |vi′ | > ε‖v‖1/2.

We wish to bound P(Eerr). For this, partition Cj into two
sets Hj and Lj . The set Hj contains the heavy indices
i′ ∈ Cj such that |vi′ | ≥ ε‖v‖1/2. Lj contains the re-
maining light indices. We define two auxiliary events. Let
EerrH be the event |Hj | ≥

√
k/16 and let EerrL be the event∑

i′∈Lj
|vi′ | ≥ ε‖v‖1

√
k/16. If we condition on ¬EerrH and

¬EerrL, then there can be no more than k/16 + k/8 < k/5
indices ` ∈ [k] for which

∑
i′∈Cj :`∈σj(i′) |vi′ | > ε‖v‖1/2.

From this it follows from a Chernoff bound that P(Eerr |
¬EerrH ∧ ¬EerrL) = exp(−Ω(

√
k)).

Next observe that there can be no more than 2ε−1 in-
dices i′ for which |vi′ | ≥ ε‖v‖1/2. For each such index i′,
we have P(i′ ∈ Hj) = 1/r and we get E[|Hj |] ≤ 2ε−1/r =

2tk/(c lg(1/δ)) = 2k/(c lg(1/δ))+O(
√
k/c) = O(

√
k/c). Set-

ting c high enough, this is no more than
√
k/32. It follows

from a Chernoff bound that P(EerrH) = exp(−Ω(
√
k)).

For analysing P(EerrL), observe that

E[
∑
i′∈Lj

|vi′ |] ≤ ‖v‖1/r

= ε‖v‖1tk/(c lg(1/δ))

= O(ε‖v‖1
√
k/c).

For large enough c, this is bounded by ε‖v‖1
√
k/32 and thus

EerrL is an event in which
∑
i′∈Lj

|vi′ | exceeds its expecta-

tion by at least a factor 2. Since all i′ considered have |vi′ | ≤
ε‖v‖1/2, it follows that the probability of EerrL is maximized
when the mass (of ‖v‖1) is distributed evenly on 2ε−1 coor-

dinates. Thus EerrL becomes the event that at least
√
k/8

of these coordinates fall in Lj . By the arguments we used

to bound P(EerrH), we conclude P(EerrL) = exp(−Ω(
√
k)).

Combining the pieces, we conclude P(Eerr) = exp(−Ω(
√
k)).

Finally observe that for the median estimate to be incor-
rect, the event Eerr must happen for Ω(t) rows and the hash
functions for these rows are independent. It finally follows
by a Chernoff bound that the error probability is bounded
by exp(−Ω(t

√
k)) ≤ δ. By our choice of parameters, this

gives optimal space of O(ε−1 lg(1/δ)) words, update time

O(t
√
k) = O(

√
k + lg(1/δ)) = O(lg(1/δ)) and query time

O(t) = O(1 + lg(1/δ)/
√
k) which is bounded by

O

(
1 + ε lg(1/δ) +

lg(1/δ)√
lgn

·
√

lg lgn+ lg(1/ε)

)
This strictly outperforms the CountMin sketch for any ε and
δ satisfying 1/no(1) ≤ ε ≤ o(1) and δ = o(1).

Discussion.
In addition to the true randomness, the median compu-

tation also prevents the above algorithm from being effi-
ciently implemented in word RAM. If one finds an efficient
way of extracting the relevant

√
k approximations from each

Aj [hj(i)], one can most likely use the standard randomized
median selection algorithm [11] to find the median efficiently
using word-level parallelism (basically running an external
memory model [1] median selection algorithm).
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